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Abstract

Predicting the types and affinities of protein-
protein interactions (PPIs) is crucial for under-
standing biological processes and developing
novel therapeutic approaches. While encod-
ing proteins themselves is essential, PPI net-
works can also provide rich prior knowledge
for these predictive tasks. However, existing
methods oversimplify the problem of PPI pre-
diction in a semi-supervised manner when uti-
lizing PPI networks, limiting their practical ap-
plication. Furthermore, how to effectively use
the rich prior knowledge of PPI networks for
novel proteins not present in the network re-
mains an unexplored issue. Additionally, due to
inflexible architectures, existing methods can-
not handle complexes containing an flexible
number of proteins. To overcome these limi-
tations, we introduce LLaPA (Large Language
and Protein Assistant), a multimodal large lan-
guage model that integrates proteins and PPI
networks. LLaPA offers a more rational ap-
proach to utilizing PPI networks for PPI pre-
diction and can fully exploit the information
of PPI networks for unseen proteins. Through
natural language instructions, LLaPA can ac-
cept flexible number of protein sequences and
has the potential to perform various protein
tasks. Experiments show that LLaPA achieves
state-of-the-art performance in multi-label PPI
(mPPI) type prediction and is capable of pre-
dicting the binding affinity between multiple
interacting proteins based on sequence data.
The source code can be accessed on GitHub at:
https://github.com/HHW-zhou/LLAPA

1 Introduction

Protein-protein interactions (PPIs) are fundamental
to biological processes and critical in drug discov-
ery (Wells and McClendon, 2007; Braun and Gin-
gras, 2012). Traditional high-throughput screen-
ing methods, such as yeast two-hybrid screens
(Ito et al., 2001) and tandem affinity purification
(Gavin et al., 2002), are both expensive and time-

consuming. Recently, advancements in deep learn-
ing have led to numerous approaches for predict-
ing PPIs. These approaches can be divided into
those that utilize PPI networks and those that do
not. Methods that do not use PPI networks in-
clude DPPI (Hashemifar et al., 2018), DNN-PPI
(Li et al., 2018), PIPR (Chen et al., 2019), TAGPPI
(Song et al., 2022), and Geo-PPI (Liu et al., 2021).
These methods encode proteins individually and
then concatenate the features of paired proteins for
downstream tasks.

Methods based on PPI networks encode not only
proteins but also the PPI network. In a PPI network,
nodes represent proteins, and edges, often multi-
labeled, indicate relationships between them. PPI
networks are essential for predicting PPIs, as pro-
tein interactions depend on both individual features
and their positions within the larger network (Lee,
2023). GNN-PPI (Lv et al., 2021) was the pioneer-
ing method leveraging PPI networks, achieving
significant improvements in the mPPI task. Subse-
quent methods, such as SemiGNN-PPI (Zhao et al.,
2023), HIGH-PPI (Gao et al., 2023b), and MAPE-
PPI (Wu et al., 2024b), built upon GNN-PPI’s set-
tings and demonstrated even better performance in
mPPI prediction.

Despite significant advancements, these methods
face three critical limitations: (1) Oversimplified
mPPI Task Setting: Existing methods utilize con-
nection information between unseen proteins in a
semi-supervised manner (Kipf and Welling, 2016;
Lv et al., 2021; Gao et al., 2023b; Zhao et al., 2023;
Wu et al., 2024b), which oversimplifies task diffi-
culty. Current benchmarks separate a portion of
the PPI network data as the test set, and the topo-
logical information of the test set is also input into
the model. This approach explicitly informs the
model of relationships between protein pairs be-
ing tested, facilitating information exchange and
simplifying PPI prediction. Unlike readily avail-
able protein sequences, acquiring connection infor-
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mation between proteins often requires extensive
biological experiments and analysis, making this
approach impractical for real-world applications.
(2) Ineffectiveness of PPI Network Information
for Unseen Proteins: In real-world scenarios, we
frequently encounter unseen proteins that do not
exist in any PPI network. Existing methods fail to
effectively utilize PPI network information in such
cases, as the model cannot extract useful informa-
tion from the network topology, thereby affecting
prediction accuracy and practicality. (3) Limita-
tions in Multi-Protein Interactions: These mod-
els, with their fixed architectures, can only handle
interactions between two proteins and cannot pre-
dict relationships involving multiple proteins or the
affinity of multi-protein complexes. Many biologi-
cal processes depend on multi-protein complexes,
such as antigen-antibody complexes, which typi-
cally consist of three chains: the antigen, the heavy
chain of the antibody, and the light chain of the
antibody (Wu et al., 2024a). The challenge lies in
the unknown number of proteins, requiring models
to be flexible enough to accept an arbitrary number
of proteins as input. These methods struggle with
such complex multi-protein interactions, limiting
their applicability in practical biological research.

Recently, some studies have achieved notable
performance in protein encoding and understand-
ing through joint learning of proteins and natural
language, such as ProtLLM (Zhuo et al., 2024),
ProLLama (Lv et al., 2024), Prot2Text (Abdine
et al., 2024), and ProteinGPT (Xiao et al., 2024).
Pre-trained on large-scale protein databases, these
methods exhibit strong generalization capabilities.
The flexibility of LLMs enables them to handle
tasks involving multiple protein sequences, address-
ing Challenge (3) effectively. Nonetheless, they
did not further explore the task of multi-sequence
proteins, nor did they utilize the rich information
provided by the PPI network.

In this work, we propose a multimodal model
called LLaPA (Large Language and Protein As-
sistant), which effectively addresses the aforemen-
tioned three challenges simultaneously. LLaPA in-
tegrates protein representations and PPI networks
into a large language model (LLM). We construct
a more general PPI network, inputting both net-
work topology information and protein information
into the LLM to assist in decision-making. During
both training and inference, we completely remove
edges that overlap between the PPI network and
the test set. Treating the PPI network as exter-

nal knowledge, we inject this knowledge into the
LLM prompt using Retrieval-Augmented Genera-
tion (RAG) (Gao et al., 2023a). For proteins not
present in the PPI network, we find similar protein
nodes within the PPI network and provide their
topology as additional information. Leveraging the
flexibility of large language models, LLaPA can
accept flexible number of proteins as input and use
natural language instructions for downstream tasks.

The contributions of this paper can be summa-
rized as follows:

• We reveal the limitations of existing meth-
ods in utilizing PPI networks and provide a
straightforward method for more reasonable
utilization of PPI networks.

• We propose treating the PPI network as ex-
ternal knowledge and injecting it into LLMs
through RAG to assist downstream tasks. This
approach is also effective for unseen proteins.
We also constructed a more general PPI net-
work called UPPIN.

• We develop a protein natural multimodal large
language model, LLaPA, which integrates the
protein encoder EMS-2 (Lin et al., 2022), the
PPI network encoder SGC (Wu et al., 2019),
and the large language model llama3-8b (Tou-
vron et al., 2023). LLaPA can handle flexible
numbers of proteins and has the potential to
perform diverse protein tasks.

• Experiments show that LLaPA achieves state-
of-the-art (SOTA) performance on the mPPI
task and demonstrates significant accuracy in
multi-sequence affinity prediction.

2 Related work

2.1 Protein-protein interactions
PPIs are crucial components of cellular activities
and play significant roles in various biological func-
tions (Lu et al., 2020; Bryant et al., 2022; Richards
et al., 2021). The interactions among multiple pro-
teins form complex PPI networks, which implicitly
represent the signaling processes and pathways of
various life activities within organisms. Under-
standing PPIs not only helps us decipher complex
biological systems but also aids in identifying po-
tential targets for disease intervention.

With the rise of deep learning technologies, re-
searchers have proposed numerous deep learning-
based methods for PPI prediction. From a task
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perspective, PPI tasks include: (1) Binary Classifi-
cation: This task involves inputting a pair of pro-
tein sequences and determining whether these two
proteins can interact. Methods such as DPPI, DNN-
PPI, PIPR, and TAGPPI typically include a convo-
lutional neural network module as the protein en-
coder. After encoding the two proteins separately,
a feature fusion module combines the encoded fea-
tures, and a binary classifier outputs the classifi-
cation result. (2) Multi-label PPI Type Prediction:
This task focuses on identifying the types of inter-
actions between two proteins. PIPR and TAGPPI
can also handle this task. GNN-PPI introduces the
topological information of the PPI network, com-
bining the topological information of proteins in
the PPI network with protein features, achieving
significant improvements in the mPPI task. Sub-
sequent works like HIGH-PPI and MAPE-PPI use
the same PPI network. (3) Protein-Protein Binding
Affinity Prediction: This task typically focuses on
predicting changes in binding affinity between pro-
tein complexes due to mutations, as seen in works
like Geo-PPI, DDAffinity (Yu et al., 2024), and top-
Nettree (Wang et al., 2020). These methods input
the original and mutated protein features to predict
the affinity changes caused by specific mutations.
Few works directly predict the binding affinity of
protein complexes, with PIPR being one known
example. These methods can only handle pairwise
protein interactions and cannot predict the affinity
of multi-sequence complexes. (4) PPI Binding Site
Prediction: This task requires amino acid-level en-
coding. Representative works include DeepHomo
(Yan and Huang, 2021), GLINTER (Xie and Xu,
2022), and DeepInter (Lin et al., 2023), which are
beyond the scope of this discussion. (5) Protein-
Protein Conformation Prediction: Similar to task
(4), this also requires amino acid-level encoding
and is not covered in this paper.

2.2 Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) are
dedicated to enabling LLMs to recognize and un-
derstand non-natural language modality data, such
as images, sounds, etc. A common approach in-
volves first using multimodal encoders to encode
data from various modalities. Then, a projector
module aligns the output space of these modali-
ties with the input space of the LLM. This pro-
cess injects multimodal output features into the
LLM, enabling it to understand non-natural lan-
guage modalities. Subsequently, Multimodal In-

struction Tuning is employed, which mixes natural
language instructions with multimodal data, allow-
ing the MLLM to perform downstream tasks based
on the given multimodal data and natural language
instructions. Representative works include LLaVA
(Liu et al., 2024a), InstructBLIP (Dai et al., 2023),
VisionLLM (Wang et al., 2024), MultiModal-GPT
(Gong et al., 2023), and Macaw-LLM (Lyu et al.,
2023). Recently, some efforts have been made to
integrate protein modality into LLMs, endowing
LLMs with the ability to understand proteins. Rel-
evant work includes ProtLLM (Zhuo et al., 2024),
Prot2Text (Abdine et al., 2024), and ProteinGPT
(Xiao et al., 2024), which have achieved notewor-
thy performance in gene ontology term prediction,
as well as understanding of protein sequences and
structures.

3 Method

3.1 Problem Settings

This work focuses on two tasks: (1) Multi-label
PPI (mPPI) type prediction. Given a pair of pro-
teins (p1, p2), the goal is to predict the types of
interactions between them, which is a multi-class
classification task. (2) Multi-sequence Affinity
(MA) prediction. Given a complex C = (B, T ),
where B refers to the binder and T refers to the
target, predict its logarithmic dissociation constant
logKd = log [B][T ]

[BT ] . B and T can each be a sin-
gle protein sequence or a complex containing mul-
tiple sequences. For the PDB2020 (PP) dataset
from PDBBind (Liu et al., 2017), which includes
2852 complexes, accurately extracting the binder
and target based on the given information is very
challenging and requires manual analysis of the
papers corresponding to each PDB entry. There-
fore, we have simplified this task in the form of:
Given a set of proteins (p1, p2, ..., pk), predict its
logKd specified by the dataset. We leverage a
PPI network to obtain prior knowledge about the
target proteins to aid in the prediction. The PPI
network is represented as a graph G = {V,A},
where V = {v1, v2, .., vn} are the nodes of the
graph, with each node vi corresponding to a pro-
tein. A ∈ Rn×n is the adjacency matrix of the
graph, where aij = 1 if there is an interaction be-
tween proteins pi and pj , and aij = 0 otherwise.
We use X ∈ Rn×d to represent the feature matrix
of the graph G, where each row xi represents the
features of the i-th protein.
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Figure 1: An overview of LLaPA. It consists of two main components: Graph-based Retrieval Augmented Prompt
Preparation and a Multimodal Fusion Framework. In the Graph-based Retrieval Augmented Prompt Preparation
stage, we search for matching topological information in UPPIN (a unified PPI network we constructed) based on
the input protein and task instructions. This process yields additional topological features and information-enhanced
natural language instructions. Subsequently, we input the protein, graph features, and enhanced instructions into our
Multimodal Fusion Framework for training and inference.

3.2 Overall Architecture
LLaPA is an integrated large language model that
combines protein and graph data, as shown in Fig-
ure 1. It consists of two main components: Graph-
based Retrieval Augmented Prompt Prepara-
tion and a Multimodal Fusion Framework. In the
Graph-based Retrieval Augmented Prompt Prepa-
ration stage, we search for matching topological
information in the PPI network based on the in-
put proteins. This allows us to obtain additional
topological features and enriched natural language
instructions. Subsequently, we input the proteins,
graph features, and the augmented instructions into
our Multimodal Fusion Framework for training and
inference. Before formally introducing our method,
we will briefly discuss the limitations of existing
PPI network-based methods.

3.3 Limitations of Oversimplified mPPI Task
Setting

PPI networks are essential for PPI-related tasks, as
a protein’s position within the network provides
valuable prior knowledge. (Lv et al., 2021) were
the first to apply PPI networks to the mPPI task

with their GNN-PPI model, which uses a graph
isomorphism network (GIN) (Xu et al., 2018) to
encode PPI network topology. They validated the
model using three data partitioning methods: ran-
dom, depth-first search (DFS), and breadth-first
search (BFS). As shown in Figure 2-(a), (b), and
(c), these methods partition a portion of the edges
as the test set, which the labels are not used for
training but the structural information are retained
for message passing in the GNN model. This al-
lows message exchange between the protein pairs
being tested, reducing prediction difficulty. During
training, GNN-PPI uses the training edges (green
solid edges in Figure 2), but during testing, the test
edges (dashed edges in Figure 2) are also included
within the graph encoder. Subsequent work, HIGH-
PPI, followed GNN-PPI’s setup, while MAPE-PPI
used all topological information during both train-
ing and inference phases.

Unlike protein sequences, which are relatively
easy to obtain, acquiring connection information
between proteins requires extensive biological ex-
periments and analysis. This makes it challenging
to effectively use connection information between
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Figure 2: Existing data splitting methods for models based on PPI networks include: (a) Random: randomly
selecting a portion of edges from the PPI network as the test set; (b) DFS: using depth-first approach to traverse the
PPI network and selecting a portion of edges as the test set; (c) BFS: using breadth-first approach to traverse the PPI
network and selecting a portion of edges as the test set. Regardless of the splitting method used, all edges are input
into the GNN during the inference process. This allows information exchange between the proteins being tested,
greatly simplifying the difficulty of multi-label PPI type prediction and limiting their practical value. We believe
that all test edges should be removed during both the training and testing phases, as shown in (d)(e)(f).

test proteins in practical applications. However,
removing test set edges during testing may bring
another issue, as shown in Figure 2-(d), (e), and
(f), where gray nodes become isolated and cannot
obtain useful information from the PPI network.
Additionally, an unseen protein inherently has no
edges in the PPI network, making it an isolated
node. Existing methods do not address how to
handle this situation.

3.4 Graph-based Retrieval Augmented
Prompt Preparation

To address the aforementioned issues, we propose
a novel method that utilizes the PPI network as
an external knowledge source. By employing the
RAG technique, we integrate the knowledge from
the PPI network into the input of the LLM. Given a
set of proteins P = {p1, p2, ..., pm} and a textual
task prompt W , we first locate the corresponding
nodes V = {v1, v2, ..., vm} in the PPI network
for each protein. Next, we construct an enhanced
natural language instruction WRAG. Finally, we
input this set of proteins, along with the graph node
information and the enhanced instruction into the
LLM backbone.

In real-world applications, we may lack prior
knowledge about an unseen protein, meaning it
might not exist in any PPI network. In the biologi-
cal domain, Multiple Sequence Alignment (MSA)
(Edgar and Batzoglou, 2006) is a common method
for analyzing protein functions. MSA aligns multi-
ple protein sequences to study the structure, func-
tion, and evolutionary relationships of the target
protein. A key aspect of MSA is the use of refer-
ence sequences. Inspired by MSA, for a protein
that is an isolated node in the PPI network, we can
approximate its topological reference by compar-

ing it with proteins in the PPI network. Specifically,
for a protein p not present in the PPI graph G, we
calculate its similarity to each protein in G, de-
noted as S = {s(p, pi)|pi ∈ G}. This similarity
can be computed using methods such as sequence
alignment scores, structural similarity, or other bi-
ological metrics; here, we use the cosine similar-
ity between protein features. With the similarity
scores, we retrieve the most similar proteins in the
PPI network and use their topological information
as a proxy for the isolated protein. This enables us
to construct an enriched instruction WRAG that in-
cludes relevant topological features, which we then
integrate into the LLM prompt for prediction tasks.
We did not perform any additional processing on
the similarity scores; instead, we directly placed
the similarity scores explicitly into WRAG.

Our instruction template, shown in Figure 3, uses
a structured data representation, separating text,
protein sequences, and graph node indices. In the
text, we use two special tokens, <|proteinHere|>
and <|graphEmbeddingHere|>, to denote the pro-
tein embedding and the PPI network node embed-
ding, respectively. This method can also address
isolated nodes caused by the removal of test edges.
When constructing WRAG, we initially assess the
degree of the target protein p within the PPI net-
work. If the degree is 0, indicating that p is an
isolated node, we employ the same methodology
used for an unseen protein to derive the topological
information of similar proteins in the PPI network.

3.4.1 Unified PPI network
Although leveraging protein similarity to utilize
the topological information of similar proteins in
the PPI network is beneficial, the number and di-
versity of protein nodes remain a limitation. In-
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Figure 3: The input template for Graph-based Retrieval Augmented Prompt. It includes text instructions, protein
sequences, and the position of the protein (or similar proteins) in the PPI network. The Instruction is encoded by
the embedding layer of the LLM, the Proteins are encoded by ESM2-3B, and the Protein Indexes are used to find
the corresponding proteins’ positions in UPPIN and obtain the embeddings of these nodes in UPPIN encoded by
SGC. Finally, these three parts of the encoding are fused to form the input for the LLM.

tuitively, a PPI network with more proteins and
greater diversity enhances the model’s generaliza-
tion ability. To achieve better generalization, we
constructed a larger PPI network called Unified
PPI Network (UPPIN), which consists of three sub-
datasets: STRING (Homo sapiens subset) (Szklar-
czyk et al., 2016), PDBBind (Liu et al., 2017), and
SAbDab (Dunbar et al., 2014). UPPIN includes a
total of 26,180 unique proteins and 594,216 unique
edges. By constructing UPPIN, we expanded the
coverage and diversity of the PPI network, enhanc-
ing the model’s generalization capability. This
larger-scale PPI network provides richer topologi-
cal information and better supports prediction tasks
for unseen proteins. Refer to Appendix A.2 for
more details.

3.5 Multimodal Fusion Framework
As illustrated in Figure 1, we encode the protein,
graph, and text separately, then fuse them to form
the input for the LLM. For a given protein p, we
use an encoder fp(·) to obtain the protein features
Zp = fp(p). Similar to LLaVA (Liu et al., 2024a),
we use a learnable mapping matrix Wp to map Zp

to the embedding tokens Hp for the LLM:

Hp = Wp · Zp, with Zp = fp(p).

While sophisticated designs like QFormer (Li
et al., 2023), C-Abstractor, and D-Abstractor (Cha
et al., 2024) exist for connecting different data
modalities with LLMs, recent research suggests
that a Linear Projector may be optimal when suf-
ficient computational resources are available (Yao
et al., 2024). We chose ESM2-3B (Lin et al., 2022)

as the protein encoder, a transformer-based model
capable of directly encoding amino acid sequences.

For the PPI graph, we first use a graph encoder
fv(·) to encode it as X

′
= fv(X). We then extract

the embedding of the node corresponding to protein
p in the graph, denoted as X

′
p. A mapping matrix

Wv is used to map X
′
p to the embedding tokens

Hv for the LLM:

Hv = Wv ·X
′
p, with X

′
= fv(X).

We use SGC (Wu et al., 2019) as the graph
encoder, which balances encoding capability and
computational efficiency. The graph is encoded
using the following formula:

X
′
= (D̂

−1
2 ÂD̂

−1
2 )KXΘ,

where Â = A + I denotes the adjacency matrix
with inserted self-loops, D̂ii =

∑
j Âij is the diag-

onal degree matrix, and Θ ∈ Rd×d′ is the weight
matrix. The parameter K controls the number of
hops or the receptive field of the convolution.

For an input (P, V,WRAG), we obtain the
protein embeddings (Hp1 ,Hp2 , ...,Hpm) and
the corresponding graph node embeddings
(Hv1 ,Hv2 , ...,Hvm) using the methods described
above. We then use the encoding layer of the
LLM to obtain the corresponding text embeddings
(Hw1 ,Hw2 , ...,Hwn). Finally, we combine these
embeddings into a complete input: (Hw,Hp,Hv),
where the order of these embeddings depends on
the positions of different types of tokens in WRAG.
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4 Model Training

Our training process is divided into two steps.
In the first step, we remove the graph encoder
and freeze both the LLM and the protein encoder,
training only the protein projector Wp to map
the protein features into the LLM’s input space.
For this step, we use the UniProtQA (Luo et al.,
2023) dataset, which contains 569,516 proteins
and 1,891,506 protein question-answer pairs. Each
QA record includes only one protein sequence,
with questions covering protein functions, official
names, families, and sub-cellular locations. Given
a QA record (Q,A, p), where Q represents the
question, A represents the response, and p is a
protein sequence, the objective is to maximize the
probability P(A|Q, p). We optimize this probabil-
ity using the LLM’s autoregressive objective:

LLLM = −
T∑

t=1

logP(wt|w1, ..., wt−1; p)

In the second step, we fine-tune directly on the
downstream task. Here, we freeze the protein en-
coder and load the graph encoder. We update
the graph encoder fv(·), the graph mapping ma-
trix Wv, the protein mapping matrix Wp, and the
weights of the LLM. Unlike the protein encoder
and protein projector, which have been pre-trained,
the weights of the graph encoder and graph projec-
tor are randomly initialized. Since the topological
information provided by the graph complements
the corresponding protein information, and the pro-
tein feature projector already connects protein fea-
tures to the LLM, we can leverage this comple-
mentarity to accelerate the alignment of graph fea-
tures with the LLM. We use InfoNCE (Oord et al.,
2018) to maximize the mutual information between
the protein representation and the corresponding
topological information. The objective function
is: LinfoNCE = −E[log exp(E(Hp,Hv))∑

v
′ exp(E(Hp,H

v
′ )) +

log
exp(E(Hp,Hv))∑
p
′ exp(E(H

p
′ ,Hv))

], where E(·) is an energy

function, which can be of flexible form. We use the
dot product for its simplicity, i.e., E(Hp,Hv) =
Hp ·Hv. The advantage of this approach is that we
do not need to design additional tasks to pre-train
the graph encoder and projector. Therefore, the
loss function for the second stage of training is:

Loss = LinfoNCE + LLLM .

5 Experiments

We evaluated LLaPA’s capabilities on mPPI predic-
tion and MA prediction.

Dataset Partition BS ES NS

SHS27k
random 90.07% 9.28% 0.65%

DFS 0.00% 80.13% 19.87%
BFS 0.00% 69.54% 30.46%

SHS148k
random 95.65% 4.26% 0.09%

DFS 0.28% 85.62% 14.10%
BFS 0.00% 78.10% 21.90%

Table 1: Proportions of BS, ES, and NS across various
data partitions.

Datasets. For the mPPI task, we used two
subsets of STRING, SHS27k and SHS148k, con-
structed by (Chen et al., 2019). We used the same
data partition methods as GNN-PPI: random (ran-
domly selecting test edges from the PPI network),
DFS (depth-first search for test edges), and BFS
(breadth-first search for test edges). Different data
partition methods yield varying proportions of pro-
tein pairs classified as "Both have been Seen (BS),"
"Either one protein has been Seen (ES)," and "Nei-
ther has been Seen (NS)." A higher proportion of
ES and NS pairs indicates a more challenging pre-
diction task. Table 1 details these specific propor-
tions. We split these datasets into training, valida-
tion, and test sets in a 60%:20%:20% ratio. For
the MA task, we used PDB2020, splitting it into
training and test sets at an 80%:20% ratio.

Baselines. For the mPPI task, we compared
our approach against DPPI, DNN-PPI, PIPR,
ESM2-3B (fixed), ESM2-3B (ft), ProtLLM, GNN-
PPI, HIGH-PPI, and MAPE-PPI. Since GNN-PPI,
HIGH-PPI, and MAPE-PPI have access to the com-
plete PPI network during the test phase, we re-
moved the edges contained in the test set from the
PPI network for a fairer comparison. These mod-
ified versions are denoted as GNN-PPI/R, HIGH-
PPI/R, and MAPE-PPI/R, respectively. For ESM2-
3B (fixed), we fixed the parameters of ESM2-3B
and trained a multi-classifier on top of it. For
ESM2-3B (ft), we fine-tuned all the weights of
ESM2-3B in addition to training multi-classifiers,
keeping all training hyperparameters consistent
with LLaPA. For ProtLLM, we adapted the orig-
inal code provided by the authors to support the
mPPI task and fine-tuned it using the pre-trained
weights and hyperparameters supplied by the au-
thors. For the MA task, we used PIPR to predict
the binding affinity of all two-protein complexes in
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Model
SHS27k SHS148k

random dfs bfs random dfs bfs

DPPI 70.45 43.69 43.87 76.10 51.43 50.80
DNN-PPI 75.18 48.90 51.59 85.44 56.70 54.56

PIPR 79.59 52.19 47.13 88.81 61.38 58.57
ESM2-3B (fixed) 47.58 42.50 41.97 48.92 43.06 41.25

ESM2-3B (ft) 79.23 63.38 48.80 87.86 66.92 61.88
ProtLLM 48.67 42.77 41.94 49.29 42.66 40.33

GNN-PPI/R 40.53 43.19 42.52 39.48 40.96 41.42
HIGH-PPI/R 41.51 40.06 39.87 42.81 51.06 45.94
MAPE-PPI/R 76.84 51.69 55.21 85.96 62.13 56.68

LLaPA
82.49 69.54 67.21 91.78 73.93 70.90
(+2.90) (+6.16) (+12) (+2.97) (+7.01) (+9.02)

Table 2: Experimental results for multi-label PPI type prediction (micro-F1). Bold and underline are used to
highlight the first and second scores respectively.

the test set. Additionally, we trained three affinity
prediction models using ESM2-3B, named E(2),
E(3), and E(4). E(2) predicts the binding affinity
of two-protein complexes, E(3) for three-protein
complexes, and E(4) for four-protein complexes.

5.1 Multi-label PPI Type Prediction

The experimental results are shown in Table 2.
From these results, we can draw two key insights:

(1) Underperformance of PPI network-Based
Methods After Edge Removal. PPI network-
based methods yield unsatisfactory results after
removing the edges contained in the test set. These
results are expected because graph encoders heav-
ily rely on the graph structure, and removing test
set edges significantly alters this structure, making
it difficult for the learned weights to be effective.
This issue is particularly pronounced with DFS and
BFS data splitting methods, which can result in iso-
lated nodes that cannot obtain useful information
during the graph message-passing process. Table
9 in the Appendix provides a detailed comparison
of the performance of PPI network-based methods,
both with and without edge removal.

(2) Superior Performance of LLaPA. LLaPA
demonstrates superior performance across all task
settings. Under the random splitting method,
LLaPA achieves modest improvements over the
second-best model on the SHS27k and SHS148k.
However, the improvements are much more sig-
nificant under the DFS and BFS methods, with
LLaPA outperforming the second-best model by

a substantial margin. The performance on the
larger SHS148k dataset is better than on SHS27k,
likely due to the increased dataset size facilitating
model fitting. Despite having similar architectures,
ProtLLM’s lack of PPI network information led to
suboptimal performance on the mPPI task.

Sequence Number All Train Test

2 1857 1485 372
3 679 535 144
4 188 156 32
5 106 89 17
6 6 3 3
7 1 0 1
9 1 1 0
13 1 1 0
14 1 1 0
16 1 1 0

sum 2841 2272 569

Table 3: The PDB2020 dataset was organized and par-
titioned according to the number of unique sequences
present within each complex.

5.2 Multi-sequence Affinity Prediction

The PDB2020 dataset contains complexes with
a range of 2 to 16 unique proteins. To evaluate
LLaPA’s prediction capabilities, we categorized
these complexes based on the number of unique
proteins and assessed performance for each group.
Most complexes contain fewer than 5 unique pro-
teins, while those with 7, 9, 13, 14, and 16 unique
proteins each have only one instance. The dataset
was randomly divided into training and test sets
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with an 80:20 ratio, resulting in no test data for
groups with 9, 13, 14, and 16 unique proteins, as
shown in Table 3. The experimental results is pre-
sented in Table 4. LLaPA achieved the best MAE
and PCC performance within each group. Figure 5
in the Appendix illustrates the training and predic-
tion results for group 6.

Sequence Number Methods MAE (↓) PCC (↑)

2
PIPR 1.42 0.34
E(2) 1.43 -0.11

LLaPA 1.35 0.41

3
E(3) 1.24 0.13

LLaPA 1.11 0.51

4
E(4) 1.82 -0.24

LLaPA 1.09 0.76

5 LLaPA 1.02 0.35

6 LLaPA 2.37 0.96

7 LLaPA 0.82 N/A

all LLaPA 1.26 0.49

Table 4: Experimental results of MA prediction on
PDB2020, measured by mean absolute error (MAE)
and Pearson correlation coefficient (PCC).

We also considered the scenario where all se-
quences in the complex were input into the model
as shown in Table 8 in Appendix. In this experimen-
tal setup, all protein sequences for each complex
were input into the model, with a maximum of 72
sequences per complex. This further demonstrates
the flexibility of LLaPA.

5.3 Ablation Study

We conducted ablation experiments to evaluate
three components: (1) the utility of the pre-trained
protein projector, (2) the effectiveness of the con-
structed UPPIN network, and (3) the impact of
the designed alignment loss function LinfoNCE .
These experiments were performed on the SHS27k
dataset, partitioned by DFS. As shown in Table
5, pretraining improved results by 7.34. Utilizing
UPPIN improved results by 2.62 compared to the
original PPI network of SHS27k, and by 26.23
compared to not using a PPI network. This is intu-
itive as UPPIN introduces more proteins and edges,
enriching topological information, whereas not us-
ing a PPI network is akin to encoding proteins
with fixed parameters from ESM-3B. Additionally,
using LinfoNCE for aligning graphs and proteins
improved results by 3.19, confirming the efficacy
of this alignment method.

Pretrain PPIs Network LinfoNCE F1

✓ 43.31
UNI ✓ 62.20

✓ OR ✓ 66.92
✓ UNI 66.35
✓ UNI ✓ 69.54

Table 5: Ablation experiments on SHS27k using DFS
for data partitioning

5.4 Conclusion

We identified and addressed limitations in current
multi-label PPI type predictions based on PPI net-
works. Our solution, a multimodal large language
model named LLaPA, incorporates the PPI network
as external knowledge, integrating it into the model
via RAG. We developed an innovative modality
alignment method that uses pre-aligned protein
modalities to facilitate graph modality alignment.
LLaPA is capable of predicting affinities for multi-
sequence complexes with a flexible number of pro-
tein sequences. Additionally, LLaPA shows poten-
tial for a wide range of other protein-related tasks.

Limitations

As a large model integrating proteins, PPI networks,
and natural language, LLaPA utilizes natural lan-
guage instructions and a unified training method
for downstream tasks. It can accept a flexible num-
ber of protein inputs and has the potential to handle
more complex protein tasks. However, LLaPA fo-
cuses on protein-level features and is ineffective for
tasks requiring amino acid-level features, such as
PPI binding site prediction and PPI conformation
prediction. Additionally, since we directly input
protein embeddings into the LLM, we cannot lever-
age the textual features corresponding to protein
entities. This is not an issue for novel proteins, but
for well-studied proteins with existing literature,
utilizing these resources for better analysis is cru-
cial. Furthermore, constructing a larger and more
diverse UPPIN is also very important.
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A More implementation details

A.1 Implementation details
We fine-tune the parameters of Llama3-8b using
LoRA (Hu et al., 2021). The LoRA target modules
are q_proj, k_proj, v_proj, o_proj, gate_proj,
down_proj, up_proj, and lm_head. The model is
trained using 8 NVIDIA A100 GPUs (80G). Other
parameters are detailed in Table 6.

Parameter Value

lora_alpha 64
lora_dropout 0.1

lora_rank 256
learning_rate 4e-5
global_batch 512

lr_scheduler_type cosine
num_warmup_steps 100

weight_decay 0.05
max_grad_norm 0.03

warmup_ratio 0.03
bf16 TRUE

Table 6: Training parameters.

A.2 Construction of UPPIN
STRING (Homo sapiens subset) is a multi-source
PPI network comprising 15,202 unique proteins
and 581,161 unique edges. It includes seven types
of protein interactions: activation, binding, cataly-
sis, expression, inhibition, posttranslational mod-
ification (ptmod), and reaction. For UPPIN, we
retained all nodes and edges from STRING but
removed the edge labels.

PDBBind is a database derived from the PDB
(Protein Data Bank) (Berman et al., 2000), contain-
ing biomolecular complexes with experimentally
determined binding affinities. We used the 2020
version of PDBBind, which includes 2,852 protein-
protein complexes, totaling 5,711 unique proteins.
Due to often incomplete protein sequences in the
crystal data, we first obtained the fasta data for each
protein from the PDB. We then connected each pair
of proteins within a complex with an edge, result-
ing in a total of 5,978 edges.

SAbDab is an antibody-antigen database that in-
cludes complexes and experimental information,
and it is continuously updated. We used data up
to PDB 8cds, comprising 16,226 complexes and
6,315 unique proteins. As with PDBBind, we first
obtained the fasta data for each complex from the

Protein Data Bank and then constructed edges be-
tween each pair of proteins within a complex.

We merged these three datasets to create our
UPPIN, which includes a total of 26,180 unique
proteins and 594,216 unique edges. Detailed infor-
mation is provided in Table 7.

nodes edges

STRING 15,202 581,161
PDB2020 5,711 5,978
SabDab 6,315 7,424

sum 27,228 597,563

unique 26,180 594,216

Table 7: Information on the constructed UPPIN.

A.3 Implementation of models E(2), E(3), E(4)

Models E(2), E(3), and E(4) are all based on ESM2-
3B and are used to predict the affinity of complexes
consisting of 2, 3, and 4 proteins, respectively. We
fixed the parameters of ESM2-3B, encoded the
protein sequences, and concatenated them. Then,
we trained the predictors of E(2), E(3), and E(4),
each of which is a simple linear layer. The learning
rate was set to 5e-4, and the models were trained
for 500 epochs. The loss function used was mean
square error:

LMSE =
∑

(yi − ŷi)
2.

A.4 Inputs and Outputs Examples

A.4.1 Example for mPPI task.
INPUTS:

Instruction: There are two proteins,
<|proteinHere|> and <|proteinHere|>.
Among the following seven types of relationships
(reaction, binding, ptmod, activation, inhibition,
catalysis, expression), list all possible relationships
between these two proteins. Carefully analyze
the given protein features, based on the defini-
tion of the seven protein relations, answer this
question in the form of ‘According to the given
protein information, Their relationships include
relation(s).’ If multiple relationships may exist,
separate them with comma. SUPPLEMENTARY
INFO: For protein 1, its topological information
in the PPI network is <|graphEmbeddingHere|>.
For protein 2, its topological information in the
PPI network is <|graphEmbeddingHere|>.

Protein 1: MGLTVSALFSRIFGKKQMRILMVGLDAAG
KTTILYKLKLGEIVTTIPTIGFNVETVEYKNICFTVWDVG
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GQDKIRPLWRHYFQNTQGLIFVVDSNDRERVQESADELQK
MLQEDELRDAVLLVFANKQDMPNAMPVSELTDKLGLQHLR
SRTWYVQATCATQGTGLYDGLDWLSHELSKR

Protein 2: MTECFLPPTSSPSEHRRVEHGSGLTRTPS
SEEISPTKFPGLYRTGEPSPPHDILHEPPDVVSDDEKDHG
KKKGKFKKKEKRTEGYAAFQEDSSGDEAESPSKMKRSKGI
HVFKKPSFSKKKEKDFKIKEKPKEEKHKEEKHKEEKKEKK
SKDLTAADVVKQWKEKKKKKKPIQEPEVPQIDVPNLKPIF
GIPLADAVERTMMYDGIRLPAVFRECIDYVEKYGMKCEGI
YRVSGIKSKVDELKAAYDREESTNLEDYEPNTVASLLKQY
LRDLPENLLTKELMRFEEACGRTTETEKVQEFQRLLKELP
ECNYLLISWLIVHMDHVIAKELETKMNIQNISIVLSPTVQ
ISNRVLYVFFTHVQELFGNVVLKQVMKPLRWSNMATMPTL
PETQAGIKEEMNENEEVINILLAQENEILTEQEELLAMEQ
FLRRQIASEKEEIERLRAEIAEIQSRQQHGRSETEEYSSE
SESESEDEEELQIILEDLQRQNEELEIKNNHLNQAIHEER
EAIIELRVQLRLLQMQRAKAEQQAQEDEEPEWRGGAVQPP
RDGVLEPKAAKEQPKAGKEPAKPSPSRDRKETSI

PPI network Index: 11117, 3205
OUTPUTS: According to the given protein in-

formation, their relationships include activation,
inhibition, catalysis.

A.4.2 Example for MA task.
INPUTS:

Instruction: There is a complex contain-
ing the following proteins <|proteinHere|>
<|proteinHere|> <|proteinHere|>. What is the
binding affinity (log Kd) between these proteins?
Carefully analyze the given protein features, based
on the definition of log Kd, answer this question
in the form of ‘Based on the given protein infor-
mation, the binding affinity of this compound is
log Kd = [predicted value].’ SUPPLEMENTARY
INFO: For protein 1, the topological information
in the PPI network of the protein with a cosine sim-
ilarity of 0.99 is <|graphEmbeddingHere|>. For
protein 2, the topological information in the PPI
network of the protein with a cosine similarity of
0.8 is <|graphEmbeddingHere|>. For protein 3,
its topological information in the PPI network is
<|graphEmbeddingHere|>.

Protein 1: MKHHHHHHPMSDYDIPTTENLYFQGAMGT
NECLDNNGGCSYVCNDLKIGYECLCPDGFQLVAQRRCEDI
DECQDPDTCSQLCVNLEGGYKCQCEEGFQLDPHTKACK

Protein 2: SIPWNLERITPPRYRADEYQPPDGGSLVE
VYLLDTSIQSDHREIEGRVMVTDFENVPEEDGTRFHRQAS
KCDSHGTHLAGVVSGRDAGVAKGASMRSLRVLNCQGKGTV
SGTLIGLEFIRKSQLVQPVGPLVVLLPLAGGYSRVLNAAC
QRLARAGVVLVTAAGNFRDDACLYSPASAPEVITVGATNA
QDQPVTLGTLGTNFGRCVDLFAPGEDIIGASSDCSTCFVS
QSGTSQAAAHVAGIAAMMLSAEPELTLAELRQRLIHFSAK

DVINEAWFPEDQRVLTPNLVAALPPSTHGAAGTAAASHHH
HHH

Protein 3: MKGSKGSKGSKPMSAEAPEHGTTATFHRC
AKDPWRLPGTYVVVLKEETHLSQSERTARRLQAQAARRGY
LTKILHVFHGLLPGFLVKMSGDLLELALKLPHVDYIEEDS
SVFAQ

PPI network Index: 6091, 7833, 1781
OUTPUTS: Based on the given protein infor-

mation, the binding affinity of this compound is log
Kd = 8.7.

B More experimental results

B.1 Detailed experimental data for MA task
Refer to Figure 4.

B.2 Examples from Group 6 in the MA task
Refer to Figure 5.

B.3 More details on the comparison methods
based on PPI network

Refer to Table 9.

C More Related work: Injecting Graphs
to Large Language Model

Graph-structured data can also be considered a type
of multimodal data, and the approach of injecting
multimodal features into LLMs is equally appli-
cable to graph data. For example: GraphLLM
(Chai et al., 2023) uses Prefix-tuning (Li and Liang,
2021) to prepend graph features to the input of
LLaMA (Touvron et al., 2023). GIT-Mol (Liu et al.,
2024b) and Molca (Liu et al., 2023): These mod-
els use Q-former (Li et al., 2023) to align graph
features with LLMs. The Q-former helps in bridg-
ing the gap between graph representations and the
input space of LLMs. InstructMol (Cao et al.,
2023) employs a mapping matrix W to map the
encoded features of molecular graphs into the in-
put space of LLMs. GraphTranslator (Zhang et al.,
2024) uses a Transformer-based Translator Mod-
ule (Vaswani, 2017) to convert node features of
the graph into learnable token embeddings. These
methods demonstrate how graph data can be in-
tegrated into LLMs, leveraging the strengths of
both graph structures and large language models
to handle complex, multimodal information. This
integration not only improves the models’ ability
to understand and process graph data but also ex-
tends their applicability to a broader range of tasks
involving networked data.
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Figure 4: Detailed experimental results for MA task on PDB2020.

Figure 5: The training data and prediction results of the complex containing 6 unique sequences.
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Sequence Number Train Number Test Number MAE PCCs

2 603 150 0.7 0.69
3 195 58 0.81 0.73
4 513 115 0.77 0.75
5 136 27 1.04 0.52
6 280 83 1.04 0.47
7 30 8 1.17 0.58
8 161 42 1.04 0.63
9 32 9 1.08 0.8
10 80 20 0.74 0.91
11 27 4 1.26 0.57
12 91 20 0.97 0.51
13 2 0 N\A N\A
14 21 5 1.9 0.67
15 9 2 2.08 N\A
16 19 4 1.02 -0.32
17 10 0 N\A N\A
18 21 3 1.05 0.84
19 0 1 0 N\A
20 7 4 1.95 0.5
21 7 3 0.62 0.92
22 4 2 0.68 N\A
23 3 2 0.19 N\A
24 11 2 1.29 N\A
26 1 1 0.24 N\A
27 1 0 N\A N\A
28 1 0 N\A N\A
29 1 0 N\A N\A
30 1 0 N\A N\A
37 1 0 N\A N\A
45 1 1 1.29 N\A
48 1 0 N\A N\A
54 1 0 N\A N\A
55 1 0 N\A N\A
59 1 0 N\A N\A
63 1 0 N\A N\A
72 1 0 N\A N\A

Table 8: Experimental results of inputting all sequences of the complex in the MA task.

Model
SHS27k SHS148k

random dfs bfs random dfs bfs

GNN-PPI 87.81 71.66 66.98 90.48 76.81 71.78

GNN-PPI/R
40.53 43.19 42.52 39.48 40.96 41.42

47.28 ↓ 28.47 ↓ 24.46 ↓ 51.00 ↓ 35.85 30.36 ↓
HIGH-PPI 76.62 71.69 66.75 72.21 77.32 60.08

HIGH-PPI/R
41.51 40.06 39.87 42.81 51.06 35.94

35.11 ↓ 31.63 ↓ 26.88 ↓ 29.40 ↓ 26.26 ↓ 24.14 ↓
MAPE-PPI 88.91 71.98 70.38 92.87 79.10 74.29

MAPE-PPI/R
76.84 51.69 55.21 85.96 61.45 56.68

12.07 ↓ 20.29 ↓ 15.17 ↓ 6.91 ↓ 17.65 ↓ 17.61 ↓

Table 9: Comparison of PPI network-based methods on the mPPI task with and without removing test edges.
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