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Abstract

To address the phenomenon of similar classes,
existing methods in few-shot continual rela-
tion extraction (FCRE) face two main chal-
lenges: non-representative prototypes and rep-
resentation bias, especially when the number
of available samples is limited. In our work,
we propose Minion to address these challenges.
Firstly, we leverage the General Orthogonal
Frame (GOF) structure, based on the concept
of Neural Collapse, to create robust class pro-
totypes with clear separation, even between
analogous classes. Secondly, we utilize la-
bel description representations as global class
representatives within the fast-slow contrastive
learning paradigm. These representations con-
sistently encapsulate the essential attributes of
each relation, acting as global information that
helps mitigate overfitting and reduces repre-
sentation bias caused by the limited local few-
shot examples within a class. Extensive experi-
ments on well-known FCRE benchmarks show
that our method outperforms state-of-the-art
approaches, demonstrating its effectiveness for
advancing RE system.

1 Introduction

Few-Shot Continual Relation Extraction (FCRE)
has emerged as a significant research focus due
to its critical role in addressing the challenges of
adapting to evolving relations with limited data
(Qin and Joty, 2022; Chen et al., 2023) for practi-
cal RE systems. Similar to other continual learning
(CL) systems, FCRE faces the issue of catastrophic
forgetting (Thrun and Mitchell, 1995), where pre-
viously acquired knowledge degrades as new tasks
are learned. Recent FCRE studies (Wang et al.,
2023; Ma et al., 2024; Luo et al., 2024; Tran et al.,
2024; Nguyen et al., 2025b) explored strategies for
storing old samples to preserve critical attributes
of relations, ensuring that the representations of all
relations across tasks remain distinguishable.

*Corresponding author: namlh@soict.hust.edu.vn

The presence of analogous classes has been rec-
ognized as a key factor contributing to catastrophic
forgetting in continual relation extraction (Wang
et al., 2022; Nguyen et al., 2023b; Le et al., 2024c,
2025b). In the context of FCRE, this phenomenon
can be more severe due to the limited data, which
constrains the model’s ability to effectively distin-
guish between similar classes Wang et al. (2022).
However, this topic remains largely underexplored
within the FCRE scenario. In our work, we tackle
two critical challenges faced by existing state-of-
the-art FCRE methods: non-representative proto-
types and representation bias.

First, existing FCRE models commonly employ
a prototype mechanism, where a class prototype is
represented by averaging the embeddings of all
samples within that class, and these prototypes
are then used to predict relations for test samples.
When the number of available samples is limited,
this mechanism may generate non-representative
prototypes (Li and Lyu, 2024) and does not guar-
antee the ability to distinguish between analogous
classes effectively. Recently, Papyan et al. (2020)
reveals a famous phenomenon of deep learning
models, refer as neural collapse (NC), that: on a
balanced dataset, at the terminal phase of training
(training error equals 0), the last-layer feature of
the same class will converge to their within-class
means; the class classifiers and their correspond-
ing within-class mean will be formed as a sim-
plex equiangular tight frame (ETF). Inspired by
Papyan et al. (2020), Yang et al. (2023), and Yang
et al. (2022) have initialized the final class classi-
fiers (prototypes) using the ETF structure, keep-
ing them fixed during continual training. These
models then align the last layer features of in-
put samples with their corresponding prototypes.
This approach has demonstrated competitive per-
formance in both joint training and Few-shot Class
Incremental Learning (FSCIL). However, these ap-
proaches require initializing the ETF structure with
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a fixed number of classes, K, where each vertex of
the ETF has the same pairwise angle of (− 1

K−1).
While Yang et al. (2023) suggested that a large K
could be set relative to the number of classes in a
specific dataset, this constraint renders the model
impractical for real-world applications and is not
sufficient to the objectives of continual learning,
where the number of classes is typically unknown
and dynamically evolving.

Second, Song et al. (2023) introduced the con-
cept of representation bias, which refers to a phe-
nomenon where the representations learned by a
model are locally sufficient for the current task
but may prove globally inadequate for classifying
analogous classes in future tasks. This arises as
CL models often discard features irrelevant to the
present task, which may later be critical. They pro-
posed InfoCL to improve the CL model’s capacity
to learn more comprehensive and robust represen-
tations by introducing fast-slow and current-past
contrastive losses. However, several factors may
limit the effectiveness of InfoCL in the context of
FCRE. While InfoCL aims to capture a wide range
of features, including those irrelevant to the current
task, to benefit future tasks such as distinguishing
analogous classes, the limited number of data sam-
ples in the few-shot scenario poses a significant
challenge in effectively representing distinctions
between similar classes. Moreover, relying solely
on contrastive learning with the sample itself may
be insufficient for acquiring globally informative
representations. The limited data in FCRE tasks re-
stricts the ability to fully capture relational nuances
(Wang et al., 2023; Li and Lyu, 2024), emphasizing
the necessity of incorporating robust and compre-
hensive global context to enrich the representation
and improve the information compression.

In our work, we propose Minion, a novel and
universal approach to mitigate non-representative
prototypes and representation bias in FCRE. Firstly,
ProtoGOF is introduced in Minion, leveraging the
General Orthogonal Frame (GOF) structure (Dang
et al., 2023) instead of ETF to create class proto-
types. This approach enables the construction of
robust class prototypes and aligns the final repre-
sentations of input sentences to the GOF through
contrastive learning. Unlike methods reliant on
predefined class limits, such as the ETF structure,
our framework is well-suited for continual learn-
ing settings, providing flexibility without requir-
ing prior knowledge of the maximum number of

classes. Furthermore, Minion ensures the creation
of robust class prototypes with clear separation,
even between analogous classes. Secondly, the
Fast-Slow mechanism (He et al., 2020) in Minion
is enhanced through the integration of label descrip-
tion representations, termed Fast-Slow Contrastive
Learning with Label Descriptions (FCLD). FCLD
incorporates label description representations to
consistently encapsulate the essential attributes of
each relation, acting as global information that
helps mitigate overfitting and reduces represen-
tation bias caused by the limited local few-shot
examples within a class. Therefore, Minion not
only improves the model’s ability to learn com-
prehensive and robust representations but also es-
tablishes a more effective mechanism for distin-
guishing analogous classes to reduce catastrophic
forgetting. Extensive experiments conducted on
two FCRE benchmarks, TACRED and FewRel, re-
veal that our method surpasses state-of-the-art ap-
proaches, representing a significant advancement
in FCRE research.

2 Background

2.1 Problem Formulation

Few-Shot Continual Relation Extraction (FCRE)
represents a formidable challenge within natural
language processing, as it integrates the difficulties
of continual learning with the inherent limitations
of few-shot scenarios. A detailed discussion of re-
lated works can be found in Appendix A. In the
FCRE framework, a model is sequentially exposed
to a series of tasks, T = {T 1, T 2, ..., T n}, where
each task introduces a new set of relations, Ri, to
be learned. For a given task T i, the model is pro-
vided with a limited dataset Di = {(xj , rj)}mj=1,
where m = N × K defines the total number of
examples, with N representing the number of new
relations and K denoting the few-shot samples per
relation. Each example comprises an input sen-
tence xj , containing a pair of entities (eh, et) and a
corresponding relation label yj ∈ Ri. This config-
uration aligns with the “N-way-K-shot” learning
paradigm, as described by Chen et al. (2023).

The core challenge of FCRE involves balanc-
ing two closely connected objectives: enabling the
model to efficiently learn newly introduced rela-
tions from a limited number of examples (few-shot
learning) while concurrently preserving knowledge
of previously acquired relations (continual learn-
ing). Successfully addressing this challenge ne-
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cessitates effective regulation of the model’s ca-
pacity for adaptability to new information (plas-
ticity) and its ability to maintain existing knowl-
edge (stability). During the evaluation phase, the
model’s performance is assessed using a compre-
hensive test set, Dtest, encompassing all relations
Rtotal =

⋃n
i=1Ri encountered across tasks. This

evaluation assesses the model’s capability to learn
newly introduced relations while preserving its pro-
ficiency in previously learned ones. The FCRE for-
mulation underscores the importance of developing
adaptive, efficient systems for relation extraction
in dynamic, low-resource settings.

2.2 Input Formulation and Representation
In Relation Extraction (RE), a common deep learn-
ing approach (Ji et al., 2020; Wang and Lu, 2020)
leverages pre-trained language models (PLMs) like
BERT (Devlin et al., 2019) to encode input data.
Effective input formulation is critical for obtaining
high-quality embeddings for classification. Early
methods often rely on the [CLS] token concate-
nated with the input x and use its vector repre-
sentation for classification. Alternatively, some
approaches incorporate special tokens to highlight
the two entities and concatenate their embeddings
as input to the relation classification layer (Zhao
et al., 2022; Le et al., 2024c).

In this study, we adopt the input format proposed
by Ma et al. (2024), where a special [MASK] token
represents the relation between the head entity (eh)
and tail entity (et). This token is combined with the
original sentence x and the two entities. Addition-
ally, learnable tokens are incorporated to reduce
dependence on handcrafted tokens, resulting in the
following input formulation:

F(x) = x [h0:n0−1] eh [hn0:n1−1] [MASK]

[hn1:n2−1] et [hn2:n3−1] .
(1)

where [hi] represents the i-th learnable continu-
ous token, and ni denotes the length of the token
phrases. In our specific implementation, we use a
special [UNUSED] token as [h]. We then forward the
templated input I(x) through a PLM, encoding it
into a sequence of continuous vectors. From these,
we extract the hidden representation zx of the input,
corresponding to the position of the [MASK] token.

zx = fM
(
F(x)

)
[index([MASK])], (2)

where fM(X) denotes the forward function of an
encoderM on input X . The latent representation

is subsequently utilized for learning and to predict
the relation corresponding to the given input x.

2.3 Neural Collapse

Papyan et al. (2020) reveal the neural collapse
phenomenon, that the last-layer features converge
to their within-class means, and the within-class
means together with the classifier vectors collapse
to the vertices of a simplex equiangular tight frame
at the terminal phase of training on a balanced
dataset.

Definition 2.1 (Simplex Equiangular Tight Frame).
A collection of vectors mi ∈ Rd, i = 1, 2, · · · ,K,
d ≥ K − 1, is said to be a simplex equiangular
tight frame if:

M =

√
K

K − 1
U

(
IK −

1

K
1K1TK

)
, (3)

where M = [m1, · · · ,mK ] ∈ Rd×K , U ∈ Rd×K

allows a rotation and satisfies UTU = IK , IK is
the identity matrix, and 1K is an all-ones vector.

All vectors in a simplex ETF have an equal ℓ2
norm and the same pair-wise angle, i.e.,

mT
i mj =

K

K − 1
δi,j −

1

K − 1
, ∀i, j ∈ [1,K],

where δi,j equals 1 when i = j and 0 otherwise.
The pair-wise angle − 1

K−1 is the maximal equian-
gular separation of K vectors in Rd.

Then the neural collapse (NC) phenomenon can
be formally described as:

(NC1) Within-class variability of the last-layer
features collapse: ΣW → 0, and ΣW :=
Avgi,k{(zk,i − zk)(zk,i − zk)

T }, where zk,i is the
last-layer feature of the i-th sample in the k-th class,
and zk = Avgi{zk,i} is the within-class mean of
the last-layer features in the k-th class;

(NC2) Convergence to a simplex ETF: z̃k =
(zk − zG)/||zk − zG||, k ∈ [1,K], satisfies Eq. (4),
where zG is the global mean of the last-layer fea-
tures, i.e., zG = Avgi,k{zk,i};

(NC3) Self duality: z̃k = wk/||wk||, where wk

is the classifier vector of the k-th class;

(NC4) Simplification to the nearest class cen-
ter prediction: argmaxk⟨z,wk⟩ = argmink ||z −
zk||, where z is the last-layer feature of a sample to
predict for classification.
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Figure 1: An overview of our Minion framework: (a) showcases the data flow through its two primary components:
ProtoGOF and FCLD, (b) illustrates the adoption of GOF to construct relational prototypes in the development of
ProtoGOF, as detailed in Section 3.1 and (c) depicts forward flow of FCLD, as discussed in Section 3.2. x and d
illustrate the forward paths of the input data and its corresponding label description, respectively.

Definition 2.2 (General Orthogonal Frame). A
standard general orthogonal frame (GOF) is a col-
lection of points in RK specified by the columns:

N =
1√∑K
k=1 a

2
k

diag(a1, a2, . . . , aK), (4)

where ai > 0, ∀ i ∈ [K] denotes the number of
samples associated with the corresponding class in
the data set. Dang et al. (2023) also examined the
general version of GOF as a collection of points
in Rd (d ≥ K) specified by the columns of PN
where P ∈ Rd×K is an orthonormal matrix, i.e.
P⊤P = IK .

However, ETF is observed exclusively in bal-
anced datasets, limiting its applicability to most
real-world datasets, which are often inherently im-
balanced. Dang et al. (2023) demonstrated that the
final-layer features and classifiers converge to a ge-
ometric structure known as GOF (Definition 2.2),
characterized by orthogonal vectors with lengths
proportional to the amount of data in their respec-
tive classes.

3 Methodology

This section details two core components of
Minion: ProtoGOF and FCLD. The overall frame-
work pipeline is illustrated in Figure 1a.

3.1 Guiding Class Prototypes through
General Orthogonal Frame

In this section, we present our proposed mecha-
nism, ProtoGOF, which utilizes the General Or-
thogonal Frame structure to construct class proto-
types and guide relation representations towards an
NC solution with distinct separation. We demon-
strate the advantages of ProtoGOF compared to ex-

isting studies, highlighting its suitability for CL set-
tings and its adaptability to a wide range of dataset
distribution scenarios.

Assigning fixed class prototypes based on NC
(Song et al., 2023; Yang et al., 2022, 2023) has
demonstrated remarkable performance in contin-
ual learning for classification tasks, including fine-
grained and few-shot settings. However, existing
approaches have not addressed the potential impact
of imbalanced training conditions on the structure
of traditional NC (i.e. ETF). Furthermore, Yang
et al. (2023) necessitate the pre-assignment of a
fixed number of classes, K, during the initializa-
tion of prototypes, as each prototype in the ETF
structure must maintain the same pairwise angle
(− 1

K−1) to ensure maximal separation. Although
setting K to a large value can help mitigate the
risk of missing relations during the learning pro-
cess, this constraint limits the structure’s ability
to achieve optimal class separation. Additionally,
it restricts the flexibility needed to accommodate
a number of relations that may exceed the prede-
fined value of K, which conflicts with the goals of
continual learning frameworks.

On the other hand, Dang et al. (2023) empha-
sized that in imbalanced scenarios, the representa-
tions of the last-layer features and classifiers con-
verge to the GOF structure. Therefore, we explore
an innovative approach that employs GOF as a
fixed structure to address the challenge of dynamic
class numbers, while guiding relation representa-
tions toward effective separation. As GOF necessi-
tates an orthogonal arrangement where the angles
between prototypes are independent of the number
of classes, it facilitates the incorporation of emerg-
ing class prototypes corresponding to new relations
without compromising any of GOF’s characteristic.
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Moreover, the class prototypes are orthogonal to
each other, ensuring effective separation between
classes and improving the model’s capacity to dif-
ferentiate analogous classes.

In particular, during the ith task, we adopt the
GOF structure (depited in Figure 1b) with follow-
ing steps:

• Step 1: If i = 0, the class prototypes (W 0
GOF )

are initialized according to the GOF structure
described in Definition 2.2, corresponding to the
number of relations and their respective sample
counts in D0.

• Step 2: Update the GOF structure W
(i)
GOF : Pro-

totypes for newly emerging classes from Di are
initialized and integrated into W

(i−1)
GOF . These pro-

totypes are constructed to ensure that the updated
structure, W (i)

GOF , satisfies the conditions of the
GOF framework.

• Step 3: Building on these prototypes, a loss func-
tion is designed to align input sentence repre-
sentations with their respective class prototypes
while distancing them from prototypes of other
classes (WGOF−). Follow the ProxyNCA loss
introduced by Movshovitz-Attias et al. (2017),
we define LGOF as follows:

LGOF =

n∑

i=1

∑

x∈Di

− log
ed(zx,w

+
j )

∑

w−
j ∈WGOF−

ed(zx,w
−
j )

=
n∑

i=1

∑

x∈Di

{
−d(zx, w+

j ) + LSE
w−

j ∈WGOF−
d(zx, w

−
j )

}
,

(5)

where zx is the representation of input sentence
calculated as in the Eq (2); WGOF− is set of all
negative proxies (set of prototypes w.r.t different
classes from the class of x), w+

j and w−
j respec-

tively denote positive and negative prototypes;
LSE stands for LogSumExp loss.

3.2 Fast-Slow Contrastive Learning with
Label Descriptions

Representation bias, as introduced by Song et al.
(2023), refers to a phenomenon observed in CL
scenarios (discussed further in Appendix B). It
highlights that during the ith task, compressing
the essential representations of current relations
may lead to insufficient global information. To mit-
igate this issue, InfoCL, including the Fast-Slow

Contrastive method has been proposed, which em-
ploys two distinct encoders: a fast encoder and a
slow momentum-updated encoder. These encoders
are designed to capture comprehensive information
across different optimization stages: the later stages
compress essential generalization (fast encoder),
while the early optimization phase preserves more
detailed input information (slow encoder). While
this approach proves effective in settings with rich
data, its performance in few-shot scenarios could
be challenging due to the limited representativeness
of the available samples. These constraints result
in inconsistent representations, as the sparse data
often fails to encapsulate the critical attributes of
their respective relations (Han et al., 2021; Wang
et al., 2023; Li and Lyu, 2024), potentially leading
to global insufficiency in distinguishing classes. La-
bel descriptions have demonstrated their ability to
enhance the performance of prototypical networks
for few-shot RE by providing supplementary in-
sights into relation types (Yang et al., 2020; Liu
et al., 2022; Luo et al., 2024; Borchert et al., 2024).
Thus, these descriptions potentially offer a consis-
tent, global class-specific context, delivering more
reliable global information. This ensures that repre-
sentations can capture the essential characteristics
of relations, thereby mitigating the risk of incorpo-
rating misleading information.

From this perspective, we introduce Fast-Slow
Contrastive Learning with Label Descriptions
(FCLD), which leverages the detailed informa-
tion provided by relational descriptions and trans-
fers this knowledge to input samples through con-
trastive learning, thereby enhancing the model’s
representation capacity. Specifically, instead of us-
ing input sentences, we utilize label descriptions as
inputs to the slow encoder. The resulting represen-
tations are then incorporated as distilled informa-
tion to enhance the input representations generated
by the fast encoder for classification. Furthermore,
the slow encoder, utilizing label descriptions, cap-
tures information closely aligned with the descrip-
tions, while the essential information compressed
by the fast encoder remains valuable. Therefore,
we additionally leverage the representations of la-
bel descriptions generated by the fast encoder to
enrich the overall information. Figure 1c provides
an illustration of the FCLD.

We employ the InfoNCE loss (van den Oord
et al., 2019) to preserve information from the label
descriptions processed by the slow branch to the
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input representations in the fast branch:

Lfs = −
1

|B|

|B|∑

i=1

log
exp(zxi

· d̃s
xi
/τ)

∑|B|
j=1 exp(zxi

· d̃s
xj
/τ)

,

(6)
where B denotes a batch with size |B| during train-
ing, d̃s

x and zxi
respectively represent the label de-

scription embedding generated by the slow model
and the feature representation of input xi from the
fast model, τ is the temperature. Similarly, the la-
bel description information derived from the fast
encoder is transferred to the input through Equation
6 (Lff ), utilizing the description representation df

x

generated by the fast encoder. Finally, the loss
LFCLD is defined as:

LFCLD = λ1Lfs + λ2Lff (7)

where λ1 and λ2 are weighted hyper-parameters.

3.3 Training and Inference Procedures
Training Procedure: Algorithm 1 introduces the
end-to-end training procedure for each task Tj ,
wherein ΦF

j−1, ΦS
j−1 denote the parameters of fast

and slow encoders after training in the previous
j−1 task. Following existing memory-based meth-
ods, we maintain a memory buffer M̃j−1 that stores
a limited number of representative samples from
all previous tasks T1, . . . , Tj−1, and a set D̃esj−1

consisting of descriptions (di) w.r.t. all previously
encountered relations (ri).

1. Initialization (Line 1): The parameters of the
fast and slow models for the current task, ΦF

j

and ΦS
j , are initialized using the parameters of

the models from the previous task (i−1)th and
the relation set R̃j and the relation description
set D̃esj are updated to incorporate the newly
introduced relations.

2. GOF Structure Updating (Line 2): The
model updates the GOF structure by incor-
porating prototypes for the newly emerging
classes from Di

train, following steps 1 and 2
outlined in Section 3.1.

3. Model Training (Lines 3–8): The current
data is combined with the replay data to fine-
tune the model using a unified loss function.
The current data is combined with the replay
data to fine-tune the model using a unified
loss function. Specifically,LGOF andLFCLD

are computed as defined in Equations 5 and
7, while LSCL, a supervised contrastive loss
commonly employed in prior studies (Khosla
et al., 2021; Ma et al., 2024; Cui et al., 2021),
ensures separation of samples from different
classes in the representation space.

4. Update Replay Buffer (Lines 9–13): We se-
lect L samples from Dtrain

j for each relation
ri ∈ Rj , choosing those whose latent repre-
sentations are closest to the class centroid.

Our training objective function is as below:

L = αLSCL + LFCLD + λ3LGOF (8)

where α and λ3 are weighted hyper-parameters.

Inference Procedure: Given a sample x with
hidden representation zx and a set of relation pro-
totypes WGOF that follow the GOF structure, the
relation is predicted by measuring the similarity
between the input x and the prototypes, as follows:

r∗ = argmax
r

(γ(zx,wr)) (9)

where wr ∈ WGOF and γ(·, ·) denotes the co-
sine similarity function.

4 Experimental Results

4.1 Experiment Setup
We conduct evaluation on two benchmark datasets
FewRel (Han et al., 2018) and TACRED (Zhang
et al., 2017) against 8 state-of-the-art (SOTA)
baselines. In addition to BERT (Devlin et al.,
2019), we also incorporate LLM2Vec variants
(BehnamGhader et al., 2024), which are large lan-
guage models (LLMs) adapted to serve as text
encoders with improved representation capabili-
ties, rather than as generative decoders. These
are referred to as Large Language Model Embed-
dings (LLMEs), with further details provided in
Appendix C.3. Since its functionality and usage
are identical to the BERT encoder, it can be easily
integrated into a wide range of frameworks in con-
trast to the use of causal LLMs in CPL_MI (Tran
et al., 2024). Specifically, we evaluate our approach
using three LLM2Vec variants—LLama2, LLama3,
and Mistral—as backbone models. For each task,
we report performance on the updated Dtest, pre-
senting both the mean and standard deviation of
accuracy across six random seeds. Additional ex-
periments are provided in the Appendix C.
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Backbone Method
Tasks

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

FewRel (10-way–5-shot)

BERT

RP-CRE (Cui et al., 2021) 93.97±0.64 76.05±2.36 71.36±2.83 69.32±3.98 64.95±3.09 61.99±2.09 60.59±1.87 59.57±1.13

CRL (Zhao et al., 2022) 94.68±0.33 80.73±2.91 73.82±2.77 70.26±3.18 66.62±2.74 63.28±2.49 60.96±2.63 59.27±1.32

CRECL (Hu et al., 2022) 93.93±0.22 82.55±6.95 74.13±3.59 69.33±3.87 66.51±4.05 64.60±1.92 62.97±1.46 59.99±0.65

ERDA (Qin and Joty, 2022) 92.43±0.32 64.52±2.11 50.31±3.32 44.92±3.77 39.75±3.34 36.36±3.12 34.34±1.83 31.96±1.91

SCKD (Wang et al., 2023) 94.77±0.35 82.83±2.61 76.21±1.61 72.19±1.33 70.61±2.24 67.15±1.96 64.86±1.35 62.98±0.88

ConPL§ (Chen et al., 2023) 95.18±0.73 79.63±1.27 74.54±1.13 71.27±0.85 68.35±0.86 63.86±2.03 64.74±1.39 62.46±1.54

CPL (Ma et al., 2024) 94.87 85.14 78.80 75.10 72.57 69.57 66.85 64.50
CPL_MI (Tran et al., 2024) 94.69±0.70 85.58±1.88 80.12±2.45 75.71±2.28 73.90±1.80 70.72±0.91 68.42±1.77 66.27±1.58

CPL+MI+augment(Anh et al., 2025) 94.76 85.48 80.24 77.69 75.60 72.94 70.74 68.36
SIRUS (Le et al., 2025a) 94.74±0.27 87.12±2.21 81.06±1.52 77.49±2.58 75.47±2.60 72.48±1.75 70.60±1.31 69.16±0.43

Minion 94.58±0.36 86.96±2.56 81.02±1.33 77.66±2.18 75.66±1.96 73.05±1.25 71.33±1.16 69.61±2.12 ↑ 0.45

LLama2

CPL† 95.73±0.92 85.87±1.46 80.57±1.74 78.60±3.31 77.30±2.41 73.95±1.54 71.35±3.75 69.87±2.32

CPL_MI† 96.10±0.25 87.92±2.03 81.98±2.91 79.91±3.29 77.81±3.25 75.56±1.49 73.90±2.33 72.27±1.98

CPL 95.82±0.30 86.45±1.84 82.10±2.02 80.11±1.47 77.64±3.17 76.05±1.62 74.60±2.77 72.81±1.79

SIRUS 95.58±0.24 87.93±2.54 83.22±1.51 81.76±1.01 81.23±2.25 79.07±1.69 76.86±1.63 75.98±0.50

Minion 95.25 ± 0.44 88.12 ± 2.92 84.34 ± 1.26 82.31 ± 1.24 81.49 ± 1.92 79.02 ± 1.43 78.03 ± 0.98 76.27 ± 0.81 ↑ 0.29

LLama3
CPL 97.37±0.15 87.96±2.66 83.02±1.34 79.78±2.78 78.09±3.09 75.95±1.87 74.65±1.60 73.19±1.11

CPL+MI+augment 94.76 85.48 80.24 77.69 75.60 72.94 70.74 68.36
SIRUS 96.80±0.18 91.04±2.43 87.36±1.49 85.25±1.48 84.28±2.69 82.46±1.67 81.03±1.42 78.82±0.98

Minion 95.97±0.48 91.38±3.27 88.33±2.19 86.74±1.75 85.8±2.96 84.56±2.38 82.91±1.75 81.01±0.53 ↑ 2.19

Mistral

CPL_MI† 96.55±0.43 90.77±2.11 84.81±1.09 83.08±1.50 78.92±1.35 77.27±2.06 77.05±2.30 75.02±1.67

CPL 96.6±0.22 88.75±2.63 84.39±2.65 82.46±2.08 80.38±1.93 78.06±1.18 75.41±1.9 74.00±1.32

SIRUS 96.13±0.31 89.74±2.69 86.10±2.41 84.25±2.25 81.96±2.81 79.79±2.56 77.75±2.09 76.96±1.15

Minion 95.95±0.28 90.78±2.56 87.31±2.71 84.08±2.43 82.58±2.74 80.09±2.19 78.64±1.40 76.61±0.61

TACRED (5-way-5-shot)

BERT

RP-CRE (Cui et al., 2021) 87.32±1.76 74.90±6.13 67.88±4.31 60.02±5.37 53.26±4.67 50.72±7.62 46.21±5.29 44.48±3.74

CRL (Zhao et al., 2022) 88.32±1.26 76.30±7.48 69.76±5.89 61.93±2.55 54.68±3.12 50.92±4.45 47.00±3.78 44.27±2.51

CRECL (Hu et al., 2022) 87.09±2.50 78.09±5.74 61.93±4.89 55.60±5.78 53.42±2.99 51.91±2.95 47.55±3.38 45.53±1.96

ERDA (Qin and Joty, 2022) 81.88±1.97 53.68±6.31 40.36±3.35 36.17±3.65 30.14±3.96 22.61±3.13 22.29±1.32 19.42±2.31

SCKD (Wang et al., 2023) 88.42±0.83 79.35±4.13 70.61±3.16 66.78±4.29 60.47±3.05 58.05±3.84 54.41±3.47 52.11±3.15

ConPL§ (Chen et al., 2023) 88.77±0.84 69.64±1.93 57.50±2.48 52.15±1.59 58.19±2.31 55.01±3.12 52.88±3.66 50.97±3.41

CPL (Ma et al., 2024) 86.27 81.55 73.52 68.96 63.96 62.66 59.96 57.39
CPL_MI (Tran et al., 2024) 85.67±0.80 82.54±2.98 75.12±3.67 70.65±2.75 66.79±2.18 65.17±2.48 61.25±1.52 59.48±3.53

CPL+MI+augment (Anh et al., 2025) 86.33 82.31 76.35 70.93 68.28 65.04 62.60 61.97
SIRUS (Le et al., 2025a) 87.41±0.41 84.28±7.38 76.38±3.99 73.86±4.16 68.06±5.57 66.64±5.76 62.74±3.92 60.68±3.53

Minion 87.28±0.23 81.89±1.35 75.72±4.6 72.75±3.94 66.68±5.27 66.71±6.6 62.81±5.55 61.11±2.58

LLama2

CPL† 86.76±1.58 75.94±4.76 70.65±2.57 68.64±3.03 67.44±2.95 65.12±3.85 60.27±3.79 58.03±1.98

CPL_MI† 85.55±0.74 77.91±2.80 76.49±2.79 74.99±2.69 69.15±3.65 68.19±2.29 64.19±3.01 62.04±1.10

CPL 87.37±1.85 82.74±9.54 77.49±7.52 77.29±4.49 72.75±6.28 73.37±4.57 70.08±6.01 68.35±5.02

SIRUS 89.62±0.31 87.07±7.02 78.98±4.58 76.04±3.28 74.64±3.15 74.14±2.39 70.96±1.77 70.88±0.59

Minion 89.58±0.36 86.67±6.64 79.91±4.75 77.34±2.59 75.91±3.62 74.78±2.07 72.75±2.15 72.35±1.03 ↑ 1.47

LLama3
CPL 88.75±0.59 81.18±9.26 76.14±4.36 76.16±5.6 72.14±5.85 71.35±5.41 69.99±5.21 69.70±5.36

SIRUS 87.76±0.61 85.85±3.97 82.19±4.19 77.61±2.67 74.86±3.41 75.67±3.03 74.42±4.02 73.97±3.71

Minion 88.11±1.03 86.82±3.67 83.13±3.08 78.29±4.25 77.19±4.15 76.38±3.87 74.84±3.38 74.49±2.71 ↑ 0.52

Mistral
CPL_MI† 86.32±1.25 81.00±3.20 77.71±2.31 75.48±2.59 71.92±3.09 71.02±2.84 67.69±3.58 65.48±1.97

SIRUS 88.24±0.23 83.29±5.02 79.12±3.98 76.92±3.74 75.26±3.24 75.31±1.40 73.64±4.97 73.06±3.23

Minion 87.56±0.55 85.09±4.84 80.51±4.13 77.33±3.06 75.93±4.57 75.62±2.46 73.56±6.31 72.47±3.60

Table 1: Accuracy (%) of existing methods using BERT-based, LLM and LLME-based backbones after training
for each task. † denotes the use of original LLMs with causal mask. The best results are in bold, while the
second-highest scores are underlined. All the baseline results are extracted from Wang et al. (2023) and Tran et al.
(2024). ConPL§ results that are reproduced with the same settings as other models (Appendix C.2). The baseline
results of original LLMs with the causal mask are obtained from Tran et al. (2024).

4.2 Main Results

In this section, we present the main results of
our experiments, highlighting the performance of
Minion compared to state-of-the-art baselines and
its adaptability across various model architectures.

Minion versus SOTA baselines: To ensure a fair
comparison with prior studies, we adopt BERT as
the baseline model and utilize a replay buffer to
retain a limited selection of representative samples.
In particular, Table 1 demonstrates that Minion con-
sistently achieves significant improvements across
both benchmarks. Specifically, Minion outper-
forms the second-best method (SIRUS) on the
FewRel dataset in 5 out of 8 sessions during the

sequential training process and achieves 0.45%
higher accuracy after the final task. A similar
trend is observed on the TACRED dataset, where
our Minion outperforms SIRUS by approximately
0.42% and consistently exceeds all baseline meth-
ods across the 8-task sessions.

Adaptability of Minion: While Minion demon-
strates significant performance improvements over
baselines with BERT, concerns may arise regarding
the versatility of our framework when applied to
large-scale models. To showcase the adaptability
of Minion, we conduct experiments using LLMEs.
The effectiveness of LLMEs compared to BERT
is evident, with Minion improving performance by
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Algorithm 1 Training procedure at each task Tj

Input:
Dtrain

j : training data of task T j .
Dtest: Test data of all seen tasks.
WGOF(j−1)

: GOF structure of the (j − 1)th task.
L: The number of training samples allocated to

memory for each relation.
Fast and Slow encoder parameters: ΦF

j−1,Φ
S
j−1.

Previous variables: R̃j−1, M̃j−1, D̃esj−1.
Current variables: Dtrain

j , Dtest
j , Rj , Desj .

Output:
ΦF
j ,Φ

S
j , M̃j , R̃j , D̃esj ,WGOFi .

1: Initialization: ΦF
j ,Φ

S
j ← ΦF

j−1,Φ
S
j−1,

R̃j ← R̃j−1 ∪Rj , D̃esj ← D̃esj−1 ∪Desj

2: Updating WGOFi using WGOFi−1 and Dtrain
j

3: for batch in batches(M̃j−1 ∪Dtrain
j ) do

4: d̃s
xi
← fM

ΦS
j

(di), d̃f
xi
← fM

ΦF
j

(di)

5: Compute L as in Eq. 8
6: Update ΦF

j

7: Update ΦS
j

8: end for
9: M̃j ← M̃j−1

10: for each r ∈ Rj do ▷ Update memory buffer
11: Br ← {(xi, ri)|xi ∈ Dtrain

j , ri = r}Li=1

12: M̃j ← M̃j ∪ Br
13: end for
14: Dtest ← Dtest ∪Dtest

j ▷ Update test set

over 10% in both settings. Besides, LLMEs also
clearly outperform causal LLMs, as their adapta-
tion enables CPL to surpass CPL_MI with causal
LLMs by around 1% using LLama2 backbone.
Minion further demonstrates a remarkable improve-
ment of 3-4% over CPL_MI and SIRUS with LLMs
on both benchmarks, with LLama3 achieving the
highest performance across all scenarios. These re-
sults demonstrate the adaptability and scalability of
our approach across a wide range of architectures.

4.3 Ablation Study

In this section, we emphasize the key contributions
of ProtoGOF and FCLD by systematically remov-
ing each component from the framework. Addi-
tionally, we aim to demonstrate the superiority of
adopting the GOF structure over the ETF structure
used in previous works. The complete results for
each task are presented in Table 6 in Appendix D.2.

Method FewRel TACRED
Minion 69.61 61.11

w ProtoETF 68.60 60.28
w/o ProtoGOF 68.27 59.66
w/o FCLD 68.32 59.49

InfoCL (Song et al., 2023) 65.72 51.02

Table 2: The results of the ablation study (%) when
removing each component of Minion on the final task
using the BERT backbone. ProtoETF refers to the in-
tegration of the ETF structure into our framework as
a replacement for GOF. InfoCL is reimplemented for
FCRE without incorporating label descriptions in the
fast-slow contrastive learning.

Effectiveness of ProtoGOF: As shown in Table
2, replacing the GOF structure with the ETF results
in a performance drop of approximately 1% in ac-
curacy. This underscores the limitation of the ETF
structure, as models fail to achieve this structure
due to the dynamic nature of class numbers and the
imbalance present in the scenario. Besides, remov-
ing this component from Minion leads to a signifi-
cant performance drop of nearly 2%, emphasizing
the critical role of ProtoGOF in our framework.
Additionally, using only ProtoGOF (w/o FCLD)
results in performance comparable to using only
FCLD, suggesting that this mechanism also helps
address the issue of analogous classes. A more
detailed discussion can be found in Appendix D.1,
which demonstrates the reduction of confusion in
predictions between similar classes when incorpo-
rating ProtoGOF.

Effectiveness of FCLD: The experimental re-
sults further highlight the importance of FCLD in
our framework, as removing this component leads
to a 2% performance drop on both benchmarks. In
addition, to demonstrate the effectiveness of us-
ing label descriptions, we compare the model with
FCLD (w/o ProtoGOF in Table 2) and implement
InfoCL for FCRE. The results show a substantial
performance drop of around 3% on FewRel and
over 8% on TACRED, highlighting the valuable
role of label descriptions in FCLD for enhancing
input representations and addressing the issue of
analogous classes.

Computational Overhead: To illustrate the
computational efficiency of each proposed compo-
nent in Minion, we present the additional time cost
in the Table 3. This comparison evaluates the train-
ing times of three methods for one epoch, using the
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Minion w/o GOF w/o FCLD w/o GOF+FCLD

TACRED
Avg training time / 1 epoch (s) 65.58 65.25 43.60 43.54

FewRel
Avg training time / 1 epoch (s) 109.10 108.93 77.65 77.59

Table 3: Average training time per epoch under different
model ablations.

same batch size of 16 and BERT as the backbone
model on a Tesla P100-PCIE with16GB VRAM.
The results indicate that Minion introduces some
additional computational overhead, with FCLD be-
ing more computationally expensive than Proto-
GOF due to the additional forward pass through
the two encoders (as described in L4 of Algorithm
1). However, this overhead is minimal, adding only
approximately over 20 seconds per epoch. Addi-
tionally, the small number of samples per class in
few-shot settings further mitigates the impact of the
overhead. Given that the training time for Minion
is relatively short, the trade-off between the slight
increase in computational overhead and the signifi-
cant improvement in performance is acceptable.

5 Conclusion

In conclusion, we present Minion, a novel and ver-
satile framework designed to address the challenges
of non-representative prototypes and representation
bias in FCRE. By introducing ProtoGOF, which
leverages the General Orthogonal Frame (GOF)
structure, our approach constructs robust class pro-
totypes without relying on predefined class limits,
making it well-suited for continual learning scenar-
ios. Additionally, our Fast-Slow Contrastive Learn-
ing with Label Descriptions (FCLD) integrates la-
bel description representations to capture essen-
tial relational attributes, mitigating overfitting and
reducing representation bias in few-shot settings.
Comprehensive ablation studies and extensive ex-
periments on two FCRE benchmarks demonstrate
the effectiveness of each proposed component and
superior performance of Minion over state-of-the-
art methods, marking a significant contribution to
the field of FCRE research.

6 Limitations

The current method is primarily applied to high-
level relation extraction tasks where the entities
are predefined. To create more practical and ad-
vanced FCRE systems, future research should fo-
cus on end-to-end relation extraction, which com-
bines both entity recognition and relation extrac-

tion. This presents additional challenges, as it re-
quires addressing overfitting and catastrophic for-
getting across consecutive tasks.

While limited datasets present challenges in ob-
taining informative and robust representations, the
use of data augmentation, which has been effec-
tively integrated into previous FCRE methods (Qin
and Joty, 2022; Ma et al., 2024; Tran et al., 2024),
is an area our approach has not yet explored. De-
spite this limitation, Minion outperforms existing
techniques that incorporate data augmentation for
previously learned tasks in the replay buffer. This
indicates that while our method successfully ad-
dresses the issue of analogous relations, there is
still potential for improvement. We believe that in-
tegrating data augmentation could further enhance
the performance of Minion, and we plan to explore
this in future research.
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Appendix
A Related work

Continual Learning (CL) aims to progressively learn new knowledge from a sequence of tasks while
preventing the problem of forgetting learned knowledge, known as catastrophic forgetting (Thrun and
Mitchell, 1995; Le et al., 2024a). Several approaches have been explored and can be classified into three
main categories: regularization/prior-based methods (Kirkpatrick et al., 2017; Van et al., 2022; Phan et al.,
2022; Hai et al., 2024), architecture-based methods (Li et al., 2019), and memory-based methods (Shin
et al., 2017; Rolnick et al., 2019). Memory-based methods, which store a limited number of representative
samples from the current task and replay them after subsequent tasks to reinforce prior knowledge, have
become widely adopted in NLP tasks, especially in information extraction (Cui et al., 2021; Zhao et al.,
2022; Le et al., 2024b; Dao et al., 2024, 2025).

Few-shot Continual Relation Extraction (FCRE) aligns with the scope of continual relation extraction
research, but faces the additional challenge of limited sample availability for newly emerging relations.
Therefore, it poses challenges related to both overfitting and catastrophic forgetting. The concept was
first introduced by Qin and Joty (2022), and they introduced a data augmentation framework to address
the challenges of data scarcity and catastrophic forgetting. Subsequently, several studies on FCRE have
been introduced (Wang et al., 2023; Chen et al., 2023; Ma et al., 2024; Luo et al., 2024; Tran et al., 2024),
most of which primarily rely on the memory-based approach. In particular, Wang et al. (2023) employs
serial knowledge distillation and contrastive learning, while Chen et al. (2023) introduces a framework
comprising three key modules: a prototype-based classification module, a memory-enhanced module, and
a consistent learning module. Meanwhile, Luo et al. (2024) improves the contrastive loss component with
a multi-view perspective, serving label and instance as distinct anchors, thereby enhancing representation
learning for few-shot scenarios. Recently, Tran et al. (2024) investigated the potential of LLMs in FCRE,
employing mutual information maximization on the language model head to retain prior knowledge.

B Information Bottleneck and Representation Bias

According to Song et al. (2023), information bottleneck defines the objective of deep learning as balancing
the trade-off between model generalization (compressing representations) and preserving information.

Given the input X and the class label Y , the model is trained to learn the representation Z = fM(X ).
The purpose of fine-tuning model is to minimize the following Lagrangian:

I(X ;Z)− βI(Z;Y), (10)

where I(X ;Z) is the mutual information (MI) between X and Z , measuring the information retained in
the representation Z . I(Z;Y) quantifies the amount of information in Z that enables the identification of
the label Y . β is a trade-off hyperparameter. Using the information bottleneck principle, the model will
learn minimal sufficient representation Z∗ of X corresponding to Y:

Z∗ = argmin
Z

I(X ;Z) (11)

s.t. I(Z;Y) = I(X ;Y).

The minimal sufficient representation is crucial for supervised learning, as it retains only the essential
information about the input that is necessary to classify the label, thereby simplifying the classifier’s role
and enhancing generalization, while preserving all relevant label information.

In continual relation extraction setting, following information bottleneck, model learns the minimal
sufficient representation zxi of the input during task T i as:

zxi = argmin
zxi

I (F(x); zxi) (12)

s.t. I (zxi ; yi) = I(F(x); yi),
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Nevertheless, this leads to a phenomenon known as representation bias. To be more specific, in the ith

session, compressing crucial representation of local classes rj ∈ Ri may result in global insufficiency,
which is expressed as:

I (zx; y) < I(F(x); y). (13)

As a result, the model tends to exhibit a bias toward classifying local relations within each session,
which may limit its ability to capture sufficient information for distinguishing analogous classes in later
sessions, leading to catastrophic forgetting.

C Experimental Details

C.1 Datasets

We conduct our experiments on two benchmark datasets:

• TACRED (Zhang et al., 2017) The TACRED dataset comprises 42 relations and 106,264 examples
derived from Newswire and Web documents. Following the approach outlined by (Qin and Joty,
2022), we exclude instances annotated as “no_relation” and partition the remaining 41 relations into
8 distinct tasks. The first task, T 1, consists of 6 relations, each containing 100 examples, while the
subsequent tasks are configured as 5-way 5-shot tasks, with each involving 5 relations.

• FewRel (Han et al., 2018) dataset, encompassing 100 relations and 70,000 examples, is adapted for
our experiments following the setup proposed by Qin and Joty (2022). Specifically, 80 relations are
organized into 8 tasks, each comprising 10 relations (10-way). While the first task T 1 is designed
with 100 examples per relation, the subsequent tasks are structured as few-shot learning scenarios,
constrained to a 5-shot setting.

C.2 Baselines

This section presents a concise summary of several state-of-the-art approaches in Few-Shot Continual
Relation Extraction (FCRE), which are utilized as benchmark baselines in our evaluations.

• SCKD (Wang et al., 2023) implements a structured approach to knowledge distillation, focusing on
retaining knowledge from earlier tasks. Additionally, this method leverages contrastive learning with
pseudo-samples to improve the differentiation between representations of various relations.

• RP-CRE (Cui et al., 2021): This method addresses Continual Relation Extraction (CRE) by utilizing
stored samples to reduce the forgetting of previously learned relations. It applies K-means clustering
to generate prototypes that represent each relation based on the stored data. These prototypes are
then used to adjust the embeddings of new samples, allowing the model to retain knowledge of past
relations while learning new ones. This approach improves memory efficiency compared to earlier
CRE models, leading to better performance.

• CRL (Zhao et al., 2022): This approach tackles catastrophic forgetting by implementing a consistent
representation learning strategy. It focuses on maintaining stable relation embeddings through
contrastive learning and knowledge distillation during the replay of stored samples. The method
applies supervised contrastive learning on a memory bank dedicated to each new task, followed by
contrastive replay of memory samples and knowledge distillation to preserve knowledge of previous
relations. This consistent representation learning effectively mitigates forgetting.

• CRECL (Hu et al., 2022): This method enhances traditional few-shot learning by introducing
additional constraints on the training data. It achieves this by incorporating information from
support instances to enrich instance representations. Additionally, it promotes open-source task
enrichment to enable cross-domain knowledge aggregation and introduces the TinyRel-CM dataset,
specifically designed for few-shot relation classification with limited training data. Experimental
results demonstrate its effectiveness in improving performance in low-data scenarios.
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• ERDA (Qin and Joty, 2022): This work introduces Continual Few-Shot Relation Learning (CFRL)
as a new challenge, highlighting the limitations of existing methods that require extensive labeled
data for new tasks. CFRL aims to learn new relations with minimal data while avoiding catastrophic
forgetting. To address this, ERDA proposes a technique based on embedding space regularization
and data augmentation. This approach enforces constraints on relational embeddings and supple-
ments relevant data through self-supervision. Comprehensive experiments demonstrate that ERDA
significantly outperforms previous state-of-the-art methods in CFRL settings.

• ConPL (Chen et al., 2023) presents a method with three key components: a prototype-based
classification module, a memory-enhanced module, and a consistent learning module aimed at
preserving distribution consistency and minimizing forgetting. Additionally, ConPL utilizes prompt
learning to improve representation learning and incorporates focal loss to reduce confusion between
closely related classes.

• CPL (Ma et al., 2024) introduces a Contrastive Prompt Learning framework, which designs prompts
to generalize across relation categories and applies margin-based contrastive learning to manage
challenging samples. This helps reduce both catastrophic forgetting and overfitting. The method also
incorporates a memory augmentation strategy by generating diverse samples using ChatGPT, which
alleviates overfitting in low-resource Few-Shot Continual Relation Extraction scenarios.

• CPL+MI (Tran et al., 2024) introduces an innovative approach to improve FCRE models by
effectively utilizing the language model (LM) heads. By maximizing the mutual information between
these heads and the primary classifiers, the method better preserves prior knowledge from pre-trained
backbones while also enhancing representation learning.

• CPL+MI+augment (Anh et al., 2025) introduces a data augmentation strategy that enriches input
by combining original and new information to create more complex texts. It also incorporates
adversarial training and custom objective functions to enhance robustness and learning from diverse
training signals.

• SIRUS (Le et al., 2025a) proposes a method to tackle the challenge of similar classes by repre-
senting relations through their descriptions and applying dynamic clustering to discover groups of
semantically related relations.

It is important to note that we reproduce the results of ConPL (Chen et al., 2023) using the same settings
as SCKD and CPL. This adjustment is made because the evaluation strategy in the original paper is not
feasible for continual learning scenarios.

C.3 Large Language Model Embeddings
Although Large Language Models (LLMs) with billions of parameters excel at autoregressive text
generation tasks (Dubey et al., 2024; Jiang et al., 2023; Hai et al., 2025; Nguyen et al., 2025a, 2023a), their
generation-focused architecture often limits their effectiveness in text representation learning compared
to discriminative encoder-based models like BERT. Large Language Model Embeddings (LLMEs) are
introduced to transform decoder-only LLMs into text encoders, thereby enhancing their representation
learning and embedding capabilities (BehnamGhader et al., 2024; Li et al., 2024; Lee et al., 2024). To
this end, two key modifications are typically applied: (1) enabling bidirectional attention by removing
the causal mask, and (2) replacing the next-token prediction task with contrastive learning or masked
token prediction during training. As a result, these models can function similarly to encoder models such
as BERT while offering more generalization and comprehension capabilities, since they can inherit the
strengths of the extensive architecture and pretraining corpus of the original LLMs.

We investigate the use of Large Language Model Embeddings (LLMEs) in the FCRE scenario by
utilizing the backbone modelM with these models. Given that LLMs excel with instruction prompts and
mean-pooling of token embeddings has been shown to yield optimal results in LLM2Vec (BehnamGhader
et al., 2024), we construct an input x incorporating entities eh and et as follows.
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ILLMEs(x) = x. The relation between

[eh] and [et] is:

This instruction prompt enables LLMEs to capture the semantic context and classify relations between
the entities. The latent embedding is then derived by mean-pooling the token representations. The training
and inference processes are consistent across all backbone models.

C.4 Backbone Checkpoint

• For BERT-based models: We use BERT-base-uncased checkpoint1 on Hugging Face.

• For LLM2Vec-based models: We employ three checkpoints on Huggingface:

– LLama3: Meta-Llama-3-8B-Instruct-mntp-supervised 2(a variant of a Llama-3 8B model),

– Mistral: LLM2Vec-Mistral-7B-Instruct-v2-mntp-unsup-simcse 3

– LLama2: LLM2Vec-Llama-2-7b-chat-hf-mntp-supervised 4 checkpoint on Hugging Face. (a
variant of a Llama-2 7B model)

C.5 Evaluation and Training Configurations

For each reported result, we conduct 6 independent runs with different random seeds and report the mean
and the corresponding standard deviation.

Evaluation Metric: We use final average accuracy to evaluate methods in our experiments. The average
accuracy after training task T j is calculated as follows:

ACCj =
1

j

j∑

i=1

ACCj,i

where ACCj,i is the accuracy on the test set of task T i after training the model on task T j .

Training Configuration: All BERT-based experiments were performed on an NVIDIA RTX 3090 GPU
with 24GB of memory, while experiments using the LLME backbone were conducted on an NVIDIA
A100 GPU with 80GB of VRAM. The experiments were carried out on Ubuntu Server 18.04.3 LTS.

Details of hyperparameter search:

• Learning rate: {1× 10−5, 2× 10−5, 1× 10−4}

• α: { 0.1, 0.15, 0.2, 0.25}

• λ1: {0.5, 0.1, 0.15, 0.2, 0.25}

• λ2: {0.5, 0.5, 0.5, 0.5, 0.5}

• λ3: {0.25, 0.5, 0.75, 1.0}

Lora config target modules: "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj",
"down_proj".

Additionally, Tables 4 and 5 provide the optimal values of hyperparameters for each model backbone.
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Table 4: Hyperparameters setting for the BERT-
backbone.

Hyperparameter Value
Epochs 10
Learning rate 1× 10−5

α 0.25
θ (TACRED) 0.3
θ (FewRel) 0.1

Encoder output size 768
BERT input max length 256

λ1 1.0
λ2 (FewRel) 0.5
λ2 (TACRED) 0.25
λ3 (FewRel) 0.5
λ3 (TACRED) 0.25

Soft prompt initialization Random
Soft prompt phrase length 3
Soft prompt number of phrases 4

Table 5: Hyperparameters setting for LLMEs back-
bone.

Hyperparameter Value
Encoder output size 4096
Epochs 10
Learning rate 1× 10−5, 1× 10−4

α 0.2
θ (FewRel) 0.5
θ (Tacred) 0.5

Lora alpha 16
Lora rank 8
Lora dropout 0.05
λ1 1.0
λ2 0.5
λ3 0.5

D Additional Experimental Results

D.1 Efficiency of ProtoGOF in Discriminating Analogous Relations

Follow Song et al. (2023), we select the top most analogous labels in FewRel dataset, which are: P706,
P57, P22, P123, P127, P25, P17, P551, P206, P58, P40, P35, P26, P131, P937. As demonstrated in
Figure 2, ProtoGOF assists the model in distinguishing between similar classes more effectively. In
particular, for the label "P123: Publisher" and the relation "P58: Screenwriter," it drastically reduces
the number of incorrect predictions from 50 to just 11. Moreover, ProtoGof also helps to eliminate the
confusion between similar relations as well, such as: similiar pair: relation "P35: Head of government"
and "P937: Work location".

D.2 Additional Ablation Results

Effectiveness of each Proposed Components: Additionally, we conduct an ablation study to evaluate
the impact of each component in Minion by systematically removing them from the overall objective
function and framework. As shown in Table 6, the results confirm that each core component of Minion,
including ProtoGOF and FCLD, is crucial for the model’s performance. For a fair comparison, we
also reproduce InfoCL (Song et al., 2023) with BERT as the baseline and use NC-FSCIL (Yang et al.,
2023) with ETF-based prototypes (ProtoETF) instead of ProtoGOF. The results reveal that, while InfoCL
achieves competitive performance in standard continual learning settings, it suffers significantly from
catastrophic forgetting in few-shot tasks, particularly on TACRED (5-way-5-shot) with an accuracy of only
51.02%. Furthermore, despite the claim that ETF structure ensures "maximal separation," in imbalanced
training settings like FCRE, deep learning models do not converge to ETF structures, but rather to GOFs.
Consequently, ProtoETF shows a slight decline in performance compared to ProtoGOF. Moreover, we
compare Minion with existing approaches leveraging LSCL(Khosla et al., 2021), such as RP-CRE (Cui
et al., 2021) and CPL (Ma et al., 2024). Table 2 demonstrates that our method outperforms these models
by a significant margin on both benchmark datasets.

1https://huggingface.co/bert-base-uncased
2https://huggingface.co/McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-supervised
3https://huggingface.co/McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp-unsup-simcse
4https://huggingface.co/McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-supervised
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Method
Tasks

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

FewRel (10-way–5-shot)

Minion 94.58±0.36 86.96±2.56 81.02±1.33 77.66±2.18 75.66±1.96 73.05±1.25 71.33±1.16 69.61±2.12

w/o ProtoGOF 94.73 86.48 80.04 76.21 74.65 72.06 69.91 68.27
w/o FCLD 94.87 86.71 80.61 77.18 75.47 72.17 70.31 68.32
w ProtoETF 94.87 86.61 80.09 76.66 74.88 71.70 70.35 68.60

CPL (Ma et al., 2024) 94.87 85.14 78.80 75.10 72.57 69.57 66.85 64.50
InfoCL (Song et al., 2023) 94.56 86.17 79.61 75.80 73.67 70.22 68.15 65.72
RP-CRE (Cui et al., 2021) 93.97±0.64 76.05±2.36 71.36±2.83 69.32±3.98 64.95±3.09 61.99±2.09 60.59±1.87 59.57±1.13

TACRED (5-way-5-shot)

Minion 87.28±0.23 81.89±1.35 75.72±4.6 72.75±3.94 66.68±5.27 66.71±6.6 62.81±5.55 61.11±2.58

w/o ProtoGOF 87.28 83.16 75.98 74.67 68.43 67.66 62.67 59.66
w/o FCLD 87.12 83.16 75.98 72.73 67.24 65.97 61.70 59.49
w ProtoETF 86.96 83.03 76.48 73.02 66.65 65.87 61.91 60.28

CPL (Ma et al., 2024) 86.27 81.55 73.52 68.96 63.96 62.66 59.96 57.39
InfoCL (Song et al., 2023) 86.74 79.47 68.37 64.39 59.19 56.49 52.13 51.02
RP-CRE (Cui et al., 2021) 87.32±1.76 74.90±6.13 67.88±4.31 60.02±5.37 53.26±4.67 50.72±7.62 46.21±5.29 44.48±3.74

Table 6: Ablation study (%) of ProtoGOF and FCLD in our Minion with BERT baseline. We reproduced NC-FSCIL
as ProtoETF and InfoCL in FCRE. The best results are in bold.

Hyper-parameters T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

Best setting 94.58±0.36 86.96±2.56 81.02±1.33 77.66±2.18 75.66±1.96 73.05±1.25 71.33±1.16 69.61±2.12

α: {0.1, 0.15, 0.2}
0.1 94.69±0.32 86.86±2.45 80.66±2.04 77.50±2.76 75.62±2.95 72.62±2.01 71.39±1.19 69.32±0.80

0.15 94.69±0.32 87.12±2.23 80.80±1.75 77.09±2.57 75.38±2.60 72.28±1.73 70.69±1.14 68.54±0.64

0.2 94.68±0.32 87.13±2.44 80.96±1.54 77.52±2.17 75.65±2.43 72.39±1.89 70.95±1.49 68.84±1.18

λ1: {0.1, 0.25, 0.5}
0.1 94.66±0.32 86.96±2.50 80.56±1.75 76.27±2.60 74.00±2.67 71.33±1.72 69.64±1.44 67.23±0.92

0.25 94.66±0.32 86.96±2.28 80.34±1.98 77.00±2.83 75.19±2.90 72.44±1.96 70.82±1.27 68.06±0.74

0.5 94.69±0.32 87.12±2.52 80.70±1.74 77.02±2.33 75.23±2.77 72.59±2.09 70.53±1.22 68.66±0.65

λ2: {0.25, 0.1, 1.0}
0.25 94.68±0.32 87.13±2.24 80.85±1.91 77.19±2.31 75.60±2.91 72.65±2.06 71.13±0.91 69.00±0.96

0.1 94.69±0.32 87.35±2.24 81.37±2.08 77.89±2.56 76.04±2.72 72.90±1.89 71.19±1.28 69.48±0.80

1.0 94.66±0.32 87.08±2.19 81.09±1.88 77.43±2.48 75.43±2.70 72.55±2.41 70.86±1.16 68.97±0.77

λ3: {0.25, 0.75, 1.0}
0.25 94.68±0.32 87.15±2.30 80.72±1.52 77.60±2.08 75.95±2.51 73.12±1.98 71.37±1.08 69.17±0.70

0.75 94.68±0.32 87.20±2.56 80.62±2.22 77.48±1.61 75.55±2.04 73.01±1.93 71.15±1.25 69.29±0.71

1.0 94.68±0.32 87.10±2.46 80.92±2.00 77.13±2.60 75.43±2.62 72.49±1.62 70.83±1.10 69.06±0.84

Table 7: Performance of different hyper-parameter settings across tasks. Each cell shows the mean accuracy and
standard deviation.

Hyperparameter sensitivity: We conducted additional experiments by varying the values of key
hyperparameters, including α, λ1, λ2, and λ3. We find out that the denotation for α is missing in Equation
8. To clarify, this parameter represents the weight for LSCL, and we have included it in our updated
revision. Specifically, to reduce the exponential number of possible configurations, while tuning one
parameter at a time we fix the remaining parameters to their optimal settings (α = 0.25, λ1 = 1.0,
λ2 = 0.5, λ3 = 0.5). The table below provides the results for the FewRel dataset under different
parameter settings. The results indicate that performance varies with a low standard deviation across
different hyperparameter configurations, demonstrating that our method is not overly sensitive to these
hyperparameters. Notably, the most sensitive parameter we observed is λ1, which corresponds to Lfs.
This indicates that careful tuning of the loss between the input and label description from the fast and
slow encoders is crucial for achieving rich representations. However, the variance in performance is not
significantly high, and the other parameters exhibit robustness. This suggests that the proposed approach
generalizes effectively to new datasets or tasks without requiring extensive hyperparameter tuning.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2

3
4

5
6

7
8

9
10

11
12

13
14

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 73 0 2 0 5 0 0 0 0 0 0 0 0

0 0 0 59 0 0 0 0 0 5 0 0 0 0 0

0 0 1 0 78 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 50 0 0 0 0 0 0 0 0 0

0 0 30 0 0 0 40 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 60 7 0 0 2 0 0 0

0 0 0 0 0 0 0 1 58 0 6 0 0 0 0

0 0 0 11 0 0 0 0 0 47 0 0 0 0 0

0 0 0 0 0 0 0 4 4 0 48 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 66 1 0 3

0 0 0 0 0 0 0 0 0 0 0 0 85 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 66 1

1 0 0 0 0 0 0 0 3 0 0 2 0 0 57

Ours

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Predicted

1
2

3
4

5
6

7
8

9
10

11
12

13
14

Tr
ue

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 80 0 4 0 7 0 0 0 0 0 0 0 0

0 0 0 82 0 0 0 0 0 11 0 0 0 0 0

0 0 1 0 90 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 45 0 0 0 0 0 0 0 0 0

0 0 32 0 2 0 41 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 60 5 0 0 5 0 0 0

0 0 0 0 0 0 0 1 50 0 3 0 0 0 0

0 0 0 50 0 0 0 0 0 8 0 0 0 1 0

0 0 0 0 0 0 0 5 3 0 44 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 56 1 0 6

0 0 0 0 0 0 0 0 0 0 0 0 84 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 44 2

1 0 0 0 0 0 0 0 2 0 0 0 0 0 58

Ours w/o GOF

0

20

40

60

80

100

Relation Types
P706: Located on terrain feature
P57: Director
P22: Father
P123: Publisher
P127: Owned by
P25: Mother
P17: Country
P551: Residence

P206: Located in or next to body of water
P58: Screenwriter
P40: Child
P35: Head of government
P26: Spouse
P131: Located in the administrative territorial entity
P937: Work location

Figure 2: Confusion matrix between Minion and Minion w/o ProtoGOF for 15 similar relations after training 8
tasks in the FewRel dataset.
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