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Abstract

The Theory of Multiple Intelligences under-
scores the hierarchical nature of cognitive ca-
pabilities. To advance Spatial Artificial Intelli-
gence, we pioneer a psychometric framework
defining five Basic Spatial Abilities (BSAs)
in Visual Language Models (VLMs): Spatial
Perception, Spatial Relation, Spatial Orienta-
tion, Mental Rotation, and Spatial Visualiza-
tion. Benchmarking 13 mainstream VLMs
through nine validated psychometric experi-
ments reveals significant gaps versus humans,
with three key findings: 1) VLMs mirror human
hierarchies (strongest in 2D orientation, weak-
est in 3D rotation) with independent BSAs;
2) Many smaller models surpass larger coun-
terparts, with Qwen leading and InternVL2
lagging; 3) Interventions like CoT and few-
shot training show limits from architectural
constraints, while ToT demonstrates the most
effective enhancement. Identified barriers in-
clude weak geometry encoding and missing
dynamic simulation. By linking Psychometrics
to VLMs, we provide a comprehensive BSA
evaluation benchmark, a methodological per-
spective for embodied AI development, and a
cognitive science-informed roadmap for achiev-
ing human-like spatial intelligence.

1 Introduction

Visual Language Models (VLMs) excel in a wide
range of specific tasks (Hong et al., 2023). How-
ever, achieving human-like spatial intelligence for
embodied AI applications such as visual navigation
and embodied Q&A remains a challenge (Durante
et al., 2024; Duan et al., 2022). Recent studies re-
veal that even advanced models like GPT-4o fail
basic 2D spatial reasoning tasks that humans solve
effortlessly (Tang et al., 2024).

Theory of Multiple Intelligences (Bornstein and
Gardner, 1986), which is widely accepted across
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Figure 1: BSA measuring framework for VLMs1.

disciplines, posits that human intelligence is hierar-
chical, with general intelligence (g) supported by
subordinate intelligences including spatial intelli-
gence. Spatial intelligence is also structured hierar-
chically with several basic spatial abilities (BSAs),
which are crucial for advanced intelligence and pro-
vide a comprehensive framework for evaluation.

However, existing studies assessing the spatial
abilities of VLMs lack a solid theoretical founda-
tion and focus on isolated abilities without a com-
prehensive framework, making it challenging to
compare results across different studies or uncover
potential interconnections between abilities. More-
over, most research lacks human baselines, leaving
the gap between VLMs and human unexplored.

To address these gaps, we propose a psychome-
tric framework using standardized human exper-
iments to systematically evaluate VLMs’ BSAs,
thereby establishing benchmarks and pathways for
enhancing spatial intelligence in AI systems.

2 Related works

2.1 Psychometric Studies on Human’s BSAs

Human spatial intelligence, defined as the ability
to mentally model and manipulate spatial environ-

1Image source: Vandenberg and Kuse (1978).
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ments (Bornstein and Gardner, 1986), has been
extensively studied since Spearman (1904) first pro-
posed it. Research then diverges into two streams
(Porat and Ceobanu, 2023):

Psychometric Classification. The first stream
establishes hierarchical intelligence models, from
general intelligence to domain-specific intelligence
like spatial intelligence (Geary, 2022; Spearman,
1904). These frameworks enable systematic mea-
surement of spatial abilities through standardized
tests, continually refining ability subtypes and as-
sessment methods.

Interdisciplinary Mechanisms. The second
stream integrates evolutionary psychology, devel-
opmental studies, and cognitive neuroscience to
explore the origins and mechanisms of spatial abil-
ities, complementing psychometric taxonomies.

Psychometric consensus defines spatial intel-
ligence through three hierarchical levels (Caem-
merer et al., 2020; McGrew, 2009; Johnson and
Bouchardjr, 2005; Linn and Petersen, 1985; Mac-
coby and Jacklin, 1974; Michael et al., 1957; Thur-
stone, 1950): (1) General Intelligence (g): cross-
domain cognitive processes, such as attentional
control (Kane and Engle, 2002), neural integra-
tion (Jung and Haier, 2007), and cellular processes
(Geary et al., 2021), which impact cross-domain
learning and performance. (2) Domain-Specific
Intelligence: Abilities in particular domains that
share common features, with spatial intelligence
representing a distinct set of abilities (Vernon,
1965), as formalized in models such as the CHC
theory (Carroll, 1993; Horn, 1968; Cattell, 1963).
(3) Basic Spatial Abilities (BSAs): Decompos-
ing spatial intelligence into measurable subskills:
Spatial Perception (SP), Spatial Relation (SR), Spa-
tial Orientation (SO), Mental Rotation (MR), and
Spatial Visualization (SV).(Johnson and Bouchard,
2007; Hegarty et al., 2006; Maier, 1996; Voyer
et al., 1995; Halpern, 1992; Pellegrino et al., 1984).

We focus on Level 3, adopting validated human
experiments to evaluate VLMs’ BSAs.

2.2 Evaluation of VLMs’ BSAs

Recent advances in VLMs have spurred evaluations
of their spatial abilities, yet existing studies remain
fragmented (Table 2). Most prior work focuses on
text-based LLMs, assessing abstract spatial rela-
tions through verbal descriptions (Yamada et al.,
2024), inherently neglecting visual-spatial process-
ing. Emerging VLM evaluations primarily target

Table 1: Decomposed BSA and the corresponding tests.

Type Definition Tests

Spatial
Perception

The ability to perceive
horizontal and vertical
orientations without

interference from
miscellaneous information.

SVT

Spatial
Relation

The ability of recognizing
relationships between

parts of an entity.

NCIT
DAT:SR

R-Cube-SR

Spatial
Orientation

The ability to navigate
or enter a given

spatial state.
MRMT

Mental
Rotation

The ability to mentally
rotate 3D objects.

MRT
PSVT:R

Spatial
Visualization

The ability to mentally
manipulate and transform

2D and 3D objects.

SBST
R-Cube-Vis

Table 2: Existing studies testing LLMs and VLMs’ spa-
tial abilities.

Related Work VLM
Tested Spatial Abilities

SP SR SO MR SV
Fu et al. (2024) Yes ✓ ✓ ✓
Tang et al. (2024) Yes ✓ ✓ ✓
Sharma (2023) Yes ✓ ✓
Hong et al. (2023) Yes ✓ ✓ ✓
Bang et al. (2023) Yes ✓ ✓
Yamada et al. (2024) No ✓
Momennejad et al. (2023) No ✓ ✓
Cohn et al. (2023) No ✓ ✓
This study Yes ✓ ✓ ✓ ✓ ✓

specialized 3D tasks (e.g., robotic trajectory label-
ing (Sharma, 2023), indoor scene captioning (Fu
et al., 2024)), which partially engage Spatial Per-
ception, Spatial Relation, and Spatial Orientation.

However, critical gaps persist: (1) Theoreti-
cal Disconnect: Tasks lack theoretical framework
grounding, preventing direct comparison with hu-
man cognition. For instance, robotic trajectory tests
(Sharma, 2023) conflate spatial reasoning with ac-
tion planning. (2) Limited Scope: Most studies
omit Mental Rotation and Spatial Visualization (Ta-
ble 2, MR/SV columns). (3) Benchmark Absence:
No study systematically maps VLM performance
to hierarchical BSAs or provides human baselines.

This study addresses these limitations by adopt-
ing a comprehensive psychometric evaluation
framework. In contrast to previous work that as-
sessed only subsets of BSAs (e.g., Fu et al. (2024):
SP+SR+SO), we evaluate all five BSAs using stan-
dardized psychometric tests, which are widely vali-
dated and recognized, enabling comparisons across
different models and between human and AI.
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3 Methodology

3.1 Definition and Composition of Basic
Spatial Abilities

Based on Psychometric theories (Maier, 1996) and
existing VLM studies, this study identified five
key dimensions of Basic Spatial Abilities (Pawlak-
Jakubowska and Terczyńska, 2023), decomposing
the concept as a comprehensive whole, as shown
in Table 1. To carry out a complete spatial abil-
ity evaluation of VLMs, the study selected nine
specific classic psychometric tests, as shown in Fig-
ure 2, designed to cover all five aspects of BSAs,
enhancing the persuasiveness of the test. Human
experiment results from existing studies were in-
cluded as benchmarks for comparison.

3.2 Tests for Basic Spatial Abilities

The goal of the employed tests, on the one hand, is
to evaluate the spatial abilities of different VLMs
and to compare them with those of humans. On the
other hand, by breaking down the basic abilities of
spatial intelligence, we aim to identify the deficien-
cies in current VLMs and provide a necessary foun-
dation for future research aimed at enhancing these
abilities. To achieve this goal, the nine selected
test question sets were carefully screened, ensur-
ing that each is currently available, clearly assesses
a specific BSA, contains complete questions and
answers, and provides widely recognized and repro-
ducible human performance results. These ques-
tions were not created by the researchers but are
grounded in solid psychometric theoretical founda-
tions. The study posits that using as many classic
tests as possible can more authentically and accu-
rately reflect the BSAs of VLMs. Therefore, arbi-
trarily deleting tests to balance the weights of the
five core spatial abilities was deemed inappropriate.

Tests adopted are presented in the format of
multiple-choice or true/false questions. In each
specific test, after briefly explaining the test’s con-
tent and the ways of answering, we provide the
questions in the form of images.

2Image source: Erkek et al. (2011); Ben-Chaim et al.
(1986); Pawlak-Jakubowska and Terczyńska (2023); Katsi-
oloudis et al. (2014); Bennett et al. (2012); Fehringer (2023);
Friedman et al. (2020); Vingerhoets et al. (1996); Vanden-
berg and Kuse (1978); Peters et al. (1995); Bodner and Guay
(1997); Maeda et al. (2013); Hegarty et al. (2009); Fehringer
(2021).

Figure 2: Examples of classic BSA Tests2.

3.2.1 Spatial Perception Tests
MGMP Spatial Visualization Test (SVT). SVT,
originally developed for the Middle Grades Mathe-
matics Project (MGMP), is also known as the "Lap-
pan Test" and is composed of 32 multiple choice
items, each with five options (Erkek et al., 2011;
Ben-Chaim et al., 1986). The test utilizes the com-
bination and transformation of square-cube build-
ings. The subject is expected to imagine the 2D
flat view, the 3D corner view, and the "map plan",
which is a numeric cube description of the base
of the building. Questions include imagining the
conversion between 2D and 3D views, the final
appearance when some cubes are altered, and cal-
culating the number of cubes used in a building.

3.2.2 Spatial Relation Tests
Net Cube Imagination Test (NCIT). NCIT is
based on the conversion between 2D and 3D cubes
with lines drawn on inner or outer faces (Pawlak-
Jakubowska and Terczyńska, 2023). Each of the 16
tasks has three options. The first eight items require
expanding the cube into a flat shape, while the rest
involve the reverse development of the cube.

Differential Aptitude Test: Space Relation
(DAT:SR). DAT:SR is part of the Differential Ap-
titude Test, measuring the ability to relate two
and three-dimensional worlds (Katsioloudis et al.,
2014; Bennett et al., 2012). The test consists of
40 items and focuses on folding and unfolding 3D
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geometric shapes. When provided 2D flat unfolded
figures, subjects are required to choose the 3D re-
stored form from four options and vice versa.

R-Cube-Spatial Relation Test (R-Cube-SR).
R-Cube-SR uses Rubik’s cubes with six differ-
ent colors on each side as rotated visual materials
(Fehringer, 2023). For each of the 48 items, two
cubes are shown in the corner view, the right of
which may be the possible rotated result of the left
cube. The subjects are required to give a true/false
answer with a limited view of the colored sides.
The test was created in plain and pattern versions.

3.2.3 Spatial Orientation Tests
Money Road-Map Test (MRMT). The Standard-
ized Road-Map Test of Direction Sense (Friedman
et al., 2020; Vingerhoets et al., 1996) commonly
known as MRMT, requires allocentric to egocentric
right/left discrimination. Subjects follow a dashed
path with 32 right/left turns on a map of an abstract
city and are required to indicate the direction taken
at each turn according to the facing direction. The
turn types include the ones that require no rotation,
a standard rotation of approximately 90°, and an
irregular rotation between 90°-180°.

3.2.4 Mental Rotation Tests
Mental Rotation Test (MRT). A classic test de-
veloped by Vandenberg and Kuse (1978) takes the
direct way of rotating 3D geometric figures made
by cubes. Subjects are required to choose from the
four options, two correct rotated reproductions of
the target figure. The revised version of 24 items
(Peters et al., 1995) is utilized.

Purdue Spatial Visualization Tests: Visualiza-
tion of Rotations (PSVT:R). Developed by Bod-
ner and Guay (1997), PSVT:R is an independent
extended version of the Purdue Spatial Visualiza-
tion Test, which requires matching between the
target and the rotated objects. For each item, a
geometric shape is rotated first to show the target
rotation pattern. Subjects are required to choose
from the five rotated views the correct rotated result
of another shape under the same pattern. Maeda
et al. (2013) further advanced the test to 30 test
items, 17 of which involve asymmetrical shapes.

3.2.5 Spatial Visualization Tests
Santa Barbara Solids Test (SBST). SBST in-
volves geometric solids intersected by a cutting
plane, and the task is to imagine the 2D cross sec-
tion of the solids and choose from the four options,

the two correct answers (Hegarty et al., 2009). Two
varying parameters result in the different difficulty
of the 30 items: geometric complexity and cutting
plane orientation. Simple solids, joined solids, and
embedded solids take up one third of the items re-
spectively, while orthogonal and oblique cutting
planes divide the items at the same time.

R-Cube-Visualization Short Test (R-Cube-
Vis). Similar to the R-Cube-SR test, R-Cube-Vis
items consist of two juxtaposed Rubik’s cubes
(Fehringer, 2021). However, instead of rotating
as a whole, the composing cubes can be rotated as
well. Subjects are required to decide the possibility
of the left cube rotated into the right one in the 60
items. Based on the size of the cube, the number of
the rotated elements, and the ways they are rotated,
the items are divided into six difficulty levels.

4 Experiments

4.1 Settings

Models and APIs. For BSA evaluation, we tested
13 mainstream open-source and commercial mod-
els, showcasing the full spectrum of the current
major models’ BSAs. For commercial VLMs, we
used GPT-4o, GPT-4o mini, and GPT-4 Turbo from
OpenAI (Yang et al., 2023) and Gemini-1.5-pro,
Gemini-1.5-flash, and Gemini-1.5-flash-8b from
Google (Gemini Team, 2024). For open-source
models, we tested Qwen2-VL-72B, Qwen2-VL-7B
(Bai et al., 2023), InternVL2-Llama3, InternVL2-
26B, InternVL2-8B (Chen et al., 2024b), Llama-
3.2-11B, Llama-3.2-90B (Llama Team, AI @ Meta,
2024) (the Qwen2 and Llama models are instruct
variant). To carry out large-scale automatic tests,
we used APIs from four platforms, including Sili-
conFlow, DeepInfra, OpenAI, and Google.

The temperature parameter are set uniformly to
0 for all models to ensure deterministic outputs
and comparability across the tested models in the
main experiments. Supplementary experiments are
condcuted to investigate the impact of varying tem-
perature on model performance. Generally, most
models showed a decline in performance as the tem-
perature increased, while Qwen2-VL-7B-Instruct
and GPT-4o mini demonstrated a slight improve-
ment at moderate temperature levels (Table 8).

Data Processing and Evaluation Metrics. A to-
tal of 312 questions are fed to each model. Among
the questions, SP accounts for 10.26% (32 ques-
tions); SR accounts for 33.33% (104 questions);
SO accounted for 10.26% (32 questions); MR ac-
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Figure 3: An example of different VLMs’ answers and scores to a particular Santa Barbara Solids Test question3.

counts for 17.31% (54 questions); and SV accounts
for 28.84% (90 questions). For the evaluation of
overall ability, the study equates different individ-
ual abilities, thus no single ability will have a biased
weight due to a larger number of questions.

Using zero-shot or few-shot experiments, we de-
signed the following prompt template for VLMs:
"You are taking a spatial ability test. Please output
the result in pure text format as: question num-
ber, answer." Each question is presented separately,
while the question and options are displayed in a
single image, since the case study indicates neg-
ligible difference of model performance with and
without explicit separation of answer choices (Ta-
ble 4), and the ability to properly recognize option
indices are also considered an elementary ability
beneath spatial abilities. To ensure comparability
with human benchmarks, we retained the instruc-
tion phase from the original human experiments.

Additionally, to address potential variations
caused by differences in image size and color used
in the tests, we conducted supplementary control
experiments. Specifically, we resized test images to
double and half their original dimensions, and also
converted them into grayscale. The results show
that image size led to minimal performance differ-
ences. However, when the images were converted
to grayscale, several models exhibited improved
performance. This suggests that color information
may sometimes interfere with the models’ ability to
extract spatial information. Nevertheless, to ensure
consistency and comparability with human experi-
mental results, we ultimately used the original color
images in our main experiments.

The score for each question is calculated as the
number of correct options selected divided by the
total number of correct options, and the score is
zero if the answer contains false options. Specif-

ically, scores are not counted if a model always
guesses the same answer due to its failure to un-
derstand the question. The score for each test is
the total of all question scores included in that test,
converted into a percentage. The score for each
BSA is calculated as the average score of all tests
under that ability, while the Overall Ability Score
is the average of the scores for all BSAs.

4.2 Results
As shown in Table 3, each cell in the table repre-
sents a model’s score on a specific test. To evaluate
the stability of model performance, each test was
repeated three times for every model. The numbers
in parentheses indicate the standard deviation of
these three scores, indicating performance stability.
The final rows of the table present the results for
all models across each test, along with the corre-
sponding human experiment results.

4.2.1 Human vs VLM
As illustrated in Figure 4, the overall ability scores
of the 13 VLMs are relatively close, ranging from
16.31 to 31.22, with an average of 24.95, which
is significantly lower than the human average of
68.38. When analyzed across the five BSAs, human
performance consistently surpasses that of VLMs.
In terms of averages, both human and VLMs show
the same performance ranking across the abilities,
with spatial orientation being the best and mental
rotation the worst.

The red dashed lines in Figure 4 indicate random
answer baseline scores. Some VLMs performed
below these baselines, indicating that their abili-
ties on certain tasks were genuinely inadequate. It
is important to clarify that these below-baseline
scores differ from the cases where models provided

3Image source: Hegarty et al. (2009).
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Figure 4: Comparison of VLMs’ and humans’ five basic spatial abilities and overall ability.

the same answers to all questions and were marked
as invalid (which means they were just "guessing").

4.2.2 VLM vs VLM
From Figure 4, it can be observed that the per-
formance of VLMs show consistency in SP and
MR. In contrast, SR and SV exhibit more signif-
icant variability. Most models perform relatively
well in SO, yet the discrepancy is also consider-
able, with three models (Intern-VL2-76B, Intern-
VL2-8B, and Gemini-1.5-flash) failing completely.
In terms of overall ability, the performance differ-
ences among models are not particularly signifi-
cant, though some models (e.g. Qwen2-VL-7B and
GPT-4o), stand out with relatively strong results.

4.2.3 Correlation of Basic Spatial Abilities
For the test results of the models’ BSAs, we per-
formed a correlation analysis between the abilities
to examine their associations. We used the Pear-
son correlation test, as shown in Figure 5. The
results show that Pearson’s correlation coefficients
(r) between any two variables are less than 0.4, in-
dicating that all of the ability combinations show
very weak or no correlation. Since the events sat-
isfied the two-dimensional normal distribution, no
correlation is equivalent to independence. Thus,
it can be considered that the spatial abilities do
not show a correlation with each other, meaning
that each spatial ability is sufficiently "basic" and

Figure 5: Pearson’s correlation coefficients (r) between
five basic spatial abilities.

proves the credibility of the BSA framework.

4.3 Discussion

4.3.1 VLMs’ Overall Performance
Our evaluation confirms a significant gap between
VLMs’ BSAs and human benchmarks across all di-
mensions, aligning with prior studies on individual
abilities (e.g., spatial relations (Yamada et al., 2024;
Cohn and Hernandez-Orallo, 2023), spatial orien-
tation (Momennejad et al., 2023)). This raises fun-
damental questions about whether VLMs operate
as programmable pattern recognizers or genuinely
emulate human-like spatial intelligence.
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Figure 6: Comparison of different series of VLMs’ basic
spatial abilities and overall ability.

Notably, VLMs mirror human performance rank-
ings across BSAs: highest in spatial orientation, fol-
lowed by spatial visualization, and lowest in mental
rotation (Figure 4). This correlates with task com-
plexity that 2D tasks require simpler coordinate
reasoning, while 3D demands dynamic mental ma-
nipulation, suggesting VLMs struggle dispropor-
tionately with higher-dimensional transformations
just like humans. This performance gradient im-
plies a developmental pathway: strengthening ba-
sic 2D spatial reasoning may scaffold advanced 3D
capabilities (Tang et al., 2024). Such hierarchical
training strategies could bridge current limitations.

VLMs’ better performances on Spatial Orien-
tation and Spatial Relation also align with some
recent psychological findings which suggest that
these abilities may be more fundamental or "ba-
sic" (Friedman et al., 2019). However, according
to broader psychological research, BSAs are typi-
cally regarded as equally foundational components
of spatial intelligence (Carroll, 1993). Therefore,
further empirical studies from psychological per-
spectives are required to clarify these relationships
at the underlying cognitive level.

4.3.2 Impact of VLM Manufacturer and Size

As shown in Figure 6, models from different man-
ufacturers exhibit noticeable performance differ-
ences. The Qwen series demonstrates clear superi-
ority with an overall score of 30.82, outperforming
competitors across multiple assessment dimensions.
Mid-tier performers including Gemini, GPT, and
Llama series cluster around 25, while InternVL2
trails notably at 19.6.

Notably, individual spatial ability performance

shows distinct patterns from aggregate scores. For
instance, Gemini-1.5-flash achieves peak spatial
relation performance (43.78) but demonstrates
marked deficiencies in mental rotation (16.67) and
complete absence of spatial orientation capability.
The disparities likely originate from heterogeneous
training data distributions across different BSAs.

Turning to model size analysis (Figure 7), our
findings challenge conventional scaling laws. No
positive correlation between parameter count and
BSA performance is observed. Smaller models
(leftward positioned in manufacturer groupings)
frequently outperform their larger counterparts, a
trend particularly evident in the Qwen and Llama
series where around 10B-parameter models sur-
pass larger variants. Similar scaling anomalies are
discovered in the Gemini and InternVL2 series.

Smaller models such as Qwen2-VL-7B-Instruct
and Llama-3.2-11B-Vision-Instruct exhibit rela-
tively high performance (overall scores of 31.22
and 29.02), which may be attributed to their effi-
cient multimodal alignment mechanisms and tar-
geted instruction tuning. These models are often
trained with highly curated datasets and optimized
alignment strategies (e.g., supervised fine-tuning or
RLHF), enhancing their ability to follow structured
tasks like basic spatial ability tests.

Larger models such as GPT-4 Turbo demonstrate
lower-than-expected performance (23.07), which
may result from overfitting to generic pretraining
objectives or reliance on surface-level heuristics
rather than abstract spatial reasoning. In highly
structured, low-context tasks like those assessing
spatial cognition, such tendencies can hinder perfor-
mance compared to smaller models that generalize
in a simpler, more robust fashion.

The spatial ability tasks used in this study are
designed to align closely with validated psycho-
metric assessments. Their abstract, rule-based
format differs significantly from the open-ended,
language-heavy tasks many larger VLMs are tuned
for. Smaller models, when fine-tuned specifically
for multimodal instruction tasks, may thus exhibit
stronger inductive biases or more focused learning
beneficial for such structured evaluations.

In several similar studies, the performance of
smaller models approaches or surpasses that of
larger models in fundamental tasks such as text gen-
eration or classification (Matarazzo and Torlone,
2025; Li et al., 2025), where model performance is
related to the characteristics and complexity of the
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Figure 7: Comparison of the basic spatial abilities of VLMs with different sizes and manufacturers.

tasks. In tasks requiring logical reasoning, small
models may outperform larger models due to more
efficient architectures or training strategies.

4.3.3 Improvement by Alternative Reasoning
Techniques

To assess intervention strategies, we implemented
various experimental settings, including chain-of-
thoughts (CoT), CoT self-consistency and tree-of-
thoughts (ToT) for spatial reasoning (understanding
the 3D shape, analyzing the plane, determining the
cross-section, matching cross-section to options,
giving the answer, as shown in Figure 9) and con-
ducted few-shot learning on the SBST test (Table
6).

As shown in Figure 8, the accuracy improvement
of CoT and few-shot learning is unstable across
different VLMs. While examples help VLMs rec-
ognize spatial patterns such as prism cross-sections,
they fail to address fundamental limitations in dy-
namic 3D mental simulation, as VLMs overly
relied on the general patterns learnt during pre-
training process. CoT self-consistency training
proved effective on GPT-4o mini and Qwen2-VL-
7B-Instruct, while ToT boosted overall baseline ac-
curacy by nearly 0.10, enhancing visual-semantic
alignment and multi-step reasoning.

4.3.4 From BSA to Real World Application
To further examine how well the BSA results may
generalize to more naturalistic settings, such as
robotics, real-time navigation, and interactive en-
vironments, we conducted additional experiments
using the UrbanVideo-Bench dataset, designed for
evaluating embodied visual capabilities (Zhao et al.,
2025). The results show that models with high BSA
scores (e.g., GPT-4o and GPT-4o mini) also per-
form better in the embodied tasks (Table 5). How-

Figure 8: The impact of different experimantal settings
on the accuracy of VLMs’ answers.

ever, the relative importance of different BSAs can
vary across real-world applications in embodied
AI:

Spatial Perception tends to support low-level sen-
sory integration and scene interpretation, such as
understanding occlusion relationships or segment-
ing geometric structures from vision inputs (Qiu
and Di, 2024; Wang and Ke, 2024). It is particularly
important in upstream modules of spatial reasoning
pipelines, feeding perceptual representations into
higher-level spatial processes.

Spatial Relation is highly relevant for fine-
grained spatial decision-making, such as interpret-
ing instructions in household robotics, or for under-
standing the relative positioning of individuals in
crowd simulation and surveillance systems (Chen
et al., 2024a; Yan et al., 2024).

Spatial Orientation is foundational in navigation-
intensive applications such as mobile robotics, self-
driving vehicles, and drones, which must maintain
consistent heading and pose relative to dynamic
and global reference frames. Orientation is also
crucial in humanoid robotics, where continuous re-
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calibration of spatial awareness is necessary in en-
vironments with shifting perspectives (Gao et al.).

Mental Rotation is critically important for tasks
that require perspective-taking and manipulation
of objects in 3D space (Wang et al., 2024; Lin
et al., 2025). This includes robotic grasping, where
a robot must infer how an object appears from a
different angle in order to align its end effector cor-
rectly. In human-robot collaboration, mental rota-
tion supports shared spatial understanding between
agents. This ability is also essential in AR/VR
interfaces and autonomous navigation, where sys-
tems must match real-world object orientations to
internal representations.

Spatial Visualization plays a central role in
tasks involving mental simulation of multi-step spa-
tial transformations, such as multi-hop path plan-
ning, architectural reasoning, or surgical robotics
(Zargarzadeh et al., 2025). This ability supports
internal modeling of space over time, which is vital
for predicting future environmental configurations.

While our current experimental design isolates
each BSA for rigorous evaluation, a key direction
for future work is to investigate their combined
contributions in complex, real-world scenarios, and
how specific applications may prioritize different
ability. For example, in urban search and rescue
operations, an embodied agent must perceive ob-
stacles (SP), reason about its position relative to
victims and hazards (SR), simulate multiple escape
routes (SV), and navigate through rotating and clut-
tered environments (MR and SO) under dynamic
conditions (Gao et al.).

4.3.5 Constraints in VLMs’ BSAs
Our analysis reveals four fundamental constraints
in VLMs’ BSAs. Firstly, VLMs struggle
to distinguish subtle shape variations such as
hexagon/octagon cross-sections and misinterpret
spatial relationships such as interior/exterior bound-
aries, indicating weak metric encoding in visual
representations. This limitation may stem from
constraints in training data or a lack of prior knowl-
edge such as geometric principles, which example-
based training can partially mitigate. Secondly,
even with CoT prompting, VLMs exhibit shallow
reasoning chains and cannot dynamically simu-
late 3D transformations such as mental rotation
trajectories, contrasting human parietal lobe-driven
simulation mechanisms (Jung and Haier, 2007).
Thirdly, erratic behaviors like multi-answer selec-
tion in single-choice 3D tasks expose poor cross-

modal grounding, which is a critical gap between
textual instruction parsing and visual feature extrac-
tion. Lastly, overreliance on pre-training patterns
limits adaptability to novel spatial configurations.

These limitations underscore architectural defi-
ciencies beyond data scarcity. Unlike humans who
integrate dorsal and ventral visual streams for spa-
tial processing, VLMs lack dedicated modules for
dynamic spatial simulation. Bridging this gap may
require hybrid architectures embedding geometric
priors and neurosymbolic reasoning.

5 Conclusion

This study establishes a psychometric framework
for evaluating five basic spatial abilities (BSAs) in
visual language models, benchmarking 13 main-
stream models across nine rigorous experiments.

Our findings reveal three key insights: Firstly,
VLMs exhibit a significant performance gap com-
pared to humans (average score: 24.95 vs. 68.38)
while mirroring human performance hierarchies,
excelling in 2D spatial orientation but struggling
with 3D mental rotation. Secondly, model per-
formance varies significantly by manufacturer, re-
flecting architectural priorities. Contrary to scaling
laws, compact models frequently outperform larger
counterparts. Thirdly, alternative reasoning tech-
niques yield measurable but limited improvements,
highlighting architectural constraints beyond train-
ing data or experimental setting limitations.

By establishing the first quantitative linkage be-
tween psychometric BSAs and VLM capabilities,
this work can serve as a benchmark for future de-
velopments in spatial reasoning, and can be applied
to several areas. For methodology, the BSA frame-
work can help identify which BSAs are underdevel-
oped in current models, allowing researchers to tar-
get model design and training toward these weaker
abilities and construct specialized datasets for fine-
tuning or pretraining. For real world application,
our findings have direct relevance for embodied AI
systems, particularly those rely on manipulation,
navigation, and human-robot interaction (Wang
et al., 2024; Lin et al., 2025; Zargarzadeh et al.,
2025; Chen et al., 2024a; Yan et al., 2024). In
conclusion, combining advances in fundamental-
level BSAs with higher-level physical learning and
tasks offers a promising pathway for robust spatial
intelligence. Therefore, future progress calls for
closer collaboration between machine learning and
cognitive science communities.
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Limitations

This study revealed certain limitations. For ex-
ample, spatial orientation ability was assessed us-
ing only one test due to the accessibility to the
data from existing studies. Many models liper-
formed poorly on this test, making it difficult to
discern subtle differences between them. Addi-
tionally, three tests involved choosing the correct
answer from two options, which increased the like-
lihood of correct guesses. To avoid distortion of
results, models that clearly failed to understand the
questions or consistently guessed the same answer
were assigned a score of zero for these tests. Fu-
ture research can build upon the ability framework
proposed in this study to curate or design new tests
for assessing the basic spatial abilities of VLMs,
addressing potential reliability issues of individual
tests. It is also essential to include human experi-
mental results as a benchmark.

The models tested in this study are all VLMs
released in recent months, and the number of mul-
timodal models with visual capabilities remains
limited. Future research can use the nine tests em-
ployed in this study to evaluate the basic spatial
abilities of newly developed VLMs and compare
their performance to the models tested here, high-
lighting progress over time.
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A Data Statistics

As a necessary complement to the results in Section 4.2 and 4.3, this section provides the original statistics
of the data from VLMs’ BSA evaluation. The complete results are listed in Table 3.

Table 3: Test results of 13 VLMs and human recipients ("/" indicates invalid scores).

SVT NCIT DATSR RCSR MRMT MRT PSVTR SBST RCVis

Qwen2-VL-72B-Instruct 15.63
(0)

18.75
(0)

10.57
(1.67)

38.19
(0.98)

41.67
(1.47)

29.17
(0)

20.00
(2.72)

47.78
(1.57)

/

Qwen2-VL-7B-Instruct 30.21
(1.47)

37.50
(0)

11.46
(0.75)

/
47.92
(1.47)

20.83
(0)

18.89
(1.57)

25.56
(1.57)

41.67
(0)

InternVL2-Llama3-76B 21.88
(0)

18.75
(0)

17.82
(1.19)

/ /
25.00
(0)

26.67
(0)

15.56
(1.57)

/

InternVL2-26B 12.50
(0)

37.50
(0)

12.15
(1.18)

/
53.13
(0)

12.50
(3.40)

21.11
(1.57)

23.33
(7.20)

/

InternVL2-8B 12.50
(0)

43.75
(0)

9.00
(0)

/ /
12.50
(0)

20.00
(0)

26.67
(2.72)

/

Llama-3.2-90B-Vision-Instruct 9.38
(0)

12.50
(0)

8.50
(0)

/
53.13
(0)

29.17
(0)

20.00
(0)

6.67
(0)

/

Llama-3.2-11B-Vision-Instruct 21.88
(0)

50.00
(0)

26.45
(0)

/
50.00
(0)

22.22
(1.96)

10.00
(0)

18.89
(1.57)

/

GPT-4o 20.83
(5.31)

37.50
(5.10)

10.10
(3.12)

46.53
(1.96)

44.79
(8.20)

12.50
(5.89)

21.11
(5.67)

36.67
(7.20)

40.56
(2.83)

GPT-4o mini 17.71
(7.80)

18.75
(10.21)

8.19
(1.09)

/
42.71
(1.47)

2.78
(1.96)

15.56
(3.14)

21.11
(1.57)

46.11
(1.57)

GPT-4 Turbo 23.96
(3.90)

18.75
(0)

16.08
(3.78)

/
42.71
(1.47)

12.50
(3.40)

14.44
(6.85)

17.78
(4.16)

/

Gemini-1.5-pro 21.88
(0)

18.75
(0)

23.93
(0.98)

/
54.17
(2.95)

4.17
(0)

18.89
(1.57)

36.67
(0)

40.00
(1.36)

Gemini-1.5-flash 12.50
(0)

62.50
(0)

25.05
(0)

/ /
16.67
(0)

16.67
(0)

30.00
(0)

/

Gemini-1.5-flash-8B 15.63
(0)

37.50
(0)

16.72
(0.59)

/
56.25
(0)

12.50
(0)

10.00
(0)

26.67
(0)

/

Average of 13 VLMs 18.19 31.37 15.08 5.90 37.42 16.35 17.95 25.64 12.95

Standard Deviation of 13 VLMs 5.87 15.19 6.54 16.00 21.84 8.49 4.62 10.60 20.26

Average of human recipients 58.47 55.00 55.33 89.00 84.69 45.00 63.60 68.00 88.00

Standard Deviation of human 19.72 19.13 / 9.00 14.41 20.83 20.53 23.00 7.00

Number of human recipients 1007 105 1480 51 61 636 1022 223 52

Table 4: VLMs’ performance in Santa Barbara Solids Test with and without explicit separation of answer choices.

Model Original Experiment Supplementary Experiment

Qwen2-VL-72B-Instruct 47.78 23.33
Qwen2-VL-7B-Instruct 25.56 26.67

GPT-4o 36.67 33.33
GPT-4o mini 21.11 26.67
GPT-4 Turbo 17.78 13.33
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Table 5: VLMs’ performances in UrbanVideo-Bench embodied tasks align with their BSA performances.

Random
Baseline

InternVL2
-8B

InternVL2
-26B

InternVL2
-Llama3-76B

GPT-4o
GPT-4o
mini

1. Overall BSA Score 33.9 20.5 19.4 20.4 30.5 23.3
1.1 Spatial Percpetion 25.0 12.5 12.5 21.9 20.8 17.7
1.2 Spatial Relation 34.4 26.4 24.8 18.3 31.4 13.5
1.3 Spatial Orientation 50.0 / / / 44.8 42.7
1.4 Mental Rotation 22.5 16.3 16.8 25.8 16.8 9.2
1.5 Spatial Visualization 37.5 26.7 23.3 15.6 38.6 33.6
2. Overall UrbanVideo-Bench Score 21.3 33.3 34.3 34.8 52.2 45.5
2.1 Recall 18.3 31.3 36.8 33.6 60.1 50.1
2.1.1 Trajectory Captioning 18.5 23.4 24.3 19.5 47.6 33.0
2.1.2 Sequence Recall 17.0 23.2 36.6 38.4 58.9 53.6
2.1.3 Object Recall 20.8 35.0 35.0 37.5 65.0 48.3
2.1.4 Scene Recall 13.5 52.3 61.3 54.1 67.6 59.5
2.1.5 Start/End Position 21.8 22.5 26.8 18.3 61.3 56.3
2.2 Perception 26.6 36.3 34.4 39.7 48.5 45.6
2.2.1 Proximity 37.8 58.0 51.2 65.5 63.0 69.7
2.2.2 Duration 35.6 44.7 40.2 48.5 47.7 51.5
2.2.3 Landmark Position 19.7 23.1 19.9 22.9 36.8 33.3
2.2.4 Goal Detection 18.0 27.4 28.1 28.1 42.4 31.3
2.2.5 Cognitive Map 21.9 28.3 32.4 33.6 52.8 42.4
2.3 Reasoning 20.5 35.4 34.6 33.8 52.3 45.4
2.3.1 Causal 18.2 33.6 32.7 30.9 66.4 65.5
2.3.2 Counterfactual 25.0 45.5 44.7 43.2 44.7 47.7
2.3.3 Association 18.3 27.0 26.5 27.4 45.8 22.9
2.4 Navigation 18.0 29.5 29.8 29.7 45.3 37.9
2.4.1 Progress Evaluation 21.8 31.5 28.9 31.3 34.2 30.8
2.4.2 High-level Planning 15.9 35.7 37.6 34.5 67.8 57.5
2.4.3 Action Generation 16.4 21.4 22.8 23.2 33.8 25.4

Table 6: VLMs’ performances show a slight improvement in supplementary experimental settings.

Santa Barbara Solids Test
Performance Score Qwen2-VL-72B-Instruct Qwen2-VL-7B-Instruct GPT-4o GPT-4o mini

Original Score 47.78 25.56 36.67 21.11
Chain-of-Thoughts 43.33 30.00 36.67 23.33
Few-shot Learning 46.67 26.67 40.00 16.67
CoT Self-Consistency 43.33 30.00 33.33 30.00
Tree-of-Thoughts 50.00 36.67 43.33 30.00

Table 7: Image size has little effect on model performance, while image color may introduce notable variation.

Santa Barbara Solids Test
Performance Score Qwen2-VL-72B-Instruct Qwen2-VL-7B-Instruct GPT-4o GPT-4o mini

Original Image 47.78 25.56 36.67 21.11
Image Size x2 45.56 33.33 30.00 16.67
Image Size x(1/2) 43.33 33.33 30.00 16.67
Image Color to Greyscale 53.33 46.67 30.00 23.33
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Table 8: Increasing the temperature parameter typically leads to decreased VLM performances.

Santa Barbara Solids Test
Performance Score Qwen2-VL-72B-Instruct Qwen2-VL-7B-Instruct GPT-4o GPT-4o mini

Original Score (Temperature=0) 47.78 25.56 36.67 21.11
Temperature=0.2 40.00 43.33 30.00 16.67
Temperature=0.5 33.33 43.33 40.00 16.67
Temperature=1.0 30.00 16.67 20.00 30.00

B Prompts for VLMs

In this section, we provide the designed prompts for the nine BSA tests to receive results from VLMs.

B.1 MGMP Spatial Visualization Test (SVT)

B.2 Net Cube Imagination Test (NCIT)
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B.3 Differential Aptitude Test: Space Relation (DAT:SR)

B.4 R-Cube-Spatial Relation Test (R-Cube-SR)

B.5 Money Road-Map Test (MRMT)
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B.6 Mental Rotation Test (MRT)

B.7 Purdue Spatial Visualization Tests: Visualization of Rotations (PSVT:R)
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B.8 Santa Barbara Solids Test (SBST)
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B.9 R-Cube-Visualization Short Test (R-Cube-Vis)

C CoT Method and Example-based Training Demonstration

In this section, we selected the SBST test, using GPT-4o to evaluate the extent to which the chain-of-
thought (CoT) method and example-based training enhance the model’s ability to solve spatial problems.

In the first experiment, we designed a structured CoT reasoning process (understanding the 3D shape,
analyzing the plane, determining the cross-section, matching cross-section to options, giving the answer)
along with a single example question. We then assessed the model’s accuracy under four different
conditions: (a) directly answering without additional guidance, (b) using only example-based training, (c)
employing only the CoT method, and (d) combining both CoT and example-based training, where the
example question was analyzed using the CoT approach.

In the second experiment, we examined the impact of varying the number of example questions (1, 3, 5,
and 10) on response accuracy, without incorporating the CoT method.

To enhance the reliability of the findings, both experiments were conducted multiple times to take the
average result. The experimental framework is illustrated in Figure 9.

Figure 9: Framework of CoT Method and Example-based Training
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D Sample Data Demonstration

In this section, we take Qwen2-VL-7B, the model that acquired the highest score as an example, to
demonstrate its response to nine sample questions of different tests, as shown in Figure 10.

Figure 10: Data samples from tests for BSA2.
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