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Abstract

Many-to-many summarization (M2MS) aims
to process documents in any language and
generate the corresponding summaries also in
any language. Recently, large language mod-
els (LLMs) have shown strong multi-lingual
abilities, giving them the potential to perform
M2MS in real applications. This work presents
a systematic empirical study on LLMs’ M2MS
ability. Specifically, we first reorganize M2MS
data based on eight previous domain-specific
datasets. The reorganized data contains 47.8K
samples spanning five domains and six lan-
guages, which could be used to train and eval-
uate LLMs. Then, we benchmark 18 LLMs in
a zero-shot manner and an instruction-tuning
manner. Fine-tuned traditional models (e.g.,
mBART) are also conducted for comparisons.
Our experiments reveal that, zero-shot LLMs
achieve competitive results with fine-tuned tra-
ditional models. After instruct-tuning, open-
source LLMs can significantly improve their
M2MS ability, and outperform zero-shot LLMs
(including GPT-4) in terms of automatic eval-
uations. In addition, we demonstrate this task-
specific improvement does not sacrifice the
LLMs’ general task-solving abilities. However,
as revealed by our human evaluation, LLMs
still face the factuality issue, and the instruc-
tion tuning might intensify the issue. Thus, how
to control factual errors becomes the key when
building LLM summarizers in real applications,
and is worthy to be noted in future research.

1 Introduction

Many-to-Many Summarization (M2MS) is pro-
posed to generate a brief summary in any language
given a document also in any language (c.f., Fig-
ure 1) (Wang et al., 2023c; Bhattacharjee et al.,
2023). This task is extremely challenging since
it requires the ability to summarize and translate
across many languages. Meanwhile, many LLMs
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Figure 1: Illustration of many-to-many summarization.

adopt the multi-lingual setting to share the language
modeling across various languages (Touvron et al.,
2023a; OpenAI, 2023), making it possible to be-
come an advanced M2MS solver in theory. How-
ever, there is still a lack of practice in exploring
LLMs’ M2MS performance.

In this paper, we try to investigate how LLMs can
perform the M2MS task in real applications with
multi-domain scenarios. Considering the limited di-
versity and the single-domain characteristic in each
existing dataset, a single dataset cannot be directly
used to benchmark LLMs in multi-domain scenar-
ios. Thus, we first reorganize and select M2MS
samples from eight existing multi-lingual summa-
rization datasets (Ladhak et al., 2020; Fatima and
Strube, 2021; Perez-Beltrachini and Lapata, 2021;
Wang et al., 2022b; Chen et al., 2023; Bhattachar-
jee et al., 2023; Zheng et al., 2023). These datasets
cover five domains, i.e., news, how-to guides, en-
cyclopedia, dialogue, and technology, allowing the
transformation of shareable knowledge across dif-
ferent domains. During sample selection, we con-
sider the intrinsic quality metrics (coverage, redun-
dancy and coherence), and balance the number of
samples among different languages and domains.
For the testing samples, we also consider data con-
tamination to ensure fair evaluations. After that,
there are 47.8K samples used to train and evaluate
models in our study.
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Then, we benchmark 18 human-aligned LLMs,
including open- and closed-source LLMs. We eval-
uate their zero-shot M2MS ability by prompting
them with task-specific instruction and in-context
examples. In this way, LLMs can leverage their
instruction-following ability to perform M2MS
without any parameter updating. Besides, we fine-
tune two state-of-the-art traditional models (Tang
et al., 2021; Wang et al., 2023c) for comparison.
Our experiments reveal that the zero-shot LLMs
could achieve competitive results with fine-tuned
traditional models, showing the promising task-
solving ability of LLMs. Furthermore, we train the
open-source LLMs to perform M2MS via instruc-
tion tuning. We find that open-source LLMs can
significantly improve their M2MS ability through
instruct-tuning, and outperform the original models
and traditional models by a large margin. Some
tuned LLMs can even outperform zero-shot GPT-4
in terms of automatic metrics. In addition, we
evaluate the original LLMs and the instruction-
tuned LLMs on MMLU (Hendrycks et al., 2021).
The results demonstrate the improvement brought
by instruction-tuning does not sacrifice the LLMs’
general task-solving abilities.

Moreover, as revealed by recent work, halluci-
nation is an obstacle when building LLMs in real
applications (Zhang et al., 2023). We conduct fine-
grained human evaluation to figure out whether the
generated summaries involve factual errors. The
results indicate that open-source LLMs have more
factual errors than zero-shot GPT-4. Besides, the
instruction tuning on LLMs might intensify factual
errors, and make LLMs tend to generate hallucina-
tions. This issue might come from the hallucination
signals of ground truth references in existing sum-
marization datasets (Wang et al., 2022a; Gao et al.,
2023). Therefore, future work should strengthen
the factual consistency when building LLM sum-
marizers in real M2MS applications.

Our main contributions are concluded as follows:
• To our knowledge, we are the first to investigate

how LLMs perform the M2MS task. To this end,
we reorganize and select samples from previous
multi-lingual summarization datasets to construct
a multi-domain M2MS scenario.

• We conduct extensive studies on 18 LLMs. The
evaluation process involves zero-shot prompting
and instruction tuning. Fine-tuned traditional
models are also conducted for comparison.

• In-depth analyses of the M2MS results on auto-
matic evaluation and human evaluation provide a

deeper understanding of the M2MS task-solving
situations in the LLM era.

2 Related Work

2.1 Summarization in Multi-Lingual World.

To adapt text summarization to the multilingual
world, the summarization research field proposes
the following three branch tasks:

(1) Cross-lingual summarization (CLS) aims to
generate a target-language summary for a docu-
ment in a different source language (Wang et al.,
2022c). Early work typically focuses on pipeline
methods (Leuski et al., 2003; Orăsan and Chiorean,
2008). Some recent studies have demonstrated that
such pipeline methods suffer from error propaga-
tion and inference latency, and their performance
is worse than the end-to-end ones (Zhu et al., 2019;
Perez-Beltrachini and Lapata, 2021). Meanwhile,
with the availability of large-scale CLS datasets,
many researchers shift the research attention to end-
to-end CLS, using different techniques to deal with
CLS, i.e., multi-task learning (Cao et al., 2020a;
Bai et al., 2022; Liang et al., 2022a), knowledge
distillation (Duan et al., 2019; Nguyen and Tuan,
2022) and different pre-training strategies (Xu et al.,
2020; Chi et al., 2021; Wang et al., 2022b).

(2) Multi-lingual summarization (MLS) aims to
process documents in multiple languages and gener-
ate their summaries in the corresponding language.
Recently, large-scale MLS datasets (Scialom et al.,
2020; Hasan et al., 2021; Liang et al., 2023) have
been proposed one after another, facilitating fur-
ther research on MLS. MultiSumm (Cao et al.,
2020b) explores various knowledge-sharing strate-
gies to train a MLS model among different lan-
guages. CALMS (Wang et al., 2021) proposes to
train MLS models in the contrastive learning frame-
work to share salient information extractive ability
across different languages. Some studies (Aharoni
et al., 2023; Qiu et al., 2023) aim to enhance the
factual consistency of MLS models.

(3) Many-to-many summarization (M2MS) com-
bines CLS and MLS into a more general setting
that requires the model to summarize documents in
any source language to a target language also in any
language. CrossSum (Bhattacharjee et al., 2023)
studies M2MS in the news domain, and shows
M2MS model consistently outperforms CLS mod-
els, verifying the practicality of M2MS. Wang et al.
(2023c) propose PISCES, a pre-trained M2MS
model based on mBART. Besides, they explore
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the summarization models trained with the settings
of CLS, MLS and M2MS, and demonstrates the
superiority of M2MS that allows task knowledge
sharing across all languages. Different from exist-
ing work which generally uses traditional models,
such as mBART (Liu et al., 2020), we first explore
how well existing LLMs can perform M2MS in the
zero-shot and the instruction-tuning manners.

2.2 Large Language Models.
Recently, there has been growing interest in LLMs
for various NLP tasks (Zhao et al., 2023). A re-
markable progress is the launch of ChatGPT (Ope-
nAI, 2022) and GPT-4 (OpenAI, 2023). LLMs
show their powerful ability that serve as a general-
purpose language task solver. Many powerful
LLMs are proposed one after another to facili-
tate the LLM research, including LLaMa (Touvron
et al., 2023a), LLaMa-2 (Touvron et al., 2023b),
BaiChuan (Yang et al., 2023), Qwen (Bai et al.,
2023; Yang et al., 2024), Vicuna (Chiang et al.,
2023) and InternLM (Team, 2023). These LLMs
generally adopt a three-stage training paradigm
which first uses the next token prediction to learn
the language modeling ability, and then leverages
instruction tuning to enhance the model ability
of following human instructions. Finally, an op-
tional reinforcement learning with human feedback
(RLHF) stage aligns LLMs’ values with humans.

3 Data

Dataset Selection. To ensure the data quality,
the selected multi-lingual summarization datasets
should meet the following requirements: (i) the
datasets should be peer-reviewed and published;
(ii) the datasets should provide cross-lingual align-
ments for their documents and summaries across
different languages to support M2MS.1 After care-
fully comparing existing data, we finally choose
the following eight datasets: (1) CrossSum (Bhat-
tacharjee et al., 2023) is a news-domain dataset
that collects document-summary pairs from the
BBC news website. (2) XWikis (Perez-Beltrachini
and Lapata, 2021) is an encyclopedia-domain
dataset that collects summarization samples from
Wikipedia. (3) XSAMSum (Wang et al., 2022b),
(4) XMediaSum (Wang et al., 2022b) and (5) Di-
alogSumX (Chen et al., 2023) are three dialogue-

1Note that not all datasets provide these alignments, some
datasets only provide monolingual document-summary pairs
in multiple languages, and thus do not support summarizing
documents from a language into other languages.

domain datasets, which are collected by manu-
ally translating the summaries of existing English
dialogue summarization datasets into other lan-
guages. (6) WikiLingua (Ladhak et al., 2020) is
a multi-lingual dataset in the domain of how-to
guides. This dataset is collected from the Wiki-
How website. (7) Perseus (Zheng et al., 2023) is
a technology-domain dataset that collects Chinese
scientific articles with the corresponding Chinese
and English summaries. (8) Spektrum (Fatima and
Strube, 2021) is also a technology-domain dataset.
This dataset collects samples from Spektrum der
Wissenschaf (a German scientific journal).

Considering the involved languages of the cho-
sen datasets, we make the used data support English
(abbr. En), Czech (Cs), German (De), French (Fr),
Chinese (Zh) and Ukrainian (Uk).
Intrinsic Metrics. After determining the datasets
and the languages, we select M2MS samples from
these datasets to use in our empirical study. Since
the samples from a single dataset might be mixed-
quality, we follow Grusky et al. (2018); Bom-
masani and Cardie (2020) and filter out low-quality
samples based on three intrinsic quality metrics,
i.e., coverage, redundancy and coherence. These
metrics are all automatically calculated based on
the text features of document-summary pairs. For
more details of these metrics and the filtering
thresholds, please refer to Appendix A.
Size and Contamination Controlling. To ensure
the data diversity in our empirical study, given a
dataset and a specific source-target language pair,
we decide to randomly select a few hundred sam-
ples from the remaining samples. Following the
success of the instruction tuning in LLaMa-2 (Tou-
vron et al., 2023b) and Vicuna (Chiang et al., 2023),
we control the number of training set to tens of
thousands. During sample selection, we also con-
sider the balance of each language as well as each
domain. We make the selected data contain 19,530,
14,150 and 14,150 samples in the training, vali-
dation and testing sets. As LLMs are pre-trained
on massive data, their downstream performances
might be inflated due to data contamination (Dong
et al., 2024; Golchin and Surdeanu, 2024). To alle-
viate this issue, during the selection of the testing
samples, we follow Golchin and Surdeanu (2024)
to calculate instance-level contamination for each
M2MS sample, and control the proportion of con-
taminated samples is less than 1% in the testing set
(more details are provided in Appendix B).
Data Statistics. As shown in Table 1, the final

11330



Src
Tgt

En Cs De Fr Zh Uk

En 3,900 1,200 3,400 1,350 3,050 1,450
Cs 1,200 1,000 1,200 1,200 1,200 -
De 1,900 1,200 2,000 1,200 1,200 -
Fr 1,400 1,200 1,200 1,050 1,165 700
Zh 2,550 1,200 1,200 1,165 2,550 1,100
Uk 1,000 - - 700 1,000 1,000

Table 1: The number of samples w.r.t different source-
target language pairs. “Src” and “Tgt” denote the source
and the target languages, respectively.

LLM Para. Max Len. Flores

gpt-4o-0816 - 16K 29.1
gpt-4-1106 - 16K 27.7
gpt-3.5-turbo-1106 - 16K 22.0
LLaMa-2-13B-chat 13B 4K 6.2
LLaMa-2-7B-chat 7B 4K 5.2
LLaMa-3-8B-chat 8B 8K 9.4
Vicuna-13B-v1.5 13B 4K 7.2
Vicuna-13B-v1.5-16k 13B 16K 6.8
Vicuna-7B-v1.5 7B 4K 6.1
Vicuna-7B-v1.5-16k 7B 16K 5.9
Baichuan2-13B-Chat 13B 4K 12.6
Baichuan2-7B-Chat 7B 4K 11.0
Qwen-14B-Chat 14B 8K 17.1
Qwen-7B-Chat 7B 8K 13.2
Qwen2.5-14B-Chat 14B 32K 19.2
Qwen2.5-7B-Chat 7B 32K 15.3
Internlm2-chat-20B 20B 32K 16.9
Internlm2-chat-7B 7B 32K 15.2

Table 2: Comparisons among LLMs used in experi-
ments, including their parameters (Para.), maximum
support length (Max Len.), and multi-lingual perfor-
mance on Flores.

data covers most language pairs among the six lan-
guages except for Cs↔Uk and De↔Uk. For more
details, including the number of samples w.r.t each
subset, the data sources w.r.t each language pair,
length distribution and domain distribution, please
refer to Appendix C.

4 Experimental Setup

4.1 Evaluation LLMs

We conduct experiments on the following three
types of backbones, i.e., traditional models, closed-
and open-source LLMs.
Traditional multi-lingual models. (1) mBART-
50 (Tang et al., 2021) is a pre-trained multi-lingual
model with transformer encoder-decoder architec-
ture (Vaswani et al., 2017) and 610M parameters.
(2) PISCES (610M) (Wang et al., 2023c) is an
M2MS pre-trained model that extends mBART-50
by further pre-training.
Closed-source LLMs. (1) GPT-3.5-turbo (Chat-
GPT) (OpenAI, 2022) is created by fine-tuning a
GPT-3.5 series model via reinforcement learning

from human feedback (RLHF). We use gpt-3.5-
turbo-1106 in our experiments. (2) GPT-4 (Ope-
nAI, 2023) is another advanced LLM that exhibits
human-level performance on various benchmark
datasets. We use gpt-4-1106 in our experiments. (3)
GPT-4o (OpenAI, 2024) is an autoregressive omni
model, which accepts multi-modal inputs and can
generate multi-modal outputs. The model shows su-
periority performance in various NLP benchmarks.
We use gpt-4o-2024-08-16 in our experiments.
Open-source LLMs. (1) LLaMa (Touvron et al.,
2023b; Dubey et al., 2024) is a LLM family, which
also shows remarkable performance as a general
task solver. We use LLaMa-2-7B-chat, LLaMa-
2-13B-chat and LLaMa-3-8B-chat in experiments.
(2) Vicuna (Chiang et al., 2023) is created by fine-
tuning LLaMa-series models on user-shared con-
versations collected from ShareGPT. Vicuna also
provides 16k versions to support long text. We use
Vicuna-7B-v1.5, Vicuna-7B-v1.5-16k, Vicuna-13B-
v1.5 and Vicuna-13B-v1.5-16k in experiments. (3)
BaiChuan-2 (Yang et al., 2023) is also trained with
instruction-tuning and RLHF. This model shows its
superior multi-lingual abilities in downstream tasks.
We use Baichuan2-7B-Chat and Baichuan2-13B-
Chat in experiments. (4) Qwen (Bai et al., 2023;
Yang et al., 2024) is a LLM family, which shows
great performance as a general task solver. We
use Qwen-7B-Chat, Qwen-14B-Chat, Qwen2.5-7B-
Chat and Qwen2.5-14B-Chat in experiments. (5)
InternLM (Team, 2023) is a multi-lingual LLM pre-
trained on multi-lingual corpora. We use Internlm2-
chat-7B and Internlm2-chat-20B in experiments.

To provide a deeper understanding of the above
LLMs, Table 2 compares their multi-lingual perfor-
mance on Flores-101 (Goyal et al., 2021), param-
eters and maximum support lengths. To evaluate
LLMs on M2MS, there are two settings should be
considered: (1) In the zero-shot prompting setting,
LLMs directly perform M2MS based on a care-
fully designed prompt with task-specific instruc-
tion and in-context examples (Appenidx D). (2) In
the instruction-tuning setting, the training samples
will be used for tuning open-source LLMs. The
above prompt is also used to formulate the M2MS
sample into an instruction-response format.

4.2 Evaluation Metrics
We adopt ROUGE-1 (R1), ROUGE-2 (R2),
ROUGE-L (RL) (Lin, 2004) and BERTScore
(BS) (Zhang et al., 2020). The ROUGE scores
measure the lexical overlap between the generated
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summaries and the references. BERTScore mea-
sures the similarity between them from a seman-
tics perspective. Besides, following Wang et al.
(2023a); Liu et al. (2024), we prompt GPT-4o to
score the generated summaries in terms of con-
ciseness (Con.), coherence (Coh.), and relevance
(Rel.) on a 5-point scale (more details are given in
Appendix E.1).

4.3 Implementation Details

For all LLMs, including open- and closed-source
LLMs, we use the sampling decoding strategy, and
follow Liu et al. (2023) to set the temperature to
0.1. Besides, the maximum generation length is
set to 400 tokens (the length of more than 97.8%
of summaries in used data is less than 400 tokens).
Since different LLMs have different maximum sup-
port lengths, we truncate the input source-language
document to ensure the input length is within 3600
tokens to ensure fair comparison. Please refer to
Appendix E.2 for more details of utilized model
checkpoints, instruction-tuning LLMs, fine-tuning
traditional models, and training hours.

5 Results and Analyses

Table 3 shows the experimental results in terms of
R1, RL and BS. For the full results including R2,
please refer to Appendix F. We analyze the results
from the following aspects:
Comparing traditional models with LLMs.
When comparing traditional multi-lingual language
models (mBART-50 and PISCES) with zero-shot
LLMs, the fine-tuned traditional models slightly
outperform the best zero-shot LLM (i.e., GPT-4o).
For example, GPT-4o achieves 26.0 R1 and 66.7
BS scores in overall performance, while the coun-
terparts of mBART-50 are 27.4 and 67.8. PISCES
outperforms mBART-50, and achieves 30.8 R1
and 68.6 BS scores. This finding is consistent
with previous exploration of other summarization
tasks (Wang et al., 2023c; Qin et al., 2023). The
fine-tuned models learn the mapping from docu-
ments to summaries based on the whole training
samples. In contrast, zero-shot LLMs only know a
few in-context examples when performing M2MS.
Without parameter updating, zero-shot LLMs could
achieve competitive results with fine-tuned tradi-
tional models, showing their powerful instruction-
following and in-context learning abilities.

Comparing traditional models with instruction-
tuned LLMs, we find that instruction-tuned LLMs

generally outperform the best traditional language
model (i.e., PISCES) by a large margin. For exam-
ple, the instruction-tuned Vicuna-13B-16k outper-
forms PISCES by 7.2 R1, 7.4 RL and 5.5 BS scores.
We analyze this phenomenon from the following
aspects: (1) The LLMs involve more parameters
than the traditional models, thus having a more
powerful ability to fit the tasks-specific data with
small-scale instruction samples. As shown in pre-
vious work (Ladhak et al., 2020; Perez-Beltrachini
and Lapata, 2021; Bhattacharjee et al., 2023), tradi-
tional models need a large number of multi-lingual
summarization samples to learn how to generate
a target-language summaries for the given source-
language documents. Even in a single domain,
traditional models generally need more than 100K
samples during their training stage (Liang et al.,
2022b). However, our study only uses 19.5K train-
ing samples from five domains, resulting in a great
challenge to traditional models. (2) Another im-
portant aspect is the model’s maximum support
length. Many documents in M2MS samples con-
tain more than 2K tokens which is larger than
the maximum support length of traditional mod-
els (c.f., Appendix C). For example, mBART-50
and PISCES only support input text within 1K to-
kens due to the limitation in their vanilla O(n2)
self-attention mechanism (Vaswani et al., 2017).
In contrast, LLMs typically adopt RoPE (Su et al.,
2024) that comes with valuable properties such as
the flexibility of being expanded to any sequence
length, and the capability of equipping the linear
self-attention with relative position encoding. In
this manner, LLMs could support long-document
inputs and are more practical in real-world scenes.

Comparisons among zero-shot LLMs. Among
all zero-shot LLMs, GPT-4o achieves the best re-
sults in overall performance while GPT-4 achieves
the second results in most cases. Compared with
other LLMs, GPT-4o shows its powerful ability
to follow human instructions to perform MSMS
and generally outperforms other LLMs. Among
open-source LLMs, Vicuna-13B-16k works best
and reaches 22.9 R1, 13.9 RL and 66.0 BS scores
in overall performance, verifying the effectiveness
of instruction-tuning LLaMa-series LLMs with
the ShareGPT’s user conversations. Comparing
Vicuna-series LLMs with other open-source LLMs,
we find that though the multi-lingual ability of
Vicuna-series LLMs is less than others (as demon-
strated in Table 2), Vicuna-series LLMs typically
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LLM
Overall News Encyc. Dialogue Guide Tech.

(R1 / RL / BS) (R1 / RL / BS) (R1 / RL / BS) (R1 / RL / BS) (R1 / RL / BS) (R1 / RL / BS)

Setting 1: Zero-Shot LLMs

GPT-4o 26.0 / 16.6 / 66.7 19.8 / 12.9 / 66.8 27.9 / 16.3 / 66.0 29.5 / 22.1 / 70.4 25.1 / 16.1 / 69.0 34.2 / 19.1 / 69.1
GPT-4 25.7 / 16.4 / 66.4 19.5 / 12.5 / 65.9 26.9 / 14.5 / 64.8 28.9 / 21.6 / 70.0 24.0 / 15.5 / 68.4 33.8 / 18.8 / 68.9
GPT-3.5-turbo 25.2 / 16.1 / 66.7 19.3 / 12.4 / 66.5 28.1 / 16.1 / 65.8 24.0 / 18.5 / 66.4 22.4 / 14.6 / 67.9 33.6 / 19.3 / 69.2
LLaMa-2-13B 21.5 / 13.0 / 64.1 17.9 / 11.8 / 65.1 25.5 / 14.6 / 63.8 19.3 / 13.8 / 64.0 18.4 / 11.3 / 64.3 30.7 / 17.2 / 64.5
LLaMa-2-7B 18.2 / 10.8 / 63.3 14.2 / 09.0 / 64.0 22.7 / 12.7 / 62.4 17.4 / 12.7 / 62.6 15.0 / 09.3 / 63.6 23.6 / 13.8 / 62.5
LLaMa-3-8B 19.5 / 12.4 / 63.5 14.9 / 09.5 / 64.6 23.3 / 13.3 / 62.8 18.0 / 13.1 / 62.8 15.7 / 10.0 / 64.2 24.1 / 14.4 / 63.0
Vicuna-13B 22.4 / 13.4 / 65.5 18.5 / 11.8 / 65.1 25.9 / 14.9 / 64.9 22.5 / 16.5 / 65.9 18.8 / 11.9 / 64.8 32.5 / 18.0 / 68.6
Vicuna-13B-16k 22.9 / 13.9 / 66.0 19.0 / 11.9 / 65.3 27.2 / 15.5 / 65.3 22.6 / 17.1 / 66.1 20.3 / 12.9 / 65.9 33.0 / 19.2 / 69.1
Vicuna-7B 22.3 / 13.7 / 65.0 17.8 / 11.6 / 65.5 26.0 / 15.4 / 64.9 22.1 / 16.2 / 67.1 18.5 / 11.3 / 65.3 31.1 / 17.5 / 67.4
Vicuna-7B-16k 22.8 / 14.1 / 65.3 18.3 / 12.0 / 65.8 27.0 / 15.1 / 65.1 21.6 / 16.2 / 66.1 19.2 / 11.7 / 64.5 31.9 / 18.2 / 66.7
Baichuan2-13B 20.5 / 12.8 / 65.0 15.9 / 10.2 / 64.9 24.4 / 13.7 / 64.1 19.8 / 15.3 / 64.9 18.1 / 11.1 / 65.0 30.0 / 16.8 / 66.2
Baichuan2-7B 20.8 / 13.2 / 65.1 16.5 / 10.5 / 65.3 24.6 / 14.1 / 64.2 21.4 / 16.2 / 66.0 17.8 / 11.1 / 64.9 30.1 / 16.1 / 64.8
Qwen-14B 21.6 / 13.0 / 65.2 17.9 / 11.5 / 65.6 25.3 / 14.3 / 64.7 21.8 / 16.3 / 66.5 18.1 / 11.1 / 64.7 32.0 / 17.8 / 64.8
Qwen-7B 21.8 / 13.1 / 64.9 18.3 / 11.5 / 66.0 25.9 / 15.1 / 65.1 21.3 / 15.9 / 66.4 17.8 / 10.9 / 65.2 30.8 / 17.8 / 65.6
Qwen2.5-14B 22.1 / 13.1 / 65.4 18.4 / 11.7 / 65.8 25.8 / 14.8 / 65.2 22.0 / 16.6 / 66.8 18.5 / 11.6 / 64.9 32.6 / 18.1 / 65.2
Qwen2.5-7B 21.9 / 13.3 / 65.1 18.6 / 11.8 / 66.5 26.5 / 15.4 / 65.4 21.9 / 16.1 / 66.6 18.1 / 10.9 / 65.6 30.9 / 18.0 / 65.7
Internlm2-20B 19.2 / 12.0 / 62.9 14.9 / 09.6 / 62.7 24.0 / 13.9 / 63.8 11.6 / 08.8 / 59.1 16.2 / 10.1 / 63.0 30.6 / 17.5 / 66.6
Internlm2-7B 18.5 / 11.6 / 62.2 14.3 / 09.5 / 62.6 23.9 / 13.3 / 63.2 11.6 / 09.1 / 58.4 16.2 / 09.9 / 62.4 29.7 / 17.7 / 64.1

Setting 2: Fine-Tuned Traditional Multi-Lingual Language Models

mBART-50 27.4 / 19.9 / 67.8 27.2 / 20.1 / 67.8 26.6 / 20.1 / 65.3 32.9 / 24.9 / 71.0 25.8 / 19.5 / 68.1 23.2 / 16.7 / 65.4
PISCES 30.8 / 22.8 / 68.6 27.2 / 19.8 / 68.7 28.2 / 20.9 / 66.0 34.1 / 26.8 / 70.9 36.3 / 28.8 / 71.9 24.3 / 17.4 / 65.7

Setting 3: Instruction-Tuned LLMs

LLaMa-2-13B 37.7 / 29.4 / 74.4 37.1 / 27.2 / 74.2 40.2 / 32.2 / 74.2 40.3 / 32.4 / 75.4 33.0 / 26.6 / 73.4 38.2 / 26.2 / 73.4
LLaMa-2-7B 35.5 / 27.0 / 73.0 34.9 / 26.5 / 73.2 37.6 / 29.2 / 73.2 37.9 / 30.8 / 75.0 31.8 / 25.9 / 72.6 37.8 / 25.7 / 72.7
LLaMa-3-8B 36.2 / 27.5 / 73.4 35.4 / 26.9 / 73.4 37.9 / 29.8 / 73.9 38.6 / 31.5 / 75.7 32.5 / 26.4 / 73.2 38.5 / 26.2 / 73.3
Vicuna-13B 37.3 / 28.7 / 73.9 36.3 / 28.0 / 73.6 39.8 / 32.3 / 74.4 40.4 / 32.3 / 75.9 34.2 / 28.1 / 73.5 38.4 / 26.6 / 73.7
Vicuna-13B-16k 38.0 / 30.2 / 74.1 36.9 / 28.6 / 74.7 40.4 / 32.9 / 74.2 41.2 / 33.6 / 75.9 34.5 / 28.5 / 73.9 38.3 / 26.4 / 73.5
Vicuna-7B 35.6 / 28.0 / 73.1 34.5 / 26.2 / 73.8 38.3 / 29.1 / 73.3 38.9 / 32.3 / 75.4 31.2 / 25.7 / 72.9 36.8 / 24.5 / 72.4
Vicuna-7B-16k 36.2 / 28.6 / 73.7 35.5 / 27.7 / 73.4 38.7 / 30.3 / 74.2 38.9 / 31.8 / 75.3 32.3 / 25.9 / 72.2 37.7 / 26.5 / 73.3
Baichuan2-13B 36.1 / 28.0 / 74.4 35.9 / 26.4 / 73.1 38.0 / 29.8 / 73.2 40.7 / 34.1 / 75.9 33.5 / 25.7 / 73.7 39.2 / 25.3 / 73.8
Baichuan2-7B 35.0 / 27.4 / 73.5 35.4 / 26.6 / 73.0 37.3 / 29.4 / 73.3 38.8 / 31.5 / 74.9 31.8 / 23.9 / 72.6 38.1 / 25.9 / 73.7
Qwen-14B 37.1 / 28.4 / 74.2 36.0 / 26.8 / 73.2 38.4 / 30.8 / 73.4 40.2 / 33.4 / 75.5 34.4 / 28.5 / 74.4 39.1 / 26.4 / 74.4
Qwen-7B 34.8 / 26.8 / 73.2 33.5 / 25.0 / 72.5 36.1 / 27.6 / 73.0 38.9 / 31.5 / 75.2 33.1 / 25.7 / 73.2 37.0 / 24.3 / 73.0
Qwen2.5-14B 37.8 / 29.3 / 74.3 36.7 / 28.0 / 74.0 39.4 / 31.6 / 73.9 40.8 / 33.6 / 75.8 34.4 / 28.8 / 74.7 39.4 / 26.6 / 74.8
Qwen2.5-7B 35.2 / 27.3 / 73.7 34.2 / 25.6 / 72.9 36.6 / 28.2 / 73.7 39.5 / 32.3 / 76.0 33.4 / 26.5 / 73.6 37.7 / 24.9 / 73.6
Internlm2-20B 36.7 / 28.2 / 73.7 35.0 / 25.6 / 73.0 38.0 / 29.0 / 72.8 41.1 / 34.2 / 76.2 34.5 / 27.9 / 74.3 39.3 / 25.7 / 73.4
Internlm2-7B 35.7 / 27.2 / 73.5 34.1 / 25.6 / 72.6 36.2 / 28.4 / 72.8 40.7 / 33.5 / 75.9 33.3 / 27.0 / 73.3 37.8 / 25.6 / 73.0

Table 3: Experimental results of the overall performance and fine-grained results in each domain. The bold denotes
the best performance under each setting. Encyc.: Encyclopedia; Tech.: Technology.

outperform others in M2MS, showing its superior
instruction-following and in-context learning abili-
ties distilled from ShareGPT. In addition, we also
find that Vicuna-13B-16k and Vicuna-7B-16k out-
perform Vicuna-13B and Vicuna-7B, respectively.
Though the input length is truncated to 4K tokens
for all LLMs, the Vicuna-16k models scale the
support length from 4K to 16K and achieve better
behaviors when processing long documents.

Comparisons among instruction-tuned LLMs.
Vicuna-13B-16k also performs best among all
instruction-tuned LLMs, and achieves 38.0 R1,
30.2 RL and 74.1 BS scores in overall performance.
Qwen2.5-14B and LLaMa-2-13B achieve promis-
ing results following closely behind Vicuna-13B-

16k. Besides, all instruction-tuned LLMs signifi-
cantly outperform the fine-tuned traditional mod-
els as well as zero-shot LLMs by a large margin.
This finding demonstrates that LLMs can improve
their task-specific ability via instruction-tuning on
small-scale task data. In addition to domain-wise
performance, we also show the instruction-tuned
LLM performance when using a specific source or
target language during evaluation. The results are
provided in Figure 2. Different LLMs might be
good at different languages. For example, Vicuna-
13B-16k performs best when processing English
and Czech documents, while Qwen-14b performs
best in German and Chinese documents. As for
target languages, the LLaMa and Vicuna LLMs
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Figure 2: Language-wise performance of tuned LLMs.

are good at generating English, Czech, French and
Ukrainian summaries. Baichuan2-13B, Qwen-14B
and Internlm-20B do well in generating Chinese
summaries.

LLM evaluation results. Table 4 shows the
evaluation results using GPT-4o evaluation. The
instruction-tuned LLMs significantly outperform
traditional models in all metrics. For zero-shot
LLMs, they tend to generate relatively lengthy
summaries compared to traditional models or fine-
tuned LLMs, resulting in low conciseness. This is
because the alignment phase in LLMs emphasizes
the usefulness of the models, making them provide
detailed information. After tuning, LLMs can study
to generate short summaries, and significantly im-
prove their conciseness scores. In terms of coher-
ence and relevance, instruction-tuning also brings
improvements to LLMs. Moreover, we find that
some tuned LLMs (e.g., LLaMa-2-7B and Vicuna-
7B) achieve lower coherence and relevance than
zero-shot GPT-4, though they outperform GPT-4
in terms of ROUGE scores and BERTScore.

The effects of training scales. In our main experi-
ments, we use 19.5K training samples to fine-tune
LLMs and traditional models. We further discuss
the effects of the training scales on model perfor-
mance, please refer to Appendix G.

Zero-shot Results Ins-tuned Results
Con. Coh. Rel. Con. Coh. Rel.

GPT-4o 3.30 4.66 4.83
GPT-4 3.27 4.63 4.75 mBART-50 3.82 3.42 4.02
GPT-3.5-turbo 3.04 4.56 4.69 PISCES 3.95 3.58 4.15
LLaMa-2-13B 3.20 4.34 4.50 LLaMa-2-13B 4.59 4.70 4.72
LLaMa-2-7B 3.28 4.29 4.39 LLaMa-2-7B 4.42 4.57 4.65
LLaMa-3-8B 3.32 4.31 4.48 LLaMa-3-8B 4.50 4.59 4.68
Vicuna-13B 3.15 4.35 4.51 Vicuna-13B 4.70 4.68 4.70
Vicuna-13B-16k 3.10 4.39 4.52 Vicuna-13B-16k 4.63 4.71 4.66
Vicuna-7B 3.06 4.27 4.45 Vicuna-7B 4.47 4.55 4.62
Vicuna-7B-16k 3.10 4.30 4.37 Vicuna-7B-16k 4.53 4.58 4.60
Baichuan2-13B 3.37 4.34 4.46 Baichuan2-13B 4.51 4.65 4.69
Baichuan2-7B 3.19 4.25 4.29 Baichuan2-7B 4.40 4.51 4.53
Qwen-14B 3.25 4.32 4.40 Qwen-14B 4.55 4.64 4.60
Qwen-7B 3.30 4.23 4.33 Qwen-7B 4.39 4.51 4.45
Qwen2.5-14B 3.32 4.37 4.48 Qwen2.5-14B 4.63 4.69 4.65
Qwen2.5-7B 3.27 4.29 4.32 Qwen2.5-7B 4.42 4.56 4.50
Internlm2-20B 3.17 4.29 4.37 Internlm2-20B 4.51 4.60 4.67
Internlm2-7B 3.04 4.18 4.28 Internlm2-7B 4.25 4.47 4.52

Table 4: Overall performance in terms of GPT-4o evalu-
ation (Ins-tuned: Instruction-tuned).

Model Rate Model Rate

LLaMa-2-13B 91.1† / 98.7‡ Baichuan2-13B 98.7† / 99.4‡

LLaMa-2-7B 81.6† / 98.7‡ Baichuan2-7B 94.8† / 99.4‡

LLaMa-3-8B 96.6† / 98.8‡ Qwen-14B 98.7† / 99.3‡

Vicuna-13B 96.6† / 98.6‡ Qwen-7B 98.7† / 99.1‡

Vicuna-13B-16k 98.7† / 98.8‡ Qwen2.5-14B 99.2† / 99.4‡

Vicuna-7B 94.5† / 99.2‡ Qwen2.5-7B 98.5† / 99.1‡

Vicuna-7B-16k 97.5† / 98.7‡ Internlm2-20B 97.0† / 98.7‡

Internlm2-7B 97.2† / 98.5‡

Table 5: Correct language rate (%) of the summaries
(† and ‡ denote the results of zero-shot and instruction-
tuned LLMs, respectively).

6 Discussion

Are generated summaries in the correct lan-
guage? As reported by Wang et al. (2023c), using
traditional models as multi-lingual summarizers
might generate in the wrong languages instead of
the given target language. We wonder whether
LLM-generated summaries are in the correct lan-
guage. To this end, we use fastlangid2 to detect
the generated summaries, and calculate the rate of
the generated summaries in the correct language,
named correct language rate (CR). As shown in
Table 5, we find that most zero-shot LLMs could
follow the language requirements in the prompt
and generate summaries in the right target language
with ≥ 95 CR score. This is because the LLMs are
trained with multi-lingual corpora that include a
large number of parallel sentences across differ-
ent languages, making the model already learn the
multi-lingual skills. After tuning, LLMs generally
improve their CR scores. Thus, using LLMs to
serve as the backbones of the M2MS systems has
great potential in real-world applications.

2https://pypi.org/project/fastlangid/

11334

https://pypi.org/project/fastlangid/


LLM Before After LLM Before After

LLaMa-2-13B 53.5 54.3 Baichuan2-13B 54.5 54.1
LLaMa-2-7B 47.2 47.3 Baichuan2-7B 52.9 52.0
Vicuna-13B 55.5 55.8 Qwen-14B 66.0 65.9
Vicuna-13B-16k 54.3 54.5 Qwen-7B 56.2 57.0
Vicuna-7B 49.8 49.6 Internlm2-20B 65.0 64.6
Vicuna-7B-16k 48.0 48.4 Internlm2-7B 59.1 58.9

Table 6: The LLMs’ performance on MMLU. “Before”
and “After” denote the results of LLMs before and after
the M2MS instruction tuning, respectively.

Does the instruction tuning on M2MS influ-
ence LLMs’ general ability? As shown in Sec-
tion 5, LLMs can improve their M2MS ability by
instruction-tuning on the collected training sam-
ples. An important question arises naturally, i.e.,
does this task-specific improvement sacrifice the
general task-solving ability of LLMs? To figure out
this question, we further evaluate the LLMs before
and after M2MS instruction tuning on the MMLU
evaluation dataset (Hendrycks et al., 2021). The
MMLU dataset covers 57 tasks including elemen-
tary mathematics, US history, computer science,
law, etc, and is designed to evaluate models’ world
knowledge and problem-solving ability. We fol-
low previous LLM work (Touvron et al., 2023b;
Yang et al., 2023; Bai et al., 2023), and adopt the
5-shot evaluation strategy. The experimental re-
sults are provided in Table 6. As we can see,
the M2MS instruction tuning on LLMs does not
sacrifice their general task-solving ability. Some
instruction-tuned LLMs (i.e., LLaMa-2-13B and
Qwen-7B) even outperform their original models.
Can large model generate factually consistent
summaries? As revealed by Maynez et al. (2020);
Gao et al. (2023), the model-generated summaries
might be inconsistent with the source documents.
We want to know if LLMs can generate factually
consistent summaries. To this end, we randomly
select 100 samples from the testing set and conduct
fine-grained human evaluation on the summaries
generated by GPT-4, zero-shot & tuned LLaMa-
2-13B, and zero-shot & tuned Vicuna-13B-16k.
Following Gao et al. (2023), for each sample, we
employ human evaluators to annotate the following
four types of factual errors (if has): (1) hallucina-
tion error: a generated summary contains events
not directly inferable from the given document. (2)
particulars error: the summary contains the right
events but some details are inaccurate or mistaken.
(3) predicate error: the predicate in the summary is
contradictory to the source document. (4) entity er-
ror: the entity of an event in the summary is wrong.

Hallu. Parti. Predi. Entity

GPT-4 8 3 5 3
Zero-shot LLaMa-2-13B 17 13 9 12
Tuned LLaMa-2-13B 23 18 7 9
Zero-shot Vicuna-13B-16k 12 8 8 10
Tuned Vicuna-13B-16k 17 16 10 6

Table 7: Fine-grained human evaluation results on fac-
tuality (Hallu.: hallucination; Parti.: particulars; Predi.:
predicate).

More details about human evaluation are given in
Appendix H. Table 7 reports the proportion of each
error. The summaries generated by GPT-4 have
the lowest error proportion in terms of all errors.
Besides, among all types of factual errors, the hal-
lucination error occurs more frequently, indicating
it is a non-trivial issue when adapting LLMs as the
summarizers. Another finding is that instruction
tuning on LLMs might intensify their factual issue
especially the hallucination and the particulars er-
rors. We conjecture this because the summaries in
the training samples are written by humans, thus
they might involve more information (like back-
ground information) beyond the given documents.
Such an information gap might encourage LLMs to
generate hallucinations during tuning. As reported
by previous studies (Wang et al., 2022a; Gao et al.,
2023), the ground truth references in summariza-
tion data also have the hallucination error. There-
fore, when building LLM M2MS summarizers in
the real applications, this error should be carefully
considered during instruction tuning.

7 Conclusion

In this paper, we explore how well off-the-shelf
LLMs can deal with the many-to-many summariza-
tion (M2MS) task. Considering the limited diver-
sity and the single domain characteristics in each
single dataset, we reorganize M2MS data based on
eight existing multi-lingual summarization datasets,
and the used data covers five domains and six lan-
guages. Based on it, we conduct extensive experi-
ments on various open- and closed-source LLMs.
Our results indicate that the zero-shot LLMs could
achieve competitive results with fine-tuned tradi-
tional models. Furthermore, through instruction
tuning, open-source LLMs can significantly im-
prove their M2MS ability, and not sacrifice their
general capabilities. However, as shown in our hu-
man evaluation, LLMs still face the factuality issue,
and the instruction tuning might intensify this issue,
which is worth noting in future research.
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Limitations

While we evaluate the performance of LLMs on the
many-to-many summarization task, there are some
limitations worth noting: (1) We only evaluate the
lower threshold of these models’ M2MS perfor-
mance. Prompts are important to guide LLMs to
perform specific tasks, and future work could ex-
plore better prompts to obtain better results. (2) The
used data in our empirical study only involves data
from existing multi-lingual summarization datasets.
Future work could extend it with more domains in
the real scenes.

Ethical Considerations

In this paper, we use multiple LLMs (e.g., GPT-
4o, GPT-4, GPT-3.5-turbo and LLaMa-2) and tra-
ditional language models (e.g., mBART) as the
M2MS models in experiments. During instruction
tuning and fine-tuning, the adopted M2MS samples
mainly come from previous datasets, i.e., Cross-
Sum (Bhattacharjee et al., 2023), XWikis (Perez-
Beltrachini and Lapata, 2021), XSAMSum (Wang
et al., 2022b), XMediaSum (Wang et al., 2022b),
DialogSumX (Chen et al., 2023), WikiLingua (Lad-
hak et al., 2020), Perseus (Zheng et al., 2023) and
Spektrum (Fatima and Strube, 2021). Therefore,
the trained models might involve the same biases
and toxic behaviors exhibited by these datasets.
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A Details of Intrinsic Metrics

Following Grusky et al. (2018); Bommasani and
Cardie (2020), we filter out low-quality summariza-
tion samples based on the following three intrinsic
quality metrics:
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(1) Coverage evaluates the percentage of words
in a summary that are part of an extractive fragment
from the document (Grusky et al., 2018):

Coverage(D,S) =
1

|S|
∑

u∈F (D,S)

|u| (1)

where D and S denote a document and the corre-
sponding summary, respectively. F (D,S) is the
set of all extractive fragments that appear in both
D and S. A smaller number of coverage indicates
the summary is more abstractive.

(2) Redundancy measures whether sentences in
a summary are similar to each other (Bommasani
and Cardie, 2020). Assuming a summary S has
m sentences S = {s1, s2, ..., sm}, redundancy is
formally calculated as follows:

Redundancy(S) =
1(
m
2

)
∑

1≤i≤m−1

∑

i+1≤j≤m

RL(mi,mj)

(2)

where RL(·) denotes the ROUGE-L score (Lin,
2004). Generally, the lower the redundancy, the
higher the sample quality.

(3) Coherence measures the semantic coherence
of a summary S = {s1, ..., sm} by predicting the
probability of each successive sentence conditioned
on the previous one using a language model (Bom-
masani and Cardie, 2020):

Coherence(S) =
1

m− 1

m∑

i=2

Pθ(si|si−1) (3)

where Pθ denotes the predicted probability of a
language model. Here, we adopt mBERT (Devlin
et al., 2019) as Pθ. Generally, a high coherence
score indicates the high quality of the sample.

For each intrinsic metric, we set a threshold to
filter low-quality samples. Specifically, inspired
by Bommasani and Cardie (2020), for each sample,
its coverage should be less than αcov = 0.9, the
redundancy should be less than αred = 0.2, and
the coherence needs to be more than αcoh = 0.9.
Otherwise, the sample will be filtered out.

B Data Contamination

Data contamination is a potential major issue in
measuring LLMs’ performance on downstream
tasks, where the testing data might be in the per-
taining corpora of LLMs (Xu et al., 2024). Golchin
and Surdeanu (2024) propose an effective method
using BLEURT & ROUGE-L metrics to measure
instance-level contamination, i.e., identifying if an
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Figure 3: Length distributions of M2MS samples w.r.t
different domains.

instance (usually a sentence or document) is con-
taminated for a given LLM. The method can be
used in both open-source and closed-source LLMs.

When selecting the testing samples in our em-
pirical study, after filtering samples via intrinsic
metrics (Appendix A), we calculate the instance-
level contamination for each sample w.r.t GPT-
4o, Vicuna-7B, Baichuan2-7B, Qwen2.5-7B-Chat,
LLaMa-3-8B-chat and Internlm2-7B.3 The uncon-
taminated samples will be randomly selected to
form the testing set. Some directions in the domain-
specific datasets might contain only a few hun-
dred samples (e.g., CrossSum only contains about
300 Fr⇒Zh samples), thus we cannot ensure data
contamination and testing scale simultaneously in
these directions. Therefore, an extremely small
number of samples labeled as “contaminated” will
also be included in our testing set, and they account
for less than 1% of the whole testing set.

C Data Statistics

Language and Source Distribution. For a specific
language pair, the number of samples in each sub-
set (training, validation, and testing sets) and the
corresponding data sources are provided in Table 8.

Length and Domain Distributions. To calculate
the length of documents and summaries across
different languages, we use tiktoken4 to tokenize
the documents and summaries, and calculate their
token-level length. As shown in Table 9, the aver-
age length of source documents typically reaches
thousands of tokens, while the counterpart of target
summaries is within 200 tokens. From the perspec-
tive of domains, Table 10 shows the average length

3For the same series of LLMs, we select one to measure
the contamination.

4https://github.com/openai/tiktoken
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Src
Tgt

En Cs De Fr Zh Uk

En
1400 / 1250 / 1250 500 / 350 / 350 1300 / 1050 / 1050 500 / 425 / 425 1150 / 950 / 950 700 / 375 / 375

(CR, XW, XS, XM, DI, WI, SP) (XW, WI) (XW, XS, XM, WI, SP) (CR, XW, DI, WI) (CR, XW, XS, XM, DI, WI) (CR, DI)

Cs
500 / 350 / 350 300 / 350 / 350 500 / 350 / 350 500 / 350 / 350 500 / 350 / 350

-
(XW, WI) (XW, WI) (XW, WI) (XW, WI) (XW, WI)

De
800 / 550 / 550 500 / 350 / 350 900 / 550 / 550 500 / 350 / 350 500 / 350 / 350

-
(XW, WI, SP) (XW, WI) (XW, WI, SP) (XW, WI) (XW, WI)

Fr
650 / 375 / 375 500 / 350 / 350 500 / 350 / 350 300 / 375 / 375 565 / 300 / 300 500 / 100 / 100
(CR, XW, WI) (XW, WI) (XW, WI) (CR, XW, WI) (CR, XW, WI) (CR)

Zh
900 / 825 / 825 500 / 350 / 350 500 / 350 / 350 565 / 300 / 300 900 / 825 / 825 500 / 300 / 300

(CR, XW, WI, PE) (XW, WI) (XW, WI) (CR, XW, WI) (CR, XW, WI, PE) (CR)

Uk
400 / 300 / 300

- -
400 / 150 / 150 400 / 300 / 300 400 / 300 / 300

(CR) (CR) (CR) (CR)

Table 8: The number of training/validation/testing samples and the data sources w.r.t different source-target language
pairs. “Src” and “Tgt” denote the source and the target languages, respectively. (CR: CrossSum; XW: XWikis; XS:
XSAMSum; XM: XMediaSum; DI: DialogSumX; WI: WikiLingua; PE: Perseus; SP: Spektrum)

En→X CS→X De→X Fr→X Zh→X Uk→X

Training
Doc. 869.05 2418.82 2111.35 1385.84 2534.56 1693.38
Sum. 65.64 124.67 196.98 84.11 150.68 57.97

Validation
Doc. 897.45 2364.50 2087.41 1345.95 2164.52 1477.90
Sum. 62.34 130.32 177.85 88.44 141.26 57.21

Testing
Doc. 791.15 2361.89 2074.92 1280.33 2269.90 1346.57
Sum. 52.32 125.68 198.89 86.41 134.35 52.02

X→En X→Cs X→De X→Fr X→Zh X→Uk

Training
Doc. 2105.74 2204.62 2080.01 1627.83 2102.88 1050.10
Sum. 115.40 159.83 141.19 58.17 140.67 89.05

Validation
Doc. 1731.99 2121.00 2307.03 1209.37 1821.54 982.90
Sum. 98.52 167.79 124.08 57.89 129.91 89.89

Testing
Doc. 1769.09 1807.71 2092.57 1502.02 1883.59 799.59
Sum. 96.41 163.11 142.47 59.25 119.95 79.27

Table 9: The token-level average length of documents
(Doc.) and summaries (Sum.) in the data w.r.t different
source and target languages. En→X/X→En indicates
all samples whose documents/summaries are in English.

of documents as well as summaries w.r.t different
domains. As we can see, the average document
length in the encyclopedia and technology domains
is generally more than that in other domains. The
average length of dialogue and guide documents
is less than 800 tokens, making them the shortest
document length among all domains. To provide a
deeper understanding of the used data in our empir-
ical study, Figure 3 shows the length distributions
of different domains.

D M2MS Prompt

Inspired by previous LLM summarization stud-
ies (Wang et al., 2023b; Tang et al., 2023) and
the in-context learning technique (Dong et al.,
2022; Min et al., 2022), we attempt various
M2MS prompts on GPT-3.5-turbo and GPT-4, and
choose the prompt with the best results (using
both automatic and human evaluation) on a pi-
lot experiment. Specifically, as shown in Fig-
ure 4, the final chosen prompt is designed with

News Encyc. Dialogue Guide Tech.

Training
Num. 4680 4650 2550 4650 3000
Doc. 1350.21 2020.66 733.24 772.6 2857.5
Sum. 63.36 121.46 42.04 69.96 235.14

Validation
Num. 2300 3425 2600 3425 2400
Doc. 1101.92 1936.80 728.72 767.20 2687.42
Sum. 57.18 122.57 40.32 67.10 221.87

Testing
Num. 2300 3425 2600 3425 2400
Doc. 1055.44 1994.10 749.52 732.96 2882.51
Sum. 54.72 123.86 36.18 68.36 245.10

Table 10: The token-level average length of documents
(Doc.) and summaries (Sum.) in the data w.r.t different
domains. “Num.” indicates the number of samples in
each domain. Encyc.: Encyclopedia; Tech.: Technology

task descriptions, domain information and a few
output examples. [source language] and
[target language] are selected from “En-
glish”, “Czech”, “German”, “French”, “Chinese”
and “Ukrainian”. When the source and the tar-
get languages are the same, the content in paren-
theses will be omitted. [domain] indicates
the domain of the input document, which is se-
lected from “news”, “encyclopedia”, “dialogue”,
“how-to guides” and “technology”. [example
summary i] (i ∈ {1, 2, 3}) denotes a ground
truth summary randomly selected from the train-
ing samples. [document] represents the current
input document that needs to generate the corre-
sponding summary.
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System: You are a professional literary worker and proficient in [source language] 

(and [target language]). You are good at summarizing [source language] [domain] 

documents into [target language] summaries.

The following example summaries are written by you previously, and have received 

compliments:

Summary 1: [example summary 1]

Summary 2: [example summary 2]

Summary 3: [example summary 3]

Your task is to continue to summarize the [source language] [domain] documents into 

[target language] summaries. The newly generated summaries should have a similar 

style to your previously written summaries.

User: The [source language] document is provided as follows:

[document]

Please generate its [target language] summary.

Figure 4: Illustration of the used M2MS prompt that
includes a system round and a user round.

E Implementation Details

E.1 Implementation Details of Evaluation
Metrics

To calculate the ROUGE scores in the multi-lingual
setting, we use the multi-lingual rouge5 toolkit. For
BERTScore, we use the bert-score6 toolkit, and set
the backbone to bert-base-multilingual-cased.

During evaluation via GPT-4o, the used prompt
is “I will provide you with a summary of a docu-
ment. Please rate the summary on a scale of one
to five in terms of conciseness, coherence, and rele-
vance.”. We use gpt-4o-2024-0816 as the evaluator.
Since the testing set in our study contains more
than 14K samples, it is a high cost to evaluate all
model-generated summaries via GPT-4o. Thus, we
randomly select 500 samples to conduct the LLM
evaluation.

E.2 Implementation Details of LLMs
Instruction-Tuning Details. All LLMs are tuned
on 8×NVIDIA A800 GPUs (80G) with 1e-5 learn-
ing rate and 32 (8×4 gradient accumulation) batch
size. We follow the success of instruction tuning
in LLaMa-2 (Touvron et al., 2023b), and set the
training epochs to 2. We use the DeepSpeed op-
timization library7, and set ZeRO-2 optimization.
For Internlm2-chat-20B, we also offload the opti-
mizer into the CPU to avoid CUDA out-of-memory
error. Flash attention (v2) (Dao et al., 2022) is also
employed to save memory. During tuning, docu-
ments are also truncated to ensure the input length
is within 3,600 tokens to ensure fairness. For the

5https://github.com/csebuetnlp/xl-sum/
tree/master/multilingual_rouge_scoring

6https://github.com/Tiiiger/bert_score
7https://github.com/microsoft/

DeepSpeed

instruction-tuned LLMs, we use the same decoding
strategy as the zero-shot ones.
Model Checkpoints. (1) For traditional mul-
tilingual language models, we use mBART-50
(610M)8 (Tang et al., 2021) and PISCES
(610M)9 (Wang et al., 2023c). (2) For open-source
LLMs, we use LLaMa-2-7B-chat10, LLaMa-2-13B-
chat11, LLaMa-3-8B-chat12, Vicuna-7B-v1.513,
Vicuna-7B-v1.5-16k14, Vicuna-13B-v1.515, Vicuna-
13B-v1.5-16k16, Baichuan2-7B-Chat17, Baichuan2-
13B-Chat18 Qwen-7B-Chat19, Qwen-14B-Chat20,
Qwen2.5-7B-Chat21, Qwen2.5-14B-Chat22,
Internlm2-chat-7B23 and Internlm2-chat-20B24 in
experiments. All model checkpoints are available
at the Huggingface community.
Fine-Tuning Details. To fine-tune traditional
multi-lingual language models, i.e., mBART-50
and PISCES, we follow Wang et al. (2023c) and
set the learning rate to 3e-5, batch size to 8×8,
and epochs to 10. Experiments are conducted on
8×NVIDIA A800 GPUs (80G). Different from
LLMs, the source-language documents are directly
input into these models without any prompts. Fol-
lowing previous work (Wang et al., 2023c; Bhat-
tacharjee et al., 2023), a language tag is appended

8https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

9https://huggingface.co/Krystalan/
PISCES

10https://huggingface.co/meta-llama/
LLaMa-2-7B-chat-hf

11https://huggingface.co/meta-llama/
LLaMa-2-13B-chat-hf

12https://huggingface.co/meta-llama/
Llama-3.1-8B-Instruct

13https://huggingface.co/lmsys/
Vicuna-7B-v1.5

14https://huggingface.co/lmsys/
Vicuna-7B-v1.5-16k

15https://huggingface.co/lmsys/
Vicuna-13B-v1.5

16https://huggingface.co/lmsys/
Vicuna-13B-v1.5-16k

17https://huggingface.co/baichuan-inc/
Baichuan2-7B-Chat

18https://huggingface.co/baichuan-inc/
Baichuan2-13B-Chat

19https://huggingface.co/Qwen/
Qwen-7B-Chat

20https://huggingface.co/Qwen/
Qwen-14B-Chat

21https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

22https://huggingface.co/Qwen/Qwen2.
5-14B-Instruct

23https://huggingface.co/internlm/
Internlm2-chat-7B

24https://huggingface.co/internlm/
Internlm2-chat-20B
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LLM
Overall News Encyc. Dialogue Guide Tech.

(R1 / R2 / RL / BS) (R1 / R2 / RL / BS) (R1 / R2 / RL / BS) (R1 / R2 / RL / BS) (R1 / R2 / RL / BS) (R1 / R2 / RL / BS)

Setting 1: Zero-Shot LLMs

GPT-4o 26.0 / 12.3 / 16.6 / 66.7 19.8 / 09.1 / 12.9 / 66.8 27.9 / 12.5 / 16.3 / 66.0 29.5 / 17.3 / 22.1 / 70.4 25.1 / 11.3 / 16.1 / 69.0 34.2 / 16.3 / 19.1 / 69.1
GPT-4 25.7 / 12.1 / 16.4 / 66.4 19.5 / 08.8 / 12.5 / 65.9 26.9 / 11.2 / 14.5 / 64.8 28.9 / 17.0 / 21.6 / 70.0 24.0 / 10.7 / 15.5 / 68.4 33.8 / 16.1 / 18.8 / 68.9
GPT-3.5-turbo 25.2 / 11.3 / 16.1 / 66.7 19.3 / 08.8 / 12.4 / 66.5 28.1 / 12.2 / 16.1 / 65.8 24.0 / 13.5 / 18.5 / 66.4 22.4 / 09.4 / 14.6 / 67.9 33.6 / 14.9 / 19.3 / 69.2
LLaMa-2-13B 21.5 / 09.2 / 13.0 / 64.1 17.9 / 08.0 / 11.8 / 65.1 25.5 / 10.8 / 14.6 / 63.8 19.3 / 09.2 / 13.8 / 64.0 18.4 / 06.3 / 11.3 / 64.3 30.7 / 12.6 / 17.2 / 64.5
LLaMa-2-7B 18.2 / 06.9 / 10.8 / 63.3 14.2 / 05.6 / 09.0 / 64.0 22.7 / 08.3 / 12.7 / 62.4 17.4 / 07.4 / 12.7 / 62.6 15.0 / 04.9 / 09.3 / 63.6 23.6 / 08.2 / 13.8 / 62.5
LLaMa-3-8B 19.5 / 07.9 / 12.4 / 63.5 14.9 / 05.8 / 09.5 / 64.6 23.3 / 08.6 / 13.3 / 62.8 18.0 / 07.7 / 13.1 / 62.8 15.7 / 05.2 / 10.0 / 64.2 24.1 / 08.5 / 14.4 / 63.0
Vicuna-13B 22.4 / 08.9 / 13.4 / 65.5 18.5 / 08.4 / 11.8 / 65.1 25.9 / 10.6 / 14.9 / 64.9 22.5 / 11.1 / 16.5 / 65.9 18.8 / 07.0 / 11.9 / 64.8 32.5 / 13.7 / 18.0 / 68.6
Vicuna-13B-16k 22.9 / 09.7 / 13.9 / 66.0 19.0 / 08.2 / 11.9 / 65.3 27.2 / 11.0 / 15.5 / 65.3 22.6 / 11.5 / 17.1 / 66.1 20.3 / 08.0 / 12.9 / 65.9 33.0 / 14.7 / 19.2 / 69.1
Vicuna-7B 22.3 / 09.1 / 13.7 / 65.0 17.8 / 07.6 / 11.6 / 65.5 26.0 / 10.4 / 15.4 / 64.9 22.1 / 10.7 / 16.2 / 67.1 18.5 / 06.9 / 11.3 / 65.3 31.1 / 12.8 / 17.5 / 67.4
Vicuna-7B-16k 22.8 / 09.4 / 14.1 / 65.3 18.3 / 08.1 / 12.0 / 65.8 27.0 / 11.2 / 15.1 / 65.1 21.6 / 10.0 / 16.2 / 66.1 19.2 / 06.7 / 11.7 / 64.5 31.9 / 13.1 / 18.2 / 66.7
Baichuan2-13B 20.5 / 08.6 / 12.8 / 65.0 15.9 / 06.8 / 10.2 / 64.9 24.4 / 09.6 / 13.7 / 64.1 19.8 / 09.9 / 15.3 / 64.9 18.1 / 06.2 / 11.1 / 65.0 30.0 / 12.3 / 16.8 / 66.2
Baichuan2-7B 20.8 / 08.4 / 13.2 / 65.1 16.5 / 06.8 / 10.5 / 65.3 24.6 / 09.5 / 14.1 / 64.2 21.4 / 10.2 / 16.2 / 66.0 17.8 / 06.3 / 11.1 / 64.9 30.1 / 12.5 / 16.1 / 64.8
Qwen-14B 21.6 / 09.6 / 13.0 / 65.2 17.9 / 08.2 / 11.5 / 65.6 25.3 / 10.8 / 14.3 / 64.7 21.8 / 10.9 / 16.3 / 66.5 18.1 / 07.2 / 11.1 / 64.7 32.0 / 13.5 / 17.8 / 64.8
Qwen-7B 21.8 / 08.5 / 13.1 / 64.9 18.3 / 08.0 / 11.5 / 66.0 25.9 / 10.7 / 15.1 / 65.1 21.3 / 10.6 / 15.9 / 66.4 17.8 / 06.6 / 10.9 / 65.2 30.8 / 12.9 / 17.8 / 65.6
Qwen2.5-14B 22.1 / 09.8 / 13.1 / 65.4 18.4 / 08.4 / 11.7 / 65.8 25.8 / 11.2 / 14.8 / 65.2 22.0 / 11.1 / 16.6 / 66.8 18.5 / 07.3 / 11.6 / 64.9 32.6 / 13.8 / 18.1 / 65.2
Qwen2.5-7B 21.9 / 08.4 / 13.3 / 65.1 18.6 / 08.1 / 11.8 / 66.5 26.5 / 10.9 / 15.4 / 65.4 21.9 / 11.0 / 16.1 / 66.6 18.1 / 06.7 / 10.9 / 65.6 30.9 / 12.9 / 18.0 / 65.7
Internlm2-20B 19.2 / 07.8 / 12.0 / 62.9 14.9 / 06.5 / 09.6 / 62.7 24.0 / 10.0 / 13.9 / 63.8 11.6 / 05.4 / 08.8 / 59.1 16.2 / 06.1 / 10.1 / 63.0 30.6 / 13.9 / 17.5 / 66.6
Internlm2-7B 18.5 / 07.2 / 11.6 / 62.2 14.3 / 06.3 / 09.5 / 62.6 23.9 / 09.7 / 13.3 / 63.2 11.6 / 05.5 / 09.1 / 58.4 16.2 / 06.3 / 09.9 / 62.4 29.7 / 13.2 / 17.7 / 64.1

Setting 2: Fine-Tuned Traditional Multi-Lingual Language Models

mBART-50 27.4 / 11.9 / 19.9 / 67.8 27.2 / 12.5 / 20.1 / 67.8 26.6 / 12.7 / 20.1 / 65.3 32.9 / 17.5 / 24.9 / 71.0 25.8 / 11.1 / 19.5 / 68.1 23.2 / 10.8 / 16.7 / 65.4
PISCES 30.8 / 15.0 / 22.8 / 68.6 27.2 / 12.0 / 19.8 / 68.7 28.2 / 12.9 / 20.9 / 66.0 34.1 / 18.0 / 26.8 / 70.9 36.3 / 20.7 / 28.8 / 71.9 24.3 / 11.0 / 17.4 / 65.7

Setting 3: Instruction-Tuned LLMs

LLaMa-2-13B 37.7 / 21.2 / 29.4 / 74.4 37.1 / 20.0 / 27.2 / 74.2 40.2 / 25.1 / 32.2 / 74.2 40.3 / 24.3 / 32.4 / 75.4 33.0 / 17.1 / 26.6 / 73.4 38.2 / 20.5 / 26.2 / 73.4
LLaMa-2-7B 35.5 / 19.6 / 27.0 / 73.0 34.9 / 18.4 / 26.5 / 73.2 37.6 / 22.8 / 29.2 / 73.2 37.9 / 22.4 / 30.8 / 75.0 31.8 / 15.8 / 25.9 / 72.6 37.8 / 20.2 / 25.7 / 72.7
LLaMa-3-8B 36.2 / 20.0 / 27.5 / 73.4 35.4 / 18.7 / 26.9 / 73.4 37.9 / 23.5 / 29.8 / 73.9 38.6 / 22.8 / 31.5 / 75.7 32.5 / 16.4 / 26.4 / 73.2 38.5 / 20.7 / 26.2 / 73.3
Vicuna-13B 37.3 / 21.7 / 28.7 / 73.9 36.3 / 20.9 / 28.0 / 73.6 39.8 / 26.2 / 32.3 / 74.4 40.4 / 24.5 / 32.3 / 75.9 34.2 / 17.6 / 28.1 / 73.5 38.4 / 20.9 / 26.6 / 73.7
Vicuna-13B-16k 38.0 / 23.0 / 30.2 / 74.1 36.9 / 20.9 / 28.6 / 74.7 40.4 / 26.7 / 32.9 / 74.2 41.2 / 24.6 / 33.6 / 75.9 34.5 / 18.4 / 28.5 / 73.9 38.3 / 20.6 / 26.4 / 73.5
Vicuna-7B 35.6 / 20.8 / 28.0 / 73.1 34.5 / 19.0 / 26.2 / 73.8 38.3 / 23.9 / 29.1 / 73.3 38.9 / 23.0 / 32.3 / 75.4 31.2 / 15.5 / 25.7 / 72.9 36.8 / 19.4 / 24.5 / 72.4
Vicuna-7B-16k 36.2 / 21.3 / 28.6 / 73.7 35.5 / 20.1 / 27.7 / 73.4 38.7 / 24.2 / 30.3 / 74.2 38.9 / 23.0 / 31.8 / 75.3 32.3 / 15.6 / 25.9 / 72.2 37.7 / 20.8 / 26.5 / 73.3
Baichuan2-13B 36.1 / 20.8 / 28.0 / 74.4 35.9 / 20.0 / 26.4 / 73.1 38.0 / 24.8 / 29.8 / 73.2 40.7 / 24.8 / 34.1 / 75.9 33.5 / 17.0 / 25.7 / 73.7 39.2 / 20.7 / 25.3 / 73.8
Baichuan2-7B 35.0 / 19.9 / 27.4 / 73.5 35.4 / 19.4 / 26.6 / 73.0 37.3 / 23.0 / 29.4 / 73.3 38.8 / 22.8 / 31.5 / 74.9 31.8 / 14.8 / 23.9 / 72.6 38.1 / 19.9 / 25.9 / 73.7
Qwen-14B 37.1 / 21.9 / 28.4 / 74.2 36.0 / 19.6 / 26.8 / 73.2 38.4 / 24.5 / 30.8 / 73.4 40.2 / 25.4 / 33.4 / 75.5 34.4 / 19.0 / 28.5 / 74.4 39.1 / 20.6 / 26.4 / 74.4
Qwen-7B 34.8 / 18.6 / 26.8 / 73.2 33.5 / 18.3 / 25.0 / 72.5 36.1 / 21.1 / 27.6 / 73.0 38.9 / 22.9 / 31.5 / 75.2 33.1 / 16.1 / 25.7 / 73.2 37.0 / 19.6 / 24.3 / 73.0
Qwen2.5-14B 37.8 / 22.5 / 29.3 / 74.3 36.7 / 20.3 / 28.0 / 74.0 39.4 / 25.6 / 31.6 / 73.9 40.8 / 25.7 / 33.6 / 75.8 34.4 / 19.2 / 28.8 / 74.7 39.4 / 20.8 / 26.6 / 74.8
Qwen2.5-7B 35.2 / 19.0 / 27.3 / 73.7 34.2 / 18.7 / 25.6 / 72.9 36.6 / 21.4 / 28.2 / 73.7 39.5 / 23.6 / 32.3 / 76.0 33.4 / 16.5 / 26.5 / 73.6 37.7 / 20.0 / 24.9 / 73.6
Internlm2-20B 36.7 / 21.5 / 28.2 / 73.7 35.0 / 19.2 / 25.6 / 73.0 38.0 / 24.1 / 29.0 / 72.8 41.1 / 26.0 / 34.2 / 76.2 34.5 / 19.0 / 27.9 / 74.3 39.3 / 20.4 / 25.7 / 73.4
Internlm2-7B 35.7 / 19.9 / 27.2 / 73.5 34.1 / 18.7 / 25.6 / 72.6 36.2 / 22.0 / 28.4 / 72.8 40.7 / 25.4 / 33.5 / 75.9 33.3 / 17.7 / 27.0 / 73.3 37.8 / 20.6 / 25.6 / 73.0

Table 11: Experimental results of the overall performance and fine-grained results in each domain. The bold denotes
the best performance under each setting. Encyc.: Encyclopedia; Tech.: Technology.

on the decoder side and serves as the decoder start
token to control which language should be gener-
ated in the summaries. Besides, we set the maxi-
mum number of tokens for input sequences to 1024
(mBART-50 and PISCES accept input text with a
maximum length of 1K, and this is also a shortcom-
ing of traditional models compared with LLMs).
The fine-tuned traditional models use the same de-
coding strategy as the LLMs.

Training/Tuning Hours. All experiments are con-
ducted on NVIDIA A800 GPUs with 80G mem-
ory, and we use its GPU hours to denote the con-
sumption of computing resources. Each instruction-
tuned 7B LLM needs 19 GPU hours, while each
13B LLM needs 32 GPU hours. For Internlm2-chat-
20B, it costs 80 GPU hours since we offload the
optimizer. To fine-tune the traditional multi-lingual
language models, 3 GPU hours are cost.

F Full Results

Table 11 shows the full results in terms of R1, R2,
RL and BS. Typically, the results in terms of R2 are
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Figure 5: Model performance (ROUGE-1) using differ-
ent scales of training samples.

consistent with the results in terms of other metrics.

G The Effects of Training Scales

To assess the impact of training scales, we ran-
domly select the training samples into various sizes
(2K, 4K, 8K, 12K, 16K, and 19.5K) and subse-
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quently fine-tune the models mBART-50, PISCES,
and Vicuna-13B-16k for each scale. During the
randomly selection, we use probability sampling
to ensure the balance of each language as well as
each domain. As shown in Figure 5, compared
with LLMs, the performance of traditional models
is more sensitive with the training scale. Specifi-
cally, when decreasing the training data from 19.5K
to 2K, mBART-50 and PISCES sacrifice 21.8 and
23.6 R1 (ROUGE-1) scores, respectively, while the
counterpart of Vicuna-13B-16k is 12.4.

H Human Evaluation

Following Gao et al. (2023), we employ three grad-
uate students with high levels of fluency in both
English and Chinese as our evaluators. We ran-
domly select 100 English documents from the test-
ing set, and let the evaluators judge whether fac-
tual errors in the Chinese summaries generated
by GPT-4, zero-shot & tuned LLaMa-2-13B, and
zero-shot & tuned Vicuna-13B-16k. If a generated
summary has factual errors, evaluators also should
label which types of factual errors in the summary.
Finally, the Fleiss’ Kappa scores (Fleiss, 1971) of
hallucination error, particulars error, predicate error
and entity error are 0.78, 0.73, 0.81, 0.75, respec-
tively, indicating a good inter-agreement among
our evaluators.
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