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Abstract

Tree of Thoughts (ToT) enhances Large Lan-
guage Model (LLM) reasoning by structuring
problem-solving as a spanning tree. However,
recent methods focus on search accuracy while
overlooking computational efficiency. The
challenges of accelerating the ToT lie in the
frequent switching of reasoning focus, and the
redundant exploration of suboptimal solutions.
To alleviate this dilemma, we propose Dynamic
Parallel Tree Search (DPTS), a novel paral-
lelism framework that aims to dynamically op-
timize the reasoning path in inference. It in-
cludes the Parallelism Streamline in the gen-
eration phase to build up a flexible and adap-
tive parallelism with arbitrary paths by cache
management and alignment. Meanwhile, the
Search and Transition Mechanism filters po-
tential candidates to dynamically maintain the
reasoning focus on more possible solutions
with less redundancy. Experiments on Qwen-
2.5 and Llama-3 on math and code datasets
show that DPTS significantly improves effi-
ciency by 2-4x on average while maintain-
ing or even surpassing existing reasoning algo-
rithms in accuracy, making ToT-based reason-
ing more scalable and computationally efficient.
Codes are released at: https://github.com/yifu-
ding/DPTS.

1 Introduction

The advent of OpenAl-ol (Jaech et al., 2024),
a reasoning large language model, has sparked
significant interest in the academic community.
A key factor behind its success is the Chain-of-
Thought (CoT)-based reasoning technique (Wei
et al., 2022; Chu et al., 2023; Liu et al., 2025),
which improves model’s reasoning ability by
breaking complex problems into explicit inter-
mediate steps. Building upon this, the Tree of
Thoughts (ToT) (Yao et al., 2023) framework has
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(b) Accuracy and efficiency comparisons across tree search
algorithms on various models and datasets.

Figure 1: (a) The demonstration of challenges. (b) The
experimental results.

been introduced to further elevate LLMs’ reason-
ing capacities, and be widely used in multi-step
reasoning tasks (Plaat et al., 2024). ToT restruc-
tures reasoning as a tree search process and em-
ploys search algorithms, such as Monte Carlo
Tree Search (MCTS) (Chaslot et al., 2008; Xie
et al., 2024; Yao et al., 2024a), to construct a
tree-like structure that explores various reasoning
pathways, leading to more refined and accurate re-
sponses (Sprueill et al., 2023; Zhang et al., 2025).
However, current ToT approaches predominantly
focus on improving search accuracy while over-
looking computational efficiency (Xie et al., 2024;
Cheng et al., 2024; Zhao et al., 2024). We con-
clude two significant challenges that complicate
the acceleration of ToT.

The first challenge arises from the frequent
switching of reasoning focus in traditional sequen-
tial tree search, making it difficult to effectively
parallelize (Snell et al., 2024). Unlike conven-
tional deep learning inference that is compatible
with end-to-end parallelism, tree search has irreg-
ular computational trajectories. As shown in Fig-
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ure 1a Challenge 1, it frequently switches among
paths, including retrospect and recursion behaviors
which complicates the parallelism (green trajec-
tory). For example, if parallelizing nodes 6 and 2
in one generation, the different context lengths and
KV cache require additional processing. Moreover,
frequent switching also tends to yield shallow ex-
ploration (Wang et al., 2025). Due to the limited
time and memory budgets, more explored paths
mean less exploitation in deep paths.

The second challenge stems from the redundant
explorations on suboptimal solutions (Li et al.,
2024b; Besta et al., 2024). Previous tree search
methods fail in identifying the less potential path
and terminating it timely (Wan et al., 2024a). Meth-
ods like MCTS attempt to balance the exploitation
and exploration paths during node selection, but
the selected nodes continue to roll out till the termi-
nation conditions (time or token limits) even with
small prior confidence (Xie et al., 2024). For ex-
ample, dark nodes in Figure 1a Challenge 2 have
higher confidence. Node 3 with a lower confidence
than node 5 will be explored earlier (pink trajec-
tory). However, we observe that paths with low
prior confidence have less probability of reaching
the optimal solution, as illustrated in Section 3.2.

To address these challenges, we propose a novel
and efficient tree search framework, DPTS (Dy-
namic Parallel Tree Search). This framework
implements parallelized tree search and optimizes
it by dynamically adjusting reasoning focus during
the tree growing, thereby improving computational
efficiency. It consists of two key components for
both the generation and selection phases. (1) DPTS
implements a Parallelism Streamline tailored for
LLM reasoning in the generation phase. It facili-
tates the rollout for arbitrary paths in parallel, al-
lowing the expanded nodes to be rearranged at each
step. Additionally, we carefully engineer cached
data collection and context alignment, paving the
way for parallelized inference with varying path
length and node selection. (2) Building on this, to
prevent excessive exploitation and focus the reason-
ing on more potential paths, we introduce a Search
and Transition Mechanism in the selection phase. It
dynamically balances the exploitation-exploration
paths by the bidirectional transition, i.e., Early Stop
(Exploitation — Exploration), Deep Seek (Explo-
ration — Exploitation), allowing the model to fo-
cus on the most promising solutions and mitigate
inefficient exploitation on suboptimal solutions.

Our work provides valuable insights into acceler-

ating the ToT for LLM reasoning, paving the way
for future work to solve real-world challenges. Our
contributions can be concluded as follows:

* We propose the DPTS framework, which
solve the frequent switching and redundant ex-
ploration issues in previous tree search meth-
ods for LLM reasoning.

* The Parallelism Streamline provides a flexi-
ble and efficient generation in node parallel,
which bridges the gap between the sequential
tree structure and parallelized inference.

* The Search and Transition Mechanism ex-
ploits more promising solutions and reduces
unnecessary exploitation, ensuring that high-
confidence nodes receive deeper reasoning.

* Experiments shows that DPTS reaches the
best solution with less inference time across
various models and widely used reasoning
datasets, as plotted in Figure 1b.

2 Related Work

Reasoning with LLMs. LLMs have evolved
from System 1 tasks (e.g., translation) (Brown
et al., 2020) to System 2 reasoning (e.g., math,
logic) (Kojima et al., 2022). CoT (Wei et al., 2022)
enhances multi-step reasoning, with variants like
Self-Consistent CoT (Wang et al., 2022), but its
exploration scope remains constrained, limiting its
effectiveness. (Chu et al., 2023). Furthermore,
ToT (Yao et al., 2023) enables multi-path explo-
ration, leveraging MCTS (Chaslot et al., 2008) for
backtracking and heuristic rollouts (Wan et al.,
2024b; Wang et al., 2024a). However, MCTS
remains computationally expensive, with limited
work on acceleration methods.

LLM Inference Acceleration. While LLM in-
ference has been optimized for linear decoding (Lin
et al., 2024), tree-structured reasoning remains un-
derexplored (Li et al., 2024a). Approaches like
Deft (Yao et al., 2024b) optimize prefix sharing,
while others use self-consistency for early stop-
ping (Li et al., 2024b). Recent work such as
SEED (Wang et al., 2024b) explores speculative de-
coding by parallelizing draft generation with small
models. In conclusion, efficient tree search for
LLM reasoning remains an open challenge.

We have included a more detailed discussion of
related work in Appendix D.
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Figure 2: Statistics for total switch (left) and switch
from the best path to the suboptimal (right).

3 Method Rationale

In this section, we present empirical findings that
highlight the key challenges of tree search in LLM
and provide the rationale behind our method. First,
the difficulty in parallelism hinders the fully utiliza-
tion of computational resources, preventing effi-
cient deep reasoning (Sec. 3.1). Second, frequent
switch between paths and excessive exploitation
of low-confidence paths results in shallow think-
ing and redundant rollouts, wasting effort on fewer
possible candidates (Sec. 3.2).

3.1 Difficulty in Parallelism

Tree search is the key for deep LLM reasoning,
but its sequential nature of tree structures presents
challenges for efficient GPU parallelism. It inher-
ently exhibits retrospective and recursive behaviors,
causing inefficient execution when different paths
vary in depth and termination points. Even if each
node is constrained to generate the same number
of tokens, the focus switching between different
reasoning trajectories and the diverse path lengths
makes it incompatible with the end-to-end paral-
lelism on GPUs. The detailed illustrations for this
phenomenon can be found in Appendix A.2.

3.2 Frequent Switching & Redundant
Exploration

The focus switching between paths also makes
the tree search fail in focused reasoning trajec-
tory (Wang et al., 2025), which prevents deep think-
ing and leads to a tendency of shallow exploitation.
We quantify the switch times of the reasoning focus
on each sample in the Math500 dataset. Figure 2
counts the total switch, which is about 36.7 on av-
erage. As well as the switch from the best path to a
suboptimal or incorrect one, which is up to 3 times
for a single sample. It demonstrates the instabil-
ity of the tree search algorithm in maintaining a
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Figure 3: Probabilities with reordered samples of those
have prior confidence below 6.,(A = 1) in Eq. (2) and
do not terminate with the highest reward score (yellow),
and paths that are not the earliest best path (orange),
which means there is already at least one path that has
terminated with the same reward score.

focused reasoning trajectory.

The lack of early termination in existing tree
search algorithms leads to excessive exploitation
and redundant searching. Observations in Figure 3
show that low-confidence nodes rarely contribute
to the best solutions, either terminated with sub-
optimal results (yellow) or failing to be the first
to reach the best path (orange). The average prob-
ability of the suboptimal results brought by low
confidence is 91.3%, while the probability of those
nodes being the earliest best path is only 6.2%. It
suggests that low-confidence nodes have little po-
tential to reach the best solution, it is even hard to
be the first one. It means that most low-confidence
nodes have less contribution to the final results but
waste computational resources.

These findings emphasize the importance of
maintaining the focus on deep reasoning and prun-
ing low-confidence paths for efficient inference.

4 Proposed Method

To address the aforementioned challenges, we pro-
pose an innovative framework that allows for ef-
ficient reasoning, termed Dynamic Parallel Tree
Search (DPTS). In the generation phase, the Paral-
lelism Streamline in Sec. 4.1 supports fine-grained
and flexible paralleled expansion for arbitrary paths.
In the selection phase, the Search and Transition
Mechanism in Sec. 4.2 enables less redundant ex-
ploration by identifying the highly potential solu-
tions to focus reasoning.

4.1 Parallelism Streamline

As illustrated in Figure 4, We fully parallelize the
tree search process in our framework with three
main components: Tree Structure Building, KV

11235



Next cycle |
1

1
Pee ID P cu KVr Seqtr i " Exploit |
] > Child nodes =
inherit' == >‘ & @~----—-- Cizles _____ _>‘
Past KV 1 Sequence 1 : = ® proceed
=
Past KV 2 Sequence 2 ' - ] Q ‘ .
Input sequence g & % ¢’ Oas
Cached Past KV S = . . oK
= & Child nodes ep S¢
o g ° De
LLM = N °
g ¢ <6
| ALKV i All tokens 2 L~ Ves
Voo perememee-l Voo | & Early Stop
PastKV 1 1 Sequence 1 1 Store T
\ | in new .
PastKV2 Sequence2 | nodes Filtered Parallel
""""""""""" Queue P

Parallelism Streamline

Search and Transition Mechanism

Figure 4: Overview of the proposed DPTS framework. The left part demonstrates the Parallelism Streamline, while
the right part illustrate the proposed Search and Transition Mechanism.

Cache Handling, and Adaptive Parallel Gener-
ation. Each component is designed to optimize
memory usage and parallel execution during the
reasoning process.

4.1.1 Tree Structure Building

The tree search framework relies on a tree struc-
ture where each node represents a reasoning state.
Specifically, the node data structure includes the
following elements:

* Node ID: A unique identifier for each node.

* Parent Node: A reference to the parent node,
establishing the hierarchical structure of the tree.

¢ Prior Confidence: The confidence of the node,
based on prior knowledge and model predictions.

* Key-Value Cache (KV"): The key-value cache
specific to this node, storing intermediate results
during the reasoning process.

» Token Sequence (Seq'~"): The complete token
sequence from the root node to the current node,
representing the reasoning path taken so far.

The key challenge lies in managing the KV
cache (Floridi and Chiriatti, 2020). Instead of stor-
ing the entire sequences, each node only retains its
own KV cache. This significantly reduces memory
usage, particularly when dealing with a large num-
ber of nodes in the tree. By keeping each node’s
cache isolated, we avoid redundant memory us-
age while ensuring that each node has necessary
information to continue reasoning process.

4.1.2 KV Cache Handling

The KV cache for each node is stored separately,
and during parallel execution, these caches need to
be collected and concatenated for efficient paral-
lelism. The key challenge is that tree search paths
have varying lengths, which means that both the
KV caches and the input sequences for different
nodes will vary in size and be hard to parallel.

To address this, we use a simple but straight-
forward padding technique to ensure that all se-
quences have consistent lengths before being pro-
cessed. Specifically, for nodes with shorter KV
caches, we apply left padding with zeros. Simi-
larly, input sequences are padded with a predefined
padding token to match the longest sequence in the
batch. This padding ensures that all nodes are pro-
cessed in parallel with consistent sequence lengths
and corresponding KV cache, allowing for effi-
cient batch processing across the tree search. The
details of padding and concatenating are given in
Appendix Eq. (3) and (4).

Besides data collecting and preparation, we also
clean up the useless KV cache either the leaf node
is terminated, or all the children’s branches are
exploited and finished. In this way, we release the
memory, making room for new reasoning paths.

4.1.3 Adaptive Parallel Generation

To further utilize the computational resources, we
introduce an adaptive parallelism queue, which
dynamically adjusts the number of parallel paths
based on the available GPU memory. The paral-
lelism queue size, denoted | P/, is used to restrict
the number of exploitation and exploration paths in
Sec. 4.2.1. It is calculated by the available and the
peak memory usage during previous generations:

Omax — Oinit

Opeak - Oinit7
where Opgy is the total memory budget, Opeak Tep-
resents the peak memory usage from the previous
generation, and Ojy;; is the memory consumption
during model initialization. As the tree grows, the
memory occupation of intermediate results contin-
ues to increase even with KV cache cleaning. Since
memory overflow is one of the termination condi-
tions, it is important to adaptively adjust the parallel
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number, preventing excessive memory allocation
and early termination.

After the generation phase, the newly generated
sequences and KV caches are stored based on the
tree width. The sequences for each node are com-
pletely stored, while the KV caches are stored par-
tially with only the new tokens generated at this
step (details are provided in Appendix (5)). The
new nodes are then added to the candidate node
pool NV, where they will be available for subsequent
selection processes in the tree search.

In summary, our Parallelism Streamline is a well-
structured streamline to optimize both memory us-
age and parallel execution. The overall process is
showcased in Algorithm 1. More details can be
found in Appendix B.1 due to the limited length.

Algorithm 1 Algorithmic process DPTS

Input: LLM generation function lim(x), PRM re-
ward function prm(x), Query ¢, Candidate
Node Pool N = &, Parallel Queue P = &,
Exploit Node Proportion p, Tree Width w.

Output: End node with best path reward n*.

// Step 1: Initialize the root node

1: 7 < generate_node(q, None)
22 N« NU {T‘}
3: while within computational budget do
4: Py < Eq. (1)
/I Step 2: Perform searching
5: P « Search(P, Py, N) (Algorithm 2)
6 eesa eds — Eq (2)

/I Step 3: Parallelism by Eq. (3) and (4)

7. n < generate_node(Seq®! KVa)
/I Step 4: Update new nodes by Eq. (5)
// Step 5: Terminate and reward

8: N <« Reward(P, N) (Algorithm 4)
// Step 6: Perform transition

9: P < Transition(P, O, 045) (Algorithm 3)

10: end while

11: return maxXeewad(Vn € N)

4.2 Search and Transition Mechanism

In this section, we introduce the Search and Tran-
sition Mechanism in DPTS, which is a hybrid
search algorithm that balances exploitation and
exploration through separate management and dy-
namic conversion.

4.2.1 Search

The Search Mechanism aims to balance exploration
and exploitation by dynamically partitioning the

nodes in parallel queue P into two categories: ex-
plore nodes and exploit nodes.

As illustrated in Figure 4 (right), these nodes are
selected from the candidate node pool N. The par-
tition ratio p can be manually adjusted according
to the task and memory budget. At initialization,
the top p|P| highest-scoring nodes are assigned as
exploitation nodes, while the remaining (1 — p)|P|
nodes are assigned as exploration nodes. While
during searching progress, the proportion of the
two types of nodes dynamically fluctuates based
on the transition mechanism in Sec. 4.2.2. The pri-
mary distinction between these two nodes lies in
their origins and roles during the search process.

Exploitation Nodes The exploitation nodes are
primarily inherited from parent exploitation nodes,
focusing on refining the most promising paths
in the search space. When a child node’s confi-
dence exceeds a predefined threshold, it inherits
the status of its parent exploitation node and con-
tinues that path. This inheritance ensures that the
most promising paths are deepened and further re-
fined. Additionally, when the number of exploita-
tion nodes falls below a predefined threshold, new
high-confidence candidate nodes from the pool N
are selected to fill the gap, ensuring that the num-
ber of exploitation nodes remains adequate for the
search process. This strategy enables the exploita-
tion of high-potential paths while maintaining the
focus on areas with high confidence.

Exploration Nodes In contrast to exploitation
nodes, the exploration nodes are not inherited from
previous nodes but are dynamically selected from
the candidate nodes pool. These nodes are respon-
sible for discovering new paths that may have high
potential but low current confidence in the search
space. At each reasoning step, the exploration
nodes are reselected from the candidate pool IV,
choosing the highest-confidence nodes that are not
already assigned as exploitation nodes. The dy-
namic re-selection of exploration nodes allows the
search process to adapt to changing circumstances
and uncover new regions of the search space that
may lead to better solutions.

4.2.2 Transition

While the Search Mechanism ensures a balance be-
tween exploration and exploitation, the redundant
issue is not entirely mitigated. One example is that
the initial exploitation nodes are not guaranteed to
be the optimal solution. However, they only stop

11237



exploiting till reach the termination condition. An-
other issue occurs when high-confidence nodes are
assigned as exploration nodes, but they will wait
for the computation resources and do not roll out
till the previous paths terminate.

To address these issues, we introduce the Transi-
tion Mechanism, which consists of two main strate-
gies: Early Stop (Exploitation — Exploration) and
Deep Seek (Exploration — Exploitation). As illus-
trated in Figure 4 (middle), these strategies allow
an evolving search space with node transits be-
tween the two statuses. It helps the tree maintain
focused reasoning, ensuring the efficient allocation
and utilization of limited computational resources
throughout the whole search process.

Early Stop (Exploitation — Exploration) The
Early Stop (Yao et al., 2007) strategy allows rel-
atively low-confidence exploitation nodes to tran-
sition into explore nodes, eliminating redundant
exploitation on suboptimal paths. During the ex-
pansion process, if the best child node of an explore
node has a confidence lower than a certain thresh-
old 0., the child node will be excluded from the
queue P in the next cycle. This prevents further
exploration of paths that are unlikely to lead to
optimal solutions, saving computational resources.
Conversely, if the child node’s confidence exceeds
fes, it inherits the parent’s status and continues to
explore in the next cycle. This mechanism ensures
that only the most promising explore nodes con-
tinue to expand, optimizing both exploration and
resource usage. The threshold 6. is defined as
follows:

Nes ﬁ oo, ift <t
ees = ieN (2)
max ¢;, otherwise
ieN
where A is the set of previously expanded nodes,
c; represents the confidence of node 4, A is a coef-
ficient that adjusts the threshold, ¢ is the number of
currently terminated paths, and ¢* is a predefined
threshold after which 0. is adjusted.

Deep Seek (Exploration — Exploitation) The
Deep Seek strategy addresses the issue of ineffi-
cient over-exploration and shallow thinking, ensur-
ing promising exploration nodes can be dug deeper.
Specifically, exploration nodes with confidence ex-
ceeding a threshold 045 with A\gs are promoted to
exploitation nodes. As a result, the number of
exploitation nodes may temporarily exceed p| P|.

But as more high-confidence nodes are promoted,
0o increases, and thus more exploration nodes are
stopped under the Early Stop strategy. This cre-
ates a dynamic balance between exploration and
exploitation throughout the search process.

In a word, the proposed Search and Transition
Mechanism in DPTS effectively manages the trade-
off between exploitation and exploration with dy-
namic and bidirectional transition. Detailed algo-
rithms in this part can be found in Appendix B.1.

5 Experiments

We conduct extensive experiments to evaluate the
efficiency of the DPTS framework. We benchmark
its performance against various search algorithms
across multiple models and datasets to ensure a
comprehensive analysis.

5.1 Settings

Models. We include Qwen2.5-Instruct models
with 1.5B, 7B, 14B and 72B variants (Yang et al.,
2024), and LLaMA-3.2-Instruct models with 3B
and 8B variants (Touvron et al., 2023) to cover
various model sizes.

Datasets. We conduct our experiments on both
math and code tasks. The evaluation on math
datasets include Math500 (Hendrycks et al., 2021)
and GSMS8K (Cobbe et al., 2021), which are widely
used for mathematical problem-solving. And the
coding capability is tested on LiveCodeBench-
v1.0 (Naman Jain, 2024), which is also a commonly
used code generation benchmark.

Comparison Methods. We compare DPTS
against three widely used search algorithms: Monte
Carlo Tree Search (MCTS) (Sprueill et al., 2023) ,
Best-of-N (Cobbe et al., 2021) , Beam Search (Yao
et al., 2023). Since efficient tree search algorithms
have recently regained attention after the emer-
gence of LLM reasoning, the strong baselines are
limited. As a result, we primarily compare DPTS
against these typical and well-established search
algorithms to demonstrate the effectiveness of our
method. An introduction of the comparison meth-
ods and other details about experimental settings
are provided in Appendix C.

5.2 Comparisons on Search Algorithms

We conduct a comprehensive comparison across
different search algorithms on various models and
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Table 1: Comparisons across existing search algorithms
on LLM reasoning tasks under math datasets.

Table 2: Performance comparison on the code genera-
tion task under LiveCodeBench-v1.0 (easy subset).

Math500 GSMSK

Model  Algo. Acc. Time (s) Acc. Time (s)
MCTS 56.6 11737 75.1 73.28

Qwen-2.5 Best-of-N 52.6 89.87 70.1 33.37
1.5B Beam 524 10458 715 41.27
DPTS 59.2 4510 752 18.32

MCTS 752 12146 89.6 79.68

Qwen-2.5 Best-of-N 71.6 91.29 88.2 34.89
7B Beam 724  106.89 86.7 36.49
DPTS 76.2 5350 894 19.95

MCTS 48.6 111.80 64.0 57.19

Llama-3  Best-of-N 46.4 91.34  57.1 27.27
3B Beam 452 104.36 584 28.27
DPTS 50.8 4775 67.8 27.74

MCTS 542 14336 695 69.74

Llama-3 Best-of-N 49.8 122.63 67.6 33.48
8B Beam 49.6 14221 68.3 34.51
DPTS 554 3798 68.2 17.82

sizes. We emphasize the search efficiency of our
method while maintaining accuracy.

Efficiency Comparisons. Results in Table 1
show that DPTS significantly reduces inference
time compared to other search methods across
various models and datasets, demonstrating supe-
rior efficiency. On Math500, DPTS achieves the
lowest inference time across all models. Particu-
larly, in Qwen-2.5, DPTS reduces the search time
from 117.37s (MCTS) to 45.10s in the 1.5B model,
achieving nearly a 2.6 x speedup, and reduces from
121.46s (MCTS) to 53.50s in 7B model, acceler-
ating nearly 2.2x. The impact is even more pro-
nounced on the GSM8K, where DPTS achieves a
3.9x speedup from 79.68s to 19.95s in Qwen-2.5-
7B. And DPTS even only requires 17.82s for each
sample using Llama-3-8B, also 3.9 x. It forcefully
suggests that DPTS effectively mitigates redundant
rollouts and optimizes search efficiency. We high-
light that, especially on the more challenging tasks,
the Early Stop plays a crucial role. Without it,
trees often run till timeout, significantly increasing
inference time. Our approach allows the search
tree to terminate earlier within a limited number of
expansions, effectively reducing computation time.

Accuracy Comparisons. DPTS demonstrates
strong and generalizable performance across both
mathematical reasoning and code generation tasks.
In math tasks, DPTS maintains the searching qual-
ity and even outperforms the existing algorithms
with half or even less of the reasoning time. On the
Math500 dataset, DPTS achieves the highest ac-
curacy in all experiment cases, surpassing MCTS,

Method Pass (%) Pass@1 (%) Avg. Time (s)
MCTS 43.7 28.8 230.4
Best-of-N 40.3 27.1 148.2
Beam Search 41.5 27.8 165.7
DPTS 41.5 29.7 127.2

Table 3: Comparison of accuracy and average time on
larger models. 250 seconds limit for Qwen2.5-72B and
150 seconds limit for Qwen2.5-14B per sample.

Model Method Acc. Time (s)
Qwen-2.5 MCTS 76.0 135.0
14B DPTS 78.4 81.8
Qwen-2.5 MCTS 67.0 248.2
72B DPTS 74.7 200.8

Best-of-N, and Beam search. Notably, for Qwen-
2.5-1.5B, DPTS improves accuracy from 56.6%
(MCTS) to 59.2%. A similar trend is observed on
GSMSK, where DPTS either matches or slightly
improves accuracy over MCTS, and surpasses Best-
of-N and Beam Search by a wide margin. On
Llama-3-3B, DPTS has 67.8% accuracy, outper-
forming the previous best MCTS by 3.8% with
only 48.5% time consumption.

To estimate the generalizability of DPTS, we
conduct experiments on a code generation dataset,
LiveCodeBench-v1.0 benchmark, using its “easy”
subset. We utilize Qwen2.5-coder-7B-Instruct as
the generation model and skywork-reward-llama-
3.1-8B as the reward model. As reported in Table 2,
DPTS achieves a higher Pass@1 score compared
to standard MCTS with significantly less time
(14.2%), indicating an improved ability to iden-
tify optimal solutions within the time constraints.
These results highlight that DPTS offers robust
quality and efficiency for complex reasoning and
generation tasks across domains.

Generalization on Larger Models. To fur-
ther evaluate the scalability of our method un-
der larger language models, we conduct experi-
ments using Qwen2.5-72B-Instruct and Qwen2.5-
14B-Instruct as generation models on the Math500
dataset. Given the increased computational cost
associated with these models, we extend the per-
sample inference time limits to 250 seconds for the
72B model and 150 seconds for the 14B model.
The results are shown in Table 3. We observe that
standard MCTS often runs until the time or memory
limit due to the absence of early stopping mech-
anisms. This behavior is particularly severe for
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Table 4: Performance with Qwen2.5-Math-PRM-7B as
reward model tested on Math500. DPTS consistently
improves both accuracy and efficiency over MCTS.

Model Method Acc. Time (s)
Qwen-2.5 MCTS 75.0 133.9
14B DPTS 77.7 86.1
Llama-3 MCTS 52.8 101.6
8B DPTS 564 52.8

larger models. For instance, the 250-second limit
appears insufficient for the 72B model to complete
a meaningful search using MCTS, leading to sub-
optimal accuracy. In contrast, our DPTS achieves
higher accuracy (74.7 vs. 67.0 on 72B and 78.4 vs.
76.0 on 14B) within the same time constraints, due
to its capability of focusing the search on promis-
ing trajectories. Notably, DPTS often terminates
the search early, contributing to lower average in-
ference time. These demonstrate that DPTS is also
scalable when applied to larger models.

Robustness to PRM Configuration. We exam-
ine the impact of using different Process Reward
Models (PRMs) on the performance of our DPTS
algorithm. Without specified, our default PRM is
the math-shepherd-mistral-7b-prm in (Wang et al.,
2023). We adopt the default configuration specified
in official repository'. Detailed introduction can
be found in Appendix C.2. To further assess the
robustness of our approach, we also replace the
PRM with Qwen2.5-Math-PRM-7B and evaluate
on Math500 dataset with two generation models:
Qwen2.5-14B-Instruct and LLaMA?3.2-8B-Instruct.
Results are summarized in Table 4. It shows that
our method consistently achieves better accuracy
and efficiency across different PRMs and genera-
tion models. These results highlight the robustness
and generalizability of DPTS under varying reward
estimation strategies.

5.3 Ablation Study

To analyze the contribution of each component
within the DPTS framework, we conduct an abla-
tion study on Qwen2.5-1.5B-Instruct with Math500
in Table 5. In this study, we use the classical MCTS
as the baseline and incrementally integrate our pro-
posed techniques to evaluate their impact.

We begin with the original MCTS (non-parallel,
|P| = 1) as the baseline. It spends the most time
per sample and has the largest best index 10.45. We

"https://huggingface.co/peiyi9979/math-shepherd-
mistral-7b-prm/blob/main/config.json

Table 5: Ablation study of each component in DPTS
framework. “AP”: adaptive parallelism. “S”: Searching.
“T”: Transition. “Best Index”: The average index of
terminated path leads to the best solution.

Algo. |P| Acc. Time(s) BestIndex
Baseline 1 566  117.37 10.45
Baseline AP 58.8  108.06 8.27
+S AP 582 76.81 4.66
+T AP 57.0 32.22 2.51
+S+T AP 592 45.10 4.17

then apply Parallelism Streamline with Adaptive
Parallel Generation (AP), and accuracy improves.
It shows that the trees are able to grow faster and
larger to include a better solution with parallelism.

Next, we assign the node status as exploit or ex-
plore nodes for each expansion with Search Mech-
anism, denoted as “+S | AP” in Table 5. The search
process becomes significantly more structured and
targeted, leading to a boost in efficiency. The time
of each sample saves by 31.24s (28.9%.). It finds
the best path within an average of 4.66 terminated
paths, much fewer than Baseline AP.

Moreover, when only applying the Early Stop
strategy in the Transition Mechanism (denoted as
“+T | AP), we obtain fast inference with much less
time and paths. However, since we only use the
exploitation nodes without exploring the possible
branches, the accuracy is relatively low. Therefore,
we claim that the Search and Transition Mechanism
should be used as a whole: the Search mechanism
provides different node statuses for exploitation
and exploration, while the Transition mechanism
makes them flexibly change and update.

Finally, we combine our Search and Transition
Mechanism (denoted as “+S+T | AP”), enabling
Early Stop and Deep Seek. It shows the best search
results in accuracy and efficiency. It demonstrates
that DPTS is efficient in quickly identifying opti-
mal solutions and conducting deep reasoning.

Results show that each component of DPTS con-
tributes significantly to improving inference speed
and reasoning accuracy, making it a robust and
scalable framework for parallel tree search.

5.4 Hyperparameter Analysis

We conduct a hyperparameter study in Table 6 on
the thresholds 6.5 and 45 in the Transition mech-
anism. When ¢ < t*, the threshold 6 follows
the mean-based strategy determined by A. When
t > t*, it turns to a max-based one. Empirically, we
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Table 6: Hyperparameter \os and \qs in transition
thresholds 65 and 645. “ES (Early Stop) %" and “DS
(Deep Seek) % are the ratios of the node type transition
between the exploitation and exploration. More results
can be found in Appendix C.5.

Mes Aas Acc. Time(s) ES(%) DS (%)
1.0 1.0 53.0 47.59 41.4 10.5
09 09 58.6 43.30 15.6 20.9
0.8 0.8 58.0 46.33 8.1 239
0.6 06 574 4439 6.1 323
04 04 56.6 38.41 0 0.1
4.0
3.59
L 307
5 2.5
© 2.0
<
§ 1.51 Explore Path Count
1.0 Exploit Path Count
0.5 Sample Divider
0.0 y y . . .
20 40 60 80 100

Expanding Steps

Figure 5: Proportions of exploit and explore nodes
throughout the search process.

set t* = 5 to balance the flexibility and efficiency.

Experimental results demonstrate that our
method is robust to A\. We highlight that \.s and
Ads can be set differently based on the specific
task. But DPTS consistently works well around
A € [0.6,0.9]. It demonstrates that the Transi-
tion mechanism is effective in mitigating the re-
dundancy issue during search progress. However,
we notice that, if A is large, the ES transition may
be aggressive, which leads to unsatisfactory results
(e.g. A = 1.0). Meanwhile, if X is too small, it
degrades to all exploitation nodes, resulting in low
efficiency as well. Additional results are shown in
Appendix C.5, we observe that the method remains
effective across a wide range of hyperparameter
settings, i.e., settings within the range of [0.6, 0.9]
consistently yield improvements. Therefore, select-
ing a setting within this robust interval is relatively
straightforward and reliable.

5.5 Visualizations

To provide an intuitive understanding of the ef-
fectiveness of our proposed method, we present
visualizations of searching trajectories.

First, we analyze the dynamic changes in the
number of exploitation and exploration nodes
throughout the search process in Figure 5. The
Deep Seek transition temporarily increases the pro-
portion of exploit paths, allowing promising nodes

Early Stop

DPTS Tree 1 DPTS Tree 2 DPTS Tree 3

Figure 6: Visualization of DPTS Tree. The green boxes
are early stopped nodes based on their prior confidence
using our Early Stop mechanism, and the purple boxes
are the terminated nodes with posterior reward scores.

to receive deeper reasoning. However, as the thresh-
old 6.5 increases, exploit nodes are more likely
to reach the threshold and stop. As a result, the
number of exploit nodes naturally decreases, rein-
forcing a balance between exploitation and explo-
ration. This dynamic adaptation ensures that DPTS
stretches on the most promising branches under the
constraint of computational resources.

Second, we show the trees generated by DPTS
and analyze the search behavior in Figure 6. It
does not continue exploitation on low-confidence
nodes, effectively pruning unpromising branches
after shallow exploration. Additionally, the trees
are capable of stable reasoning focus, with deep
exploitation on promising paths. Therefore, the
generated trees exhibit a relatively narrow width,
as DPTS primarily expands nodes that are more
relevant to the optimal path and spend less time on
unnecessary regions. It demonstrates that DPTS en-
sures high-potential paths receive deeper thinking
within a limited time and memory budget.

6 Conclusion

We propose DPTS (Dynamic Parallel Tree Search)
that effectively enhances the computational effi-
ciency of LLM reasoning. DPTS introduces Par-
allelism Streamline, allowing efficient inference
with arbitrary path lengths and nodes. The Dy-
namic Search and Transition Mechanism mitigates
redundant rollouts and focuses on promising solu-
tions. Experiments on math and code benchmarks
show that DPTS achieves the highest reasoning ac-
curacy while delivering 2-4x speedup. Our work
offers valuable insights into optimizing computa-
tion for efficient LLM reasoning, strengthening
problem-solving capabilities to tackle real-world
challenges.
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Limitations

Our DPTS framework focuses on selecting and
refining the search paths, but does not involve
hardware design. Therefore, it is orthogonal to
low-level methods. For example, we can integrate
DEFT (Yao et al., 2024b) to reduce the data trans-
portation of the shared prefixes, leading to further
acceleration. Also, our method is validated only on
math reasoning tasks, and has not been tested on
other domains, such as coding or scientific prob-
lems. However, we believe its generalizable capa-
bilities make it applicable across a wide range of
fields. Additionally, we envision that this method
can also be applied to online training by improving
generation quality. We leave these attempts to our
future work.
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A More Observations of Motivation

A.1 Wasted Tokens and Expansions
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Figure 7: The proportion of tokens required for the best
path relative to the total tokens generated (left), and the
proportion of expansions on suboptimal paths relative
to the total number of expansions (right).

To better understand the inefficiencies caused
by frequent node switching, we conduct a statisti-
cal analysis on Qwen-2.5-1.5B with the Math500
dataset and evaluate the redundancy in token gen-
eration and node expansion.

Token redundancy analysis: In Figure 7(left),
we compare the total number of tokens generated
for each sample (blue line) against the number of
tokens required for the best path (yellow line). The
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samples are sorted in descending order primarily
by total token count and secondarily by best-path
token count. Our analysis shows that the total to-
ken count does not exhibit a strict multiplicative
relationship with the best-path token count, but
in general, the number of tokens required for the
best path is significantly lower than the total token
count. This suggests that traditional tree search
algorithms generate a large number of unnecessary
tokens during exploration.

Expansion redundancy analysis: We also exam-
ined the number of node expansions during tree
growth (Figure 7(right)). The blue line represents
the total number of expansions for each sample,
while the green line represents the number of ex-
pansions on suboptimal paths (i.e., nodes that do
not contain any part of the optimal solution). While
there is no strict multiplicative correlation between
these two metrics, the green line closely follows the
blue line, indicating that a significant proportion of
expansions occur on suboptimal paths. This further
supports the observation that traditional tree search
algorithms frequently explore unnecessary areas
before finding the best solution.

A.2 Examples of DFS and BFS Trees

LANA
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/AN
& Best paths
Diverse path length & /I\\
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DFS Tree 1 DFS Tree 2

Figure 8: Growth of two trees with DFS algorithm.

As illustrated in Figure 8, which shows two typ-
ical depth-first search (DFS) trees, we visualize
the node expansion process in layers based on tree
depth. The darker reddish-brown nodes represent
high-confidence nodes, while the lighter nodes in-
dicate lower-confidence ones. The arrows denote
parent-child relationships, where dark blue arrows
indicate later-generated nodes and light blue arrows
represent earlier-generated nodes.

From the figure, we can clearly observe the rea-
soning trajectory of tree search: starting from the
root node, the search prioritizes the child node with
the highest confidence, then recursively expands
deeper by selecting the most promising child node

at each level. This continues until a termination
condition is met, at which point the search back-
tracks and explores alternative paths from the root
node. Due to the nature of this process, different
paths vary significantly in their depth and termina-
tion points. Moreover, the next explored path does
not follow a strict spatial or hierarchical pattern
within the tree.

We also observe redundant exploration issues
in the right two branches. At tree depths 4/5, the
confidence scores of the expanded nodes are notice-
ably lower compared to previously explored nodes.
However, due to the inherent mechanics of depth-
first search (DFS), the algorithm continues expand-
ing these nodes until the termination condition is
met, even if the intermediate confidence scores re-
main consistently low. As a result, considerable
computation is wasted on redundant expansions
and token generations, with little contribution to
improving the final output quality.

Best paths

low [ high
earlier " later

| AN YA\
AAAA

BFS Tree 1
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Figure 9: Growth of two trees with BFS algorithm.

As illustrated in Figure 9, BFS results in a flatter,
more uniform, top-down expansion structure com-
pared to the trees observed in Figure 8. This behav-
ior creates two key inefficiencies: (1) Incomplete
reasoning before termination: In our experiments
on the Math500 dataset, a pure BFS approach re-
sulted in 178 (about 35.6%) of reasoning paths ter-
minating without generating an answer (e.g., Tree
1 in Figure 9). The algorithm explores many dif-
ferent areas of the tree but often fails to pursue any
one path deeply enough to reach a valid conclusion.
(2) Excessive expansions and token redundancy:
Even when BFS eventually finds a correct answer,
it tends to consume significantly more expansions
and tokens than necessary (e.g., Tree 2 in Figure 9).
The best path (highlighted in yellow arrows) has a
depth of only 4, yet before discovering this optimal
solution, BFS explores a large number of additional
nodes (light blue arrows), many of which do not
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contain any part of the optimal path.

B Formulas and Algorithms

B.1 Formulas in Parallelism Streamline

Data Collection and Preparation. Before ex-
ecuting parallel inference, we should collect
the input data that is stored in separate mem-
ory locations. Based on the Node Data
Structure (refer to Appendix B.1), which is
[id, parent, conf., KV", Seq'™~"], we need to con-
catenate the past KV caches and input sequences
of different nodes into single large batch matrices.
However, as discussed in Sec. 3, tree search paths
exhibit varying path lengths, meaning that both past
KV caches and context sequences have different
sizes. To handle the length disparity and support
arbitrary node parallelism, we apply padding for
shorter past KV and context sequence:

KV!™" = concat (KV"",--- , KV KV"),
paddingn - Omax(Vmgp|KV1Nm\)—\KV1N”|’
KV;;C? = concat (padding”, KVlN") )

KV = stack ([Vnep KViaf])

3)

where r and aj,as,... are the root node and
1%, 2”d, ... ancestors of n, respectively. 0y, is
a matrix of zeros with length [en. Similar to above,
the input sequences are also padded and stacked:

padding”™ = padding_token

max(Vpe plSeq'~")>

Seql});(i‘ = concat (Seqan7 padding”) ,
Seq“” = stack (VnepSeqé;é‘) ,

“)

where padding_token,., is a vector of the prede-
fined padding token id with length len. In this
way, the data is fed into the LLLM for parallel gen-
eration. Additionally, techniques like DEFT (Yao
et al., 2024b) are orthogonal to our DPTS and can
be integrated to identify and merge shared prefixes,
further optimizing inference efficiency.

Generation and Updating. After the generation
phase, we obtain new output sequences and past
KV caches. These are then partitioned based on
the tree width. Specifically, we segment past KV
caches and only store those corresponding to new
tokens. Output sequences are completely stored
rather than fragmented, due to the negligible mem-
ory overhead. For clearer demonstration, the output
of i node in P can be written as

KV" = n.past_kvy;; gy, Vi€ [1,.. . w]

1~mid

Seq = n.outputy,

. g ij ~onii
nii — [1@1, ni, KV"™ Seq!™" }
new 71 w
n = {n N ) }

)

where w is the tree width, n is the generation out-
put in parallel manner. If sequences were stored in
a fragmented manner, every inference step would
require additional collection and concatenation, in-
troducing unnecessary latency. This approach is
a trade-off between inference speed and memory
consumption. Newly generated nodes are then up-
dated into the candidate node pool N, making them
available for subsequent selection processes.

B.2 Algorithms for Searching and Transition
Mechanism

In the main text, due to paper length constraints,
we only present the overall process in Algo-
rithm 1, which connects the algorithms and for-
mulations within the framework, including Paral-
lelism Streamline and the Search and Transition
Mechanism.

In the above section, we provided the mathe-
matical formulation of the Parallelism Streamline.
In the following, we further supplement the algo-
rithmic details of Search, Transition, and Reward,
offering readers a clear and intuitive representation
of the algorithmic process.

Firstly, Algorithm 2 demonstrates the searching
mechanism. Specifically, during initialization or
when the number of nodes in the parallel queue P
is less than the maximum parallelism 7p, the algo-
rithm selects the 7p — | P| highest-confidence nodes
from the candidate node pool N as supplementary
nodes (Lines 8-9).

Then, the highest-confidence nodes are desig-
nated as exploit nodes (Line 12) until the propor-
tion of exploit nodes reaches the ratio p. The re-
maining selected nodes are assigned as explore
nodes. Finally, these newly selected nodes are
merged into P to prepare for the next cycle of
parallel expansion.

Next is the Transition Algorithm 3. After each
expansion, we iterate through all nodes in the par-
allel queue P and identify the best child node n*
for each node.
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Algorithm 2 Searching

Algorithm 3 Transition

Input: Parallel queue P, current parallel queue
size Tp, candidate node pool N.
Output: Updated P.
1: e1 <0
2: foralln € P do
3:  if n.mode= EXPLOIT then
4 e1 < e +1
5:  end if
6: end for
7: if |P| < 7p then
8 N’ + Descending N based on conf.
90 u<+ N'[:7p—|P|]
10 forallu € udo

11: if e; < p|P| then

12: u.mode < EXPLOIT
13: el < e;+1

14: else

15: u.mode < EXPLORE
16: end if

17:  end for

18: P+~ PUu
19: end if

20: return P

Then, based on the category of node n, we com-
pare n* with the corresponding threshold 6. If the
early stop condition is not met or the deep seek con-
dition is met, we add n* as a new exploit node into
P. Otherwise, the node will no longer be expanded
and will be evicted from P.

After completing an expansion, we check
whether each node’s path meets the termination
conditions, such as reaching the maximum token
limit or generating an end token. If a path satis-
fies the termination condition, exploration of that
path stops, and a reward is computed as the final
path score. We demonstrate this process in Algo-
rithm 4, which is identical to previous tree search
algorithms and is not discussed in detail. How-
ever, for the sake of algorithmic completeness, we
explicitly include it here.

C Additional Details about Experiment

C.1 Comparison Methods

We compare DPTS against three widely used
search algorithms: (1) Monte Carlo Tree
Search (MCTS) (Sprueill et al., 2023) balances
exploration and exploitation when sampling, while
the selected paths rollout till termination, (2) Best-

Input: Parallel queue P, transition thresholds feg
and 4.
Output: Updated P.
1: foralln € P do
2: n* = maXconf.(n.children)
3:  if n.mode = EXPLOIT and ¢, > 0. or
n.mode = EXPLORE and ¢,,» > 045 then

4 P+ PU{n*}

5: n*.mode <— EXPLOIT
6 end if

7. P+ P\n

8: end for

9: return P

Algorithm 4 Reward

Input: Parallel queue P, candidate node pool V.
Output: Updated N.

1: foralln € Pdo

2:  n.children < Eq. (5)

3 for all m € n.children do

4 if is_terminate(m) then
5: m.reward <— reward(m)
6: else

7 N+~ NU{m}

8 end if

9: end for

10: end for

11: return N

of-N (Cobbe et al., 2021) performs multiple inde-
pendent rollouts and selects the highest-scoring
output, (3) Beam Search (Yao et al., 2023) ex-
pands multiple hypotheses in parallel, pruning low-
scoring candidates at each step to maintain a fixed-
width search (Snell et al., 2024). Since efficient
tree search algorithms have recently regained at-
tention after the emergence of LLM reasoning, the
strong baselines are limited. As a result, we pri-
marily compare DPTS against these typical and
well-established search algorithms to demonstrate
the effectiveness of our method.

C.2 Experimental Settings

The experimental settings are as follows: we set
the tree width to 4, tree depth to 16, mini step to
100, and the maximum token limit to 2048. The
MCTS time limit is 120 seconds, and the threshold
parameter is empirically set to t* = 5 on math
tasks. We set ¢ = 20 for a larger search space
on code generation benchmark. All models were
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downloaded from Hugging Face.

Our default PRM is the math-shepherd-mistral-
7b-prm as introduced in (Wang et al., 2023). This
model is trained using automatically generated data
without human annotations. Specifically, it lever-
ages a completer to extend intermediate steps of
a reasoning chain into multiple complete paths,
then estimates the quality of each step based on the
correctness of the resulting answers. This design
aligns with the principle that high-quality steps are
more likely to lead to correct final solutions.

For evaluation, we implemented a custom code-
base. All of the experiments are conducted on
NVIDIA A800 GPUs with 80GB of memory. In-
ference automatically terminates if it exceeds the
timeout limit or encounters a memory overflow.
Within these constraints, the search tree can expand
and roll out indefinitely, ensuring comprehensive
exploration during inference.

On math tasks, we record the correctness of the
answers as the accuracy (Acc.). On code gener-
ation benchmark, we report Pass@/ to measure
the generation quality. Pass denotes the propor-
tion of problem instances where at least one correct
solution is found among the generated answers.
Pass@ ], on the other hand, refers to the probability
that the first generated answer is correct.

C.3 Distribution of Best Path Index

We use a histogram to visualize the earliest (blue
bar) and shortest (green bar) best path index.
Through an ablation study, we examine how the
best solution in the search path evolves as our
method is progressively introduced.

In the baseline method, the best path typically
appears around the 8th terminated path. Incorpo-
rating the parallelism streamline does not directly
affect the accuracy of the search path. However, af-
ter adding the searching and transition mechanism,
DPTS finds the best solution region more quickly
and reaches the best path earlier.

C.4 Alleviating Frequent Switching

To investigate whether our method mitigates the
issue of frequent node switching during the search
process, we analyze and compare the switching fre-
quency under different settings. We first report the
switching count of standard non-parallel MCTS,
which is 37 per sample (see Table 7). As the degree
of parallelism increases, the number of switches
also grows. For instance, with a parallelism of
4, MCTS exhibits an average of 122 switches per
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Figure 10: The distribution of the earliest (blue bar) and
shortest (green bar) best path index.

Table 7: Average switch counts per sample under differ-
ent methods.

Method |P| Switch Count (Meang, )
MCTS 1 37,5

MCTS 4 1224,
Max-confidence AP 35495

DPTS AP 97

sample. A baseline strategy that always selects
the node with the highest confidence at each gen-
eration step results in an even higher switching
count of 354, due to the frequent redirection to
different paths. In contrast, our proposed method
achieves only 97 switches per sample. This demon-
strates that our Search and Transition Mechanism
effectively reduces frequent switching by employ-
ing a confidence threshold A.s to early-stop low-
confidence paths, while preserving the continuity
of high-confidence explorations without frequent
shifting when higher-scoring nodes emerge, thus
significantly mitigating the switching issue.

C.5 Additional Results of \

We conducted a more detailed experiment on A,
with results presented in Table 8 and Figure 11. It
is evident that when A is set within a reasonable
range (e.g., [0.7,0.9]), both accuracy and inference
time exhibit optimal performance. In this range, the
proportion of DS% (deep seek transitions) is higher
than ES% (early stop transitions), indicating that
more high-confidence nodes are being timely con-
verted into exploit nodes. At the same time, a small
number of paths are reassigned as low-score paths
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Figure 11: Illustrations of hyperparameter analysis.

Table 8: Hyperparameter \os and Aqs in transition
thresholds 6.5 and 645. “ES (Early Stop) %" and “DS
(Deep Seek) % are the ratios of the node type transition
between the exploitation and exploration.

Aes  Ads Acc. Time(s) ES (%) DS (%)
1.0 1.0 530 4759 41.4 10.5
095 095 57.8 4399 234 18.2
09 09 586 4330 15.6 20.9
0.85 0.85 584  42.60 9.67 23.7
0.8 08 58.0 4633 8.1 239
07 07 584 4158 53 27.5
06 06 574 4439 6.1 323
04 04 566 3841 0 0.1
02 02 570 40.71 0 0.1
0 0 544 4278 0 0.1

during inference and subsequently terminated.

However, when ) is too large (e.g., close to 1),
the proportion of es increases aggressively. This
suggests that many exploit nodes being expanded
have scores within the range of [0.9, 1.0], and set-
ting the threshold in this range may cause some cor-
rect paths to be prematurely stopped. Conversely,
when A is too small (e.g., < 0.4), both ES and
DS proportions drop to nearly zero. This occurs
because most node scores exceed the threshold,
causing nearly all paths to expand under exploita-
tion mode. Moreover, an overly small early stop
threshold causes no paths to terminate, effectively
degrading the search into an exploitation-only strat-
egy.

Therefore, selecting a suitable A is important. A
larger A imposes stricter exploitation conditions,
leading to more paths being stopped and fewer
paths being converted to deep seeking. Conversely,
a smaller A results in looser conditions, allowing
more exploiting paths to continue rolling out until
they reach a termination condition, while more
high-confidence paths transition into deep seeking.

Table 9: Comparison of search algorithms in terms of
termination reasons, accuracy, and runtime.

Search algo. Stop by OOM (%) Stop by Time (%) Finish (%)
MCTS 19.6 62.1 18.3
Ours 32.8 0.0 67.2

C.6 Stopping Cause Analysis

Our adaptive parallelism mechanism dynamically
adjusts the number of parallel paths based on avail-
able memory. Under memory-constrained condi-
tions, the level of parallelism gradually decreases
and may eventually decrease to 1 until out-of-
memory (OOM) occurs. Compared to the original
MCTS, which always maintains a fixed parallelism
of 1, our method starts with a higher degree of par-
allelism when memory is sufficient and adaptively
reduces it as the KV cache and context computation
consume more GPU memory.

To further investigate the behavior under GPU
memory constraints and also to evaluate the per-
formance of our method on larger models, we con-
ducted experiments using Qwen2.5-14B-Instruct.
We recorded the stopping cause for each sample
and the overall performance. The results are sum-
marized in Table 9.

We observed that performing multi-path infer-
ence in parallel with the larger model led to more
frequent OOM occurrences. With our DPTS,
32.8% of the samples were stopped due to OOM.
However, we discovered that 92.1% of those sam-
ples had already found at least one complete rea-
soning path before OOM occurred. Meanwhile,
most samples (67.2%) successfully completed the
search within a limited GPU memory. In contrast,
although the non-parallel MCTS had a lower OOM
rate, its slower search speed resulted in a signifi-
cantly higher proportion of samples (62.1%) being
terminated due to time limits, with only a small
number of samples completing the search.

Overall, our method outperformed MCTS in
both accuracy and time efficiency. It is attributed
to the core objectives of DPTS, leveraging a space-
time trade-off to maximize GPU utilization and
accelerate reasoning.

D Related Work

Reasoning with LLMs. The success of Chat-
GPT (Achiam et al., 2023) has driven significant in-
terest in Transformer-based LLMs (Bai et al., 2023;
Touvron et al., 2023; Yang et al., 2024), initially ap-
plied to simple System 1 tasks like translation and
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summarization (Brown et al., 2020; Ouyang et al.,
2022). As LLM capabilities grew, research shifted
toward enhancing their ability to handle more com-
plex System 2 tasks, such as mathematical reason-
ing and logic (Kojima et al., 2022; Hao et al., 2023;
Zhang et al., 2024b; Hosseini et al., 2024). The in-
troduction of Chain-of-Thought (CoT) (Wei et al.,
2022) advanced this domain by breaking down
problems into intermediate steps, which proved
effective for multi-step reasoning (Kojima et al.,
2022). Recent research (Zhang et al., 2022; Bi
et al., 2024) has proposed numerous variations,
such as Self-Consistent CoT (Wang et al., 2022), R-
CoT (Deng et al., 2024) to improve its ability, but
its exploration scope remains constrained, limiting
its effectiveness. (Chu et al., 2023).

Tree Search for Reasoning. To address the lim-
itations of linear reasoning in CoT, the Tree of
Thoughts (ToT) (Yao et al., 2023) framework was
introduced, which aligns with the inference scal-
ing law, showing that increasing Test-Time Com-
pute can enhance LLM reasoning abilities (Snell
et al., 2024; Wu et al., 2024). The simplest form
of tree search, Best-of-N, samples multiple reason-
ing paths and selects the best one (Cobbe et al.,
2021; Lightman et al., 2023; Jiao et al., 2024).
Beam search extends this approach by consider-
ing multiple paths in parallel (Yao et al., 2023).
Recent work (Hao et al., 2023) has leveraged
the exploration capabilities of Monte Carlo Tree
Search (MCTS) (Chaslot et al., 2008; Kocsis et al.,
2006; Browne et al., 2012). For instance, MCTS-
rollout (Wan et al., 2024b) introduces backtrack-
ing to explore different paths, while Q* (Wang
et al., 2024a) uses heuristic functions to guide roll-
out, and ReST-MCTS* (Zhang et al., 2024a) uses
MCTS to sample traces for self-training. However,
challenges remain in its computational efficiency,
with limited research on accelerating tree search
for LLM reasoning.

LLM Inference Acceleration. LLMs face effi-
ciency bottlenecks during inference, leading to sig-
nificant efforts aimed at accelerating inference (Lin
et al., 2024; Hong et al., 2024; Leviathan et al.,
2023; Fu et al., 2024; Jing et al., 2023; Cai et al.,
2024). However, most of these approaches are de-
signed for linear decoding tasks and are not directly
applicable to tree-structured reasoning (Li et al.,
2024a; Zhou et al., 2024). Recent work (Ning et al.,
2024; Han et al., 2024; Nayab et al., 2024), such
as Deft (Yao et al., 2024b) focuses on optimizing

common prefixes in tree reasoning using operator-
level enhancements, , while others leverage self-
consistency to enable early stopping (Li et al.,
2024b; Wan et al., 2024a). SEED (Wang et al.,
2024b) adopts a speculative decoding paradigm by
using multiple small models in parallel to generate
draft outputs, followed by a target model to verify
and select the best candidate. The method by Sun
et al. (Sun et al., 2024) is based on the best-of-N
and is particularly effective when N is large (e.g.
N € [960, 3840)). It progressively reduces batch
size via early stopping, retaining only the highest-
rewarded sequences. While in ToT, we typically
adopt a much smaller N (e.g., up to 8), greatly lim-
iting the benefits of the algorithm in our context.
Despite such advancements, building efficient tree
search algorithms for reasoning remains an under-
explored area. The need for specialized algorithms
that can scale with complex tree-structured reason-
ing, while maintaining efficiency, remains a key
open challenge in LLM inference acceleration.

E Future Work Discussion

Our method inherently supports multi-batch pro-
cessing, which aligns well with the overall design.
In practice, acceleration under a multi-batch set-
ting can be realized by adjusting the number of
nodes expanded at each search step to match the
batch size, enabling concurrent processing across
multiple requests.

Formally, we can incorporate batch size explic-
itly into Eq. (1) in a revised formulation of the algo-
rithm. Furthermore, during the handling of input,
output, and context key-value (KV) caches, as de-
scribed in Eq. (3), (4) and (5), we will concatenate
multi-batch data such that each request preserves
an independent reasoning tree. This design ensures
that requests proceed in parallel without mutual
interference while efficiently sharing the available
GPU memory.

However, we acknowledge that in the current
version of our implementation, multi-batch pro-
cessing may reduce the degree of parallelism under
memory constraints, potentially degrading to the
worst-case scenario where the effective paralleled
number of nodes equals one, equivalent to the stan-
dard MCTS. Meanwhile, it is worth noting that
due to potential differences in the depth and length
of reasoning paths across requests, static batching
may result in underutilization of GPU resources.

To mitigate this, we identify continuous batch-
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ing as a promising enhancement. By dynamically
forming micro-batches from pending requests, con-
tinuous batching could better exploit idle GPU re-
sources and further improve system throughput.
We consider this a valuable direction for future
work.
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