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Abstract

Direct speech translation (ST) has garnered
increasing attention nowadays, yet the
accurate translation of terminology within
utterances remains a great challenge. In this
regard, current studies mainly concentrate
on leveraging various translation knowledge
into ST models. However, these methods
often struggle with interference from irrelevant
noise and can not fully utilize the translation
knowledge. To address these issues, in this
paper, we propose a novel Locate-and-Focus
method for terminology translation. It first
effectively locates the speech clips containing
terminologies within the utterance to construct
translation knowledge, minimizing irrelevant
information for the ST model. Subsequently,
it associates the translation knowledge with
the utterance and hypothesis from both audio
and textual modalities, allowing the ST model
to better focus on translation knowledge
during translation.  Experimental results
across various datasets demonstrate that our
method effectively locates terminologies
within utterances and enhances the success rate
of terminology translation, while maintaining
robust general translation performance. Our
code and data are available at https:
//github.com/DeepLearnXMU/
Locate_and_Focus_ST.

1 Introduction

Direct speech translation (ST) aims to convert an
utterance in the source language directly into text
in the target language, with recent advancements
driven by the emergence of Speech Large Language
Models (LLMs) (Papi et al., 2023; Gupta et al.,
2024; Peng et al., 2024; Hussein et al., 2024;
Sethiya and Maurya, 2025). Although significant
progress has been made, dominant direct ST
models still exhibit suboptimal performance in
terminology translation, such as personal and drug
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names, which is essential for effective information
delivery and professional communication (Ailem
et al., 2022; Semenov et al., 2023; Bogoychev and
Chen, 2023; Conia et al., 2024; Yin et al., 2024,
Liu et al., 2025).

To deal with this issue, researchers have pro-
posed various methods that incorporate external
translation knowledge. As shown in Figure 1,
these methods can be roughly classified into the
following two paradigms: 1) Collect-and-Integrate
(Gaido et al., 2023; Chen et al., 2024). It collects all
textual terminologies within the corpus and their
translations as context to inform ST models. 2)
Retrieve-and-Demonstrate (Li et al., 2024a). This
paradigm employs a retriever to obtain utterance-
translation pairs containing the same terms as the
source utterance, and then provides these pairs
as examples of in-context learning (Brown et al.,
2020).

Despite achieving some success, the above
paradigms still have two shortcomings. On the one
hand, they introduce a large amount of irrelevant
information. Specifically, the Collect-and-Integrate
paradigm incorporates all corpus terminologies
into the context, often including many unrelated
ones such as “speech translation” and “edge
computing”, as shown in Figure 1. The Retrieve-
and-Demonstrate paradigm retrieves utterance-
translation pairs that contain irrelevant sentence
parts for terminology translation, such as “plays a
crucial role in text analysis”. On the other hand,
due to differences in modalities or speakers, ST
models struggle to fully utilize translation knowl-
edge. Note that the Collect-and-Integrate paradigm
introduces translation knowledge from the textual
modality, which differs significantly from the
source utterance’s audio modality. Additionally,
for Retrieve-and-Demonstrate, the retrieved and
source utterances often originate from different
speakers, with varying accents and emotions.
Consequently, effectively incorporating external
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Figure 1: The differences between Locate-and-Focus and the existing paradigms. We use gray to indicate information
unrelated to terminology translation. Portions in the utterance and hypothesis that relate to terminology translation

are highlighted in blue.

translation knowledge to improve terminology
translation in direct ST presents significant chal-
lenges.

To tackle these challenges, we propose a novel
Locate-and-Focus method for speech LLLM-based
terminology translation, which comprises two
key steps. The terminology clip localization
step employs a sliding window-based retrieval
method to efficiently identify terminologies from
the translation knowledge base and locate their
corresponding speech clips within the utterance.
This process enables the speech LLM to concen-
trate on portions containing terminologies, thereby
reducing interference from irrelevant portions.
The subsequent terminology-focused translation
step associates translation knowledge with both
utterances and hypotheses in both audio and textual
modalities, facilitating the speech LLM to focus
on translation knowledge. Specifically, we replace
speech clips from retrieved translation knowledge
with our located clips from the utterance. This
process ensures that the utterance and translation
knowledge share common speech clips, thereby
guiding the speech LLM to focus on translation
knowledge. Additionally, we encourage the speech
LLM to predict a special tag before translating
terminology, serving as a self-reminder to focus on
the translation knowledge.

Due to the absence of terminology translation
datasets for speech tasks, we collect a tailored
dataset from existing ST dataset CoVoST2 (Wang
et al.,, 2020), MuST-C (Cattoni et al., 2021),
and MSLT (Federmann and Lewis, 2016, 2017).

It contains English-to-Chinese and English-to-
German translation directions. The results demon-
strate that our method not only effectively locates
terminologies within utterances, but also enhances
the success rate of terminology translation and
maintains robust general translation performance.

In summary, our contributions to this work are

three-fold:

* We propose the Locate-and-Focus method
for terminology translation, which not only
reduces the introduction of irrelevant infor-
mation by precisely locating speech clips
containing terminology, but also effectively
guides speech LLMs to leverage the transla-
tion knowledge.

* We construct a high-quality terminology
translation dataset to evaluate terminology
translation performance across English-to-
Chinese and English-to-German translation
directions.

* Experimental results demonstrate that our
method accurately locates terminologies
within utterances, leading to significant
improvements in terminology translation
while maintaining general translation quality.

2 Related Works

The work related to our research encompasses the
following two aspects:

Text-based Terminology Translation. In this
context, the main methods can be broadly catego-
rized into three types. The first category focuses
on optimizing the decoding process (Hokamp and
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Liu, 2017; Post and Vilar, 2018; Hasler et al.,
2018), which improves consistency via expanded
search spaces or finite-state acceptors, though it
often results in poor translation quality. The
second approach involves modifications to network
architectures (Chen et al., 2021; Wang et al., 2022),
but significant changes in network architecture
can limit its usability. Lastly, data augmentation
methods include Placeholder and Code-switch.
The Placeholder method replaces terminologies
in both the source and target text with ordered
labels, subsequently substituting these labels with
the translation of terminologies after translation
(Crego et al., 2016; Michon et al., 2020). Code-
switch method directly replaces terminologies in
the source with their translation before inputting
them into the model (Dinu et al., 2019; Bergmanis
and Pinnis, 2021). Furthermore, Zhang et al. (2023)
combine both Placeholder and Code-switch to
achieve improved results.

Note that Placeholder and Code-switch can
not be directly applied to direct ST, as replacing
parts of the utterance with textual labels or
translations can lead to cross-modal inconsistency.
Additionally, unlike these methods that replace
terminologies with labels or translations in the
source text, we incorporate special tags into
the model’s hypothesis to improve terminology
translation.

Terminology in Speech Tasks. Compared
to text-based terminology translation, handling
terminology in speech tasks is more complex due
to the integration of more modalities (Han et al.,
2022; Gaido et al., 2023; Li et al., 2024b; Hu
et al., 2024; Shi et al., 2024; Chen et al., 2024).
In end-to-end automatic speech recognition (ASR),
Li et al. (2024b) introduce CB-Whisper, which
recognizes terminology through open-vocabulary
keyword spotting. Hu et al. (2024) present
VHASR, a multimodal speech recognition system.
In speech translation, dominant methods can be
broadly categorized into two paradigms: Collect-
and-Integrate (Gaido et al., 2023; Chen et al.,
2024) and Retrieve-and-Demonstrate (Li et al.,
2024a). As representatives of the former, Gaido
et al. (2023) propose a detector to identify whether
a textual terminology appears in an utterance.
Similarly, Chen et al. (2024) incorporate textual
translations of high-frequency terminologies into
prompts at a fine-grained level to aid the model in
translating terminology. However, these methods

do not introduce multi-modal translation knowl-
edge. Representing the latter paradigm, Li et al.
(2024a) retrieve utterance-translation pairs and
enhance terminology translation through in-context
learning.

In contrast to the above studies, our work has
two key advantages. First, it effectively identifies
the speech clip within utterances containing ter-
minologies, thereby reducing noise interference.
Second, our method encourages the model to focus
on translation knowledge from both modalities. To
the best of our knowledge, we are the first end-to-
end terminology translation method that retrieves
and fully utilizes multi-modal fined-granularity
multi-modal fine-grained knowledge for the speech
LLM.

3 Method

In this section, we provide a detailed description
of our proposed method. As shown in Figure
2, our method primarily consists of two steps:
terminology clip localization and terminology-
focused translation. We will elaborate on each of
these steps in Sections 3.1 and 3.2, followed by a
discussion of the training process in Section 3.3.

3.1 Terminology Clip Localization

At this step, we aim to accurately retrieve ter-
minologies within the utterance and locate their
corresponding speech clips within the utterance.
By locating these term-related clips in the utterance,
the speech LLM can more easily focus on these
key parts later, effectively minimizing irrelevant
information.

Let P be the external translation knowledge base
served as a retrieval pool, where each element
is a terminology translation knowledge triplet
K = (z,c,y), with z representing the transcript
of the terminology, ¢ denoting its corresponding
speech clip, and y standing for its translation.
Given that retrieval in the same audio modality
often outperforms cross-modal retrieval (Li et al.,
2024a), we use c¢ to compute the similarity with
the utterance u from the test sets that require
translation.

Sliding Retrieval. Since only certain parts of the
utterance contain the terminology, it is challenging
to directly calculate the similarity between c and u
to retrieve terminologies. To address this issue,
we propose a sliding window-based similarity
matching method called Sliding Retrieval, which
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Figure 2: Overview of the Locate-and-Focus method, which comprises the speech terminology clip localization
and the terminology-focused translation steps. For a given utterance, the first step effectively identifies and locates
speech clips within utterances containing the terminology. Subsequently, the second step uses audio replacement to
associate the utterance and translation knowledge through their shared speech clip. It also encourages the model to
predict the <Term> tag before translating terminology, which helps it to focus on the translation knowledge.

can not only better calculate similarity but also
locate the speech clip in the source utterance where
the terminology is most likely to occur.

Specifically, we employ a speech encoder SE
to encode ¢ and u: z° = SE(c),z" = SE(u),
where z¢ € RI*? and 2" € RI“/* represent the d-
dimensional embeddings with lengths of |c| and |u/,
respectively. Subsequently, we utilize a sliding win-
dow with a size of |c| and a step size of 1 to divide u
into speech subsequences [z, . . . ’Z’qu|_|c‘ +1]1. For
each subsequence, we then perform max pooling
on z} and z°, followed by calculating their cosine
similarity. The maximum similarity obtained will
represent the similarity between v and c, indicating
the likelihood of the terminology c occurring within
u. This process is formally defined as:
sim(u, ¢) =

mZaX{Cosine(MaxPool(zC), MaxPool(z;'))}

(1

Note that we compute the similarity scores for
all translation knowledge triplets in the knowledge
base and then select the top-k triplets with the
highest scores as those whose terminology is

"Note that similarity calculations with different subse-
quences can be parallelized, resulting in only a slight increase
in latency. For further details, refer to Section 5.5.

most likely present in the utterance. Meanwhile,
we identify the speech subsequence exhibiting
maximum similarity and denote its corresponding
speech clip as s, which likely contains the
terminology.

3.2 Terminology-Focused Translation

In this step, we develop two strategies to associate
the translation knowledge with the utterance and
hypothesis from both audio and textual modalities,
allowing the speech LLM to better focus on
translation knowledge.

Audio Replacement. As shown in Figure 2, we
first replace the speech clip c in the retrieved
translation knowledge triplet K = (z,c,y) with
the located speech clip s, resulting in a new
translation knowledge triplet XK' = (z,8,y).
This replacement creates an anchor that enables
the utterance and translation knowledge to share
identical acoustic features. When the speech
LLM encounters this anchor while processing the
utterance, it can more effectively focus on the
relevant translation knowledge. We then provide
this new triplet as the additional context along with
the utterance w to construct an instruction input
into the speech LLM.
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Tag Cue. To further enhance terminology trans-
lation, we introduce special tags that serve as
cues, establishing connections between the model’s
hypotheses and translation knowledge. Specifically,
we modify the reference of training data by adding
a special tag <Term> before the translation of
each terminology. As shown in Figure 2, since
“NLP” is a terminology, the reference “The software
utilizes NLP technology” will be modified as “The
software integrates <Term> NLP technology’.
Subsequently, we use these modified training data
to train the speech LLM in an autoregressive
manner. In this way, when the speech LLM predicts
<Term> during inference, it cues the speech LLM
to focus on the external translation knowledge
triplet K’ for accurate terminology translation.

3.3 Training

Note that without prior training, our terminology
clip localization step can produce unsatisfactory
speech clips, which may subsequently undermine
the terminology-focused translation step. There-
fore, we train the two steps sequentially.

The objective of training the terminology clip
localization step is to ensure that SFE aligns
with our Sliding Retrieval method. To achieve
this, we employ contrastive learning for SFE
training. Formally, our training objective Lgg is to
maximize the similarity with the positive examples
while minimizing the similarity with the negative
examples:

esim(u,c™)

Lsg = —1lo , (2
SE & esim(u,ct) Z?:l esim(u,c;”) )

where c¢™ denotes the speech clip of the ter-
minology appearing in u, considered a positive
example, while ¢, denotes the i-th randomly
sampled terminology speech clip, regarded as a
negative example.

Subsequently, we train the model to terminology-
focused translation, ensuring it effectively utilizes
the provided translation knowledge during transla-
tion. Following previous studies (Rajaa and Tushar,
2024; Chen et al., 2024), we apply LoRA (Hu et al.,
2022) for fine-tuning. Formally, we train the speech
LLM using the standard next token prediction loss
as follows:

N
1
£LLM — _Nz;logp(wiK,7u>w<i)> (3)
1=
where NV is the total number of tokens in the trans-
lations, wj is the target token and P(w;|K’, u, w<;)

EN — ZH EN — DE
Split #utt. #term.  #utt. #term.
CoVoST2-train 10000 14191 10000 14664
CoVoST2-test 671 1227 656 1270
MuST-C-test 220 335 220 355
MSLT-test 213 294 164 280
Table 1: Statistics of our collected dataset. #utt.
indicates the number of utterances, and #term.

represents the number of terminologies.

is the prediction probability of w;.

4 Data Collection

Given that current speech translation datasets often
lack annotated terminology translation knowledge,
we create a specialized dataset for terminology
translation. To be specific, we gather data from the
existing ST datasets, including CoVoST2 (Wang
et al.,, 2020), MuST-C (Cattoni et al., 2021),
and MSLT (Federmann and Lewis, 2016, 2017).
The resulting dataset features annotated terminol-
ogy translation for both English-to-Chinese and
English-to-German translation directions.

To achieve this, we utilize Qwen2.5-72B-
Instruct (Yang et al., 2024) to extract parallel
terminology pairs from the transcripts and
translations from existing ST datasets, and then
manually check the extracted pairs to ensure
quality. To better support ST, we use the text-to-
speech (TTS) model CosyVoice2 (Du et al., 2024)
to generate corresponding speech clips for the
terms. To guarantee the quality of the generated
speech, we employ the ASR model SenseVoice
(An et al., 2024) to transcribe the synthesized
speech clips and compare these transcriptions with
the source terminology. Note that we only retain
clips whose transcripts have an edit distance of 3
or less from the original terminology. After this
initial filtration, we also conduct a manual review
to further ensure the quality of the clips. More
details about our collection process are provided in
Appendix D.

The details of our collected data are presented
in Table 1. For CoVoST2 (Wang et al., 2020), we
collect data from both the training and test splits,
whereas for MuST-C (Cattoni et al., 2021) and
MSLT (Federmann and Lewis, 2016, 2017), we
collect data only from the test splits. Note that
we only retain translation samples that containing
terminologies. In the subsequent process, we
use only the CoVoST2 training split for model
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EN — ZH EN — DE
CoVoST2 MuST-C MSLT CoVoST2 MuST-C MSLT
TSR BLEU TSR BLEU TSR BLEU TSR BLEU TSR BLEU TSR BLEU
Base Model 2412 3582 27.61 2573 3980 3130 4038 2635 5324 1433 4972 18.10
Translation Training 2730 40.66 32.68 27.02 4524 3148 4552 2936 4831 2045 60.79 19.11
Oracle Knowledge Setting
SALM 76.53 5597 69.01 32.10 68.03 31.81 8591 43.64 7656 21.15 7230 16.16
Retrieval-and-Demonstration ~ 60.88  50.22 58.87 30.18 70.06 31.34 5795 36.09 57.06 1946 5395 15.18
Locute-andFocus 90.13 849 9409 3452 9184 3376 9635 4560 8785 2206 8633 1730
w/o Audio Replacement 89.67 5837 90.07 3343 9150 3325 9383 4520 87.00 2120 8537 17.07
w/o Tag Cue 89.00 5825 88.17 31.09 90.14 3205 90.74 4497 8594 2136 8374 17.24
w/o Replacement and Cue 88.59 5832 86.14 3144 89.14 30.05 91.00 4329 8192 2188 76.61 16.67
End-to-End Setting
SALM 2820 39.82 37.18 27.16 4640 30.27 41.17 31.16 4831 15.02 34.17 835
Retrieval-and-Demonstration ~ 32.93  41.02 3831 26.87 56.80 30.54 4537 3240 5197 1605 5288 1548
Locate-and-Foeus | 6553 4930 7578 3135 75513058 7712 3966 7740 21057266 1695
w/o Sliding Retrieval 58.02 4482 7291 3072 7239 28.10 7149 3898 75.14 2092 70.02 16.35
w/o Audio Replacement 63.49 4952 7462 31.12 7391 3224 7525 3921 77.11 20.60 7194 17.05
w/o Tag Cue 63.73 4878 7291 3074 7295 30.08 7328 3936 74.62 20.83 6998 16.36
w/o Replacement and Cue 6295 4873 7126 3079 7176 3042 7054 3793 7298 20.29 69.86 16.37

Table 2: Performance comparison of different methods in speech terminology translation, including variants of our
method. We use bold text to indicate the best performance for each metric.

training, while MuST-C and MSLT are used as
out-of-domain test sets.

5 Experiment

Base Model In our experiments, we utilize the
Whisper-medium (Radford et al., 2023) as the
speech encoder and the Qwen2-Audio-Instruct
(Chu et al., 2024) as the speech LLM. When
training the speech encoder, we use 4 negative
samples per example and conduct the training over
3 epochs. To ensure the translation quality of the
speech LLLM, we combine the original CoVoST2
training split with the terminology translation
data for training. For methods requiring external
translation knowledge, we use the translation
knowledge base constructed in Section 4. For
further implementation details, please refer to
Appendix A.

Baselines We use the representative methods as
our baselines.

e Translation Training. We fine-tune the
speech LLM only using the CoVoST2 training
split data to enhance its translation perfor-
mance. Note that it does not use external
translation knowledge during inference.

¢ SALM (Chen et al., 2024). This Collect-and-
Integrate method calculates term frequencies
and provides the speech LLM with a fixed
number of high-frequency terms and their

translations as context to help model in
translation.

e Retrieval-and-Demonstration (Li et al.,
2024a). This method aims to retrieve
utterance-translation  pairs that share
terminologies with the source utterance,
using them as sentence-level translation
knowledge. These pairs are then employed as
in-context learning examples aids to enhance
terminology translation.

Setups In our experiments, we use two different
setups to supply the speech LLM with translation
knowledge:

* Oracle Knowledge Setting. In this setup,
the speech LLM is directly supplied with
ground truth translation knowledge without
any irrelevant noise, enabling the evaluation
of a terminology translation method’s optimal
performance under ideal conditions.

* End-to-End Setting. This setup requires
the speech LLM to acquire external knowl-
edge through retrieval or statistical methods,
thus evaluating the terminology translation
method’s capability in an end-to-end manner.
For SALM, we provide the translations of
the top 50 most frequent terms. For the
Retrieval-and-Demonstration and our method,
we provide the top-5 retrieved translation
knowledge.
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CoVoST2 MuST-C

Hits@1l Hits@5 Hits@10 Hits@1

Hits@5 Hits@10

EN — ZH

MaxPool 45.07 56.97 62.18 55.12 68.17 74.37
MinPool 45.80 55.75 61.53 53.80 63.66 70.70
AvgPool 22.66 34.80 4091 38.87 54.37 58.87
Sliding Retrieval ~ 61.04 79.22 85.00 64.23 82.54 89.58
EN — DE

MaxPool 46.08 56.85 62.00 56.21 68.64 72.31
MinPool 44.41 55.03 60.81 54.52 66.67 71.75
AvgPool 20.66 34.92 39.67 3531 49.15 55.08

Sliding Retrieval ~ 58.19 76.32 84.40 67.51 87.57 93.79

Table 3: Performance of the retriever on CoVoST2 and
MuST-C. Please refer to Table 1 for retrieval pool sizes.

Ablation Settings To investigate the effects of
different factors on our method, we consider the
following variants for the ablation study.

* w/o Sliding Retrieval. In this variant,
the retriever uses MaxPool to calculate the
similarity between utterances and speech clips,
instead of employing the Sliding Retrieval
approach we proposed.

* w/o Audio Replacement. This variant sup-
plies the retrieved knowledge triplet directly
to the speech LLM without replacing the TTS-
generated audio with the located clip from the
utterance.

* w/o Tag Cue. We exclude the use of the
special tag during training in this variant,
which means the model cannot use the special
tag as a cue to predict when to output term
translation.

* w/o Replacement and Cue. This variant
omits both the audio replacement and the tag
cue during training and inference.

Metrics For evaluating the retrieval performance,
we use Hits@N to assess whether the correct item
is included within the top-n retrieved items, where
n is set to 1, 5, or 10. To assess the quality of
terminology translation, following previous studies
(Semenov et al., 2023; Li et al., 2024a), we employ
BLEU (Papineni et al., 2002) and Term Success
Rate (TSR) (Semenov et al., 2023). Term Success
Rate quantifies the proportion of terminologies
accurately translated within an utterance.

5.1 Main Result

As shown in Table 2, we report the performance of
different methods and our variants, from which we
can draw the following conclusions:

First, providing external translation knowledge
can significantly improve the success rate in
terminology translation. In the Oracle Knowledge

. 79.22
704 -
62.43
60 T
n 49-.95__;ﬁ___,____u_‘,_‘,__,__,_,._.._é;'“
@350 -
T _ammnT
383 e
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Parameter of the Speech Encoder (Millions)

Figure 3: Comparison of Hits@5 scores for different
methods using speech encoders of varying sizes.

Setting, all methods incorporating external knowl-
edge outperform both the base model and the model
enhanced by translation training. This suggests that
merely enhancing translation capabilities is subop-
timal for effective terminology translation. We
attribute this to the long-tail distribution of terms,
which makes them sparse and difficult to acquire
during training. Therefore, integrating external
knowledge emerges as an effective approach.

Second, the quality of external knowledge is
crucial for accurate terminology translation. In the
End-to-End Setting, for instance, the performance
of SALM declines as the high-frequency terms
often fail to align with those in the current
utterance. Retrieval-based methods face similar
issues. Due to the imperfect performance of
retrievers, the Retrieval-and-Demonstrate approach
also experiences a performance drop, with scores
falling from 60.88 to 32.93 in the CoVoST2
English-to-Chinese dataset. Therefore, we believe
that further improving retrieval performance is
essential for effective terminology translation.

Third, Locate-and-Focus surpasses existing
approaches. In the End-to-End setting on the
CoVoST?2 English-to-Chinese dataset, it achieves
a TSR of 65.53, significantly outperforming
SALM’s 28.20 and Retrieve-and-Demonstrate’s
32.93. Additionally, it generally achieves higher
BLEU scores compared to models enhanced
through Translation Training. This advantage is
due to the accurate translation of key terms, which
is essential for overall translation quality.

Finally, our ablation study underscores the
importance of each component in our method. We
find that removing either Audio Replacement or
Tag Cue results in a notable decline in performance.
For example, in the Oracle knowledge setting on
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CoVoST2 MuST-C
TSR BELU TSR BELU

EN — ZH

Top-1 51.67 47.63 58.02 29.90
Top-5 65.53 49.30 75.78 31.35
Top-10  55.01 47.57 60.56 29.45
EN — DE

Top-1 63.89 37.62 69.49 20.90
Top-5 77.12 39.66 77.40 21.05
Top-10  69.52 38.22 69.77 19.74

Table 4: Performance of our method across retrieval
settings, where Top-/V indicates the inclusion of the top
N highest-scoring translation knowledge triplets.

the MuST-C English-to-Chinese dataset, removing
Audio Replacement decreases the TSR from 94.09
to 90.07, while removing the Tag Cue drops it to
88.17, and eliminating both reduces it further to
86.14. Similarly, removing Sliding Retrieval also
leads to performance degradation, which we will
demonstrate is related to retrieval performance.

5.2 Retrieval Performance

Given the lack of effective cross-granularity speech
retrieval methods, we compare the Sliding Re-
trieval method with basic pooling methods as
shown in Table 3, all using the same dataset to
train the speech encoder. The experimental results
demonstrate that our method achieves an accuracy
of approximately 60% for Hits@1 and around
85% for Hits@10. Compared to pooling-based
methods, Sliding Retrieval exhibits a significant
improvement across all retrieval metrics.

To further validate our method’s effectiveness
across different model sizes, we conduct ex-
periments on the English-to-Chinese subset of
CoVoST2 using Whisper-base (about 27M parame-
ters), Whisper-small (112M parameters), Whisper-
medium (408M parameters) as speech encoders?.
As shown in Figure 3, our method consistently
achieves significantly better performance across all
model sizes.

Quality of Located Clips Note that Sliding Re-
trieval not only improves the retrieval performance,
but also effectively locates the corresponding
speech clips. To validate the effectiveness, we
conduct a comprehensive evaluation of the located
speech clips.

Using English-to-Chinese datasets, we employ
Whisper-medium to locate speech clips containing

2We only use the encoder of Whisper and report the
parameter count of the encoder.

EN—+ZH EN — DE

Base Model 38.22 23.61
Translation Training 43.64 29.79
SALM 43.39 29.47
Retrieval-and-Demonstration 43.08 29.43
Locate-and-Focus 43.48 29.62

Table 5: Performance of methods on standard CoVoST2
test set.

ground truth terms. Human annotators are asked to
subsequently verify whether these clips accurately
capture the target terminology, allowing us to
calculate the success rate. The results demonstrate
robust performance, with terminology identifica-
tion success rates of 88.10%, 92.56%, and 93.98%
across the CoVoST-2, MSLT, and MuST-C datasets,
respectively, confirming the method’s effectiveness
in precise terminology localization.

5.3 Impact of the Amount of Translation
Knowledge Retrieved

As shown in Table 4, we explore the impact of
providing different amounts of retrieved translation
knowledge to the speech LLM on term translation
performance. The results indicate that using top-
1 retrieval often yields the poorest performance,
while top-10 is also less effective than top-5.
This is because top-1 retrieval has poor accuracy,
with Hits@1 only achieving 61.04 on the English-
to-Chinese CoVoST?2 dataset, significantly lower
than the Hits@5 score of 79.22 and Hits@10
score of 85.00, as shown in Table 3. While top-
10 retrieval achieves the highest recall, it also
introduces more noise from irrelevant translation
knowledge. Conversely, top-5 retrieval finds a
balance by providing translation knowledge with
minimal noise, leading to superior performance.

5.4 General Translation Performance

In this section, we investigate the potential impact
of enhanced terminology translation capabilities on
general speech translation performance. We con-
duct a comprehensive evaluation on the standard
CoVoST?2 test sets, with BLEU scores reported
in Table 5. The experimental results demonstrate
that our approach excels not only in terminology-
specific translation tasks, but also maintains robust
general speech translation performance. For
example, our Locate-and-Focus method achieves
a BLEU score of 43.48 on the English-to-Chinese
test set, approaching the performance of the Trans-
lation Training approach (43.64) while surpassing
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Model Method Time (ms)
Retrieval

. MaxPool 0.146
Whisper-base Sliding Retrieval ~ 0.195

. MaxPool 0.150
Whisper-small Sliding Retrieval 0.214

. . MaxPool 0.152
Whisper-medium Sliding Retrieval 0217
Translation
Qwen2-Audio-Instruct - 621.951

Table 6: Time consumption of different parts in the
translation process.

other retrieval-based methods such as SALM
(43.39) and Retrieval-and-Demonstration (43.08).

5.5 Inference Latency

Considering the critical real-time constraints of
speech translation systems, we present a com-
prehensive evaluation of our Sliding Retrieval
method’s computational efficiency. Using a single
NVIDIA A100 80GB GPU, we pre-compute and
store speech representations generated by speech
encoders, then systematically measure the time
required to retrieve results from the retrieval pool
using a single utterance. Our analysis encompasses
5,000 samples, with average processing times
reported in Table 6.

The results demonstrate that our Sliding Re-
trieval method introduces only negligible com-
putational overhead compared to the MaxPool
baseline. Specifically, when employing Whisper-
medium, the MaxPool approach averages 0.152
ms per query, while our Sliding Retrieval method
requires merely 0.217 ms, highlighting a minor
difference. Note that retrieval latency is practically
insignificant when considered against the 621.951
ms required by Qwen2-Audio-Instruct for the
translation process. Furthermore, our analysis
reveals that scaling the speech encoder parameters
has minimal impact on system latency, with Sliding
Retrieval averaging 0.195 ms and 0.217 ms for
Whisper-base and Whisper-medium, respectively.

6 Conclusion

In this paper, we explore the critical challenge
of accurately translating terminology in speech
translation. We propose the Locate-and-Focus
method, which effectively minimizes noise and
fully leverages translation knowledge. The method
comprises two core steps: terminology clip lo-

calization and terminology-focused translation.
During the first step, we identify and locate speech
clips containing terminologies. Subsequently,
in the terminology-focused translation step, we
associate the translation knowledge with the
utterance and hypothesis from both audio and
textual modalities, guiding the model to focus
on translation knowledge. Experimental results
demonstrate that our method significantly improves
terminology translation success rates across various
datasets and maintains robust general translation
performance. In future work, we will extend the
use of terminologies to other speech tasks and
investigate robust machine translation that has
been widely studied in conventional NMT research
(Jiang et al., 2022; Miao et al., 2022).

Limitations

In this section, we discuss some of the main
limitations of our work and how future research
may be able to address them.

Reliance on Predefined Terminologies Our
method depends on a predefined set of terminolo-
gies, which might not initially include all potential
terms. This limitation can somewhat constrain
the method’s flexibility. In the future, it will be
essential to explore ways to automatically construct
a comprehensive and high-quality terminology
knowledge base.

Language Coverage Our method has been
tested only on English-to-Chinese and English-
to-German translations. In the future, we plan to
conduct experiments in more languages to further
demonstrate the method’s effectiveness.

Exploration in Other Speech Tasks Our
method currently focuses on translation tasks, but
in the future, it could be applied to other speech
tasks, such as automatic speech recognition.
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CoVoST2 MuST-C MLST

Model Method Hits@l Hits@5 Hits@10 Hits@l Hits@5 Hits@10 Hits@l Hits@5 Hits@10
MaxPool 23.80 38.30 4425 29.30 47.89 54.65 36.73 56.46 65.99
Whisper-base MinPool 24.69 39.28 46.54 32.39 52.39 57.75 39.8 58.16 67.01
P AvgPool 5.94 13.03 18.01 9.86 20.28 25.63 13.61 24.83 30.61
Sliding Retrieval ~ 40.59 62.43 72.13 46.76 69.86 76.33 47.96 75.17 84.36
MaxPool 36.59 49.96 56.56 49.01 60.28 68.45 534 73.13 81.29
Whisper-small MinPool 37.73 51.26 58.03 48.45 62.53 69.85 56.12 73.81 81.63
P AvgPool 6.85 13.77 17.03 16.62 27.89 34.65 14.29 30.27 37.76
Sliding Retrieval ~ 45.31 68.13 78.24 52.96 76.9 85.92 55.68 91.15 94.90
MaxPool 45.07 56.97 62.18 55.12 68.17 74.37 69.05 83.33 87.76
Whisper-medium MinPool 45.80 55.75 61.53 53.80 63.66 70.70 61.56 83.00 87.41
P AvgPool 22.66 34.80 40.91 38.87 54.37 58.87 46.93 63.27 70.75
Sliding Retrieval ~ 61.04 79.22 85.00 64.23 82.54 89.58 71.09 92.86 97.62

Table 7: Performance of the retriever on English-to-Chinese dataset.
CoVoST2 MuST-C MLST

Model Method Hits@1l Hits@5 Hits@10 Hits@1 Hits@5 Hits@10 Hits@1 Hits@5 Hits@10
MaxPool 22.97 35.47 42.52 2542 43.79 52.26 28.78 45.69 55.03
Whisper-base MinPool 23.52 39.19 46.08 32.20 4831 56.78 28.78 4532 52.88
P AvgPool 5.62 11.96 14.81 7.34 18.36 24.29 8.99 16.91 23.02
Sliding Retrieval ~ 41.4 61.28 71.18 48.02 64.69 76.55 49.64 73.74 84.17
MaxPool 35.78 48.14 53.99 4435 57.62 63.27 48.56 61.15 66.18
Whisper-small MinPool 37.45 50.12 55.67 47.17 59.60 66.10 48.20 62.23 69.06
P AvgPool 5.14 11.95 14.80 10.45 18.64 23.44 11.51 19.78 26.25
Sliding Retrieval ~ 44.34 63.34 74.82 52.14 79.94 88.42 53.67 87.05 92.08
MaxPool 46.08 56.85 62.00 56.21 68.64 7231 57.55 7230 76.62
Whisper-medium MinPool 44.41 55.03 60.81 54.52 66.67 71.75 53.96 67.99 74.46
P AvgPool 20.66 34.92 39.67 3531 49.15 55.08 37.77 51.08 58.63
Sliding Retrieval ~ 58.19 76.32 84.40 67.51 87.57 93.79 72.66 89.21 93.88

Table 8: Performance of the retriever on English-to-German dataset.

A Implementation Details

A.1 Retriever Training

In our experiments, we utilize Whisper-medium as
the primary retriever. We incorporate 4 negative
samples per example and conduct training over 3
epochs, with a learning rate set at 1 x 107° and
a batch size of 16. This process is executable on
a single NVIDIA A100 80G GPU and requires
approximately 6 hours to complete.

When extracting a speech clip, we focus on
the hidden state with the highest similarity. In
Whisper, each hidden state represents roughly 0.02
seconds, allowing us to precisely segment the
relevant portion of the speech.

A.2 Speech LLM Training

For fine-tuning the speech LLM, we employ the
SWIFT framework °, using LoRA with a rank of
16, an alpha of 32, and a dropout probability of
0.05. The batch size is set to 96, and the learning
rate is configured at 1e — 4. We target the g_pro 7,

Shttps://github.com/modelscope/
ms—-swift

k_proj, and v_proj modules. This training
procedure is executed on eight NVIDIA A100
80G GPUs and necessitates roughly 16 hours to
complete.

B Supplementary Experimental Results

B.1 Retrieval Performance

In Tables 7 and 8, we provide a detailed presen-
tation of the performance of the Whisper-base,
Whisper-small, and Whisper-medium models when
employing various retrieval methods. It is evident
from the results that the sliding retrieval method
consistently demonstrates outstanding performance
across all models and datasets examined. For
example, in the CoVoST2 dataset, the sliding
retrieval method applied to the Whisper-base model
achieved a Hits@]1 value of 40.59, surpassing the
23.80 with the MaxPool method. This significant
enhancement underscores the superiority of the
sliding retrieval approach. Similar trends were
observed with the MuST-C and MLST datasets.
These findings illustrate that sliding retrieval not
only adeptly accommodates models of varying
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EN — ZH EN — DE
CoVoST2 MuST-C MSLT CoVoST2 MuST-C MSLT
BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Base Model 35.82 82.46 25.73 78.90 31.30 78.02 26.25 80.61 14.33 64.97 18.10 72.93
Translation Training 40.66 83.23 27.02 79.26 31.48 77.99 29.36 82.26 20.45 72.42 19.11 72.52
Oracle Knowledge Setting
SALM 55.97 88.01 32.10 78.83 75.75 43.64 86.47 21.15 72.21 16.16 65.16
Retrieval-and-Demonstration ~ 50.22 86.57 30.18 76.65 31.34 74.93 36.09 84.56 19.46 71.42 15.18 63.93
Locate-and-Focus 58.49 88.78 34.52 79.71 33.76 76.62 45.60 86.93 22.06 72.57 17.30 66.70
End-to-End Setting
SALM 39.82 76.93 27.16 74.08 30.27 72.94 31.16 81.66 15.02 67.17 8.35 5.05
Retrieval-and-Demonstration ~ 41.02 83.57 26.87 74.00 30.54 74.82 32.40 83.05 16.05 70.10 15.48 64.33
Locate-and-Focus 49.30 84.51 31.35 77.29 30.58 75.90 39.66 84.07 21.05 73.76 16.98 65.32

Table 9: Performance comparison of different methods in speech terminology translation, including variants of our
method. We use bold text to indicate the best performance for each metric.

CoVoST2 MuST-C MSLT

TSR BELU TSR BELU TSR BELU

EN — ZH

Top-1 51.67 47.63 58.02 29.90 68.03 32.29
Top-5 65.53 49.30 75.78 31.35 75.51 30.58
Top-10  55.01 47.57 60.56 29.45 59.18 24.24

EN — DE

Top-1 63.89 37.62 69.49 20.90 68.70 16.61
Top-5 77.12 39.66 77.40 21.05 72.66 16.98
Top-10  69.52 38.22 69.77 19.74 64.38 15.31

Table 10: Performance of our method in different
retrieval settings. Top-N represents providing the top
N highest-scoring translation knowledge triplets in our
retrieval setup.

scales but also maintains robust optimization across
datasets from multiple domains.

B.2 Quantity of Translation Knowledge
Provided

Table 10 illustrates our method’s performance
across various translation knowledge retrieval
configurations. The results demonstrate that
selecting the top-5 translation knowledge entries
typically yields the best performance. This
highlights the importance of balancing retrieval
accuracy with the minimization of irrelevant
information.

For instance, in the English-to-Chinese task
on the CoVoST2 dataset, providing the top-5
knowledge entries results in a TSR of 65.53
and a BELU of 49.30, outperforming both the
top-1 and top-10 settings. This suggests that
including more high-relevance translation options

can significantly enhance accuracy and fluency.

However, while the top-10 setting might seem
to offer increased diversity, it often introduces
unnecessary or distracting information, leading

to decreased performance. This is particularly
evident in the English-to-Chinese task for the
MSLT dataset, where TSR and BELU drop to 59.18
and 24.24, respectively.

C Additional Evaluation Metrics

Considering that the BLEU metric is recognized
to have a gap in correlation to human judgment,
we supplement our evaluation with the COMET
translation metric #, with results shown in Table
9. The experimental results demonstrate that our
method still performs well on this metric, and the
trend is consistent with that observed using BLEU.

D Details of Data Collection

D.1 Details of Manual Annotation

We hire three experts proficient in English and
Chinese, and three proficient in English and
German, to help annotate test data. Their work
involves three main tasks. First, they verify
whether the terms extracted by the LLM are
reasonable, ensuring they are meaningful entity
names and correctly translated. Each expert
independently reviews the terms to prevent bias.
Second, they check if the text-to-speech generated
audio includes the terms, ensuring both accurate
pronunciation and naturalness, and discard low-
quality audio. Finally, they verify whether the
audio located by our method contains the ground
truth terminology, discarding any that don’t fully
meet the criteria. Every sample requires agreement

*We use wmt22-comet-da (https://huggingface.
co/Unbabel /wmt22-comet—-da/).
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from three experts before retention, ensuring high
quality and reliability.

D.2 Data Sample

Instruction for Locate-and-Focus: I've pro-
vided a selection of words along with their audio
from a dictionary. You can utilize these words
for the upcoming speech translations. But please
note that some of them may include information
unrelated to the utterance. Bilingual words: Word:
..., Audio: <audio>...</audio>, Translation: ..., ...,
Word: ..., Audio: <audio>...</audio>, Transla-
tion: ... . Translate from English to Chinese:
<audio>common-voice-en.mp3</audio>

Instruction for SALM: I've provided a selection
of words from a dictionary. You can utilize
these words for the upcoming speech translations.
But please note that some of them may include
information unrelated to the utterance. Bilingual
words: Word: ..., Audio: <audio>...</audio>,
Translation: .... Translate from English to Chi-
nese: <audio>common-voice-en.mp3</audio>

Instruction for Retrieve-and-Demostration: 1
have provided a pair of sentences that include
important entities. You can use these entities
for the upcoming speech translations. But
please note that some of them may include
information unrelated to the utterance. Audio:
<audio>...</audio>, Translation: ... . Translate
from English to Chinese: <audio>common-voice-
en.mp3</audio>

Instruction for Terminology Extraction Please
meticulously extract uncommon person and
entity name pairs from the provided source
sentences and their corresponding translations,
organizing them into a list where each pair is
formatted as [term - translated term] per line.
Ensure the output contains no additional text or
explanations. This task requires keen attention to
accurately representing terms, including names,
locations, and specific domain vocabulary, to
ensure that each extracted pair reflects the correct
relationship between the original text and its
translation.

During this process, strictly follow the output
format requirements, maintaining a "A - B"
structure without any extra content, to ensure
clarity and precision. For clarity, consider this
example: when given specific source sentences
and their translations, your task is to extract and
list these uncommon name pairs accurately as
"Terml - Translationl" followed by "Term2 -
Translation2," and so on.

If your analysis does not uncover any name
pairs that are sufficiently distinctive or significant,
return "None" to indicate this outcome.

D.3 Types of Collected Terminology

To better analyze the terminology translation
datasets we collected, we utilized the well-
performing NER model GIliNER-large-v2.1
(Zaratiana et al., 2024)° to examine the types of
terms present in our data. The results are presented
in Table 11 and Table 12. We find some trends by
comparing the data distributions in the two tables.
In the English-to-Chinese and English-to-German
dataset, the “Person” and ‘“Location” categories
have significantly more terms than other categories.
This indicates that terms in these categories hold
high importance and frequently appear in speech
translation tasks. Moreover, compared to other
categories, terms related to “Food”, “Company”,
and “Culture” are less prevalent in both datasets,
possibly because these terms are less common in
typical spoken dialogues.

*https://huggingface.co/urchade/
gliner_large-v2.1
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Category CoVoST2 Must-C~ MSLT Category CoVoST2 MUST-C MSLT
Person 313 191 129 Person 613 205 128
Location 297 41 53 Location 237 32 42
Food 12 2 3 Food 10 1 8
Company 16 10 7 Company 13 9 10
Biology 2 1 0 Biology 1 1 1
Organization 27 11 2 Organization 6 11 2
Health 3 1 0 Health 2 2 1
Culture 22 1 2 Culture 12 2 2
Transport 13 4 0 Transport 5 4 1
Religion 62 7 0 Religion 51 5 4
Fashion 5 0 5 Fashion 5 0 8
Science 2 3 2 Medicine 0 2 0
Geography 9 0 2 Science 1 1 1
Language 26 2 2 Geography 0 0 1
History 18 3 2 Language 14 2 4
Politics 5 0 1 History 11 3 1
Architecture 5 2 0 Architecture 1 4 0
Military 17 4 7 Military 11 1 4
Environment 1 0 1 Environment 0 0 1
Education 29 4 3 Education 14 6 3
Sport 2 0 5 Sport 1 0 1
Book 4 1 0 Law 0 1 0
Physics 0 1 0 Book 1 1 0
Game 0 0 1 Game 1 0 0
Literature 1 0 0 Literature 1 0 0
Art 2 2 0 Art 1 1 0
Music 2 0 1 Music 1 0 2
Entertainment 4 0 2 Entertainment 3 0 0
Award 5 3 1 Award 0 3 0

Table 11: Terminology distribution across various
categories on English-to-Chinese Data.

Table 12: Terminology distribution across various
categories on English-to-German test data.
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