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Abstract

Key-Value (KV) cache has become a bottleneck
of LLMs for long-context generation. Despite
the numerous efforts in this area, the optimiza-
tion for the decoding phase is generally ignored.
However, we believe such optimization is cru-
cial, especially for long-output generation tasks
based on the following two observations: (i)
Excessive compression during the prefill phase
which requires specific full context, impairs the
comprehension of the reasoning task; (ii) Devi-
ation of heavy hitters1 occurs in the reasoning
tasks with long outputs. Therefore, SCOPE, a
simple yet efficient framework that separately
performs KV cache optimization during the pre-
fill and decoding phases, is introduced. Specifi-
cally, the KV cache during the prefill phase is
preserved to maintain the essential information,
while a novel strategy based on sliding is pro-
posed to select essential heavy hitters for the
decoding phase. Memory usage and memory
transfer are further optimized using adaptive
and discontinuous strategies. Extensive exper-
iments on LONGGENBENCH show the effec-
tiveness and generalization of SCOPE and its
compatibility as a plug-in to other prefill-only
KV compression methods. 2

1 Introduction

Large Language Models (LLMs) (Dubey et al.,
2024; Jiang et al., 2023; Yang et al., 2024a; Team
et al., 2024; Achiam et al., 2023; Anthropic, 2024)
have demonstrated powerful abilities for process-
ing long-context tasks. When LLMs infer on these
long-context tasks, the Key-Value (KV) cache occu-
pies a larger amount of GPU memory and becomes
a substantial bottleneck (Waddington et al., 2013;

* Equal Contribution.
† Corresponding Author.
1According to Zhang et al. (2023), “heavy hitters” refer to

the KV cache of pivotal tokens, a small subset of the entire
KV cache, that effectively captures the critical information.

2The code is available in https://github.com/
Linking-ai/SCOPE
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Figure 1: Illustration of three paradigms for compres-
sion during the decoding phase on a task with 4K input
and 4K output. Separating the prefill and decoding
phases facilitates the preservation of the essential infor-
mation KV cache from the prefill phase while allowing
for efficient allocation of the KV cache generated during
the decoding phase.

Luohe et al., 2024; Yuan et al., 2024; Fu, 2024). For
example, an RTX 3090 server struggles to handle
the KV cache for a 64K context in LLaMA3.1-
8B, which has a 128K context window. Therefore,
compressing the KV cache while maintaining the
performance is crucial.

LLM inference process involves the prefill phase
and the decoding phase. For tasks with long inputs
and short output (Kamradt, 2023; Bai et al., 2024)
(e.g., long-form QA or sentence retrieve), effective
compression of the KV cache during the prefill
phase is crucial. However, for tasks with both long
inputs and long outputs (Liu et al., 2024b,c) (e.g.,
lengthy text summarization and multi-question an-
swering), KV cache compression holds equal im-
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portance in both the prefill and decoding phases.
Previous methods fall into two categories: (1)

The Prefill-Only Compression method compresses
the KV cache only during the prefill phase while
retaining all KV cache generated during the decod-
ing phase. (2) The Unified Compression method
treats both phases as a unified process. For Prefill-
Only Compression, methods like SnapKV (Li et al.,
2024) and PyramidKV (Cai et al., 2024), retain-
ing all KV cache generated during the decoding
phase, leading to linear cache growth with the out-
put length and memory pressure , especially for
long outputs, as shown in Figure 1. For Unified
Compression, such as H2O (Zhang et al., 2023)
and PyramidInfer (Yang et al., 2024b), prioritizes
retaining the KV cache generated during decoding
while discarding the earlier KV cache influenced by
recent tokens typically receiving higher attention
weights (Zhao et al., 2021; Song et al., 2024). This
poses substantial challenges for reasoning tasks
that rely on understanding the fine-grained input
content . There has been no dedicated explo-
ration of KV cache compression strategies for han-
dling lengthy outputs.

In this paper, we first unravel two essential obser-
vations that serve as the foundation for our explo-
ration: (i) excessive compression during the prefill
phase significantly affects the ability of LLM to
reason through the query; (ii) heavy hitters deviate
during the decoding phase in long-text generation,
leading to skewed KV cache allocation. Build-
ing upon the insight, we introduce SCOPE, a
simple yet efficient framework that Separately per-
forms KV Cache Optimization during the Prefill
and dEcoding phases. To our knowledge, we are
the first to decouple the prefill and decoding phases
to compress the KV cache independently. Specif-
ically, we first maintain the KV cache generated
during the prefill phase to ensure an understanding
of long content. Then, we allocate heavy hitters
using the sliding way in the decoding phase to
optimize the memory of the KV cache. Building
on the intuitive slide strategy, we further optimize
memory-usage and memory-transfer, introducing
adaptive strategy and discontinuous strategy.

To thoroughly validate our framework, we select
LONGGENBENCH (Liu et al., 2024c) as the bench-
mark for our experiments over two mainstream
LLMs. SCOPE can achieve comparable perfor-
mance to the full KV cache when the overall com-
pression rate is 35%. Additionally, our framework
is seamlessly compatible with other compression

methods in the prefill phase.
The contributions of this work are as follows:

1). A simple yet efficient framework SCOPE is
proposed to address the deviation of heavy hitters
inspired by the observations and insights from an
inference perspective. 2). Three strategies are de-
veloped to mitigate the deviation during the decod-
ing phase. 3). Empirically, extensive experiments
and analytical evaluations validate the effectiveness
and generalizability of SCOPE.

2 Pilot Observation

2.1 KV Cache in Inference Perspective

Each request for an LLM involves two distinct
phases (Zhou et al., 2024). The first phase, known
as prefill, processes the complete input prompt to
generate the initial output token. The second phase,
termed decoding, iteratively produces the remain-
ing output tokens, one at a time. We conduct pilot
experiments through the lens of each phase in the
inference process.
Prefill Phase: Existing work focusing on the prefill
phase is grounded in the notion that attention is
naturally sparse in typical tasks (Singhania et al.,
2024; Tang et al., 2024; Wu et al., 2024). For
PassageRetrieval-en and HotpotQA within Long-
Bench, a 20% compression ratio during the prefill
phase still maintained performance nearly identical
to that of the full cache, demonstrating the model’s
ability to effectively retrieve and understand con-
text even with significant compression, as shown
in Figure 2a. However, when tasks require specific
full context, such as reasoning tasks, attention is
not always highly sparse (Chen et al., 2024), even
if the output is short. As illustrated in Figure 2a, the
same 20% compression rate during the prefill phase
resulted in nearly 95% degradation in accuracy
on the GSM8k+ task within LONGGENBENCH.
Although sufficient performance is achieved on
conventional tasks using KV cache compress dur-
ing the prefill phase, the performance is notably
poor on reasoning tasks when the compression ra-
tio reaches a modest threshold, leaving room for
targeted optimization through compression during
the decoding phase.

Observations (i): For tasks that require specific
fine-grained context, such as reasoning tasks, ex-
cessive compression during the prefill phase sig-
nificantly compromises performance.
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Figure 2: (a) Performances across various compression ratios during the prefill phase on three tasks under the full
decoding cache condition. (b) Position distribution of the heavy hitters, selected by top 15% attention scores, at
decoding steps 1, 300, and 500 across layers 0, 13, and 31. (c) Attention heatmaps for layer 13 of a GSM8k+ sample
in LONGGENBENCH and details of the correspondence between attention scores and generated token positions.
The complete case employed in the probing experiment is presented in Appendix 9.

Decoding Phase: We analyze the distribution of
heavy hitters during the prefill and decoding phases
as the decoding length increased in Figure 2b.
Across all three layers, the retained heavy hitters
predominantly originate from the KV cache gener-
ated during the decoding phase. This phenomenon
has also been mentioned by several recent studies
and can be attributed to the inherent properties of
the attention mechanism, wherein tokens near the
end often receive higher attention weights (Zhao
et al., 2021; Song et al., 2024). This is particu-
larly harmful for multi-question answering tasks,
like LONGGENBENCH, as addressing such queries
needs careful consideration of the question context.
Previous prefill-only or unified compression strate-
gies may overlook this distinction. In long-output
tasks, as the output length increases, the deviation
becomes more pronounced, making it imperative to
preserve the heavy hitters identified during the pre-
fill phase while providing appropriate management
for those emerging in the decoding stage.

Observations (ii): During the decoding phase of
long text generation, the use of the greedy algo-
rithm may lead to a deviation in heavy hitters.

2.2 KV Cache Budget Reallocation
Building on the empirical observations from our
pilot experiments, we derive the following insight:

Insight: It is crucial to allocate the budget of the
KV cache during the prefill and decoding phases
separately.

This insight inspires the design of SCOPE,
which decouples compression into the prefill and
decoding phases to effectively allocate the KV
cache budget, preserving all KV cache generated
during the prefill phase and enabling more effective
reallocation of the KV cache budget. While numer-
ous studies have explored the heavy hitters during
the prefill phase, to our knowledge, no prior work
has specifically addressed this aspect of the decod-
ing phase. We dive deeper into the sparsity in the
KV cache during the decoding to design strategy,
selecting essential heavy hitters dynamically. To
gain deeper insights, following prior works (Xiao
et al., 2024b; Cai et al., 2024), we analyze the at-
tention heatmaps, comparing the attention weights
between the prefill and decoding phases, as shown
in Figure 2c. The leftmost and rightmost plots rep-
resent the prefill and decoding phases, respectively.
For tasks that require simultaneous reasoning for
multiple questions, it is essential to recognize the
position of the current prediction. This informa-
tion can be captured by heavy hitters identified us-
ing a greedy algorithm, as illustrated in Figure 2c.
Thus, it remains necessary to allocate a portion of
the KV cache budget specifically for heavy hitters.
Furthermore, owing to the autoregressive nature
of LLMs, it remains essential to retain the recent
tokens, which exhibit stronger correlations with
current tokens.

3 Method

3.1 Revisiting KV Cache Compression

Initialization KV cache compression essentially
involves adjusting the cache based on the given KV
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cache budget, where we allocate a cache pool, de-
noted as Φ, consisting of Φp and Φd, which stores
the KV cache generated during the prefill and de-
coding phases, respectively. The cache pool is up-
dated at each step t, denoted as Φt. The widely rec-
ognized function for selecting heavy hitters based
on the greedy algorithm is denoted as ΨK(Att),
which represents the selection of the Top-K KV
caches from the given attention weights Att.

Prefill Phase Given the input prompt tensor P ∈
RM×D, represented as P = {P1,P2, . . . ,PM},
where Pi denote i-th token embeddings, and M
represent the number of input tokens and D is the
model’s hidden dimension. The key and value ten-
sors are computed as follows:

KPVP = PWK ,PWV , (1)

where WK ,WV ∈ RD×D are the weights matri-
ces for the key and value projections, respectively.
The KV pairs are denoted as KPVP . The atten-
tion weights AttP is caculated by P and KPVP .
The most effective and widely adopted approach,
as established through early explorations (Zhang
et al., 2023; Yang et al., 2024b; Li et al., 2024), two
import hyperparameters α1 and α2 are introduced,
where α1 represents the length of prefill essential
history window and α2 represents the length of
prefill local window during the prefill phase. The
length of the total reserved KV cache is α1 + α2,
which also corresponds to the size of the cache pool
Φp during the prefill. For compression during the
prefill phase is:

K0V0 = Ψα1(AttP [: −α2]) ·KPVP [−α2 :],
(2)

where · denotes concatenation and the function
Ψα1(AttP) selects the KV cache with the Top-α1

attention weights from AttP [: −α2].
K0V0 is stored in Φp

0. Maintain an essential his-
tory window α1 to retain KV with higher attention
weights for the current query and a local window
α2 to reserve the KV of recently generated tokens,
ensuring both contextual continuity and retention
of attention. Notably, the compression is only exe-
cuted once, at t = 0, marking the end of the prefill
phase before transitioning into the decoding phase.

Decoding Phase During the decoding phase, the
KV cache from the prefill phase is employed and
updated to sequentially generate tokens. At each
time step t, keys and values are computed only for

the new token tensor Xt,t∈{1,T} as follows:

KtVt = XtWK ,XtWV , (3)

KtVt is concatenated with previously retained KV
cache, which is stored in Φ, to obtain the current
retained KV pairs. This is then computed with the
current query Xt to compute the attention Attt.

The main difference from previous KV compres-
sion methods lies in the distribution of Φp and Φd

within the cache pool Φ. The Prefill-Only Com-
pression method does not compress the KV cache
generated during the decoding phase. Instead, it
involves a linear growth of the KV cache with each
newly generated token. Φt

p remains constant, and
at each step t, it stores the originally preserved
KV0. Φt

d stores the KV cache at each time step t
during the decoding phase, from K1V1 to KTVT ,
which leads to a significant increase of memory
consumption as the length grows. The Unified
Compression method in the decoding phase will
apply the Ψα1 (Attt[: −α2]) at each t to update
cache pool Φ. As the number of generated to-
kens increases, the attention mechanism tends to
assign higher weights to tokens at the end, meaning
that the Top-α1 KV caches returned by Ψ are all
generated during the decoding phase, while those
from the prefill phase are discarded. As t increases,
Φp
t grows larger, while Φd

t becomes smaller. This
results in more information being retained in Φd

within Φ, while the information in Φp decreases,
leading to potential essential information loss that
may be needed in future decoding steps.

3.2 SCOPE
The primary goal of SCOPE is to mitigate the de-
viation of heavy hitters, thereby ensuring a more
balanced allocation of Φp and Φd. Motivated by
the findings in §2.1, where excessive compression
during the prefill phase hinders performance on rea-
soning tasks, the cache pool Φp is constant at each
t, i.e., we reserved all compressed KV Cache gen-
erated during the prefill phase. The operation on
Φp in SCOPE is the same as that in the previously
unified compression method.

It is necessary to leverage the sparsity of the
KV cache generated during decoding to enable ef-
ficient allocation. Three strategies for the decoding
phase are developed: Slide, Adaptive, and Dis-
continuous, all of which update only Φd. The
adaptive strategy optimizes memory based on the
slide strategy, and the discontinuous strategy opti-
mizes computation on top of the adaptive one. We
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Figure 3: Illustration of three strategies of SCOPE. The prefilled cache pool Φp
t is constant at each t. The slide

strategy updates the decoding cache pool at each decoding step while the size of the decoding cache pool is constant.
The adaptive strategy incrementally increases the size of the decoding cache pool at regular intervals of T−β2

β1
. The

discontinuous strategy, built upon the adaptive strategy, executes ΨK(Att) at intervals of the same time period.

will introduce them one by one below in detail. For
each strategy, Python-style pseudocode is provided
in Figure 8 to facilitate comprehension of details.

Slide We compress the KV cache in the decoding
phase by sliding the decoding essential history win-
dow β1 and the decoding local window β2, where
β1 helps identity the position of the current pre-
diction and β2 stores global information strongly
correlated with previous tokens other as discussed
in §2.2.

The slide strategy starts from t > M + β1 + β2,
applying the function Ψβ1 (Attt[α1 + α2 : −β2])
to restrictively update only Φd while keeping Φp

constant. This is achieved by limiting the selecting
function Ψ to operate on Attt starting from α1 +
α2, thus excluding the attention weights from the
prefill phase. It can be completely independent of
the KV cache pool during the prefill phase Φp.

Adaptive We can optimize the β1 of slide
strategy to adaptively increase its size from a
memory-usage perspective. When the length of
the tokens generated during decoding is relatively
short, a long decoding essential history window
β1 is unnecessary, it is unnecessary to place all
these KV caches in the Φd

t . β1 can be adaptively
increased as needed. A function of time steps t and
the maximum length T is proposed to adaptively
adjust the length of the decoding essential history
window β1, where T ≫ β1 + β2. It starts with a

base size β2 and grows linearly with time step t:

β̂1 =
(t− β2) · β1

T − β2
if t > β2, (4)

The budget size of Φd
t also increases adaptively and

is given by β2+
(t−β2)·β1

T−β2
when t < T , which helps

optimize memory usage, as the ratio (t−β2)
(T−β2)

is less
than 1. As t reaches T , the size of Φd

t becomes
β1 + β2. This adjustment aligns with the autore-
gressive token-by-token encoding characteristic of
LLMs, ensuring more efficient use of resources. In
addition, ΨK(Att) begins execution earlier than
the sliding strategy. The adaptive strategy opti-
mizes the budget of Φd

t and reduces unnecessary
overhead while still retaining enough historical con-
text for an effective generation without introducing
additional hyperparameters.

Discontinuous We further optimize the adap-
tive strategy from a memory-transfer perspective
to ensure by reducing the frequency of execu-
tion of ΨK(Att). The top-K selection operation
ΨK(Att) would be executed a total of T − β2
times using previous strategies, which potentially
leads to frequent GPU I/O due to the update op-
eration of Φd at each step. Motivated by the char-
acteristic that consecutive queries tend to select
similar keys (Zhao et al., 2024; Tang et al., 2024),
we make the update operation, i.e., Top-K selec-
tion ΨK(Att) discontinuous. This strategy opti-
mizes the times of execution frequency of selection
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Table 1: Performance of our proposed SCOPE using three strategies and baselines on the LONGGENBENCH
benchmark with LLaMA-3.1-8B-Instruct and Mistral-7B-Instruct-v0.3. The best results among all methods are in
bolded. The prefill compression ratio averages around 60%.

Method LONGGENBENCH-4K LONGGENBENCH-8K
GSM8K+ MMLU+ CSQA+ Avg. GSM8K++ MMLU++ CSQA++ Avg.

LLaMA-3.1-8B-Instruct

Full Cache 53.26 54.40 71.67 59.78 44.44 51.01 64.92 53.46

Decoding Compression Ratio=25.0% Decoding Compression Ratio=12.5%

StreamingLLM 10.78 34.15 43.50 29.48 26.98 41.26 65.33 44.53
H2O 35.04 48.11 69.50 50.88 22.54 48.21 59.58 43.44
PyramidInfer 38.76 48.93 71.58 53.09 21.11 47.96 59.58 42.88
SCOPE (Slide) 46.51 46.62 72.50 56.21 30.24 51.64 65.75 49.21
SCOPE (Adaptive) 43.10 50.25 71.50 54.95 27.86 51.23 62.50 47.19
SCOPE (Discontinuous) 42.02 49.75 72.67 54.81 24.37 50.00 59.33 44.57

Decoding Compression Ratio=12.5% Decoding Compression Ratio=6.25%

StreamingLLM 11.94 35.97 41.42 29.78 20.56 41.79 64.92 42.42
H2O 26.59 45.97 65.25 45.94 21.27 45.94 55.08 40.77
PyramidInfer 28.29 46.41 61.42 45.38 19.84 45.50 55.08 40.14
SCOPE (Slide) 42.56 50.94 73.50 55.67 26.59 49.59 65.08 47.09
SCOPE (Adaptive) 37.29 50.19 74.00 53.83 30.56 49.94 65.92 48.80
SCOPE (Discontinuous) 39.85 50.06 72.92 54.27 28.41 50.63 67.92 48.99

Mistral-7B-Instruct-v0.3

Full Cache 11.01 28.30 64.33 34.55 9.37 20.35 51.75 27.15

Decoding Compression Ratio=25.0% Decoding Compression Ratio=12.5%

StreamingLLM 6.90 22.83 65.25 31.66 2.62 17.48 46.75 22.28
H2O 7.91 26.48 60.42 31.60 5.71 16.20 40.17 20.69
PyramidInfer 10.00 24.15 62.92 32.36 5.56 16.48 40.17 20.73
SCOPE (Slide) 7.67 21.51 58.58 29.26 5.95 16.95 45.50 22.80
SCOPE (Adaptive) 11.47 29.06 64.50 35.01 9.76 20.35 51.75 27.29
SCOPE (Discontinuous) 11.55 29.06 64.50 35.04 9.84 20.35 51.75 27.31

Decoding Compression Ratio=12.5% Decoding Compression Ratio=6.25%

StreamingLLM 6.51 19.69 57.92 28.04 3.57 17.14 46.83 22.51
H2O 7.13 21.07 49.83 26.01 5.63 16.07 33.25 18.32
PyramidInfer 7.13 20.94 51.75 26.61 5.63 16.76 33.25 18.55
SCOPE (Slide) 8.84 18.68 51.75 26.42 5.71 17.08 46.17 22.99
SCOPE (Adaptive) 10.93 29.06 64.50 34.83 7.30 19.94 51.75 26.33
SCOPE (Discontinuous) 10.39 29.06 64.50 34.65 8.33 20.19 51.75 26.76

operation ΨK(Att), with ζ occurring once every
interval of T−β2

β1
, whereas previous strategies exe-

cute at each step t. This interval is consistent with
the growth of β̂1 in the adaptive strategy. The fre-
quency can be reduced to T−β2

T−β2
β1

= β1 using this

strategy, thereby alleviating the memory I/O pres-
sure caused by frequent updates to Φd.

4 Experiments

4.1 Datasets

We develop two open-sourced datasets,
LONGGENBENCH-4K ({subtask}+) and
LONGGENBENCH-8K ({subtask}++), where
multiple reasoning tasks must be handled

simultaneously3, each containing three sub-
tasks synthesized from GSM8K (Cobbe et al.,
2021), MMLU (Hendrycks et al., 2021), and
CSQA (Hendrycks et al., 2021). These subtasks
are designed to address long-input challenges with
output lengths of 4K and 8K, respectively.4 To
validate the effectiveness of SCOPE on general
long-output tasks, we select the En.Sum task from
∞BENCH (Zhang et al., 2024), with an average
output length of 1.1K. For the detailed statistics
of datasets and additional details corresponding to
each subtask, refer to Appendix B.

3Prompt template is provided in Appendix B.
4The selected examples have output lengths of 4K and 8K,

ensuring no premature cessation of the response.
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4.2 Baselines

To validate the effectiveness of SCOPE, we
compare it with Full Cache and representa-
tive unified compression methods, including
StreamingLLM (Xiao et al., 2024b), which keeps
the KV of early and recent tokens; H2O (Zhang
et al., 2023), which balances recent and Heavy
Hitter (H2) tokens based on cumulative attention
scores; and PyramidInfer (Yang et al., 2024b),
which reduces the cache in deeper layers using
sparse attention patterns. To validate modularity,
we apply SCOPE in combination with SnapKV (Li
et al., 2024) and PyramidKV (Cai et al., 2024) dur-
ing the decoding phase, as detailed in §4.4.

4.3 Implementation Details

We build SCOPE using two open-sourced LLMs,
specifically LLaMA-3.1-8B-Instruct and Mistral-
7B-Instruct-v0.3. Based on the preliminary exper-
iments (Figure 2a), we set the the size of Φp, i.e.,
α1 + α2 to 2048 for LongGenBench-4K and 4096
for LongGenBench-8K, corresponding to approx-
imately 60% of the input length. α2 is set to 8
following previous works (Cai et al., 2024; Li et al.,
2024). β1 + β2 are set to 512 and 1024 in two con-
figurations, corresponding to different compression
ratios for outputs of 4K and 8K. β2 is set to 256 to
accommodate the CoT length in answers, avoiding
performance loss from overly short sequences. For
a fair comparison, the total budget of KV cache
during both the prefill and decoding phases is con-
sistent across all methods. More details can be
found in the Appendix C.

4.4 Results

Comparison with Baselines Table 1 presents a
comprehensive analysis of our proposed SCOPE
and baselines. SCOPE (with three strategies)
achieves the best results under both decoding com-
pression methods, and the discontinuous strategy,
optimized for memory-usage and memory-transfer,
delivers outstanding performance. On the chal-
lenge GSM8K+/GSM8K++ tasks, SCOPE high-
lights the importance of preserving the KV cache
generated during the prefill process, while other
compression methods lead to marked performance
degradation. This ensures that the understanding
of the problem statement remains intact, achieving
comparable performance to the full cache with-
out compromising comprehension. StreamingLLM
poses challenges on LONGGENBENCH, where

Table 2: The plug-in experiment results of LLaMA3.1-
8B on the GSM8K+ task from LONGGENBENCH-4K.
The results comparable to the full cache are in bold .

Decoding Phase
Strategy

Prefill Phase
Full Cache SnapKV PyramidKV

Full Cache 53.26 27.75 27.75

Decoding Compress Ratio=25.0%

Slide 52.17 26.90 26.90
Adaptive 43.88 27.60 27.60
Discontinuous 47.21 27.67 27.67

Decoding Compress Ratio=12.5%

Slide 49.69 22.56 22.56
Adaptive 44.03 27.60 27.60
Discontinuous 46.98 27.67 27.67

vital information may lie within the middle of
the input, consistent with the findings in prior
study (Zhang et al., 2023). This inevitably results
in the loss of crucial information if only the first
few tokens and local tokens are preserved. Perfor-
mance between PyramidInfer and H2O shows no
notable difference, indicating that the layer-wise
sparsity feature is not prominent for tasks with long
outputs.

Plug-in to Prefill-Only Methods Table 2 shows
the results of seamlessly integrating our decod-
ing phase compression strategy with prefill-only
compression methods. Some strategies even out-
perform the full cache results, despite compress-
ing 35%5 of the KV cache. This validates the
sparsity of the KV cache generated during the de-
coding phase in multi-QA tasks and demonstrates
the effectiveness of our proposed strategies. Pyra-
midKV (Cai et al., 2024), a variant of SnapKV,
adjusts the budget allocation across layers without
observing improvements in the preliminary experi-
ments, consistent with the empirical finding (§4.4).

Actually, the retained KV cache during the pre-
fill phase can be regarded as “attention sinks”,
which bears a resemblance to the principle of
StreamingLLM. We extend this concept to broader,
more realistic long-output scenarios.

5 Analysis and Discussion

5.1 Mitigating the Loss of Essential H2

The unified compression method, such as H2O, suf-
fers from the loss of crucial KV cache generated
during prefill, which is essential to understanding

5The average input-output length is 7.4K in the GSM8K+
task. With budgets Φp of 2K and Φd of 0.5K, the total reserved
KV cache size is 2.5K, leading to a full compression ratio of
about 35%.
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Figure 4: (a) Accuracy distribution of different question positions. (b) Accuracy across different cache compression
ratios during the decoding phase using two Tok-K selection algorithms while the KV cache during the prefill phase
is compressed to a 60% ratio. Top-K (Observation Window) (Li et al., 2024; Cai et al., 2024), is computed within a
fixed-size local window of recent key-value pairs while Top-K (Cumulative Attention) (Zhang et al., 2023; Yang
et al., 2024b), attention is computed globally across all key-value pairs. (c) Results on En.Sum task from ∞BENCH,
with the condition β1 + β2 = 512.

the context due to the deviation of heavy hitters.
In Figure 4a, we show the relationship between
prediction position and performance. The perfor-
mance of H2O drops markedly in later predictions,
while all three of our strategies mitigate this de-
cline, validating the effectiveness of preserving the
prefill KV cache.

5.2 Influence on β1 + β2 and ΨK(Att)

KV cache budget during the decoding phase β1+β2
and selection algorithm ΨK(Att) are the key hy-
perparameters within the SCOPE framework. The
budget β1+β2, i.e., the compression ratio is scaled
using two mainstream top-K selection algorithms
as illustrated in Figure 4b. Unlike the prefill phase,
where performance on the GSM8k+ task signif-
icantly drops as the compression ratio increases,
compressing to 25% during the decoding phase
only results in a 15% performance decline. It vali-
dated that compression in both phases is better than
solely focusing on extreme compression during pre-
fill and the necessity of optimizing the KV cache
separately for the prefill and decoding phases. Us-
ing the Top-K selection strategy based on cumula-
tive attention yields better results than the Top-K
selection strategy based on the observation window.
For tasks like LONGGENBENCH, predictions still
require reviewing and capturing the correspond-
ing question, making a short observation window
insufficient.

5.3 Efficiency on Memory Usage and Transfer
Our adaptive and discontinuous strategies building
on slide strategy improve memory efficiency, as ex-
plored in Table 3. Compared to the full cache and
prefill-only compression methods, both our method
and the unified compression approach effectively
reduce memory usage pressure by storing less KV

Table 3: Efficiency analysis on Peak KV memory and
latency (Lat.) for LLaMA3.1-8B with a prefill compres-
sion ratio of 60% and a decoding compression ratio of
12.5%.

Method Peak KV Mem. Tokens/s

Full Cache 15.6(100%) 36.57
SnapKV 12.5(80.1%) 38.28
PyramidKV 12.5(80.1%) 36.90

StreamingLLM
5.8(37.1%)

22.02
H2O 21.78
PyramidInfer 22.38

SCOPE (Slide)
5.8(37.1%)

18.28
SCOPE (Adaptive) 18.28
SCOPE (Discontinuous) 25.92

cache overall. Our adaptive strategy further opti-
mizes performance by dynamically adjusting the
budget. However, this introduces frequent updates
to the stored KV cache pool, leading to increased
I/O transfer and latency. The optimized strategy
effectively mitigates this issue by executing com-
putations discontinuously.

5.4 Generalization of SCOPE

Results of our proposed SCOPE and baselines on
∞BENCH are shown in Figure 4c. Adaptive strat-
egy demonstrates the closest performance align-
ment with the full cache setting, effectively validat-
ing its generalized capability design. It is effective
not only for multi-QA tasks but also for summariza-
tion tasks, demonstrating that traditional tasks may
also be suited to the separation of prefill-decoding
KV cache budget allocation.

6 Related Work

KV Cache Compression KV cache compres-
sion methods focus on leveraging the sparsity
in attention to address memory bottlenecks,
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complementing other efficient techniques (Kwon
et al., 2023; Dao, 2024; Wang et al., 2024; Liu
et al., 2024d). While recent work has optimized
the prefill phase by adjusting the compression
budget (Yang et al., 2024b; Feng et al., 2024;
Cai et al., 2024), phase-specific optimization
remains unexplored. Our approach tailors
KV cache compression to the distinct charac-
teristics of each phase, offering a novel perspective.

Long-context Tasks Recent advancements in
LLMs have focused on enhancing the capabilities
for long-context tasks. Previous evaluations of
long-context tasks have mainly concentrated on
tasks with long inputs, and numerous benchmarks
have been proposed, such as Needle-in-a-Haystack
(NIAH) (Kamradt, 2023), LongBench (Bai et al.,
2024) and ∞BENCH (Zhang et al., 2024) for com-
prehensive understanding tasks, where the output
is generally short for most sub-tasks. Most re-
search on KV cache compression has been con-
ducted within the context of these benchmarks,
where the focus has been primarily on optimiz-
ing the prefill phase. In this work, we leverage
LONGGENBENCH, which focuses on long-input
and long-output tasks (Liu et al., 2024c), to opti-
mize KV cache compression in scenarios where
the output can be as long as 8K tokens.

7 Conclusion

In this paper, we propose SCOPE, a framework
that optimizes KV cache usage for long-context
generation in LLMs. We observe that excessive
compression during the prefill phase harms rea-
soning capabilities while the deviation of heavy
hitters during decoding. To resolve these issues,
SCOPE preserves essential KV cache during the
prefill phase and employs a sliding strategy to ef-
ficiently manage the KV cache generated during
decoding. Additionally, we introduce adaptive and
discontinuous strategies to further optimize mem-
ory usage and transfer. Our extensive experiments
demonstrate that SCOPE achieves near-full KV
cache performance with only 35% of the original
memory while remaining compatible with existing
prefill compression methods.

Limitations

SCOPE separates the prefill and decoding phases
for long-text generation tasks, while a Top-K al-
gorithm is used to select the heavy hitters in both

the prefill and decoding phases. We discuss the
following limitations:

Prefill Phase We employ the widely recognized
top-K algorithm during the prefill phase, and fu-
ture work could explore chunking or other tech-
niques (Song et al., 2024; Xu et al., 2024) to
further enhance the estimation of previous to-
kens. As discussed in §4.4, the retained KV cache
during the prefill phase can be regarded as an
“attention sinks”. Enhancing the quality of this
overall “attention sinks” is a potential direction
for future research. Moreover, our phase-level
approach is orthogonal to other KV reuse meth-
ods (Xiao et al., 2024a; Lee et al., 2024; Liu et al.,
2024a) and could be integrated with these tech-
niques to further optimize memory management
and computation efficiency.

Decoding Phase The execution of Top-K at each
decoding step is time-costly due to the frequent
GPU I/O. Though we optimize the operation fre-
quency in the discontinuous strategy, we can also
reduce the I/O size to lower latency. Specifically,
by leveraging the PD-separated framework, opti-
mizing I/O for just Φd would be more efficient,
as the size of Φp is constant, while we currently
update the entire Φ.

Modality Although SCOPE has shown advan-
tages for long-output tasks in the text modality,
there is potential for our method to be applied to
long-output tasks in vision, such as multi-image
generation, where the KV cache required for stor-
ing each image is substantial.

Dataset Our experiments demonstrate the effec-
tiveness of SCOPE on two well-established bench-
marks: LONGGENBENCH and ∞BENCH. In both
benchmarks, our strategies consistently outperform
the baseline, highlighting the generalization of
SCOPE. While these results are robust, we also
expect to evaluate SCOPE on more diverse and
challenging benchmarks in the future, further vali-
dating its scalability and broader applicability.
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A Discussion

SCOPE is the first framework to compress the
KV cache from a phase-level perspective. Un-
like token-level eviction methods such as H2O,
SCOPE introduces a phase-aware paradigm, differ-
entiating between the prefill and decoding phases.
During prefill, we adopt a token-eviction strategy
similar to H2O, while in the decoding phase, we
propose three tailored eviction strategies. This
phase-level granularity enables finer control over
the KV cache, addressing the limitations of token-
level methods and improving efficiency in long-
context inference tasks. As discussed in §4.4, our
approach is orthogonal to existing token-level tech-
niques, offering a new direction for memory opti-
mization in large language models.

SCOPE can be integrated with the KV cache
reuse methods seamlessly. While methods like
InfLLM (Xiao et al., 2024a) retain all KV data
across CPU and GPU, our approach selectively
keeps only the most critical KV data on the GPU,
improving memory efficiency. This selective reten-
tion can be integrated with block-level unit selec-
tion of InfLLM, enabling phase-level operations
for finer-grained token and unit lookups. Moreover,
our strategy is orthogonal to other KV reuse tech-
niques, such as those proposed by Lee et al. (2024)
and Liu et al. (2024a). By combining phase-level
eviction with these methods, our approach provides
a flexible framework for optimizing memory and
computation, demonstrating the broader applica-
bility of phase-level strategies in KV compression
and reuse.

B Dataset Details

For LONGGENBENCH, We utilize the script6 from
the official repository from the LONGGENBENCH

benchmark to construct the version used in our eval-
uation. The specific setting is provided in Table 4.
For ∞BENCH, we use the 103 examples of En.Sum
from the official repository7.

6https://github.com/Dominic789654/LongGenBench
7https://github.com/OpenBMB/InfiniteBench

Type GSM8K MMLU CSQA
K T K T K T

LONGGENBENCH-4K 30 43 30 53 40 30
LONGGENBENCH-8K 60 21 60 53 80 15

Table 4: Configuration details for the experiment. The
table shows the number of questions in one query (K)
and the number of iteration times (T ).

Prompt Template in LONGGENBENCH

{System Prompt}

Examples:
{CoT Question_1}...{CoT Question_8}
{CoT Answer_1}...{CoT Answer_8}

Following Question:
{CoT Question9}...{CoT Question36}

"""

C Experimental Details

C.1 Environment and Evaluation Metrics

Experiments are conducted on NVIDIA A100
(80GB) and RTX 3090 (24GB) GPUs, with inte-
gration of Flash Attention 2 (Dao, 2024). The effi-
ciency results, obtained on an RTX-3090 (24GB)
with a batch size of 8 using eager attention. For
each subtask in LONGENBENCH, the evaluation
metric used is Accuracy. The evaluation metric
used is ROUGE-L-Sum (Lin, 2004).

C.2 Budget Setup

All predictions are generated through greedy de-
coding for a fair comparison. In the LONGGEN-
BENCH-4K benchmark, we evaluate on the
GSM8K+, MMLU+, and CSQA+ datasets. The
total cache budget during the prefill phase is set
to 2048, which corresponds to approximately 60%
of the average input length. During the decoding
phase, the total cache budget is set to 2048+512 (de-
coding compression ratio = 12.5%) and 2048+1024
(decoding compression ratio = 25%). In the
LONGGENBENCH-8K benchmark, we evaluate
the GSM8K++, MMLU++, and CSQA++ datasets.
The total cache budget in the prefill phase is set to
4096 since the number of questions in the multi-QA
task doubles. Consequently, the reserved budget is
also doubled for simplicity. During the decoding
phase, the total cache budget is set to 4096+512 (de-
coding compression ratio = 6.25%) and 4096+1024
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Table 5: Performance comparison for LONGGEN-
BENCH-4K(GSM8k+) and ∞BENCH(En.Sum) datasets
with total budgets in prefill and decoding.

Method Performance Total Budget

in Prefill in Decoding

LONGGENBENCH-4K(GSM8k+)

StreamingLLM 11.83 2560 2560
H2O 32.83 2560 2560

SCOPE (Slide) 42.56 2048 2048+512=2560
SCOPE (Adaptive) 37.29 2048 2048+512=2560
SCOPE (Discontinuous) 39.85 2048 2048+512=2560

∞BENCH(En.Sum)

StreamingLLM 16.93 2560 2560
H2O 17.64 2560 2560

SCOPE (Slide) 17.52 2048 2048+512=2560
SCOPE (Adaptive) 17.85 2048 2048+512=2560
SCOPE (Discontinuous) 17.47 2048 2048+512=2560

(decoding compression ratio = 12.5%). These set-
tings apply to all experiments presented in Tables 1
and 2. For the En.sum dataset in ∞BENCH, due
to the large input size (average length > 170K),
truncation occurs when using the backbone. This
truncation is fair for the input information. In all
experiments on this dataset, the settings are as fol-
lows: prefill total cache = 2048, and decoding total
cache = 2048+512 (decoding compression ratio
50%). This is because the average output length
for En.sum slightly exceeds 1K.

To ensure a fair comparison, we conducted pre-
liminary experiments under the setting where meth-
ods like H2O and StreamingLLM utilize the en-
tire cache during the prefill phase. While this
setup might initially appear disadvantageous to our
proposed SCOPE—since our method intentionally
uses less cache by excluding the decoding cache
during prefill—our approach still demonstrates su-
perior performance compared to the baselines. As
presented in Table 5, the result highlights the ef-
fectiveness of our decoding strategies and validates
the benefits of separating the prefill and decoding
phases, as opposed to employing a unified cache.

C.3 Baselines
We compare the following representative compres-
sion methods and full cache to validate the effec-
tiveness of our proposed SCOPE.

Unified Compression StreamingLLM (Xiao
et al., 2024b) keeping the KV of the first few to-
kens and recent tokens based on the attention sink
phenomenon; H2O (Zhang et al., 2023), retains
a balance of recent and Heavy Hitter (H2) tokens
based on cumulative attention scores; PyramidIn-
fer (Yang et al., 2024b), by leveraging the sparse

attention across layers, reduces the cache in the
deeper layers, thereby using less budget. §4.4
shows the results of the SCOPE along with these
unified compression baselines.

Prefill-Only Compression SnapKV (Li et al.,
2024), using an observation window to capture at-
tention signals and a pooling strategy to compress
KV cache in prefill phase. PyramidKV (Cai et al.,
2024), is a variant of SnapKV that adjusts the bud-
get allocation across layers. Both methods retain all
KV cache generated during the decoding phase. To
demonstrate the modularity of SCOPE, we apply it
in combination with SnapKV during the decoding
phase, as presented in §4.4.

The open-source version of PyramidInfer8 is not
integrated with Flash Attention 2. To ensure a fair
comparison with our framework and other base-
lines, we reproduce its core ideas based on the
implementations of H2O and PyramidKV. During
the prefill phase, the retained budget follows the
configuration of PyramidKV. During the decoding
phase, an additional budget is allocated to maintain
the window and recent context, again distributed
linearly across layers. Although the budget is al-
located linearly across layers, the total budget re-
mains consistent with that of other baselines. In
our reproduction of StreamingLLM, we allocated
half of the total token budget to the start and the
other half to the end, ensuring the preservation of
the task instruction and the question.

D Sensitivity of Hyperparameter

D.1 Sensitivity to β1 with Fixed β2=256

Figure 5 and Figure 6 illustrate the performance
when β2 is fixed, with different decoding strate-
gies on the decoding side as β1 varies. Prefilling
is performed using the H2O and SnapKV meth-
ods, respectively. Notably, all three SCOPE vari-
ants (Slide/Adaptive/Discontinuous) demonstrate
relatively stable accuracy across different β1 val-
ues, showing their robustness to budget changes.
In contrast, H2O exhibits more significant perfor-
mance degradation with smaller β1 budgets. When
using the SnapKV method for prefilling, all three
SCOPE variants perform comparably to, or even
exceed, the performance of the full-cache setting,
demonstrating that the model is not sensitive to
variations in β1.

8https://github.com/mutonix/pyramidinfer
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Figure 5: Accuracy with varying β1 on GSM8K+ when
β2 = 256 when prefilling using H2O. The dashed hori-
zontal line represents the no-eviction baseline.

Figure 6: Accuracy with varying β1 on GSM8K+ when
β2 = 256 when prefilling using SnapKV. The dashed
horizontal line represents SnapKV’s full KV cache base-
line during the decoding phase.

D.2 Sensitivity to β2 with Fixed Decoding
Total Budget (β1 + β2)=512

After confirming that SCOPE is insensitive to β1,
we fix both β1 + β2 = 512 to investigate the sen-
sitivity of β2 by varying its values. The results in
Figure 7 show SCOPE (Slide) maintains stable per-
formance while both Adaptive and Discontinuous
variants collapse when β2 < 128. This failure may
contribute to early eviction in these strategies that
disrupt critical initial tokens (especially attention
sinks) as mentioned in Eq. (4) and break the first
chain-of-thought continuity, leading to generation
degradation. In contrast, the sliding window, which
is used by H2O and the Slide strategy of SCOPE,
better preserves key semantic structures through-
out decoding. Consequently, setting β2 to 256 is a
well-grounded decision.

Figure 7: Accuracy with varying β2 on GSM8K+ when
β1 + β2 = 512.
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Python-style Pseudocode for SCOPE Implement

1 # Pseudocode for Prefill and Decoding Phases with Three Strategies: Slide , Adaptive , Discontinuous
2
3 #
4 class CachePool:
5 def __init__(self):
6 self.prefill_cache = (key , value)
7 self.decoding_cache = (key , value)
8
9 def total_cache(self):

10 return self.prefill_cache + self.decoding_cache
11
12 # Prefill phase
13 def prefill_phase(input_tokens , model , alpha1 , alpha2):
14 kv_cache = CachePool ()
15 input_query , input_key , input_value = compute_qkv(input_tokens , model)
16 attention_scores = compute_attention(input_query , input_key)
17 selected_key , selected_value = select_top_k_cache(attention_scores [:-alpha2], k=alpha1)
18 compressed_key = [selected_key , key[-alpha2 :]]
19 compressed_value = [selected_value , value[-alpha2 :]]
20 kv_cache.prefill_cache = compressed_key , compressed_value # Update prefill_cache
21 return kv_cache
22
23 # Decoding phase with SCOPE
24 def decoding_phase(output_tokens , model , kv_cache , beta1 , beta2 , strategy):
25 for step in range(1, len(output_tokens)):
26 token = output_tokens[step]
27 current_query , current_key , current_value = compute_qkv(token , model)
28 kv_cache.decoding_cache.append(current_key , current_value)
29 attention_scores = compute_attention(query , kvcache.total_cache) # Attention in total_cache
30
31 if strategy == "Slide":
32 # Retain a sliding window of size decoding_window_len
33 if step > max_prompt_len + beta1 + beta2:
34 selected_key , selected_value = select_top_k_cache(attention_scores[alpha1+alpha2:-beta2], k=beta1)
35 compressed_key = [selected_key , key[-beta2 :]]
36 compressed_value = [selected_value , value[-beta2 :]]
37 kv_cache.decoding_cache = compressed_key , compressed_value # Update decoding_cache
38
39
40 elif strategy == "Adaptive":
41 # Dynamically adjust beta1 based on decoding progress
42 if step > max_prompt_len + beta2:
43 adaptive_beta1 = beta1 * (step - beta2) // (len(output_tokens)-beta2)
44 selected_key , selected_value = select_top_k_cache(attention_scores[alpha1+alpha2:-beta2], k=

↪→ adaptive_beta1) # Use adaptive_beta1
45 ... # Update decoding_cache
46
47 elif strategy == "Discontinuous":
48 # Jump to noncontinuous
49 if step > max_prompt_len + beta2:
50 adaptive_beta1 = beta1 * (step -beta2) // (model.max_new_token -beta2)
51 jump_interval = (len(output_tokens) - beta2) // beta1 # Interval between jumps
52 if step % jump_interval == 0: # Noncontinuous
53 selected_key , selected_value = select_top_k_cache(attention_scores[alpha1+alpha2:-beta2], k=

↪→ adaptive_beta1) # Use adaptive_beta1
54 ... # Update decoding_cache
55
56 return kv_cache

Figure 8: Pseudocode for SCOPE Implement.
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Probe Case

<<SYS>>
Answer each question step by step, adhering to the format shown in the examples provided. Start each response with 'Answer_' and introduce the final
response with 'The answer is'. Do not repeat the question. Ensure that you respond to all the questions presented, regardless of their number.
<</SYS>>

Examples:
Question_1:
There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the
grove workers plant today?

Question_2:
If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

Question_3:
Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

Answer_1:
There are 15 trees originally.
Then there were 21 trees after some more were planted.
So there must have been 21 − 15 = 6.
The answer is 6.

Answer_2:
There are originally 3 cars.
2 more cars arrive.
3 + 2 = 5.
The answer is 5.

Answer_3:
Originally, Leah had 32 chocolates.
Her sister had 42.
So in total they had 32 + 42 = 74.
After eating 35, they had 74 − 35 = 39.
The answer is 39.

Following Question:
Question_4:
Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the
remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?
Question_5:
A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?
Question_6:
Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This increased the value of the house by 150%.
How much profit did he make?
Question_7:
James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week?
Question_8:
Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds, mealworms and vegetables to help keep them healthy.
She gives the chickens their feed in three separate meals. In the morning, she gives her flock of chickens 15 cups of feed. In the afternoon, she gives
her chickens another 25 cups of feed. How many cups of feed does she need to give her chickens in the final meal of the day if the size of Wendi's flock
is 20 chickens?
Question_9:
Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every second glass costs only 60% of the price. Kylar wants to buy
16 glasses. How much does he need to pay for them?
Question_10:
Toulouse has twice as many sheep as Charleston. Charleston has 4 times as many sheep as Seattle. How many sheep do Toulouse, Charleston, and
Seattle have together if Seattle has 20 sheep?
Question_11:
Carla is downloading a 200 GB file. Normally she can download 2 GB/minute, but 40% of the way through the download, Windows forces a restart to
install updates, which takes 20 minutes. Then Carla has to restart the download from the beginning. How load does it take to download the file?

"""

Figure 9: The probe case used in the pilot observation.
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