
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11663–11679
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

PaSa: An LLM Agent for Comprehensive Academic Paper Search

Yichen He∗1 Guanhua Huang∗1 Peiyuan Feng1 Yuan Lin†1

Yuchen Zhang1 Hang Li1 Weinan E2

1ByteDance Seed 2Peking University

{hyc,huangguanhua,fpy,linyuan.0}@bytedance.com,
{zhangyuchen.zyc,lihang.lh}@bytedance.com, weinan@math.pku.edu.cn

Abstract

We introduce PaSa, an advanced Paper Search
agent powered by large language models. PaSa
can autonomously make a series of decisions,
including invoking search tools, reading pa-
pers, and selecting relevant references, to ul-
timately obtain comprehensive and accurate
results for complex scholar queries. We opti-
mize PaSa using reinforcement learning with
a synthetic dataset, AutoScholarQuery, which
includes 35k fine-grained academic queries and
corresponding papers sourced from top-tier AI
conference publications. Additionally, we de-
velop RealScholarQuery, a benchmark collect-
ing real-world academic queries to assess PaSa
performance in more realistic scenarios. De-
spite being trained on synthetic data, PaSa sig-
nificantly outperforms existing baselines on
RealScholarQuery, including Google, Google
Scholar, Google with GPT-4o for paraphrased
queries, ChatGPT (search-enabled GPT-4o),
GPT-o1, and PaSa-GPT-4o (PaSa implemented
by prompting GPT-4o). Notably, PaSa-7B sur-
passes the best Google-based baseline, Google
with GPT-4o, by 37.78% in recall@20 and
39.90% in recall@50, and exceeds PaSa-GPT-
4o by 30.36% in recall and 4.25% in preci-
sion. Model, datasets, and code are available at
https://github.com/bytedance/pasa.

Demo: https://pasa-agent.ai

1 Introduction

Academic paper search lies at the core of research
yet represents a particularly challenging informa-
tion retrieval task. It requires long-tail special-
ized knowledge, comprehensive survey-level cover-
age, and the ability to address fine-grained queries.
For instance, consider the query: "Which stud-
ies have focused on non-stationary reinforcement

∗Equal contribution.
†Corresponding author.

learning using value-based methods, specifically
UCB-based algorithms?" While widely used aca-
demic search systems like Google Scholar are effec-
tive for general queries, they often fall short when
addressing these complex queries (Gusenbauer and
Haddaway, 2020). Consequently, researchers fre-
quently spend substantial time conducting litera-
ture surveys (Kingsley et al., 2011; Gusenbauer
and Haddaway, 2021).

The advancements in large language models
(LLMs) (OpenAI, 2023; Anthropic, 2024; Gemini,
2023; Yang et al., 2024) have inspired numerous
studies leveraging LLMs to enhance information
retrieval, particularly by refining or reformulating
search queries to improve retrieval quality (Alaofi
et al., 2023; Li et al., 2023; Ma et al., 2023; Peng
et al., 2024). In academic search, however, the
process goes beyond simple retrieval. Human re-
searchers not only use search tools, but also engage
in deeper activities, such as reading relevant papers
and checking citations, to perform comprehensive
and accurate literature surveys.

In this paper, we introduce PaSa, a novel paper
search agent designed to mimic human behavior
for comprehensive and accurate academic paper
searches. As illustrated in Figure 1, PaSa con-
sists of two LLM agents: the Crawler and the Se-
lector. For a given user query, the Crawler can
autonomously collect relevant papers by utilizing
search tools or extracting citations from the current
paper, which are then added to a growing paper
queue. The Crawler iteratively processes each pa-
per in the paper queue, navigating citation networks
to discover increasingly relevant papers. The Selec-
tor carefully reads each paper in the paper queue to
determine whether it meets the requirements of the
user query. We optimize PaSa within the AGILE, a
reinforcement learning (RL) framework for LLM
agents (Feng et al., 2024).

11663

https://github.com/bytedance/pasa
https://pasa-agent.ai

Paper QueueCrawler User Query Selector

User Query

Select / Drop

[Search]

[Expand][Stop]

Figure 1: Architecture of PaSa. The system consists of two LLM agents, Crawler and Selector. The Crawler
processes the user query and can access papers from the paper queue. It can autonomously invoke the search tool,
expand citations, or stop processing of the current paper. All papers collected by the Crawler are appended to the
paper queue. The Selector reads each paper in the paper queue to determine whether it meets the criteria specified in
the user query.

Effective training requires high-quality academic
search data. Fortunately, human scientists have al-
ready created a vast amount of high-quality aca-
demic papers, which contain extensive surveys on
a wide range of research topics. We build a syn-
thetic but high-quality academic search dataset,
AutoScholarQuery, which collects fine-grained
scholar queries and their corresponding relevant
papers from the related work sections of papers
published at ICLR 2023 1, ICML 2023 2, NeurIPS
2023 3, ACL 2024 4, and CVPR 2024 5. Au-
toScholarQuery includes 33,511 / 1,000 / 1,000
query-paper pairs in the training / development /
test split.

Although AutoScholarQuery only provides
query and paper answers, without demonstrating
the path by which scientists collect the papers, we
can utilize it to perform RL training to improve
PaSa. In addition, we design a new session-level
PPO (Proximal Policy Optimization (Schulman
et al., 2017)) training method to address the unique
challenges of the paper search task: 1) sparse re-
ward: The papers in AutoScholarQuery are col-
lected via citations, making it a smaller subset of
the actual qualified paper set. 2) long trajectories:
The complete trajectory of the Crawler may involve
hundreds of papers, which is too long to directly
input into the LLM context.

To evaluate PaSa, besides the test set of Au-
toScholarQuery, we also develop a benchmark, Re-
alScholarQuery. It contains 50 real-world academic

1https://iclr.cc/Conferences/2023
2https://icml.cc/Conferences/2023
3https://neurips.cc/Conferences/2023
4https://2024.aclweb.org/
5https://cvpr.thecvf.com/Conferences/2024

queries with annotated relevant papers, to assess
PaSa in real-world scenarios. We compare PaSa
with several baselines including Google, Google
Scholar, Google paired with GPT-4o for para-
phrased queries, ChatGPT (search-enabled GPT-
4o), GPT-o1 and PaSa-GPT-4o (PaSa agent real-
ized by prompting GPT-4o). Our experiments show
that PaSa-7b significantly outperforms all baselines.
Specifically, for AutoScholarQuery test set, PaSa-
7b achieves a 34.05% improvement in Recall@20
and a 39.36% improvement in Recall@50 com-
pared to Google with GPT-4o, the strongest Google-
based baseline. PaSa-7b surpasses PaSa-GPT-4o
by 11.12% in recall, with similar precision. For
RealScholarQuery, PaSa-7b outperforms Google
with GPT-4o by 37.78% in Recall@20 and 39.90%
in Recall@50. PaSa-7b surpasses PaSa-GPT-4o by
30.36% in recall and 4.25% in precision.

The main contributions of this paper are summa-
rized as follows:

• We introduce PaSa, a comprehensive and accu-
rate paper search agent that can autonomously
use online search tools, read entire papers, and
navigate citation networks.

• We develop two high-quality datasets for com-
plex academic search, AutoScholarQuery and
RealScholarQuery.

• Although PaSa is trained solely on synthetic
data, it achieves remarkable real-world perfor-
mance. Experiments demonstrate that PaSa,
built on 7B LLM, significantly outperforms
all baselines, including GPT-4 agent, Google-
based search, and ChatGPT.

11664

https://iclr.cc/Conferences/2023
https://icml.cc/Conferences/2023
https://neurips.cc/Conferences/2023
https://2024.aclweb.org/
https://cvpr.thecvf.com/Conferences/2024

2 Related Work

LLMs in Scientific Discovery LLMs have been
applied across various stages of scientific discov-
ery (Van Noorden and Perkel, 2023; Lu et al., 2024;
Messeri and Crockett, 2024; Liao et al., 2024), such
as brainstorming ideas (Girotra et al., 2023; Wang
et al., 2024a; Baek et al., 2024), designing exper-
iments (M. Bran et al., 2024), writing code (Xu
et al., 2022), and generating research papers (Shao
et al., 2024; Agarwal et al., 2024; Wang et al.,
2024b). One of the most fundamental yet criti-
cal stages in research is conducting academic sur-
veys. Despite its importance, current tools like
Google Scholar are often insufficient, leading re-
searchers to spend considerable time on literature
review tasks (Kingsley et al., 2011; Gusenbauer
and Haddaway, 2021, 2020). This challenge moti-
vates us to develop PaSa, an LLM agent designed
to autonomously and comprehensively assist re-
searchers in collecting relevant research papers for
complex scholarly queries.

LLM Agents LLM Agents combine LLMs with
memory, tool use, and planning, enabling them to
perform more complex tasks such as personal copi-
lots (Stratton, 2024), travel planning (Gundawar
et al., 2024), web operations (Deng et al., 2024),
software development (Qian et al., 2023), and sci-
entific experimentation (Bran et al., 2023). In ad-
dition to realizing LLM Agents through prompt
engineering (Park et al., 2023; Yao et al., 2023;
Shinn et al., 2024; Chen et al., 2023), recent re-
search has focused on optimizing and training these
agents (Feng et al., 2024; Putta et al., 2024; Liu
et al., 2023). Among these efforts, AGILE (Feng
et al., 2024), a reinforcement learning framework
for LLM agents, allows the joint optimization of all
agent skills in an end-to-end manner. In our work,
we adopt the AGILE framework to implement PaSa.
Specifically, we design a novel session-level PPO
algorithm to address the unique challenges of the
paper search task, including sparse rewards and
long trajectories.

3 Datasets

3.1 AutoScholarQuery

AutoScholarQuery is a synthetic but high-quality
dataset of academic queries and related papers,
specifically curated for the AI field.

To construct AutoScholarQuery, we began by
collecting all papers published at ICLR 2023,

ICML 2023, NeurIPS 2023, ACL 2024, and CVPR
2024. For the Related Work section of each paper,
we prompted GPT-4o (Hurst et al., 2024) to gener-
ate scholarly queries, where the answers to these
queries correspond to the references cited in the
Related Work section. The prompt used is shown
in Appendix H.1. For each query, we retained only
the papers that could be retrieved on arXiv6, using
their arxiv_id as the unique article identifier in the
dataset. We adopt the publication date of the source
paper as the query date. During both training and
testing, we only considered papers published prior
to the query date.

The final AutoScholarQuery dataset comprises
33,551, 1,000, and 1,000 instances in the train-
ing, development, and testing splits, respectively.
Each instance consists of a query, the associated
paper set, and the query date, with queries in each
split derived from distinct source papers. Table 1
provides illustrative examples from AutoScholar-
Query, while additional dataset statistics are sum-
marized in Table 2.

To evaluate the quality of AutoScholarQuery,
we sampled 100 query-paper pairs and assessed
the rationality and relevance of each query and
the corresponding paper. A qualified query should
be meaningful and unambiguous. A qualified pa-
per should match the requirements of the scholarly
query. Detailed evaluation criteria are provided
in Appendix. A. Three authors manually reviewed
each pair, determining that 94.0% of the queries
were qualified. Among these qualified queries,
93.7% had corresponding papers that were deemed
relevant and appropriate.

3.2 RealScholarQuery

To evaluate PaSa in more realistic scenarios, we
constructed RealScholarQuery, a test dataset con-
sisting of 50 real-world research queries. After
launching the demo of PaSa, we invited several AI
researchers to use the system. From the queries
they provided, we randomly sampled a subset of
queries and manually filtered out overly broad
topics (e.g., "multimodal large language models,"
"video generation"). Ultimately, we collected 50
fine-grained and realistic queries.

For each query, we first manually gathered rel-
evant papers to the best of our ability. To ensure
comprehensive coverage, we then applied multiple
methods to retrieve additional papers, including

6https://arxiv.org/

11665

https://arxiv.org/

Query: Could you provide me some studies that proposed hierarchical neural models to capture spatiotemporal features in sign
videos?
Query Date: 2023-05-02
Answer Papers:
[1] TSPNet: Hierarchical Feature Learning via Temporal Semantic Pyramid for Sign Language Translation (2010.05468)
[2] Sign Language Translation with Hierarchical Spatio-Temporal Graph Neural Network (2111.07258)
Source: SLTUnet: A Simple Unified Model for Sign Language Translation, ICLR 2023
Query: Which studies have focused on nonstationary RL using value-based methods, specifically Upper Confidence Bound (UCB)
based algorithms?
Query Date: 2023-08-10
Answer Papers:
[1] Reinforcement Learning for Non-Stationary Markov Decision Processes: The Blessing of (More) Optimism (2006.14389)
[2] Efficient Learning in Non-Stationary Linear Markov Decision Processes (2010.12870)
[3] Nonstationary Reinforcement Learning with Linear Function Approximation (2010.04244)
Source: Provably Efficient Algorithm for Nonstationary Low-Rank MDPs, NeurIPS 2023
Query: Which studies have been conducted in long-form text generation, specifically in story generation?
Query Date: 2024-01-26
Answer Papers:
[1] Strategies for Structuring Story Generation (1902.01109)
[2] MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Using Large-Scale Language Models
(2010.00840)
Source: ProxyQA: An Alternative Framework for Evaluating Long-Form Text Generation with Large Language Models, ACL 2024

Table 1: Examples of queries and corresponding papers in AutoScholarQuery.

Conference |P | |Q| Ans(/Q) Ans-50 Ans-90

ICLR 2023 888 5204 2.46 2.0 5.0
ICML 2023 981 5743 2.37 2.0 5.0
NeurIPS 2023 1948 11761 2.59 2.0 5.0
CVPR 2024 1336 9528 2.94 2.0 6.0
ACL 2024 485 3315 2.16 2.0 4.0

Table 2: Statistics of AutoScholarQuery. |P | and |Q|
represent the total number of papers and queries col-
lected for each conference. Ans(/Q) denotes the aver-
age number of answer papers per query. Ans-50 and
Ans-90 refers to the 50th and 90th percentiles of answer
paper counts per query.

PaSa, Google, Google Scholar, ChatGPT (search-
enabled GPT-4o), and Google paired with GPT-4o
for paraphrased queries. As these methods also
serve as baselines for comparison with PaSa, im-
plementation details are deferred to Section 5.2.
The results from all methods were aggregated into
a pool of candidate papers. Finally, professional
annotators reviewed all candidate papers for each
query, selecting those that met the specific require-
ments of the query to create the final set of relevant
papers. Annotation guidelines and quality control
procedures are detailed in Appendix. B. The query
date of all instances in RealScholarQuery is 2024-
10-01. Table 9 in Appendix C provides an example
from RealScholarQuery.

The annotators included professors from the De-
partment of Computer Science at a top-tier univer-
sity in China. On average, each query required the
annotators to review 76 candidate papers. We paid

$4 per data entry (a query-paper pair), resulting
in an average of $304 per query. Given the high
annotation cost, we completed this process for only
50 instances. On average, each query is associ-
ated with 15.82 answer papers. The 50th percentile
of answer counts per query is 9, while the 90th
percentile reaches 37.

4 Methodology

4.1 Overview

As illustrated in Figure 1, the PaSa system consists
of two LLM agents: Crawler and Selector. The
crawler reads the user’s query, generates multiple
search queries, and retrieves relevant papers. The
retrieved papers are added to a paper queue. The
Crawler further processes each paper in the paper
queue to identify key citations worth exploring fur-
ther, appending any newly relevant papers to the
paper queue. The selector conducts a thorough re-
view of each paper in the paper queue to assess
whether it fulfills the user’s query requirements.

In summary, the Crawler is designed to maxi-
mize the recall of relevant papers, whereas the Se-
lector emphasizes precision in identifying papers
that meet the user’s needs.

4.2 Crawler

In RL terminology, the Crawler performs a token-
level Markov Decision Process (MDP). The ac-
tion space A corresponds to the LLM’s vocabulary,
where each token represents an action. The LLM

11666

Is there any works that analyze the scaling law of the multimodal models, such as video-text, image-text models.

[Search]Analysis of scaling
law in video-text models

[Search]Scaling laws in
multi-modal AI models

[Search]Image-text
model scaling laws research

[Search]Survey papers on
scaling law of multimodal models

[Stop]

Neural Scaling

Laws for Embodied

AI

…
Scaling Law

Hypothesis for

Multimodal Model

Scaling Laws for

Generative Mixed-Modal

Language Models

… … …

[Expand]1 Introduction [Expand]… [Expand]3 Empirical approach
Research paper meta analysis

[Expand]4 Results 4.1 Scaling Laws
for Robot Foundation Models

[Stop]

Foundation models in robotics:
Applications, challenges, and
the future

…

… …

[Expand]II Foundation
Models Background
II-D Multimodal Vision-
Language Models (VLMs)
Scaling language-image
pre-training via masking

[Expand]IV Perception
IV-A Open-Vocabulary
Object Detection and 3D
Classification

[Stop]

Simple open-
vocabulary
object detection
with vision
transformers

Foundation

models in

robotics:

Applications,

challenges, and

the future

[Stop]

…

…

Crawler Selector Select Selector Drop

…

Figure 2: An example of the PaSa workflow. The Crawler runs multiple [Search] using diverse and complementary
queries. In addition, the Crawler can evaluate the long-term value of its actions. Notably, it discovers many relevant
papers as it explores deeper in the citation network, even when intermediate papers along the path do not align with
the user query.

Name Implementation

Generate a search query and invoke
[Search] the search tool. Append all resulting

papers to the paper queue.

Generate a subsection name, then
[Expand] add all referenced papers in the sub-

section to the paper queue.

[Stop]
Reset the context to the user query and
the next paper in the paper queue.

Table 3: Functions of the Crawler.

functions as the policy model. The agent’s state is
defined by the current LLM context and the paper
queue. The Crawler operates with three registered
functions, as outlined in Table 3. When an ac-
tion matches a function name, the corresponding
function is executed, further modifying the agent’s
state.

For example, as Figure 2 shows, the agent begins
by receiving a user query, incorporating it into its
context, and initiating actions. If the token gener-
ated is [Search], the LLM continues to generate a
search query, and the agent invokes a search tool to
retrieve papers, which are then added to the paper
queue. If the token is [Expand], the LLM contin-
ues to extract a subsection name from the current
paper in its context. The agent then extracts all
referenced papers within that subsection, adding
them to the paper queue. If the token is [Stop],
the agent resets its context to the user query and
information of the next paper in the paper queue.
This information includes the title, abstract, and an

outline of all sections and subsections.
The training process for the Crawler comprises

two stages. In the first stage, we generate trajec-
tories for a small subset of the training data and
then perform imitation learning (see Appendix D.1
for details). In the second stage, reinforcement
learning is applied. The details of the RL training
implementation are described below.

Reward Design We conduct RL training on the
AutoScholarQuery training set, where each in-
stance consists of a query q and a corresponding
paper set P . Starting with a query q, the Crawler
generates a trajectory τ = (s1, a1, · · · , sT , aT). At
each time step t, we denote the current paper queue
as Qt. Upon taking action at, the Crawler appends
a set of new papers (p1, p2, · · · , pnt) to the paper
queue. If at = [Stop], the set is empty and no
papers are added.

The reward of executing action at in state st is
defined as

r(st, at) = α×
nt∑

i=1

I(q, pi, t)− c(at), (1)

where I(q, pi, t) = 1 if pi matches the query q and
is not already in Qt, and I(q, pi, t) = 0 otherwise.
Here, α is a reward coefficient, and c(at) is the cost
of action at.

The indicator function I(q, pi, t) can be deter-
mined by checking if pi belongs to P −Qt. How-
ever, it is important to note that the AutoScholar-
Query may only include a subset of the ground-
truth papers, as citations often emphasize a limited

11667

number of key references. If the Crawler receives
rewards solely based on matching papers in Au-
toScholarQuery, this could lead to sparse rewards
during training. To mitigate this, we use the Selec-
tor as an auxiliary reward model for the Crawler.
The revised definition of I(q, pi, t) is:

I(q, pi, t) =





1, if (Selector(q, pi) = 1 or pi ∈ P)

and pi /∈ Qt,

0, otherwise.
(2)

Here Selector(q, pi) = 1 if paper pi is identified
as correct to meet the query q by the Selector, and
Selector(q, pi) = 0 otherwise.

RL Training A key challenge in training the
Crawler with RL is the significant time required
to sample a complete trajectory for a given query.
This is due to each [Search] or [Expand] action
adding multiple papers to the paper queue, result-
ing in hundreds or even thousands of papers in the
final paper queue.

To address this issue, we define a session as a
sub-trajectory that ends with the [Stop] action, af-
ter which a new session begins. We identify two
types of initial states for such sub-trajectories: Sq,
containing only the user query, and Sq+p, contain-
ing both the query and a paper. Sq represents the
task’s starting point, where the LLM context in-
cludes only the query. In contrast, Sq+p arises after
a [Stop] action, where the LLM context is reset to
the query and the next paper in the queue.

Formally, we model the Crawler as a pol-
icy πθ(at|st). We partition the entire trajec-
tory τ = (s1, a1, · · · , sT , aT) into a sequence
of sessions: (τt1:t2−1, τt2:t3−1, · · ·). Each ses-
sion is τti:ti+1−1 = (sti , ati , · · · , sti+1−1, ati+1−1),
where the initial state sti is either belonging to type
Sq or Sq+p, and the final action ati+1−1 is [STOP].

Sampling such a sub-trajectory from these ses-
sion initial states is computationally efficient. Dur-
ing the PPO training, at time step t ∈ [ti, ti+1),
we estimate the return in the session using Monte
Carlo sampling:

R̂t =

ti+1−1∑

k=t

γk−t
0

[
r(sk, ak) (3)

+γ1

nk∑

j=1

V̂ϕ(Sq+pj)

]
− β · log πθ(at|st)

πsft(at|st)

Here, γ0 is the in-session discount factor, and γ1
is the across-session discount factor. V̂ϕ(·) is the

value function model to approximate the state value.
After executing ak, the paper queue is updated to
include the newly found papers (p1, p2, · · · , pnk

).
Since the Crawler will subsequently initiate new
sessions to process these additional papers, their
associated reward-to-go should be incorporated
into the return estimate. In addition, we include a
per-token KL penalty term from the learned pol-
icy πθ to the initial policy πsft obtained through
imitation learning at each token to mitigate over-
optimization. This term is scaled by the coefficient
β.

Then the advantage function can be approxi-
mated by

Â(st, at) = R̂t − V̂ϕ(st). (4)

Finally, the policy and value objectives can be
given by

Lpolicy(θ) =Eτ ′∼πold
θ

[
min

(
πθ(at|st)
πold
θ (at|st)

Â(st, at), (5)

clip
(πθ(at|st)
πold
θ (at|st)

, 1− ϵ, 1 + ϵ
)
Â(st, at)

)]

and

Lvalue(ϕ) = Eτ ′∼πold
θ

[
max

((
R̂t − V̂ϕ(st)

)2

, (6)

(
R̂t − V̂ clip

ϕ (st)
)2

)]
,

respectively, where

V̂ clip
ϕ (st) = clip

(
V̂ϕ(st), V

old
ϕ (st)− ϵ, V old

ϕ (st) + ϵ
)
. (7)

Here, πold
θ and V old

ϕ is used for sampling and τ ′ is
session trajectory. We then combine these into the
unified RL loss:

LRL(θ, ϕ) = Lpolicy(θ) + η · Lvalue(ϕ) (8)

where η is the coefficient of the value objective.

4.3 Selector
The Selector is an LLM agent that takes two inputs:
a scholar query and a research paper (including its
title and abstract). It generates two outputs: (1) a
single decision token d, either "True" or "False",
indicating whether the paper satisfies the query,
and (2) a rationale r = (r1, r2, ..., rm) containing
m tokens that support this decision. The rationale

11668

serves two purposes: enhancing decision accuracy
by jointly training the model to generate decisions
and explanations, and improving user trust by pro-
viding the reasoning in PaSa application.

To optimize training efficiency for the Crawler,
the decision token is presented before the ratio-
nale, allowing the Selector to act as a single-token
reward model during the Crawler training. Addi-
tionally, the token probability of the decision token
can be used to rank search results. At last, as shown
in Table 6, the order of the decision and rationale
does not affect the Selector’s performance.

We perform imitation learning to optimize the
Selector. See Appendix E for training data collec-
tion and training details.

5 Experiments

5.1 Experimental Setting

We sequentially trained the Selector and Crawler,
both based on the Qwen2.5-7b (Yang et al., 2024),
to develop the final agent, referred to as PaSa-7b.

Selector The Selector was fine-tuned using the
training dataset described in Appendix E. We con-
ducted supervised fine-tuning for one epoch with
a learning rate of 1e-5 and a batch size of 4. The
training runs on 8 NVIDIA-H100 GPUs.

Crawler The training process involves two
stages. First, we perform imitation learning for
1 epoch on 12,989 training data with a learning
rate of 1e-5 and batch size of 4 per device, using
8 NVIDIA H100 GPUs. In the second stage, we
apply PPO training. To ensure stability, we first
freeze the policy model and train the value model,
followed by co-training both the policy and value
models. The hyperparameters used during the train-
ing process are listed in Table 12 in Appendix D.2.

During imitation learning, the model encoun-
ters 5,000 queries, while during the RL training
phase, the model processes a total of 16,000 queries.
For more details please refer to Appendix D.1 for
the imitation learning data construction and Ap-
pendix D.2 for the PPO training data sampling.

Implementation of [Search] The LLM predicts
a query based on the context. Then the agent calls
Google7 with the parameters site:arxiv.org and
before:query_date, restricting search results by
source and publication time.

7Accessed via the Google Search API provided by https:
//serper.dev.

Paper Management We developed a database to
manage and restore research papers. PaSa retrieves
paper information from the database. If no match-
ing record is found, we use ar5iv8 to obtain the full
paper content, including citations, and then parse
this data and store it in the database.

5.2 Baselines and Evaluation
We evaluate our paper search agent on both the test
set of AutoScholarQuery and RealScholarQuery.
We compare PaSa-7b against the following base-
lines:

• Google. We use Google to search the query
directly, with the same parameter settings in
Section 5.1.

• Google Scholar. Queries are submitted di-
rectly to Google Scholar7, with the same pa-
rameter settings in Section 5.1.

• Google with GPT-4o. We first employ GPT-
4o to paraphrase the scholar query. The para-
phrased query is then searched on Google.

• ChatGPT. We submit scholar query to Chat-
GPT9, powered by search-enabled GPT-4o.

• GPT-o1. Prompt GPT-o1 to process the
scholar query. Note that it does not have ac-
cess to external search tools.

• PaSa-GPT-4o. Implement PaSa as illustrated
in Figure 1 by prompting GPT-4o. It can per-
form multiple searches, paper reading, and
citation network crawling.

We carefully designed prompts for all baselines
and they are shown in Appendix H.2. All baselines,
except PaSa-GPT-4o, represent the best-known
scholar search methods. These comparisons high-
light the effectiveness of our agentic approach. The
comparison with PaSa-GPT-4o isolates the impact
of RL training.

As shown in Figure 2, the crawling process of
PaSa can be visualized as a paper tree. In practice,
considering the computational expense, we limit
the Crawler’s exploration depth to three for both
PaSa-7b and PaSa-GPT-4o.

For Google-based baselines, we evaluate recall
using Recall@20, Recall@50, and Recall@100
metrics for the top-20, top-50, and top-100 search

8https://ar5iv.org/
9https://chatgpt.com

11669

https://serper.dev
https://serper.dev
https://ar5iv.org/
https://chatgpt.com

Method Crawler Recall Precision Recall Recall@100 Recall@50 Recall@20

Google - - - 0.2015 0.1891 0.1568
Google Scholar - - - 0.1130 0.0970 0.0609
Google with GPT-4o - - - 0.2683 0.2450 0.1921
ChatGPT* - 0.0507 0.3046 - - -
GPT-o1 - 0.0413 0.1925 - - -
PaSa-GPT-4o 0.7565 0.1457 0.3873 - - -

PaSa-7b 0.7931 0.1448 0.4834 0.6947 0.6334 0.5301
PaSa-7b-ensemble 0.8265 0.1410 0.4985 0.7099 0.6386 0.5326

Table 4: Results on AutoScholarQuery test set. *: Due to the need for manual query submission, the ChatGPT
baseline is evaluated on 100 randomly sampled instances. Results for all methods on this subset are reported in
Table 14.

Method Crawler Recall Precision Recall Recall@100 Recall@50 Recall@20

Google - - - 0.2535 0.2342 0.1834
Google Scholar - - - 0.2809 0.2155 0.1514
Google with GPT-4o - - - 0.2946 0.2573 0.2020
ChatGPT - 0.2280 0.2007 - - -
GPT-o1 - 0.058 0.0134 - - -
PaSa-GPT-4o 0.5494 0.4721 0.3075 - - -

PaSa-7b 0.7071 0.5146 0.6111 0.6929 0.6563 0.5798
PaSa-7b-ensemble 0.7503 0.4938 0.6488 0.7281 0.6877 0.5986

Table 5: Results on RealScholarQuery.

results, respectively. For other baselines that do not
produce rankings, we assess precision and recall
for the final retrieved papers. Additionally, we
compare Crawler recall between PaSa-GPT-4o and
PaSa-7b, defined as the proportion of target papers
collected by the Crawler. This measures how many
target papers are successfully included in the paper
queue generated by the Crawler.

Method Precision Recall F1

GPT-4o 0.96 0.69 0.80
Qwen-2.5-7b 1.0 0.38 0.55
PaSa-7b-Selector 0.95 0.78 0.85
PaSa-7b-Selector (Reason First) 0.94 0.76 0.84

Table 6: Selector Evaluation.

5.3 Main results

As shown in Table 4, PaSa-7b outperforms all base-
lines on AutoScholarQuery test set. Specifically,
compared to the strongest baseline, PaSa-GPT-4o,
PaSa-7b demonstrates a 9.64% improvement in
recall with comparable precision. Moreover, the re-
call of the Crawler in PaSa-7b is 3.66% higher than
that in PaSa-GPT-4o. When compared to the best
Google-based baseline, Google with GPT-4o, PaSa-
7b achieves an improvement of 33.80%, 38.83%
and 42.64% in Recall@20, Recall@50 and Re-
call@100, respectively.

We observe that using multiple ensembles of
Crawler during inference can improve performance.
Specifically, we use sampling decoding to run
Crawler twice in the PaSa-7b-ensemble setting,
which boosts Crawler recall by 3.34% on Au-
toScholarQuery and increases the final recall by
1.51%, with no significant change in precision.

To evaluate PaSa in a more realistic setting, we
assess its effectiveness on RealScholarQuery. As
illustrated in Table 5, PaSa-7b exhibits a greater
advantage in real-world academic search scenar-
ios. Compared to PaSa-GPT-4o, PaSa-7b achieves
improvements of 30.36% in recall and 4.25% in
precision. Against the best Google-based baseline
on RealScholarQuery, Google with GPT-4o, PaSa-
7b outperforms Google by 37.78%, 39.90%, and
39.83% in recall@20, recall@50 and recall@100,
respectively. Additionally, the PaSa-7b-ensemble
further enhances crawler recall by 4.32%, contribut-
ing to an overall 3.52% improvement in the recall
of the entire agent system.

As both the final decision-maker and auxiliary
reward model in RL training for the Crawler, the
performance of the Selector is crucial. To evalu-
ate its effectiveness, we collected a dataset of 200
query-paper pairs, annotating whether each paper
meets the query’s requirements. This dataset serves

11670

Method AutoScholarQuery RealScholarQuery
Crawler Recall Precision Recall Crawler Recall Precision Recall

w/o [Expand] 0.3355 0.1445 0.2536 0.3359 0.6738 0.2890
w/o RL training 0.6556 0.1476 0.4210 0.4847 0.5155 0.4115
w/o Selector as RM 0.7041 0.1535 0.4458 0.5994 0.5489 0.5148

PaSa-7b 0.7931 0.1448 0.4834 0.7071 0.5146 0.6111

Table 7: Ablation study results on AutoScholarQuery test set and RealScholarQuery.

as the benchmark for evaluating the Selector (see
Appendix F for details). We then compared our
Selector against GPT-4o (Hurst et al., 2024) and
Qwen-2.5-7b (Yang et al., 2024), as shown in Ta-
ble 6. The results show that our Selector achieves
an F1 score of 85%, outperforming GPT-4o by
5% and Qwen-2.5-7b by 30%. Additionally, when
compared to a setting where reasoning precedes
decision token generation, the performance is com-
parable. Lastly, the Selector’s precision reaches
95%, confirming its effectiveness as an auxiliary
reward model for the Crawler RL training.

5.4 Ablation study

We perform ablation studies in Table 7 to evaluate
the individual contributions of exploring citation
networks, RL training, and using the Selector as the
reward model. The results indicate that removing
the [Expand] action from the Crawler leads to a
significant drop in the recall: a decrease of 22.98%
on AutoScholarQuery and 32.21% on RealScholar-
Query. Furthermore, RL training enhances recall
by 6.24% on AutoScholarQuery and 19.96% on
RealScholarQuery. The RL training curves are
depicted in Figure 3 in Appendix D.2, where the
training curves show a steady increase in return
with the training steps, eventually converging after
200 steps. Finally, removing the Selector as an
auxiliary reward model results in a 3.76% recall
drop on AutoScholarQuery and a 9.63% drop on
RealScholarQuery.

We investigate how to control agent behavior by
adjusting the rewards in RL training. Experiments
are conducted with varying reward coefficients α in
Equation 1, and results are presented in Table 8. We
report two metrics: crawler recall and crawler ac-
tion. The crawler action refers to the total number
of [Search] and [Expand] actions throughout the
Crawler’s entire trajectory. As the reward increases,
both crawler recall and crawler action increase, sug-
gesting that adjusting rewards in RL training can
effectively influence PaSa’s behavior.

α
Crawler Crawler Precision RecallRecall Actions

0.5 0.7227 175.9 0.1458 0.4602
1.0 0.7708 319.8 0.1451 0.4792
1.5 0.7931 382.4 0.1448 0.4834
2.0 0.8063 785.5 0.1409 0.4869

Table 8: Performance of the Crawler trained on different
reward coefficient α on AutoScholarQuery test set.

6 Conclusion

In this paper, we introduce PaSa, a novel paper
search agent designed to provide comprehensive
and accurate results for complex academic queries.
PaSa is implemented within the AGILE, a rein-
forcement learning framework for LLM agents.
To train PaSa, we developed AutoScholarQuery,
a dataset of fine-grained academic queries and cor-
responding papers drawn from top-tier AI confer-
ence publications. To evaluate PaSa in real-world
scenarios, we also constructed RealScholarQuery,
a dataset of actual academic queries paired with
annotated papers. Our experimental results demon-
strate that PaSa outperforms all baselines, including
Google, Google Scholar, and Google with GPT-4o,
ChatGPT, GPT-o1, and PaSa-GPT-4o. In particular,
PaSa-7B surpasses Google with GPT-4o by 37.78%
in recall@20 and 39.90% in recall@50, while also
exceeding PaSa-GPT-4o by 30.36% in recall and
4.25% in precision. These findings underscore that
PaSa significantly improves the efficiency and ac-
curacy of academic search.

Limitations

(1) Our dataset collection and experiments were
primarily focused on the field of machine learning.
Although our proposed method is general, we did
not explore its performance in other scientific fields.
We leave to investigate its applicability to other
domains in future work.
(2) Due to resource constraints, our experiments
primarily use LLMs with 7b parameters. We expect

11671

that scaling up to larger models will lead to more
powerful agents. Expanding PaSa to leverage larger
LLMs is our future work.

Acknowledgments

The authors thank Yaohua Fang, Zheng Li, Qiang
Lu, Yelong Shi, Xuguang Wei, and Tingshuai Yan
from ByteDance for their support in developing
the PaSa demo. We also thank Jianghui Xie at
ByteDance for her assistance with the release of
the PaSa demo. Finally, we thank the anonymous
reviewers for their valuable suggestions that helped
improve this work.

References
Shubham Agarwal, Issam H Laradji, Laurent Char-

lin, and Christopher Pal. 2024. Litllm: A toolkit
for scientific literature review. arXiv preprint
arXiv:2402.01788.

Marwah Alaofi, Luke Gallagher, Mark Sanderson, Falk
Scholer, and Paul Thomas. 2023. Can generative
llms create query variants for test collections? an
exploratory study. In Proceedings of the 46th in-
ternational ACM SIGIR conference on research and
development in information retrieval, pages 1869–
1873.

A Anthropic. 2024. The claude 3 model family:
Opus, sonnet, haiku; 2024. URL https://www-
cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7
bbc618857627/Model_Card_Claude_3.pdf.

Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan,
and Sung Ju Hwang. 2024. Researchagent: Iter-
ative research idea generation over scientific liter-
ature with large language models. arXiv preprint
arXiv:2404.07738.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldas-
sari, Andrew D White, and Philippe Schwaller. 2023.
Chemcrow: Augmenting large-language models with
chemistry tools. arXiv preprint arXiv:2304.05376.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,
Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin
Shi. 2023. Autoagents: A framework for automatic
agent generation. arXiv preprint arXiv:2309.17288.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,
36.

Peiyuan Feng, Yichen He, Guanhua Huang, Yuan Lin,
Hanchong Zhang, Yuchen Zhang, and Hang Li. 2024.
Agile: A novel reinforcement learning framework of
llm agents. Advances in Neural Information Process-
ing Systems, 37:5244–5284.

Team Gemini. 2023. Gemini: a family of highly
capable multimodal models. arXiv preprint
arXiv:2312.11805.

Karan Girotra, Lennart Meincke, Christian Terwiesch,
and Karl T Ulrich. 2023. Ideas are dimes a dozen:
Large language models for idea generation in innova-
tion. Available at SSRN 4526071.

Atharva Gundawar, Mudit Verma, Lin Guan, Karthik
Valmeekam, Siddhant Bhambri, and Subbarao Kamb-
hampati. 2024. Robust planning with llm-modulo
framework: Case study in travel planning. arXiv
preprint arXiv:2405.20625.

Michael Gusenbauer and Neal R Haddaway. 2020.
Which academic search systems are suitable for
systematic reviews or meta-analyses? evaluating
retrieval qualities of google scholar, pubmed, and
26 other resources. Research synthesis methods,
11(2):181–217.

Michael Gusenbauer and Neal R Haddaway. 2021.
What every researcher should know about searching–
clarified concepts, search advice, and an agenda to
improve finding in academia. Research synthesis
methods, 12(2):136–147.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Karl Kingsley, Gillian M Galbraith, Matthew Herring,
Eva Stowers, Tanis Stewart, and Karla V Kingsley.
2011. Why not just google it? an assessment of
information literacy skills in a biomedical science
curriculum. BMC medical education, 11:1–8.

Minghan Li, Honglei Zhuang, Kai Hui, Zhen Qin,
Jimmy Lin, Rolf Jagerman, Xuanhui Wang, and
Michael Bendersky. 2023. Generate, filter, and
fuse: Query expansion via multi-step keyword gen-
eration for zero-shot neural rankers. arXiv preprint
arXiv:2311.09175.

Zhehui Liao, Maria Antoniak, Inyoung Cheong, Evie
Yu-Yen Cheng, Ai-Heng Lee, Kyle Lo, Joseph Chee
Chang, and Amy X Zhang. 2024. Llms as research
tools: A large scale survey of researchers’ usage and
perceptions. arXiv preprint arXiv:2411.05025.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi
Ke, Boyi Liu, and Zhaoran Wang. 2023. Reason for
future, act for now: A principled framework for au-
tonomous llm agents with provable sample efficiency.
arXiv preprint arXiv:2309.17382.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foer-
ster, Jeff Clune, and David Ha. 2024. The ai scientist:
Towards fully automated open-ended scientific dis-
covery. arXiv preprint arXiv:2408.06292.

11672

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Bal-
dassari, Andrew D White, and Philippe Schwaller.
2024. Augmenting large language models with chem-
istry tools. Nature Machine Intelligence, pages 1–11.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting for retrieval-
augmented large language models. arXiv preprint
arXiv:2305.14283.

Lisa Messeri and MJ Crockett. 2024. Artificial intel-
ligence and illusions of understanding in scientific
research. Nature, 627(8002):49–58.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S Bern-
stein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th An-
nual ACM Symposium on User Interface Software
and Technology, pages 1–22.

Wenjun Peng, Guiyang Li, Yue Jiang, Zilong Wang, Dan
Ou, Xiaoyi Zeng, Derong Xu, Tong Xu, and Enhong
Chen. 2024. Large language model based long-tail
query rewriting in taobao search. In Companion
Proceedings of the ACM on Web Conference 2024,
pages 20–28.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet
Motwani, Chelsea Finn, Divyansh Garg, and Rafael
Rafailov. 2024. Agent q: Advanced reasoning and
learning for autonomous ai agents. arXiv preprint
arXiv:2408.07199.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. 2023. Communicative agents for software de-
velopment. arXiv preprint arXiv:2307.07924.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Yijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu,
Omar Khattab, and Monica Lam. 2024. Assisting
in writing Wikipedia-like articles from scratch with
large language models. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 6252–6278, Mexico City, Mexico. Association
for Computational Linguistics.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Jess Stratton. 2024. An introduction to microsoft copi-
lot. In Copilot for Microsoft 365: Harness the Power
of Generative AI in the Microsoft Apps You Use Every
Day, pages 19–35. Springer.

Richard Van Noorden and Jeffrey M Perkel. 2023. Ai
and science: what 1,600 researchers think. Nature,
621(7980):672–675.

Qingyun Wang, Doug Downey, Heng Ji, and Tom Hope.
2024a. SciMON: Scientific inspiration machines
optimized for novelty. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 279–299,
Bangkok, Thailand. Association for Computational
Linguistics.

Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang,
Xin Zhang, Zhen Wu, Meishan Zhang, Xinyu Dai,
Min Zhang, Qingsong Wen, et al. 2024b. Autosur-
vey: Large language models can automatically write
surveys. arXiv preprint arXiv:2406.10252.

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Jo-
sua Hellendoorn. 2022. A systematic evaluation of
large language models of code. In Proceedings of
the 6th ACM SIGPLAN International Symposium on
Machine Programming, pages 1–10.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: synergizing reasoning and acting in language
models (2022). arXiv preprint arXiv:2210.03629.

A Quality Evaluation of
AutoScholarQuery

To assess the quality of AutoScholarQuery, we sam-
pled 100 query-paper pairs and evaluated the ra-
tionality and relevance of each query and its cor-
responding paper. The detailed evaluation criteria
are as follows:

• A qualified query should be a complete and
understandable sentence. For example, incom-
plete or fragmented sentences are not accept-
able.

• A query that misrepresents the meaning of the
source paper, leading to irrelevant citations,
is not qualified. This includes queries that
exaggerate the scope or introduce incorrect
conditions.

• A query is ambiguous if there is insuffi-
cient context and additional information is
needed. For instance, abbreviations with mul-
tiple meanings can create ambiguity, leading
to the corresponding citations being incom-
plete answer lists.

11673

https://doi.org/10.18653/v1/2024.acl-long.18
https://doi.org/10.18653/v1/2024.acl-long.18

Query: Give me papers about how to rank search results by the use of LLM
Query Date: 2024-10-01
Answer Papers:
[0] Instruction Distillation Makes Large Language Models Efficient Zero-shot Rankers (2311.01555)
[1] Beyond Yes and No: Improving Zero-Shot LLM Rankers via Scoring Fine-Grained Relevance Labels (2310.14122)
[2] Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting (2306.17563)
[3] A Setwise Approach for Effective and Highly Efficient Zero-shot Ranking with Large Language Models (2310.09497)
[4] RankVicuna: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models (2309.15088)
[5] PaRaDe: Passage Ranking using Demonstrations with Large Language Models (2310.14408)
[6] Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agents (2304.09542)
[7] Large Language Models are Zero-Shot Rankers for Recommender Systems (2305.08845)
[8] TourRank: Utilizing Large Language Models for Documents Ranking with a Tournament-Inspired Strategy (2406.11678)
[9] ExaRanker: Explanation-Augmented Neural Ranker (2301.10521)
[10] RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs (2407.02485)
[11] Make Large Language Model a Better Ranker (2403.19181)
[12] LLM-RankFusion: Mitigating Intrinsic Inconsistency in LLM-based Ranking (2406.00231)
[13] Improving Zero-shot LLM Re-Ranker with Risk Minimization (2406.13331)
[14] Zero-Shot Listwise Document Reranking with a Large Language Model (2305.02156)
[15] Consolidating Ranking and Relevance Predictions of Large Language Models through Post-Processing (2404.11791)
[16] Re-Ranking Step by Step: Investigating Pre-Filtering for Re-Ranking with Large Language Models (2406.18740)
[17] Large Language Models for Relevance Judgment in Product Search (2406.00247)
[18] PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document
Retrieval (2404.18424)
[19] Passage-specific Prompt Tuning for Passage Reranking in Question Answering with Large Language Models (2405.20654)
[20] When Search Engine Services meet Large Language Models: Visions and Challenges (2407.00128)
[21] RankZephyr: Effective and Robust Zero-Shot Listwise Reranking is a Breeze! (2312.02724)
[22] Rank-without-GPT: Building GPT-Independent Listwise Rerankers on Open-Source Large Language Models (2312.02969)
[23] MuGI: Enhancing Information Retrieval through Multi-Text Generation Integration with Large Language Models (2401.06311)
[24] Discrete Prompt Optimization via Constrained Generation for Zero-shot Re-ranker (2305.13729)
[25] REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering (2402.17497)
[26] Agent4Ranking: Semantic Robust Ranking via Personalized Query Rewriting Using Multi-agent LLM (2312.15450)
[27] FIRST: Faster Improved Listwise Reranking with Single Token Decoding (2406.15657)
[28] Leveraging LLMs for Unsupervised Dense Retriever Ranking (2402.04853)
[29] Unsupervised Contrast-Consistent Ranking with Language Models (2309.06991)
[30] Enhancing Legal Document Retrieval: A Multi-Phase Approach with Large Language Models (2403.18093)
[31] Found in the Middle: Permutation Self-Consistency Improves Listwise Ranking in Large Language Models (2310.07712)
[32] Fine-Tuning LLaMA for Multi-Stage Text Retrieval (2310.08319)
[33] Zero-shot Audio Topic Reranking using Large Language Models (2309.07606)
[34] Uncovering ChatGPT’s Capabilities in Recommender Systems (2305.02182)
[35] Cognitive Personalized Search Integrating Large Language Models with an Efficient Memory Mechanism (2402.10548)
[36] Towards More Relevant Product Search Ranking Via Large Language Models: An Empirical Study (2409.17460)
[37] Pretrained Language Model based Web Search Ranking: From Relevance to Satisfaction (2306.01599)
[38] Open-source large language models are strong zero-shot query likelihood models for document ranking (2310.13243)

Table 9: Examples of queries and corresponding papers in RealScholarQuery.

• An answer paper is considered qualified if it
aligns with the requirements of the query. The
paper should address all or most of the essen-
tial factors that make it a suitable response.

Our quality check found that 94.0% of the
queries were qualified. Among them, 93.7% of
the corresponding answer papers were also qual-
ified. The primary reason for unqualified papers
was inaccurate citations in the source paper.

B Annotation details

The annotators of RealScholarQuery include pro-
fessors from the Department of Computer Science

at a top-tier university in China. They are paid $4
per data entry, which consists of a user query and a
research paper. Their task is to determine whether
the paper satisfies the query.

B.1 Annotation Instructions

For each <user query, paper> pair, carefully assess
whether the paper address the user query. Write
your decision and provide a brief explanation (1-2
sentences). Specific guidelines are as follows:

• You may read the entire paper to determine
whether it satisfies the user query.

• Exclude survey papers unless the user query

11674

The prompt for search query generation

You are an elite researcher in the field of AI, please generate some mutually exclusive queries in a list to search the relevant
papers according to the User Query. Searching for a survey paper would be better.
User Query: {user_query}
The semantics between generated queries are not mutually inclusive. The format of the list is: [“query1”, “query2”, ...]
Queries:

Table 10: The prompt for GPT-4o to generate search queries from the user query.

Search Session starting from Sq Expand Session starting from Sq+p

prompt Please, generate some mutually exclusive queries
in a list to search the relevant papers according
to the User Query. Searching for survey papers
would be better.
User Query: {user_query}

You are conducting research on '{user_query}'. You need to predict
which sections to look at to get more relevant papers.
Title: {title}
Abstract: {abstract}
Sections: {sections}

response [Search] {query 1}
[Search] {query 2}
...
[Stop]

[Expand] {section 1}
[Expand] {section 2}
...
[Stop]

Table 11: The session trajectory templates of the Crawler.

specifically requests them.

• All conditions in the user query must be met
for the paper to be considered qualified.

B.2 Quality control

The annotation process follows the following qual-
ity control measures:

• Stage 1: Annotators work in batches of
20. Authors review 100% of the annotations.
Once the consistency rate on the first pass
reaches 90%, the process moves to Stage 2.

• Stage 2: Annotators work in batches of 50.
Authors randomly check 40% of the annota-
tions. If the consistency rate is below 90%, the
entire batch is re-annotated and re-checked.
Once the batch meets the 90% consistency
rate on the first pass, the process moves to
Stage 3.

• Stage 3: Annotators work in batches of 100.
Authors randomly check 20% of the annota-
tions. If the consistency rate is below 90%, the
entire batch is re-annotated and re-checked.

Two authors conducted the quality control.

C Example in RealScholarQuery

Table 9 presents an example query and correspond-
ing papers from RealScholarQuery.

D Implementation Details of the Crawler

D.1 Imitation learning data generation

We generate training data for imitation learning on
a session-by-session basis. There are two types of
sessions: search session (starting from state Sq)
and expand session (starting from state Sq+p).

For search sessions starting from Sq, we sample
user queries from the AutoScholarQuery training
set and prompt GPT-4o to generate corresponding
search queries. The prompt template is shown in
Table 10. The session trajectory is constructed
by adding a [Search] token before each query,
concatenating the queries, and appending a [Stop]
token at the end, as shown in Table 11. A total of
3,011 search session trajectories are generated.

For expanded sessions starting from Sq+p, we
continue by searching for the generated queries us-
ing Google. We then sample papers from the search
results and obtain the initial state, which includes
both the query and a paper. To build the session tra-
jectory, we examine each sub-section of the paper.
If the sub-section references at least one paper in
the AutoScholarQuery training set corresponding
to the query, the sub-section is selected. Otherwise,
the sub-section is selected with a 10% probabil-
ity to enhance trajectory diversity. The selected
sections are filled into the template in Table 11,
completing the session trajectory. In total, 9,978
expanded session trajectories are constructed.

11675

D.2 PPO training
During PPO training, each device processes 4 user
queries in each step, generating a search session
for each user query. Then, 6 expansion sessions
are created by randomly sampling 6 papers from
the search results. This process is repeated with
the expanded citation results, yielding 6 additional
expanded sessions. In total, 16 session trajectories
are generated per step.

Name Value

α (Equation 1) 1.5
c([Search]) (Equation 1) 0.1
c([Expand]) (Equation 1) 0.1
c([Stop]) (Equation 1) 0.0
γ0 (Equation 3) 1.0
γ1 (Equation 3) 0.1
β (Equation 3) 0.1
ϵ (Equation 5, Equation 6) 0.2
η (Equation 8) 10
learning rate 1e-6
epoch per step 2
forward batch size 1
accumulate batch size 16
NVIDIA H100 GPU 16
policy freezing step 50
total step 250

Table 12: The hyperparameters used in PPO training.

Table 12 lists the hyperparameters used during
the training process. Figure 3 depicts the RL train-
ing curves, which show a steady increase in return
with the training steps, eventually converging after
200 steps.

E Implementation Details of the Selector

We begin by sampling user queries from the Au-
toScholarQuery training set. For each user query
and one of its corresponding papers in the Au-
toScholarQuery training set, we prompt GPT-4o
to generate a decision token and rationale (see Ta-
ble 13 for the prompt). We reject any data where
the decision token is "False", as this contradicts the
AutoScholarQuery label. The remaining data are
retained as positive <user query, paper> pairs.

Next, we simulate a partial paper search using
PaSa-GPT-4o. In this simulation, each paper has a
50% probability of being added to the paper queue.
Pairs where the paper is not selected by GPT-4o
and is not in the AutoScholarQuery training set are
labeled as negative examples.

Figure 3: Return and value function loss curves during
the PPO training process. The smoothing method of
the curve in the figures is the exponential moving av-
erage(EMA) formula that aligns with the one used in
TensorBoard, and the smoothing weight is set to 0.95.

The final training dataset consists of 19,812
<user query, paper> pairs, each with a decision
token and rationale generated by GPT-4o, drawn
from 9,000 instances in the AutoScholarQuery
training set.

F Selector Test Dataset

We select 200 queries from the AutoScholarQuery
development set. For each query, we perform a
Google search and randomly choose one paper
from the union of the search results and the relevant
paper set in AutoScholarQuery. This yields a set of
<user query, paper> pairs. Annotators then evaluate
whether each paper aligns with the requirements of
the user query. The final test dataset consists of 98
positive samples and 102 negative samples.

G Additional Experimental Results

G.1 Results on 100-sample subset of
AutoScholarQuery

To ensure a fair comparison with the ChatGPT base-
line, which is evaluated on only 100 samples from
AutoScholarQuery test, we report the performance
of all methods on the same subset in Table 14. The
results align with those in Table 4, confirming that
PaSa-7b consistently outperforms all baselines.

11676

The prompt for paper selection

You are an elite researcher in the field of AI, conducting research on {user_query}. Evaluate whether the following paper
fully satisfies the detailed requirements of the user query and provide your reasoning. Ensure that your decision and reasoning
are consistent.
Searched Paper:
Title: {title}
Abstract: {abstract}
User Query: {user_query}
Output format: Decision: True/False
Reason:...
Decision:

Table 13: Prompt used by PaSa Selector or GPT-4o to evaluate paper relevance.

Method Crawler Recall Precision Recall Recall@100 Recall@50 Recall@20

Google - - - 0.2101 0.2010 0.1788
Google Scholar - - - 0.0801 0.0739 0.0612
Google with GPT-4o - - - 0.2101 0.2010 0.1788
ChatGPT - 0.0507 0.3046 - - -
GPT-o1 - 0.0374 0.2006 - - -
PaSa-GPT-4o 0.7595 0.1817 0.4488 - - -

PaSa-7b 0.7752 0.1881 0.5328 0.6932 0.6543 0.5494
PaSa-7b-ensemble 0.8244 0.1822 0.5568 0.7041 0.6795 0.5535

Table 14: Results on 100-sample subset of AutoScholarQuery test.

G.2 Action cost

We incorporate action costs to prevent the agent
from taking excessive, unproductive actions. With-
out such costs, the total number of actions would
increase significantly without yielding meaningful
outcomes.

The key consideration is the reward coefficient α
and the action cost c(at) in Equation 1. In Table 8,
we fix c(at) and analyze how varying α affects
performance.

Additionally, Table 15 shows how different val-
ues of c(at) affect the final performance.

c(at)
Crawler Crawler Precision RecallRecall Actions

0 0.8239 1296.3 0.1388 0.4852
0.1 0.7931 382.4 0.1448 0.4834
0.2 0.7478 230.1 0.1489 0.4764

Table 15: Performance of the Crawler trained on differ-
ent action cost c(at) on AutoScholarQuery test set.

H Prompt Templates

H.1 Prompts used for data synthesis in
AutoScholarQuery

Table 16 presents the prompt template used with
GPT-4o to automatically generate AutoScholar-

Query. For each paper, we extract its Related Work
section, input it into GPT-4o, and use the prompt
to generate scholarly queries along with their cor-
responding paper answers.

H.2 Prompts for baselines
Table 17 presents the search query paraphrasing
prompt used for the baseline Google with GPT-4o.

Table 18, 19 and 20 show the prompts used for
the ChatGPT baseline (search-enabled GPT-4o),
the GPT-o1 baseline and PaSa-GPT-4o, respec-
tively.

11677

The prompt for AutoScholarQuery generation

You are provided a ‘Related Work’ section of a research paper. The researcher reviewed the relevant work, conducted a
literature survey, and cited corresponding references in this text (enclosed by ‘\cite’ tags with IDs). Can you guess what
research questions the researcher might have posed when preparing this text? The answers to these questions should be the
references cited in this passage. Please list questions and provide the corresponding answers.
[Requirements:]
1. Craft questions similar to those a researcher would pose when reviewing related works, such as “Which paper studied ...?”,
“Any works about...?”, “Could you provide me some works...?”
2. Construct the question-answer pairs based on [Section from A Research Paper]. The answer should be the cited papers in
[Section from A Research Paper].
3. Do not ask questions including "or" or "and" that may involve more than one condition.
4. Clarity: Formulate questions clearly and unambiguously to prevent confusion.
5. Contextual Definitions: Include explanations or definitions for specialized terms and concepts used in the questions.
6. Format the output as a JSON array containing five objects corresponding to the three question-answer pairs.
Here are some examples:
[Begin of examples]
{Section from A Research Paper-1}
{OUTPUT-1}
{Section from A Research Paper-2}
{OUTPUT-2}
{Section from A Research Paper-3}
{OUTPUT-3}
[End of examples]
{Section from A Research Paper}
[OUTPUT]:

Table 16: The prompt used with GPT-4o to automatically synthesize AutoScholarQuery.

The prompt for search query paraphrase

Generate a search query suitable for Google based on the given academic paper-related query. Here’s the structure and
requirements for generating the search query:
Understand the Query: Read and understand the given specific academic query.
Identify Key Elements: Extract the main research field and the specific approaches or topics mentioned in the query.
Formulate the Search Query: Combine these elements into a concise query that includes terms indicating academic sources.
Do not add any site limitations to your query.
[User’s Query]: {user_query}
[Generated Search Query]:

Table 17: The search query paraphrasing prompt used for the Google with GPT-4o baseline.

The prompt for ChatGPT (search-enabled GPT-4o)

[User’s Query]
You should return the Arxiv papers. You should provide more than 10 papers you searched in JSON format:
{"paper_1": {"title": , ’authors’: , ’link’: }, "paper_2": {"title": , ’authors’: , ’link’: }}

Table 18: The prompt for ChatGPT baseline (search-enabled GPT-4o).

The prompt for GPT-o1

{user_query}
You should return arxiv papers. You should provide more than 10 paper you searched in JSON format: {"paper_1": {"title": ,
"authors": , "link": }, "paper_2": {"title": , "authors": , "link": }}. Do not return any other description.

Table 19: The prompt for GPT-o1 baseline.

11678

The prompt for search session of Crawler

You are an elite researcher in the field of AI, please generate some mutually exclusive queries in a list to search the relevant
papers according to the User Query. Searching for a survey paper would be better.
User Query: {user_query}
The semantics between generated queries are not mutually inclusive. The format of the list is: [“query1”, “query2”, ...]
Queries:

The prompt for the expand session of Crawler

You are an elite researcher in the field of AI, currently conducting research on the [topic] specified below. Your task is to
determine if the paper specified below likely contains highly relevant citations for the [topic] and, if so, to identify specific
sections where these citations might appear.
Task Instructions:
1. Relevance Assessment: Decide if the paper is likely to include citations highly relevant to the given [topic]. Output "Yes"
or "No" on the first line.
2. Section Selection: If you answered "Yes" in step 1, identify which sections of the paper are likely to contain these relevant
citations. From the list of provided sections, select only those you think may contain relevant citations. If no sections seem
relevant even if your answer to step 1 was "Yes," leave this empty. Output the selected sections in JSON format on the second
line.
[topic]: {user_query}
[paper title]: {title}
[paper abstract]: {abstract}
[paper sections]: {sections}
Output Format: Output exactly two lines:
1. The first line: Either "Yes" or "No" based on the relevance assessment.
2. The second line: A JSON string with selected sections, e.g., {{"selected_section_1": section_name_1, "selected_section_2":
section_name_2}}. If no sections are selected, output {{}}.

The prompt for Selector

You are an elite researcher in the field of AI, conducting research on {user_query}. Evaluate whether the following paper
fully satisfies the detailed requirements of the user query and provide your reasoning. Ensure that your decision and reasoning
are consistent.
Searched Paper:
Title: {title}
Abstract: {abstract}
User Query: {user_query}
Output format: Decision: True/False
Reason:...
Decision:

Table 20: The prompts for PaSa-GPT-4o.

11679

