
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 10323–10358
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

AutoGUI: Scaling GUI Grounding with Automatic Functionality
Annotations from LLMs

Hongxin Li*1,2,3, Jingfan Chen*5, Jingran Su*5, Yuntao Chen†4

Qing Li5, Zhaoxiang Zhang†1,2,3,6

1University of Chinese Academy of Sciences (UCAS)
2New Laboratory of Pattern Recognition (NLPR), CASIA

3State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS), CASIA
4Hong Kong Institute of Science & Innovation, CASIA

5The Hong Kong Polytechnic University 6Shanghai Artificial Intelligence Laboratory

Abstract

User interface understanding with vision-
language models (VLMs) has received much
attention due to its potential for enhancing soft-
ware automation. However, existing datasets
used to build UI-VLMs either only contain
large-scale context-free element annotations
or contextualized functional descriptions for
elements at a small scale. In this work, we
propose the AutoGUI pipeline for automat-
ically annotating UI elements with detailed
functionality descriptions at scale. Specifically,
we leverage large language models (LLMs) to
infer element functionality by comparing UI
state changes before and after simulated in-
teractions. To improve annotation quality, we
propose LLM-aided rejection and verification,
eliminating invalid annotations without human
labor. We construct a high-quality AutoGUI-
704k dataset using the proposed pipeline, fea-
turing diverse and detailed functionality anno-
tations that are hardly provided by previous
datasets. Human evaluation shows that we
achieve annotation correctness comparable to
a trained human annotator. Extensive exper-
iments show that our dataset remarkably en-
hances VLM’s UI grounding capabilities and
exhibits significant scaling effects. We also
show the interesting potential use of our dataset
in UI agent tasks. Please view our project at
https://autogui-project.github.io/.

1 Introduction

User interface understanding with visual language
models(VLMs) (Hong et al., 2024; You et al., 2024;
Wu et al., 2024) has received wide attention due to
its potential in fundamentally transforming how we
interact with software (Xie et al., 2024).

While recent work has made progress by em-
ploying structural mapping between UI code and
visual layout, such as UI REG/REC(Hong et al.,

∗ Equal contribution.
† Equally advising corresponding authors. E-mails:

zhaoxiang.zhang@ia.ac.cn, chenyuntao08@gmail.com

More information

ICON_THREE_BARS:MENU

(a) Alt-text (b) Brief function

(c) Html code annotation

(d) Contextual Functionality annotation (Ours)

<div>

 <h2>

 <!---->

<a>Snowmobiling Daytime –

Excl. Transport

 </h2>

 <a><!---->

 …

(c) HTML code annotation

This element allows users to search for

commodity on Amazon.

This element allows users to search for tutorials

about how to use the various features of Amazon.

This element acts as a dropdown menu,

when activated, displaying a list of

commodity categories.

This element, when clicked, reveals a

dropdown menu displaying a list of services

provided by Amazon

similar look,

different

functionality

Figure 1: Our annotations are rich in functional seman-
tics (bottom) compared with existing UI datasets.

2024; Li et al., 2020a) and layout-to-code conver-
sion (Xia et al., 2024; Liu et al., 2023a; Baechler
et al., 2024), a more critical challenge remains: un-
derstanding the semantic purpose and interactive
affordance of individual UI elements, known as
functionality understanding.

Accurate functionality understanding requires
VLMs to possess strong element grounding capa-
bilities - the ability to connect fine-grained visual
elements with their referring expressions. To en-
hance this capability, large-scale training data is
indispensable. However, the scale of open-source
datasets with detailed element annotations (Li et al.,
2020a,b; Kapoor et al., 2024; Gou et al., 2025) is
unsatisfactory, significantly smaller than natural im-

10323

https://autogui-project.github.io/

age datasets such as LAION-5B (Schuhmann et al.,
2022). Additionally, traditional annotation meth-
ods (Deka et al., 2017a; Li et al., 2020a) are labor-
intensive, leading to prohibitive costs that hinder
scalability. Moreover, existing datasets typically
focus on describing either element alt-texts (Cheng
et al., 2024), or brief intents weakly related to UI
context (Bai et al., 2021) shown in Fig. 1. These
datasets lack contextual functional descriptions of
UI elements, which poses a challenge for VLMs
in comprehending the roles these elements serve
within specific UI contexts, such as distinguishing
between two visually similar magnifier icons that
may represent distinct functionalities like searching
and zooming.

To address the challenge, we propose AutoGUI,
an automatic annotating pipeline that provides un-
limited element functionality annotations. Our
pipeline collects UI interaction trajectories and
leverages large language models (LLMs) to infer
element functionalities based on UI state changes,
eliminating the need for manual annotation by hu-
man experts. Initially, the proposed pipeline crawls
a multitude of interaction trajectories on either a
web browser or an Android emulator. Subsequently,
we use open-source LLMs (AI@Meta, 2024) to an-
notate the functionalities of elements on collected
GUIs based on changes to UI contents when inter-
acting with these elements. To ensure data quality,
LLM-aided rejection is utilized to eliminate invalid
samples, such as incompletely rendered UIs. Addi-
tionally, inspired by LLM verification (Weng et al.,
2022; Lightman et al., 2023), multiple LLMs are
prompted as verifiers to identify false functionality
descriptions. With both the rejection and verifica-
tion processes, our pipeline removes unclear and
invalid samples.

We curate the AutoGUI-704k dataset with the
proposed pipeline, providing high-quality function-
ality grounding and referring tasks used to finetune
and evaluate open-source VLMs. Pioneer exper-
iments find that our pipeline achieves annotation
accuracy of 96.7% comparable to a trained human
annotator.

Based on the collected AutoGUI-704k dataset,
we finetune open-source VLMs and demonstrate
that our data significantly enhances the VLMs’ UI
grounding accuracy and exhibits remarkable scal-
ing effects. The results also show that our function-
ality annotation type is superior to the data type
directly derived from web HTML code and meta-
data (Hong et al., 2024; Cheng et al., 2024), serving

as a promising data source for building VLMs capa-
ble of UI grounding. Moreover, VLMs trained with
our data can assist in GUI agent tasks by refining
element grounding, which shows more potential
use of our dataset.

2 Related Works

2.1 Recent Advancement of VLMs

Recent research has enhanced LLMs with the ca-
pability of processing both visual and textual infor-
mation (Alayrac et al., 2022; Liu et al., 2023b;
Lin et al., 2023; Chen et al., 2024b; Lu et al.,
2024; Wang et al., 2024a,b; Li et al., 2024b;
Zhang et al., 2024a; You et al., 2024; Laurençon
et al., 2024; Peng et al., 2024; Driess et al., 2023),
opening the new field of VLM. Pioneering ef-
forts Flamingo (Alayrac et al., 2022) uses inter-
leaved visual and language inputs as prompts and
shows few-shot visual question-answering capa-
bility. LLaVA (Liu et al., 2023b) and LLaMA-
Adapter (Zhang et al., 2024a) have attempted to
align vision encoders (Dosovitskiy et al., 2021)
with LLMs to enable visual instruction follow-
ing. Advanced models such as InternVL (Chen
et al., 2024b) and Qwen2-VL series (Wang et al.,
2024a) are further equipped with impressive high-
resolution and multi-lingual understanding abilities.
Additionally, VLM are applied to scenarios rich
in textual imagery (Ye et al., 2023b,a; Liu et al.,
2024b) and embodied interactions (Driess et al.,
2023; Kim et al.). Despite these advancements,
VLMs lag in UI understanding probably due to
data scarcity. This paper contributes an automatic
UI annotation pipeline to tackle this challenge, aim-
ing to expand the data available for training VLMs
in this crucial area.

2.2 Existing UI Datasets

Unlike natural image datasets (Russakovsky et al.,
2014; Schuhmann et al., 2022), UI understand-
ing datasets are much smaller. Early-stage
datasets (Wang et al., 2021; Li et al., 2020a,b;
Bai et al., 2021; Burns et al., 2022) primarily
annotate the RICO screenshot collection (Deka
et al., 2017b), which includes 72K screenshots
from Android apps. Examples include Widget
Captioning (Li et al., 2020a), which analyzes
captions and linguistic features of UI elements,
and RICOSCA (Li et al., 2020b), which maps
single-step instructions to UI locations. Recently,
AITW (Rawles et al., 2023) and AndroidCon-

10324

Table 1: Comparing our AutoGUI dataset with existing UI grounding datasets. Multi-Res means the samples
are collected on devices with various resolutions. Auto Anno. means the samples are collected autonomously.
#Anno. means the number of annotated samples provided by the datasets. (Methods combining open-source
individual datasets are not compared.)

Dataset UI Type Multi
Res.

Auto
Anno.

Functionality
Annotation

Type
#Anno. Task

S2W (Wang et al., 2021) Mobile ✗ ✗ N/A 112k Screen Summarization
Wid. Cap. (Li et al., 2020a) Mobile ✗ ✗ N/A 163k Element Captioning
RICOSCA (Li et al., 2020b) Mobile ✗ ✗ N/A 295k Action Grounding
MoTIF (Burns et al., 2022) Mobile ✗ ✗ N/A 6k Mobile Navigation
RefExp (Bai et al., 2021) Mobile ✗ ✗ N/A 20.8k Element Grounding

SeeClick Web (Cheng et al., 2024) Web ✗ ✓ N/A 271k Element Grounding
MultiUI (Hong et al., 2024) Web, Mobile ✓ ✓ N/A 3M Act. & Elem. Ground

UGround-Web (Gou et al., 2025) Web ✓ ✓ Brief 1.3M Element Grounding
UI REC/REG (Hong et al., 2024) Web ✓ ✓ N/A 400k Box2DOM, DOM2Box

Ferret-UI (You et al., 2025) Mobile ✓ ✓ Brief 250k Elem. Ground & Ref.
AutoGUI (ours) Web, Mobile ✓ ✓ Contextual 704k Functionality Ground & Ref.

trol (Li et al., 2024a) have been proposed to
focus on interpreting high-level instructions in
Android environments. To increase data scale,
SeeClick (Cheng et al., 2024), CogAgent (Hong
et al., 2024), and OS-ATLAS (Wu et al., 2024)
have utilized the UI metadata from Common Crawl
webpages to produce massive element referring ex-
pressions. Several works (Gou et al., 2025; Lin
et al., 2024; Xu et al., 2024) also filter and combine
existing datasets to produce all-in-one collections
that incorporate diverse training tasks. In contrast,
our AutoGUI-704k dataset contributes large-scale
element functionality annotations, which convey
contextual functionality semantics that are hardly
provided in previous datasets. The advantages of
our dataset are summarized in Tab. 1.

3 AutoGUI: Automatic Functionality
Annotation Pipeline

This section introduces AutoGUI, an annotation
pipeline (Fig. 2) that automatically produces con-
textual element functionality annotations used to
enhance VLMs’ GUI grounding capabilities.

3.1 Collecting UI Interaction Trajectories
Our pipeline initiates by collecting interaction tra-
jectories, which are sequences of UI contents cap-
tured by interacting with UI elements. Each step
captures all interactable elements and the acces-
sibility tree (AXTree) that briefly outlines the UI
structure, which will be used to annotate function-
ality. To amass these trajectories, we utilize the
latest Common Crawl repository as the data source
for web UIs and Android Emulator for mobile
UIs. The open-source trajectories from Android-
Control (Li et al., 2024a) and MobileViews (Gao
et al., 2024) are also included to enhance diversity.

Note that illegal UIs are manually excluded from
the sources. Please refer to Sec. A for collecting
details and data license.

3.2 Automatic Functionality Annotation

The pipeline generates functionality annotations for
elements in the collected trajectories. Interacting
with an element e, by clicking or hovering over it,
triggers UI content changes. In turn, these changes
can be used to predict the functionality f of the
interacted element. For instance, if clicking an el-
ement causes new buttons to appear in a column,
the element likely functions as a dropdown menu
activator (an example in Fig. D). With this obser-
vation, we utilize a capable LLM (i.e., Llama-3-
70B (AI@Meta, 2024)) as a surrogate for humans
to summarize an element’s functionality based on
the UI changes resulting from interaction. Con-
cretely, we generate compact content differences
for AXTrees before (st) and after (st+1) the inter-
action using a file-comparing library1. Then, we
prompt the LLM to analyze the UI content changes
(addition, deletion, and unchanged lines), present
a detailed Chain-of-Thoughts (Wei et al., 2022)
reasoning process explaining how the element af-
fects the UI, and finally summarize the element’s
functionality.

In cases where element interactions signifi-
cantly transform the UI and cause lengthy differ-
ences—such as navigating to a new screen—we ad-
just our approach by using UI description changes
instead of the AXTree differences. This annotation
process is formulated as: f = LLM(panno, st, st+1)
where f is the predicted functionality, panno is the
annotation prompt (Tab. B and Tab. C). Examples

1https://docs.python.org/3/library/difflib.html

10325

• Unchanged TabTitle 'Tock - Reservations -
Restaurants, Bars, and Wineries'

• Unchangedbutton 'Book a reservation’
• Added link 'Reservations’
• Added link 'Delivery’
• Added link 'Pickup’
• …

Comparing

GUI content changes

Prediction: Serve as a trigger for
displaying additional options related
to reservations.

Rejector

Verifier

Reason: The addition of the links is
consistent with restaurant
reservation conventions, thus being
predictable based on the user's
expectations.
Score: 3/3

Reason: The button's ability to reveal
more granular options make it an
appropriate choice for facilitating the
user's desired functionality.
Score: 3/3

√

√

√

(Screenshot, Element, Functionality)
triplets

Formatting

Click a <button> element named "Offers Delivery"

Click an <input> element named “Document"

Reason: The removal and addition
do not follow common
conventions. It is unpredictable to
assume the outcome of clicking
the button based on the provided
changes.
Score: 0

X

Prediction: This element, when
selected, adds Documentary to
the user’s favorite list.

X

Reason: This checkbox appears
within a filtering dialog,
indicating it's designed to filter
items rather than manage
favorites.
Score: 0

√

Annotator

2. Autonomous Functionality Annotation1. GUI trajectory collecting

3. GUI training data generation

Q: Which element can I click to select another date?
A: (85, 77)

Q: Describe the functionality of this element at (85, 77)?
A: This element allows the user to select another date.

Functionality grounding

Functionality captioning

Annotator

Verifier

A rejected case

Rejector

A case failing Verification

(85, 77)

Web UIs

Mobile UIs

Desktop
viewport

Mobile phone viewport

Crawler

Android Emulator

Mobile phone Tablet

iPad viewport

Figure 2: The proposed pipeline for automatic UI functionality annotation. An LLM is utilized to predict
element functionality based on the UI content changes observed during the interaction. LLM-aided rejection and
verification are introduced to improve data quality. Finally, the high-quality functionality annotations will be
converted to instruction-following data by applying task templates.

are depicted in Fig. 3 and more annotation details
are explained in Sec. A.5.

3.3 Removing Invalid Samples via
LLM-Aided Rejection

The collected trajectories may contain invalid sam-
ples due to broken UIs, such as incomplete UI load-
ing, which can mislead the models trained with
them. To filter out these invalid samples, we intro-
duce an LLM-aided rejection approach. Initially,
hand-written rules (detailed in Sec. A.6) are used
to detect obvious bad cases, such as blank UIs,
UIs containing elements indicating content loading,
and interaction targets outside of UIs. However,
a few types are difficult to detect with the rules.
For instance, interacting with a “view more” button
might unexpectedly redirect the user to a login page
instead of the desired information page due to web-
site login restrictions. To identify these challenging
samples, we prompt the annotating LLM to also
act as a rejector. Specifically, the LLM takes the UI
content changes as input, provides detailed reason-
ing through whether the changes are meaningful for

predicting the element’s functionality, and finally
outputs predictability scores ranging from 0 to 3 (3
is empirically chosen for a balance between annota-
tion efficiency and quality.). This process is formu-
lated as follows: score = LLM(preject, e, st, st+1)
where preject is the rejection prompt (Tab. D).

This approach ensures that predictable samples
receive higher scores, while unpredictable ones re-
ceive lower scores. For instance, if a button labeled
"Show More", upon interaction, clearly adds new
content, this sample will be considered to provide
sufficient changes that can anticipate the content
expansion functionality and will get a score of 3.

We deploy this rejector to discard the bottom
30% of samples based on score ranking to strike
a balance between the elimination of invalid sam-
ples and the preservation of valid ones (Details in
Sec. A.7). The samples that pass the rejection pro-
cedure are submitted for functionality annotation.
Please see examples in Fig. G.

10326

Q: From this webpage image, I will describe a specific element. Please predict their exact
locations (with point). This element enables users to share content with others.
A: (660, 350)

This element provides access to a user's
account, enabling personalized experiences
and features on the platform.

This element provides access to a specific
category or topic within the website,
allowing users to explore related content.

This element enables users to
share content with others.

This element allows users to
save content for later
reference or use.

This element enables users to
subscribe to a content
creator's updates or profile.

This element enables users to
create an account, allowing
them to access exclusive
features, save content, and
engage with the community.

This element triggers a
dropdown menu for users to
access additional content
interaction options, probably
including features like
reporting, copying, or
embedding the content.

This element triggers a dropdown
menu for users to select different
methods of sorting comments,
with the initial option being
"Best", which likely orders the
comments based on their
popularity or score.

This element initiates the process of joining the community or
forum, allowing users to participate in discussions about the
challenges related to working with archival materials.

This element allows users to see
the number of awards a
particular comment has received.

This element triggers a vote for
the comment, indicating
agreement or appreciation from
the user interacting with it.

Task
Template

Q: Describe the function of the element at (660, 350) on the screen.
A: This element enables users to share content with others.

Functionality
grounding

Functionality
captioning

(660, 350)

Web

Mobile

Figure 3: Element functionality annotations generated by the AutoGUI pipeline for both web and mobile domains.

3.4 Improving Annotation Quality via
LLM-Based Verification

The functionality annotations produced by the
LLM probably contain incorrect and hallucinated
samples. To improve dataset quality, we prompt
LLMs to verify the annotations, inspired by works
that justify the feasibility of LLM-based verifica-
tion (Zheng et al., 2023; Chen et al., 2024a; Lee
et al., 2023). This process presents the LLMs
with the interacted element, its UI context, the UI
changes induced by the interaction, and the func-
tionality annotation generated in the previous stage.
Then, the LLMs analyze the UI content changes
and predict whether the interacted element aligns
with the given functionality. If the LLMs determine
that the interacted element fulfills the functionality
given its UI context, the LLMs will grant a full
score (An example in Fig. H). If not, this func-
tionality will be seen as incorrect as this mismatch
indicates that it may not accurately reflect the ele-
ment’s role within the UI context.

To mitigate the potential biases in LLMs (Pan-
ickssery et al., 2024; Bai et al., 2024), two different
LLMs (i.e., Llama-3-70B and Mistral-7B-Instruct-
v0.2) are employed as verifiers and prompted to
output 0-3 scores (This scoring range is chosen
as it empirically achieves a high verification accu-
racy). The scoring process is formulated as follows:
score = LLM(pverify, e, f, st, st+1) where pverify
denotes the verification prompt (Tab. E). Only if
the two scores are both 3s do we consider the func-
tionality annotation correct (Details in Sec. A.8).
While this approach seems stringent, we can make

up the number of annotations through scaling.

3.5 Task Generation

After rejecting, annotating, and verifying, we ob-
tain a high-quality UI functionality dataset con-
taining triplets of {UI screenshot, Interacted ele-
ment, Functionality}. To convert this dataset into
an instruction-following dataset for training and
evaluation, we generate functionality grounding
and referring tasks using diverse prompt templates.
The coordinates of element bounding boxes are
normalized within the range [0, 999] (see Fig. 3).

We finally annotate 2k grounding samples as a
test set and 702k as a training set (The details of en-
suring no overlap between the two sets can be seen
in Sec. A.1). The statistics of our dataset in Tab. 2
and Sec. A.1 show that our dataset covers diverse
UIs and exhibits variety in lengths and functional
semantics of the annotations.

3.6 Analysis of Data Quality

Comparison with Human Annotation N = 145
samples (99 valid and 46 invalid) are randomly
selected as a testbed for comparing the anno-
tation correctness of a trained human annotator
and our pipeline. Here, correctness is defined as
Correctness = C/(N − R), where C and R de-
note the numbers of correctly annotated and re-
jected samples, respectively. The denominator sub-
tracts the number of rejected samples as we are
more interested in the percentage of correct sam-
ples after rejecting invalid samples. The authors
rigorously evaluate the annotation results based on

10327

Table 2: The statistics of the AutoGUI datasets. The Anno. Tokens and Avg. Words columns show the total
number of tokens and the average number of words for the functionality annotations regardless of task templates.
The Domains/Apps column shows the number of unique web domains/mobile Apps involved in each split.

Split #Tasks Anno. Tokens Avg. Words Domains/Apps Device Ratio

Train 702k 17.9M 23.1 916 Web: 54.6%, Mobile: 45.4%

Test 2k 53.4k 22.5 299 Web: 50%, Mobile: 50%

(a) AutoGUI (c) Widget Captioning(b) SeeClick Web

Figure 4: Diversity of the AutoGUI dataset. Left: The word cloud illustrates the ratios of the verbs representing
the main intents in the functionality annotations. Right: Comparing the distributions of the annotation token
numbers for our AutoGUI training split, SeeClick Web training data (Cheng et al., 2024), and Widget Captioning (Li
et al., 2020a). The comparison demonstrates that our dataset covers significantly more diverse task lengths.

three criteria outlined in Fig. I. Details can be found
in Sec. B.1.

After experimenting with three runs, Tab. 3
shows that the AutoGUI pipeline achieves high
correctness comparable to the trained human anno-
tator (r6 vs. r1). Without rejection and verification
(r2), AutoGUI is inferior as it cannot recognize
invalid samples. Notably, simply using the rules
written by the authors can improve the correctness,
which is further enhanced with the LLM-aided re-
jector (r4 vs. r3). Moreover, utilizing the annotat-
ing LLM itself to self-verify its annotations helps
AutoGUI surpass the trained annotator (r5 vs. r1).
Introducing another LLM verifier (i.e., Mistral-7B-
Instruct-v0.2) brings a slight increase which results
from Mistral recognizing Llama-3-70B’s incorrect
descriptions of how dropdown menu options work.
Overall, these results justify the efficacy of the Au-
toGUI annotation pipeline.

Qualitative comparison (Fig. P) shows that our
pipeline generates more detailed annotations which
would take more time for the human annotator.

Impact of LLM Output Uncertainty Despite
LLM output uncertainty, our pipeline achieves a
high annotation consistency of 94.5%. LLM uncer-
tainty affects rejection but has a minimal overall
impact due to the low prevalence of invalid samples.
More experimental details in the Appendix.

Table 3: Comparing AutoGUI and human annotator.
AutoGUI with the proposed rejection and verification
achieves correctness comparable to the trained human
annotator. One LLM means Llama-3-70B and Two
LLMs include Mistral-7B-Instruct-v0.2.

No. Annotator Rejector Verifier Correctness

r1 Human - - 95.5%
r2 Llama-3-70B - - 64.5%
r3 Llama-3-70B Rules - 83.1%
r4 Llama-3-70B Rules+LLM - 94.4%
r5 Llama-3-70B Rules+LLM One LLM 96.0%
r6 Llama-3-70B Rules+LLM Two LLMs 96.7%

4 Fine-Tuning Experiments
This section validates that our dataset effectively
enhances the GUI grounding capabilities of VLMs.

4.1 Experimental Settings
Evaluation Benchmarks We base our evaluation
on the UI grounding benchmarks for various sce-
narios: FuncPred is the test split from our col-
lected functionality dataset. This benchmark re-
quires a model to locate the element specified by
its functionality description. ScreenSpot (Cheng
et al., 2024) and ScreenSpot-v2 (Wu et al., 2024)
require a model to locate elements based on short
instructions on mobile, desktop, and web platforms.
VisualWebBench (VWB) (Liu et al., 2024a) is a
comprehensive multi-modal benchmark assessing
the understanding capabilities of VLMs in web sce-

10328

Table 4: Element grounding accuracy across benchmarks. We compare the base models fine-tuned with our
AutoGUI data and representative open-source VLMs. General-purpose models (Qwen-VL, SliME-8B, and Qwen2-
VL) show significant performance improvements after fine-tuning with the AutoGUI data. The UI-specialized
model (SeeClick) also improves when AutoGUI data is added to their fine-tuning datasets. Green text indicates
gains over the base models. † denotes metrics quoted from the original benchmark paper.

Type Model Size FuncPred ScreenSpot ScreenSpot-v2 MoTIF VWB EG VWB AG

General

GPT-4o N/A 9.8 17.8 20.4 30.5 5.6 6.8
Llama-3.2-Vision-Instruct 11B 4.9 11.7 11.6 19.7 7.0 3.9

SliME (Zhang et al., 2024b) 8B 3.2 13.0 13.4 7.0 6.1 4.9
Qwen-VL (Bai et al., 2023) 10B 3.0 5.2† 5.6 7.8 1.7 3.9
Qwen2-VL (Bai et al., 2023) 7B 38.7 66.4 66.9 71.1 55.9 62.1

UI Experts

CogAgent (Hong et al., 2024) 18B 29.3 47.4† 52.1 45.1 55.7 59.2
SeeClick (Cheng et al., 2024) 10B 19.8 53.4† 54.0 66.5 39.2 27.2

UGround-v1-7B (Gou et al., 2025) 7B 55.8 85.9 88.0 78.4 92.7 69.9
OS-ATLAS (Wu et al., 2024) 7B 52.1 82.5 84.1 78.8 82.6 71.8

Finetuned

Qwen-VL-AutoGUI702k 10B 48.7 (+45.7) 41.2 (+36.0) 40.2 (+34.6) 44.0 (+36.2) 42.1 (+40.4) 35.9 (+32.0)
SliME-AutoGUI702k 8B 62.6 (+59.4) 44.0 (+31.0) 42.5 (+29.1) 44.9 (+37.9) 25.4 (+19.3) 13.6 (+8.7)

Qwen2-VL-AutoGUI702k 7B 65.0 (+26.3) 80.0 (+13.6) 83.2 (+16.3) 72.3 (+1.2) 90.3 (+34.4) 70.9 (+8.8)
SeeClick w/ AutoGUI702k 10B 50.0 (+30.2) 54.2 (+0.8) 54.7 (+0.7) 67.0 (+0.5) 56.2 (+17.0) 45.6 (+18.4)

Figure 5: Scaling effect of the AutoGUI data. The
three general-purpose VLMs are fine-tuned with three
scales of AutoGUI data. Using more data consistently
enhances the grounding accuracy of the three models.
Note that the grounding accuracy (Y-axis) is averaged
over all the element grounding benchmarks.

narios. We select the element and action ground-
ing tasks from this benchmark. MOTIF (Burns
et al., 2022) requires an agent to complete a nat-
ural language command in mobile Apps. Sam-
ples of the benchmarks are visualized in Fig. J.
We report the grounding accuracy (%): Acc =∑N

i=1 1 (predi inside GT bboxi) /N × 100 where
1 is an indicator function and N is the number of
test samples. This formula denotes the percentage
of samples with the predicted points lying within
the bounding boxes of the target elements.

Training Details We select SliME-8B (Zhang et al.,
2024b), Qwen-VL (Bai et al., 2023), and Qwen2-
VL-7B (Wang et al., 2024a) as the base models and
fine-tune them on 25k, 125k, and 702k samples of
the AutoGUI training data to investigate how the
AutoGUI data enhances their UI grounding capabil-

Table 5: Comparing the AutoGUI functionality anno-
tation type with existing types. Qwen-VL is separately
fine-tuned with the four annotation types. Our function-
ality annotation leads to superior grounding accuracy.

Data Size Variant FuncPred MOTIF ScreenSpot

25k

w/ Elem-HTML 5.3 11.7 5.7
w/ Condensed Func. 3.8 19.8 4.8
w/ Func. (Ours full) 21.1 22.5 16.4

125k

w/ Elem-HTML 15.5 15.8 17.0
w/ Condensed Func. 14.1 23.7 23.8
w/ Func. (Ours full) 24.6 28.7 27.0

ities. We fine-tune Qwen-VL and Qwen2-VL with
LoRA (Hu et al., 2022) and fine-tune SliME (Zhang
et al., 2024b) with only the visual encoder frozen.
We also test the benefits of our dataset for a UI
expert VLM, i.e., SeeClick (Cheng et al., 2024), by
adding our data to its fine-tuning data. All mod-
els are fine-tuned on 8 A100 GPUs for one epoch.
(More details and hyper-parameters in Sec. B.2)
Compared VLMs We compare with both general-
purpose VLMs and UI expert VLMs. During the
evaluation, we manually craft grounding prompts
suitable for these VLMs.

4.2 Experimental Results and Analysis

A) AutoGUI functionality annotations effec-
tively enhance VLMs’ UI grounding capabili-
ties and achieve scaling effects. We endeavor to
show that the element functionality data collected
by AutoGUI contributes to high grounding accu-
racy. The results in Tab. 4 demonstrate that the base
models embrace notable performance gains on all
the benchmarks. The two general-purpose VLMs
(Qwen-VL and SLiME), which perform poorly, wit-
ness huge performance increases after fine-tuning
with AutoGUI data. Qwen2-VL fine-tuned with

10329

Thought: The screen shows the home screen of a smartphone with

various application icons. The search bar is at the top.

The user wants to know the news in Indonesia. I can use the

search bar to find the information. I need to click on the search

bar first.

Expected Functionality: This element allows users to enter text to

search for content on their phone.

Action: {"action_type": "click", "target": (600, 600)} # Wrong

localization

(500, 79)

2-Stage
Planning
Pipeline

Planner

Grounding
Model

Locate the element according to its detailed functionality
description. This element allows users to enter text to search for
content on their phone.

Initial Localization
(Wrong)

Revised Localization
(Correct)

Figure 6: An example of the 2-stage planning setting used in Sec. 5 to demonstrate the potential use of
AutoGUI data. The planner (a proprietary VLM, e.g., Gemini) is bad at outputting numeric coordinates when
locating elements. The grounding model, finetuned with AutoGUI functionality grounding tasks, can correctly
locate the task-related target element according to the expected functionality description output by the planner.

Table 6: Applying our AutoGUI dataset to 2-stage GUI agent task planning on AITW benchmark. The results
show that Qwen2-VL trained with AutoGUI functionality grounding tasks can overtake the element grounding
process of the proprietary models to achieve significantly higher step accuracy. Step Acc. means the percentage of
correctly planned actions while Click acc. means the percentage of correctly planned click actions.

Planner Grounding Model
General

Step acc. / Click acc.
Install

Step acc. / Click acc.
Google Apps

Step acc. / Click acc.
Single

Step acc. / Click acc.
Webshopping

Step acc. / Click acc. Avg Step acc.

GPT-4o-mini
GPT-4o-mini 14.85 / 9.58 11.17 / 5.76 12.08 / 6.85 21.09 / 11.24 10.89 / 11.22 14.01

Qwen2-VL-7B SFT w/ AutoGUI 20.43 / 20.56 25.59 / 22.49 15.25 / 12.33 25.59 / 22.49 16.15 / 20.53 18.37 (+4.36)

Gemini-2.0-flash-exp
Gemini-2.0-flash-exp 26.37 / 18.16 28.49 / 26.91 30.30 / 22.88 41.94 / 28.95 20.22 / 22.65 29.50

Qwen2-VL-7B SFT w/ AutoGUI 36.34 / 36.54 50.95 / 48.95 40.99 / 40.52 50.95 / 48.95 32.83 / 43.52 39.23 (+9.73)

our data achieves high accuracy comparable to the
expert models, i.e., UGround and OS-ATLAS. In-
terestingly, the UI expert VLM (i.e., SeeClick) also
benefits from our data, with remarkable perfor-
mance gains on FuncPred and VWB.

Fig. 5 shows that the three general-purpose
VLMs obtain progressively rising grounding ac-
curacy as the AutoGUI data size scales from 25k
to 702k, indicating that increasing AutoGUI data
amount leads to better localization performance.

In summary, our functionality data enhances
VLMs UI element grounding ability and exhibits
clear scaling effects as the data size increases.

B) Our functionality annotations are effective
for enhancing UI grounding capabilities. To as-
sess the effectiveness of functionality annotations,
we compare this annotation type with three types:
1) Naive element-HTML pairs, which are directly
obtained from the UI source code (Hong et al.,

2024) and associate HTML code with elements
in specified areas of a screenshot. Examples are
shown in Fig. 1. To create these pairs, we replace
the functionality annotations with the correspond-
ing HTML code snippets recorded during trajectory
collection. 2) Brief functionality descriptions that
are generated by prompting GPT-4o-mini2 to con-
dense the AutoGUI functionality annotations. For
example, a full description such as ‘This element
provides access to a documentation category, al-
lowing users to explore relevant information and
guides’ is shortened to ‘Documentation category
access’.

After experimenting with Qwen-VL (Bai et al.,
2023) at the 25k and 125k scales, the results in
Tab. 5 show that fine-tuning with the complete func-
tionality annotations is superior to the other three

2https://openai.com/index/gpt-4o-mini-advancing-cost-
efficient-intelligence/

10330

types. Notably, our functionality annotation type
yields the largest gain on the challenging FuncPred
benchmark that emphasizes contextual functional-
ity grounding. In contrast, the Elem-HTML type
performs poorly due to the noise inherent in HTML
code (e.g., numerous redundant tags), which re-
duces fine-tuning efficiency. The condensed func-
tionality annotations are also inferior, as the con-
sensing loses details necessary for fine-grained ele-
ment grounding. In summary, the AutoGUI func-
tionality annotations provide a clear advantage in
enhancing UI grounding capabilities.

4.3 Grounding Failure Case Analysis

After analyzing the grounding failure cases, we
identified several failure patterns in the fine-tuned
models: a) difficulty in accurately locating small
elements; b) challenges in distinguishing between
similar but incorrect elements; and c) issues with
recognizing icons that have uncommon shapes.
Please refer to Sec. D.2 for details.

5 Potential Use of AutoGUI Data

We apply our dataset to a downstream GUI agent
task to demonstrate how our dataset can benefit
GUI agents based on proprietary VLMs. The used
benchmark is AITW (Rawles et al., 2023) which re-
quires an agent to complete high-level user instruc-
tions on mobile apps. The metric is step accuracy,
where a planned step is considered correct only if
the action type and arguments match ground truths.
2-stage planning Following UGround (Gou et al.,
2025), a planner model initially performs reason-
ing through task progress and UI content and then
plans the next action. We prompt the planner to
also describe the expected functionality of the tar-
get element for click actions. Next, a grounding
model (Qwen2-VL-7B) trained with our function-
ality grounding tasks is used to locate the target
according to the functionality description. See an
example in Fig. 6 and additional details in Sec. C).

The results in Tab. 6 show that even the strong
proprietary VLMs (e.g. Gemini) possess weak UI
element grounding capability. Qwen2-VL trained
with AutoGUI functionality grounding tasks can
overtake the element grounding process of the pro-
prietary models and help the planners achieve sig-
nificantly higher step accuracy by correcting the
target locations of the click actions.

Although this experiment is not designed to sur-
pass expert models tailored for agent tasks, we

hope it can facilitate further research of GUI agents
with strong element grounding ability.

6 Conclusion

We propose AutoGUI, a scalable and automatic
annotation pipeline aimed to produce massive UI
element functionality annotations used to enhance
UI grounding capabilities of VLMs. The pipeline
prompts an open-source LLM to generate element
functionalities based on the UI content changes
induced by interacting with the elements. LLM-
aided rejection and verification are used to guaran-
tee high quality. Fine-tuned with the data collected
by AutoGUI, the base models obtain stronger UI
grounding ability and exhibit data scaling effects.
We hope that AutoGUI will open up possibilities
for advancing the field of UI agents.

Limitations

AutoGUI is dedicated to providing an autonomous
way to collect scalable UI grounding/captioning
data for training capable UI-VLMs. However, Au-
toGUI still encounters several limitations:
Lack of Diverse Mobile App Data. As many
Apps implement anti-emulator code, it is extremely
difficult to navigate through popular Apps, such
as TikTok and WeChat, on Android emulators. To
circumvent this issue, AutoGUI renders webpages
at various resolutions, including smartphone res-
olution, to mimic diverse device types. Although
mainstream websites, such as YouTube and Red-
dit, provide delicately designed webpage respon-
siveness for various resolutions, a number of less
common websites do not possess such flexible re-
sponsiveness and distort severely when rendered
at smartphone resolutions. Therefore, collecting
UI data at a smartphone resolution probably leads
to domain gaps between the collected data and
real smartphone Apps that are not rendered with
HTML.
AutoGUI is Not Indented to Record Task-
Oriented Interaction Trajectories. AutoGUI ran-
domly interacts with UIs to record transition tra-
jectories and utilize the UI content changes to pre-
dict the functionalities of the interacted elements.
Hence, the collected trajectories do not provide
high-level task semantics. In other words, the Au-
toGUI dataset does not contain tasks that combine
multiple low-level steps, such as selecting a check-
in date and then a check-out date. These long-
horizon tasks are usually generated by human an-

10331

notators in the existing works (Deng et al., 2024;
Rawles et al., 2023). In future work, we can also
utilize capable LLMs to generate high-level tasks
and then prompt the LLMs to interact with UIs
according to the tasks.
AutoGUI Cannot Annotate UI Elements That
Modify Content on The Internet. To avoid caus-
ing potential contamination on the Internet and
bearing unexpected responsibilities, we try our best
to eliminate interaction samples that manipulate
sensitive elements that probably modify contents
on the Internet. For example, elements used to
post comments, make purchases, and enter account
information are discarded. Consequently, the Auto-
GUI pipeline mainly annotates elements that only
support read-only functionalities.

Acknowledgments

This work was supported in part by the
National Key R&D Program of China (No.
2022ZD0160102), the National Natural Science
Foundation of China (No. U21B2042, No.
62320106010), and in part by the 2035 Innovation
Program of CAS.

References
AI@Meta. 2024. Llama 3 model card.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in neural
information processing systems, 35:23716–23736.

Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir
Zubach, Hassan Mansoor, Vincent Etter, Victor
Cărbune, Jason Lin, Jindong Chen, and Abhanshu
Sharma. 2024. Screenai: A vision-language model
for ui and infographics understanding. arXiv preprint
arXiv:2402.04615.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas
Sunkara, Abhinav Rastogi, Jindong Chen, and
Blaise Agüera y Arcas. 2021. Uibert: Learning
generic multimodal representations for ui understand-
ing. In International Joint Conference on Artificial
Intelligence.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile vision-
language model for understanding, localization, text
reading, and beyond.

Yushi Bai, Jiahao Ying, Yixin Cao, Xin Lv, Yuze He,
Xiaozhi Wang, Jifan Yu, Kaisheng Zeng, Yijia Xiao,

Haozhe Lyu, et al. 2024. Benchmarking foundation
models with language-model-as-an-examiner. Ad-
vances in Neural Information Processing Systems,
36.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha
Kumar, Kate Saenko, and Bryan A. Plummer. 2022.
A dataset for interactive vision-language navigation
with unknown command feasibility. In European
Conference on Computer Vision.

Ruirui Chen, Chengwei Qin, Weifeng Jiang, and
Dongkyu Choi. 2024a. Is a large language model
a good annotator for event extraction? Proceedings
of the AAAI Conference on Artificial Intelligence,
38(16):17772–17780.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu,
Yu Qiao, and Jifeng Dai. 2024b. Internvl: Scal-
ing up vision foundation models and aligning for
generic visual-linguistic tasks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 24185–24198.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,
Li YanTao, Jianbing Zhang, and Zhiyong Wu. 2024.
SeeClick: Harnessing GUI grounding for advanced
visual GUI agents. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 9313–
9332, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hib-
schman, Daniel Afergan, Y. Li, Jeffrey Nichols, and
Ranjitha Kumar. 2017a. Rico: A mobile app dataset
for building data-driven design applications. Pro-
ceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hi-
bschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. 2017b. Rico: A mobile app
dataset for building data-driven design applications.
In Proceedings of the 30th annual ACM symposium
on user interface software and technology, pages
845–854.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,
36.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations.

10332

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://api.semanticscholar.org/CorpusID:236493482
https://api.semanticscholar.org/CorpusID:236493482
https://api.semanticscholar.org/CorpusID:236493482
https://api.semanticscholar.org/CorpusID:251040563
https://api.semanticscholar.org/CorpusID:251040563
https://doi.org/10.1609/aaai.v38i16.29730
https://doi.org/10.1609/aaai.v38i16.29730
https://doi.org/10.18653/v1/2024.acl-long.505
https://doi.org/10.18653/v1/2024.acl-long.505
https://api.semanticscholar.org/CorpusID:6623010
https://api.semanticscholar.org/CorpusID:6623010
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey
Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe
Yu, Wenlong Huang, Yevgen Chebotar, Pierre Ser-
manet, Daniel Duckworth, Sergey Levine, Vincent
Vanhoucke, Karol Hausman, Marc Toussaint, Klaus
Greff, Andy Zeng, Igor Mordatch, and Pete Florence.
2023. PaLM-e: An embodied multimodal language
model. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages
8469–8488. PMLR.

Longxi Gao, Li Zhang, Shihe Wang, Shangguang Wang,
Yuanchun Li, and Mengwei Xu. 2024. Mobile-
views: A large-scale mobile gui dataset. Preprint,
arXiv:2409.14337.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie,
Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.
2025. Navigating the digital world as humans do:
Universal visual grounding for GUI agents. In The
Thirteenth International Conference on Learning
Representations.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, and Jie Tang. 2024. Co-
gagent: A visual language model for gui agents. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
14281–14290.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Raghav Kapoor, Yash Parag Butala, Melisa Russak,
Jing Yu Koh, Kiran Kamble, Waseem AlShikh, and
Ruslan Salakhutdinov. 2024. Omniact: A dataset
and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. In Euro-
pean Conference on Computer Vision, pages 161–
178. Springer.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti,
Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael
Rafailov, Ethan P Foster, Pannag R Sanketi, Quan
Vuong, et al. Openvla: An open-source vision-
language-action model. In 8th Annual Conference
on Robot Learning.

Hugo Laurençon, Léo Tronchon, Matthieu Cord,
and Victor Sanh. 2024. What matters when
building vision-language models? Preprint,
arXiv:2405.02246.

Dong-Ho Lee, Jay Pujara, Mohit Sewak, Ryen White,
and Sujay Jauhar. 2023. Making large language mod-
els better data creators. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 15349–15360, Singapore.
Association for Computational Linguistics.

Wei Li, William Bishop, Alice Li, Chris Rawles, Fo-
lawiyo Campbell-Ajala, Divya Tyamagundlu, and
Oriana Riva. 2024a. On the effects of data scale on
ui control agents. In Advances in Neural Information
Processing Systems, volume 37, pages 92130–92154.
Curran Associates, Inc.

Y. Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and
Zhiwei Guan. 2020a. Widget captioning: Generating
natural language description for mobile user interface
elements. In Conference on Empirical Methods in
Natural Language Processing.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason
Baldridge. 2020b. Mapping natural language instruc-
tions to mobile ui action sequences. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8198–8210.

Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo
Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and
Xiang Bai. 2024b. Monkey: Image resolution and
text label are important things for large multi-modal
models. In proceedings of the IEEE/CVF conference
on computer vision and pattern recognition.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Har-
rison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl
Cobbe. 2023. Let’s verify step by step. ArXiv,
abs/2305.20050.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan
Yang, Shiwei Wu, Zechen Bai, Weixian Lei, Lijuan
Wang, and Mike Zheng Shou. 2024. Showui: One
vision-language-action model for gui visual agent.
Preprint, arXiv:2411.17465.

Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian
Qiu, Han Xiao, Han Qiu, Chen Lin, Wenqi Shao,
Keqin Chen, Jiaming Han, Siyuan Huang, Yichi
Zhang, Xuming He, Hongsheng Li, and Yu Qiao.
2023. Sphinx: The joint mixing of weights, tasks,
and visual embeddings for multi-modal large lan-
guage models. Preprint, arXiv:2311.07575.

Fangyu Liu, Julian Martin Eisenschlos, Francesco Pic-
cinno, Syrine Krichene, Chenxi Pang, Kenton Lee,
Mandar Joshi, Wenhu Chen, Nigel Collier, and
Yasemin Altun. 2023a. Deplot: One-shot visual lan-
guage reasoning by plot-to-table translation. In The
61st Annual Meeting Of The Association For Compu-
tational Linguistics.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023b. Visual instruction tuning. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 34892–34916. Curran Associates,
Inc.

Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam,
Graham Neubig, Yuanzhi Li, and Xiang Yue. 2024a.
Visualwebbench: How far have multimodal llms
evolved in web page understanding and grounding?
In First Conference on Language Modeling.

10333

https://proceedings.mlr.press/v202/driess23a.html
https://proceedings.mlr.press/v202/driess23a.html
https://arxiv.org/abs/2409.14337
https://arxiv.org/abs/2409.14337
https://openreview.net/forum?id=kxnoqaisCT
https://openreview.net/forum?id=kxnoqaisCT
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2405.02246
https://arxiv.org/abs/2405.02246
https://doi.org/10.18653/v1/2023.emnlp-main.948
https://doi.org/10.18653/v1/2023.emnlp-main.948
https://proceedings.neurips.cc/paper_files/paper/2024/file/a79f3ef3b445fd4659f44648f7ea8ffd-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a79f3ef3b445fd4659f44648f7ea8ffd-Paper-Datasets_and_Benchmarks_Track.pdf
https://api.semanticscholar.org/CorpusID:222272319
https://api.semanticscholar.org/CorpusID:222272319
https://api.semanticscholar.org/CorpusID:222272319
https://api.semanticscholar.org/CorpusID:258987659
https://arxiv.org/abs/2411.17465
https://arxiv.org/abs/2411.17465
https://arxiv.org/abs/2311.07575
https://arxiv.org/abs/2311.07575
https://arxiv.org/abs/2311.07575
https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf

Yuliang Liu, Biao Yang, Qiang Liu, Zhang Li,
Zhiyin Ma, Shuo Zhang, and Xiang Bai. 2024b.
Textmonkey: An ocr-free large multimodal model
for understanding document. arXiv preprint
arXiv:2403.04473.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhu-
oshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng,
Hanwei Xu, Zhenda Xie, and Chong Ruan. 2024.
Deepseek-vl: Towards real-world vision-language
understanding. Preprint, arXiv:2403.05525.

Arjun Panickssery, Samuel R. Bowman, and Shi Feng.
2024. Llm evaluators recognize and favor their own
generations. In Advances in Neural Information Pro-
cessing Systems, volume 37, pages 68772–68802.
Curran Associates, Inc.

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shao-
han Huang, Shuming Ma, Qixiang Ye, and Furu Wei.
2024. Grounding multimodal large language models
to the world. In The Twelfth International Confer-
ence on Learning Representations.

Christopher Rawles, Alice Li, Daniel Rodriguez, Ori-
ana Riva, and Timothy Lillicrap. 2023. An-
droidinthewild: A large-scale dataset for android
device control. In Advances in Neural Information
Processing Systems, volume 36, pages 59708–59728.
Curran Associates, Inc.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael S. Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2014. Imagenet
large scale visual recognition challenge. Interna-
tional Journal of Computer Vision, 115:211 – 252.

Christoph Schuhmann, Romain Beaumont, Richard
Vencu, Cade W Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton
Mullis, Mitchell Wortsman, Patrick Schramowski,
Srivatsa R Kundurthy, Katherine Crowson, Lud-
wig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.
2022. LAION-5b: An open large-scale dataset for
training next generation image-text models. In Thirty-
sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track.

Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi
Grossman, and Yang Li. 2021. Screen2words: Au-
tomatic mobile ui summarization with multimodal
learning. The 34th Annual ACM Symposium on User
Interface Software and Technology.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei
Du, Xuancheng Ren, Rui Men, Dayiheng Liu,
Chang Zhou, Jingren Zhou, and Junyang Lin. 2024a.
Qwen2-vl: Enhancing vision-language model’s per-
ception of the world at any resolution. Preprint,
arXiv:2409.12191.

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu,
Xizhou Zhu, Gang Zeng, Ping Luo, Tong Lu, Jie
Zhou, Yu Qiao, et al. 2024b. Visionllm: Large
language model is also an open-ended decoder for
vision-centric tasks. Advances in Neural Information
Processing Systems, 36.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu
He, Kang Liu, and Jun Zhao. 2022. Large language
models are better reasoners with self-verification. In
Conference on Empirical Methods in Natural Lan-
guage Processing.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang,
Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao.
2024. Os-atlas: A foundation action model for gener-
alist gui agents. Preprint, arXiv:2410.23218.

Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao
Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Min
Dou, Botian Shi, Junchi Yan, et al. 2024. Chartx
& chartvlm: A versatile benchmark and founda-
tion model for complicated chart reasoning. arXiv
preprint arXiv:2402.12185.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou-
jun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu,
Yiheng Xu, Shuyan Zhou, Silvio Savarese, Caiming
Xiong, Victor Zhong, and Tao Yu. 2024. Osworld:
Benchmarking multimodal agents for open-ended
tasks in real computer environments. In Advances in
Neural Information Processing Systems, volume 37,
pages 52040–52094. Curran Associates, Inc.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tian-
bao Xie, Amrita Saha, Doyen Sahoo, Tao Yu, and
Caiming Xiong. 2024. Aguvis: Unified pure vi-
sion agents for autonomous gui interaction. Preprint,
arXiv:2412.04454.

Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye, Ming
Yan, Yuhao Dan, Chenlin Zhao, Guohai Xu, Chen-
liang Li, Junfeng Tian, Qian Qi, Ji Zhang, and Fei
Huang. 2023a. mplug-docowl: Modularized mul-
timodal large language model for document under-
standing. Preprint, arXiv:2307.02499.

Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye,
Ming Yan, Guohai Xu, Chenliang Li, Junfeng Tian,
Qi Qian, Ji Zhang, Qin Jin, Liang He, Xin Lin, and
Fei Huang. 2023b. UReader: Universal OCR-free
visually-situated language understanding with mul-
timodal large language model. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 2841–2858, Singapore. Association for
Computational Linguistics.

10334

https://arxiv.org/abs/2403.05525
https://arxiv.org/abs/2403.05525
https://proceedings.neurips.cc/paper_files/paper/2024/file/7f1f0218e45f5414c79c0679633e47bc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/7f1f0218e45f5414c79c0679633e47bc-Paper-Conference.pdf
https://openreview.net/forum?id=lLmqxkfSIw
https://openreview.net/forum?id=lLmqxkfSIw
https://proceedings.neurips.cc/paper_files/paper/2023/file/bbbb6308b402fe909c39dd29950c32e0-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/bbbb6308b402fe909c39dd29950c32e0-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/bbbb6308b402fe909c39dd29950c32e0-Paper-Datasets_and_Benchmarks.pdf
https://api.semanticscholar.org/CorpusID:2930547
https://api.semanticscholar.org/CorpusID:2930547
https://openreview.net/forum?id=M3Y74vmsMcY
https://openreview.net/forum?id=M3Y74vmsMcY
https://api.semanticscholar.org/CorpusID:236957064
https://api.semanticscholar.org/CorpusID:236957064
https://api.semanticscholar.org/CorpusID:236957064
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://api.semanticscholar.org/CorpusID:258840837
https://api.semanticscholar.org/CorpusID:258840837
https://arxiv.org/abs/2410.23218
https://arxiv.org/abs/2410.23218
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://arxiv.org/abs/2412.04454
https://arxiv.org/abs/2412.04454
https://arxiv.org/abs/2307.02499
https://arxiv.org/abs/2307.02499
https://arxiv.org/abs/2307.02499
https://doi.org/10.18653/v1/2023.findings-emnlp.187
https://doi.org/10.18653/v1/2023.findings-emnlp.187
https://doi.org/10.18653/v1/2023.findings-emnlp.187

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du,
Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-Fu
Chang, and Yinfei Yang. 2024. Ferret: Refer and
ground anything anywhere at any granularity. In
The Twelfth International Conference on Learning
Representations.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers,
Amanda Swearngin, Jeffrey Nichols, Yinfei Yang,
and Zhe Gan. 2025. Ferret-ui: Grounded mobile ui
understanding with multimodal llms. In Computer
Vision – ECCV 2024, pages 240–255, Cham. Springer
Nature Switzerland.

Renrui Zhang, Jiaming Han, Chris Liu, Aojun Zhou,
Pan Lu, Yu Qiao, Hongsheng Li, and Peng Gao.
2024a. LLaMA-adapter: Efficient fine-tuning of
large language models with zero-initialized attention.
In The Twelfth International Conference on Learning
Representations.

Yi-Fan Zhang, Qingsong Wen, Chaoyou Fu, Xue Wang,
Zhang Zhang, Liang Wang, and Rong Jin. 2024b.
Beyond llava-hd: Diving into high-resolution large
multimodal models. Preprint, arXiv:2406.08487.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595–46623.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

A Appendix

A Details of the AutoGUI Pipeline . 14
A.1 Extra Statistics of the Au-

toGUI Dataset 14
A.2 License of The Used Arti-

facts 14
A.3 Recording Interaction Tra-

jectories on Web 14
A.4 Recording Interaction Tra-

jectories on Android Devices 14
A.5 Functionality Annotation

Details 15
A.6 Details of Rejecting In-

valid Samples via Hand-
Written Rules 17

A.7 Details of Rejecting In-
valid Samples via LLMs . 17

A.8 Details of LLM-Based Ver-
ification 19

A.9 Details of Ground-
ing/Captioning Task
Generation 19

B Implementation Details 19
B.1 Human Evaluation Details 19
B.2 Fine-Tuning Details . . . 19
B.3 Samples of Benchmarks . 22

C Details for Potential Use of Auto-
GUI Dataset 22

D Additional Experimental Analysis 22
D.1 Growing Grounding Per-

formance Brought by Scal-
ing Data Size 22

D.2 Case Analysis on
FuncPred Test Split 23

D.3 Case Analysis on MoTIF
Test Split 23

E Potential Societal Impact 23

10335

https://openreview.net/forum?id=2msbbX3ydD
https://openreview.net/forum?id=2msbbX3ydD
https://openreview.net/forum?id=d4UiXAHN2W
https://openreview.net/forum?id=d4UiXAHN2W
https://arxiv.org/abs/2406.08487
https://arxiv.org/abs/2406.08487
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

The appendix comprises the following sections:
Section A: Details for implementation details

for the autonomous annotation pipeline, including
dataset statistics, visualized annotation pipeline,
and LLM prompts.

Section B: Details for model implementation and
training.

Section C: Details of potential use of the Auto-
GUI dataset.

Section D: Additional experimental analysis in-
cluding analysis of successful and failure cases on
two benchmarks.

Section E: Limitations and Potential Societal
Impact.

A Details of the AutoGUI Pipeline

A.1 Extra Statistics of the AutoGUI Dataset
Fig. A visualizes the verb-noun statistics of the Au-
toGUI dataset, highlighting its extensive coverage
of diverse UI functionalities. Fig. B lists the top 50
most frequent top-level domains in the AutoGUI
dataset, showing that the AutoGUI dataset involves
a broad spectrum of real-world scenarios, including
technology (e.g., apple.com), entertainment (e.g.,
tiktok.com), office (e.g., outlook.com), news (e.g.,
medium.org), and finance (e.g., paypal.com).

The approach to avoidding overlap between
train and test data: Since our focus is on annotat-
ing contextual functionality for GUI elements, we
define two elements as distinct if they serve differ-
ent functions within their respective contexts. For
example, two "magnifier" buttons on the same GUI
might have different roles—one for zooming in
and the other for searching. To ensure no contami-
nation, we investigated whether the test elements
appeared in the training set by checking if bound-
ing box overlapping occurred on the same GUIs.
After this analysis, we found no such overlap.

A.2 License of The Used Artifacts
The licenses of the data sources on which the Au-
toGUI dataset is built are listed in Tab. A. These
sources are all allowed to be used for academic
research.

A.3 Recording Interaction Trajectories on
Web

Interactive Crawler for Common Crawl We de-
sign an in-house web crawler that interacts with
most elements rendered on the web page. In con-
trast with existing methods which contain informa-
tion for elements on the initial static web page for

a given URL, our crawler randomly interacts with
a rendered web page for multiple steps within a
given action horizon Tact to collect UI data with
abundant functional semantics. Fig. C compares
the proposed AutoGUI and the existing annota-
tion methods. We empirically set Tact = 10 in all
our recordings. Therefore, our interactive crawler
could collect functionality of elements that are not
visible to static pages, including nested drop-down
menus, date and location selectors, and secondary
menus.
Data Source and Data Format To incorporate a
wide basis of web pages, we first obtain a list of
the top-200 most visited domains 3 and manually
remove content delivery network (CDN) and not
safe for work (NSFW) sites. We use URLs in this
curated list as seeds to query the Common Crawl
index 4 to find additional URLs with maximum
sub-domain and path diversity. Querying URLs
from the Common Crawl index ensures that our
crawler respects each site’s robots.txt file, mak-
ing the dataset collection process legally safe. By
obeying the directives in robots.txt, we avoid po-
tential legal issues associated with unauthorized
web scraping. For each web page, we collect the
following data:

• Screenshot image of the rendered page

• Accessible Tree (AXTree) text representing
the page’s accessibility structure

• HTML source code of the page

• Accessible Node (AXNode) text for the spe-
cific element our crawler interacted with at
each step

A.4 Recording Interaction Trajectories on
Android Devices

We also implement an in-house crawler that inter-
acts with multiple emulated Google Pixel phones.
The phones are reset to different starting UIs be-
fore a script randomly interacts with these phones
to record trajectories. To improve data diversity,
the starting UIs include the home page, drop-down
panel, settings page, and Apps drawer.

Similar to webpage HTML, mobile phone UIs
are rendered with XML code, which is cleaned
and converted to AXTree-like content before being
used to annotate functionalities.

3https://tranco-list.eu/
4https://index.commoncrawl.org/

10336

https://tranco-list.eu/
https://index.commoncrawl.org/

Figure A: Diversity of the verb-noun phrases of the AutoGUI dataset. The top 10 verbs and their top 5 following
nouns are displayed. This diagram shows that our dataset contains diverse tasks that involve various UI functions.

Table A: License or terms for use and/or distribution of the used artifacts in this work.

Artifacts License URLs containing Term-of-Use or other license information

Common Crawl CC BY https://commoncrawl.org/terms-of-use
AndroidControl Trajectories Apache 2.0 https://github.com/google-research/google-research/tree/41e4f1cbe1db648feb518a60501f638d9c8b25f2/android_control
Mobile Views Trajectories MIT https://huggingface.co/datasets/mllmTeam/MobileViews

A.5 Functionality Annotation Details

The AutoGUI pipeline utilizes UI content changes
to predict the functionalities of the interacted el-
ements. For interactions that manipulate the ex-
isting UI, the pipeline analyzes differences in the
AXTrees to annotate functionalities. Conversely,
when interactions result in navigation to a new UI,
the pipeline examines changes in UI descriptions
to guide the annotation process. Details on these
methodologies are outlined below:

UI manipulation case We use a file-comparison li-
brary, DiffLib, to generate line-by-line differences
of the AXtrees before and after interactions. To
balance efficiency with annotation integrity, we
limit the differences to 250 lines. In addition to

the standard markings by DiffLib—addition, dele-
tion, and unchanged status—we incorporate two
additional change markers: ‘Repositioning’ and
‘Attribute Update’. These markers provide detailed
information about UI content changes, essential
for representing realistic structural variations. For
example, without the attribute update marker, a
clicked menu icon would erroneously appear as
both deleted and added in the difference output,
despite the menu element remaining in place. An
example of this case is shown in Fig. D. The used
prompt is shown in Tab. B.

UI navigation case When an interacted element
causes navigation to a new UI, the resultant changes
are often extensive, potentially exceeding the con-

10337

Table B: The functionality annotation prompt used in the AutoGUI pipeline in UI manipulation cases.

(Requirements for annotation)
Objective: As an Internet expert, your task is to describe the usage and functionality of a webpage element based on the changes observed in the webpage contents before and
after interacting with the element.
Instructions:
1. You will be shown line-by-line differences between the webpage content before and after interacting with the element. Here’s what each prefix indicates:
Unchanged: Lines that are identical before and after the interaction.
Added: New lines that appear after the interaction.
Deleted: Lines that were present before the interaction but removed afterward.
Renaming: Lines indicating elements that were renamed due to the interaction.
Attribute Update: Lines showing elements whose attributes were updated during the interaction.
Repositioned: Elements that were moved to a different part of the webpage.
2. You MUST thoroughly analyze the changes in webpage content (Added, Deleted, Unchanged lines) caused by interacting with the element, present a detailed reasoning
process elucidating how the element affects the webpage, and finally summarize the element’s overall purpose based on your analysis
3. Avoid detailing every specific functionality of the webpage element. Instead, focus on describing its broader impact on the webpage experience. For example, if interacting
with a “Products” button reveals a dropdown menu, do not catalog the subsequent webpage changes in exhaustive detail.
4. Your output MUST follow this format:
Reasoning: (Examine the webpage variation carefully to figure out how the interacted element changes the webpage)
Summary: This element ... (Provide a concise high-level description of the element’s function. This description should contain the meaningful feature of the element in its
context.)
5. Avoid mentioning specific elements from the webpage before interaction in the Summary. Instead, focus directly on the outcome of the interaction. For instance, rather
than detailing a transition from one element to another, like “This element switches the focus from the ‘Destination’ input field to the ‘Check-in Date’ field, providing a date
picker,” simplify it to “This element triggers a date picker for users to select their check-in date.” This approach keeps the description concise and focused on functionality,
eliminating unnecessary details.
6. For simplicity, you MUST not mention the text of the element in the summary.
Now it’s your turn.

Element interaction: After clicking a <link> element named “Community submenu” (an example of the interaction target), the webpage exhibits the following variations:

(UI content changes)
Unchanged button ‘Extend submenu’ expanded: False
Unchanged StaticText ‘Extend’
Unchanged button ‘Learn submenu’ expanded: False
Unchanged StaticText ‘Learn’
Before Attribute Update button ‘Community submenu’ expanded: False
After Attribute Update button ‘Community submenu’ focused: True expanded: True
Unchanged StaticText ‘Community’
Added link ‘Make WordPress’
Added link ‘Photo Directory’
Added link ‘Five for the Future’
Added link ‘Events’
Added link ‘Job Board’
Unchanged button ‘About submenu’ expanded: False
Unchanged StaticText ‘About’
Unchanged button ‘Open Search’ hasPopup: dialog
Unchanged link ‘Get WordPress’

Now please think step-by-step, examine the content variation in detail, and finally summarize the high-level usage of the interacted element. Do follow the output format
“Reasoning: ... Summary: This element ...”.

(LLM response)
Reasoning: After interacting with the “Community submenu” button, the webpage content changes significantly. The button’s “expanded” attribute is updated to “True”,
indicating that the button is now expanded. Additionally, the button gains focus, as indicated by the “focused: True” attribute. The most notable change, however, is the
appearance of new. These new elements suggest that the button has triggered the display of a submenu or dropdown list related to the “Community” theme.
Summary: This element reveals a submenu of community-related links and resources.

10338

Figure B: The top-50 most frequent top-level domains in the AutoGUI dataset.

text limit of an LLM and complicating the analysis
of these changes. To handle this situation, UI de-
scription changes are used to predict functionalities.
Concretely, the LLM is initially prompted to de-
scribe the UIs before and after interaction given
UI AXTrees as input. Subsequently, the LLM then
uses these descriptions to analyze content changes
and predict the functionality of the interacted el-
ement. The description length of the AXTree is
limited to 150 lines. An illustration of this process
is shown in Fig. E. The corresponding prompt is
detailed in Tab. C.

A.6 Details of Rejecting Invalid Samples via
Hand-Written Rules

To clarify the hand-written rules used in the pro-
cess of removing invalid samples: (1) Removing
blank GUIs. We remove blank GUIs by verify-
ing whether the accessibility tree contains more
than one node. If no nodes are present, the GUI is
considered blank. (2) Removing UIs containing
elements indicating content loading. GUIs con-
taining elements indicative of content loading (e.g.,
keywords such as "loading", "please wait", or "re-
freshing") are excluded. These keywords typically
suggest that the content has not fully loaded and
may affect the validity of the sample. (3) Remov-
ing interaction targets outside of screens. Oc-
casionally, part of the UI, including the interacted
element, may fail to be captured. We filter out GUIs
where interaction targets appear outside of the vis-

ible screen area. This is determined by checking
whether the interacted element exists within the
bounds of the recorded accessibility tree. Note that
these rules are designed mainly for the domains
from which we collected GUI metadata. Neverthe-
less, one can extend the rules flexibly according to
the noise characteristics of new domains.

A.7 Details of Rejecting Invalid Samples via
LLMs

Rejection process To eliminate invalid samples be-
fore functionality annotation, the AutoGUI pipeline
prompts the annotating LLM to also determine the
validity of samples by analyzing the predictability
of the UI content changes. The LLM evaluates
each sample against three criteria: 1) Explicitness
of Changes: This measures how clearly the changes
indicate the element’s functionality. Changes that
directly suggest functionality receive higher scores,
while vague or irrelevant changes are not scored.
2) Relevance of Changes: This criterion assesses
the significance of the modifications in relation to
the element’s intended function. Highly related
modifications obtain a high score. No scores for
irrelevant or unrelated content changes. 3) Pre-
dictability of Outcome: This involves determining
how anticipated the interaction outcome is based on
the changes, considering common web conventions
and user experience principles. Highly predictable
changes obtain a high score, whereas moderate, un-
expected, or counter-intuitive outcomes receive no

10339

Table C: The functionality annotation prompt used in the AutoGUI pipeline in UI navigation cases. This example
shows how the LLM

(Requirements for annotation)
Objective: Your mission, as a digital navigation specialist, is to deduce and articulate the function and usage of a specific webpage element. This deduction should be based
on your analysis of the differences in webpage content before and after interacting with said element.
Instructions:
1. You will be given descriptions of a webpage before and after interaction with an element. Your primary task is to meticulously analyze the differences in content resulting
from this interaction to understand what the functionality of the element is in the webpage context.
2. You must present a detailed reasoning process before finally summarizing the element’s overall purpose based on your analysis.
3. Prioritize examining changes in the webpage’s regional content over individual element variations. This approach will provide a more holistic view of the element’s impact
on the webpage.
4. You should emphasize on the main content changes and pay less attention to less meaningful regions, such as headers, navigation bars, and footers.
5. Your output MUST follow this format:
Reasoning: (Examine the webpage variation carefully to figure out how the interacted element changes the webpage)
Summary: This element ... (Provide a high-level description of the element’s functionality. This description should contain the meaningful feature of the element in its
context.)
6. Avoid mentioning specific elements from the webpage prior to interaction in the Summary. Instead, focus directly on the outcome of the interaction. For instance, rather
than detailing element changes, like “This element triggers the disappearance of the header and language selector elements and the emergence of a login form”, simplify it to
“This element triggers the display of a login page.” This approach keeps the summary concise and focused on functionality, eliminating unnecessary details.
7. The final summary must emphasize the distinctive functionality of the element and not be too vague. For example, “This element redirects the user to a specific website,
allowing them to access its content and services” is too broad and lacks meaningful detail. Instead, it should precisely describe how the element provides users with unique
value
Now it’s your turn.
The description of the initial webpage:

(An example description of the UI before the interaction)
Region 1 (Header): Navigation and login functionality
Region 2 (Main Content): Announcing updates to Instagram Direct Message, providing a blog post with a title, date, and content
Region 3 (Footer): Additional links and buttons (less meaningful region, summarized in a single sentence)
Overall Functionality: A blog post webpage announcing updates to Instagram Direct Message, providing a title, date, and content, with navigation and login functionality at
the top.
After clicking a <link> element named “” (an example of the interaction target), we jump to a new webpage.
The description of the new webpage is:

(An example description of the UI after the interaction)
Region 1 (Header): Displays the webpage title and heading.
Region 2 (Login Form): Allows users to log in to their Facebook account by providing their email address or phone number and password.
Region 3 (Forgot Password): Provides a link to recover a forgotten account password.
Region 4 (Create New Account): Offers an option to create a new Facebook account.
Overall Functionality: Enables users to access their existing Facebook account or create a new one, providing a gateway to the social media platform.

Now please think step-by-step, examine the content variation in detail, and finally summarize the high-level usage of the interacted element. Do follow the output format
“Reasoning: ... Summary: This element ...”.

(LLM response)
Reasoning: Upon examining the webpage variations, I notice that the initial webpage is a blog post announcing updates to Instagram Direct Message, with navigation and
login functionality at the top. After clicking the ‘<link>‘ element named “”, the webpage transitions to a new page with a Facebook title and heading. The main content of the
new webpage is a login form, allowing users to log in to their Facebook account. Additionally, there are options to recover a forgotten password and create a new Facebook
account.
Summary: This element redirects the user to a Facebook login page, allowing them to access their existing account or create a new one.

10340

score.

A.8 Details of LLM-Based Verification
Verification process To improve the quality of
functionality annotations, the AutoGUI pipeline
prompts two LLMs (i.e.g, Llama-3-70B and
Mistral-7B-Instruct-v0.2) as verifiers to assign
scores to samples based on how well the target
elements adhere to their functionality annotations.
The LLMs receive as the input a) the target ele-
ment along with its surrounding UI content (up to
20 lines), b) the functionality annotation of this
element, and c) the outcome of interacting with
the element, either being the UI line-by-line differ-
ences (at most 250 lines) in manipulation cases or
the UI description after the interaction in navigation
cases. Given these inputs, the two LLMs generate
two responses containing a score. Samples that do
not achieve two full scores are discarded for higher
quality of the AutoGUI dataset. The used prompt
is shown in Tab. E and an example is illustrated in
Fig. H.

A.9 Details of Grounding/Captioning Task
Generation

After collecting the element-functionality pairs, the
AutoGUI pipeline converts these pairs into func-
tionality grounding and captioning tasks. A func-
tionality grounding task requires a VLM to output
point coordinates of the element fulfilling the given
functionality, while a captioning task demands that
the VLM articulate a functionality description for
an element, given its coordinates. It is important to
note that each element-functionality pair is utilized
to generate both a grounding task and a captioning
task.

B Implementation Details

B.1 Human Evaluation Details
To justify the efficacy of the AutoGUI pipeline, we
conducted a comparative evaluation of annotation
correctness between a trained human annotator and
the AutoGUI system. The human annotator was a
graduate student proficient in using digital devices,
ensuring familiarity with diverse user interfaces.

We selected a set of 30 invalid samples, each
showcasing a variety of element functionalities, to
prepare the annotator for the annotation process.
These functionalities included drop-down menu
expansions, menu item selections, date-pickers, fil-
tering options, pop-up modals, webpage navigation,
and zooming in/out buttons. The purpose of this

selection was to expose the annotator to a broad
spectrum of potential UI interactions, enhancing
their ability to accurately assess element function-
ality based on UI content changes.

During the training phase, we provided the anno-
tator with detailed guidelines, including three spe-
cific criteria outlined in Fig I, to ensure the clarity
and correctness of their annotations. Additionally,
we incorporated 15 invalid samples to instruct the
human annotator on how to identify and exclude
these cases during the evaluation process. These
invalid samples encompassed scenarios such as in-
completely loaded UIs, network failure incidents,
login restrictions, and UIs displaying inappropriate
content.

Following the training stage, the human annota-
tor evaluated a total of 146 samples. Remarkably,
the annotator successfully identified all invalid sam-
ples, achieving an overall annotation correctness
rate of 95.5%. The few incorrect annotations were
categorized as such due to vagueness or instances
of hallucination, where the descriptions did not
accurately reflect the UI elements.

B.2 Fine-Tuning Details

Qwen-VL-Chat (Bai et al., 2023), SliME (Zhang
et al., 2024b), and Qwen2-VL-7B (Wang et al.,
2024a) are selected as the base models in the ex-
periments. To investigate the scaling effects of our
dataset, 25k, 125k, and the entirety of the 702k
samples in the training split are used as training
data in the three scaling experiments. For the first
two smaller-scale experiments, a subset of the 702k
data is randomly sampled.

Pilot experiments find that the non-UI training
data (i.e., LLaVA-instruct-150k and the Cauldron)
significantly outnumber the 25k and 125k UI train-
ing data, resulting in data imbalance that biases the
trained UI-VLM towards the general Q&A tasks in
the non-UI data and leads to inferior UI grounding
performance. To tackle this issue, the 25k/125k
samples are resampled to the same number of the
non-UI training data to enable the UI-VLM to ac-
quire more supervising signals from the UI data.
This resampling approach is not employed in the
702k experiment as this experiment does not en-
counter the imbalance issue.

We train our models based on the HuggingFace
Transformers5 and the PEFT library6. The training

5https://huggingface.co/docs/transformers/index
6https://huggingface.co/docs/peft/index

10341

Table D: The rejection prompt used in the AutoGUI pipeline in UI manipulation cases. This example shows how the
LLM assigns a low score to a sample that exhibits meaningless and unpredictable UI content changes.

(Requirements for rejection)
Your primary objective is to determine whether the changes in the webpage’s content are sufficient for predicting the functionality of the webpage element causing these
changes after being interacted with.
Instructions:
1. You will be shown the outcome (webpage changes) resulting from interacting with the element. The outcome can take one of two forms: changes to the webpage
description, or line-by-line differences. For the latter form, here’s what each prefix indicates:
Unchanged: Lines that are identical before and after the interaction.
Added: New lines that appear after the interaction.
Deleted: Lines that were present before the interaction but removed afterward.
Renaming: Lines indicating elements that were renamed due to the interaction.
Attribute Update: Lines showing elements whose attributes were updated during the interaction.
Repositioned: Elements that were moved to a different part of the webpage.
2. Analyze the provided outcome and provide detailed reasoning for whether this outcome helps to predict the element’s functionality, considering the following stringent
criteria:
1) Explicitness of Changes: Rate how directly the changes suggest the element’s functionality. Score 1-3 for clear, unambiguous changes. Clearer changes obtain a higher
score. No scores for vague, meaningless, or non-specific changes.
Positive Example: A button labeled “Show More” that, upon interaction, clearly adds new content below it. The direct addition of content clearly indicates a content
expansion functionality. Score: 3
Negative Example: After clicking a “Details” button, the page layout changes subtly without adding relevant information or altering content in a meaningful way. The
changes do not clearly relate to the button’s presumed functionality. Score: 0
2) Relevance of Changes: Evaluate the significance of the modifications in relation to the element’s intended function. Score 1-3 for changes that enhance understanding of
the element’s role. Highly related modifications obtain a high score. No scores for irrelevant or unrelated content changes.
Positive Example: Clicking on a “Contact Us” button opens a form to fill out, which is highly relevant to the button’s intended functionality. Score: 3
Negative Example: Clicking on a “View Profile” link leads to a page refresh without displaying the profile or any related information, making the change irrelevant to the
link’s intended purpose. Score: 0
3) Predictability of Outcome: Assess how anticipated the interaction outcome is based on the changes, considering common web conventions and user experience principles.
Score 1-3 for highly predictable outcomes. Highly predictable changes obtain a high score. No scores for outcomes that are moderate, unexpected, or counterintuitive.
Positive Example: Clicking or hovering over a “Help” icon reveals a tooltip with information, an outcome that users can easily predict given the icon’s universal symbol for
help. Score: 3
Negative Example: Hovering over a “Settings” icon changes its color but does not display any settings options, tooltips, or lead to a settings page, making the outcome
unpredictable and the icon’s purpose unclear. Score: 0
Provide a detailed analysis based on these criteria, ending with an overall score between 0-9.
4. Your output MUST follow this format:
Reasoning:
- Explicitness of Changes: [Detailed reasoning and score]
- Relevance of Changes: [Detailed reasoning and score]
- Predictability of Outcome: [Detailed reasoning and score]
Overall score: <score>[criterium 1 score] + [criterium 2 score] + [criterium 3 score] = [total score]</score> (output an additive equation enclosed with a pair of
<score></score>)
Now it’s your turn.
The interacted element is a <button> element named “Cancel” (interaction target)
Outcome:

(An example of interaction outcome)
After clicking a <button> element named “Cancel”, the webpage exhibits the following variations:
Unchanged StaticText ‘Email Address’
Unchanged textbox ‘Email Address’ required: True
Unchanged button ‘Submit’
Unchanged StaticText ‘Submit’
Before Attribute Update button ‘Cancel’
After Attribute Update button ‘Cancel’ focused: True
Unchanged StaticText ‘Cancel’
Unchanged contentinfo ‘’
Unchanged StaticText ‘Your contact information is used to deliver requested updates or to access your subscriber preferences.’

Now please think step-by-step, examine the content variation in detail, and finally calculate scores according to the criteria. Do follow the output format “Reasoning: ...
Overall score: <score>...</score>”.

(LLM response)
Reasoning:
- Explicitness of Changes: The changes resulting from interacting with the “Cancel” button are mostly unchanged elements, except for the “Cancel” button itself, which now
has a “focused: True” attribute. This change is not directly related to the button’s functionality, as it does not provide clear insight into what the button does when clicked.
Score: 1
- Relevance of Changes: The changes do not provide any significant information about the button’s intended function. The button’s name “Cancel” suggests that it might
cancel some action or process, but the changes do not reveal what exactly is being canceled or how the button’s functionality relates to the surrounding elements. Score: 1
- Predictability of Outcome: Given the name “Cancel” and the context of a form with an “Email Address” field and a “Submit” button, a user might expect the “Cancel”
button to reset the form, clear the input field, or abort a submission process. However, the outcome does not provide any clear indication of what happens when the button is
clicked. The changes are not predictable based on common web conventions and user experience principles. Score: 1
Overall score: <score>1 + 1 + 1 = 3</score>

10342

Table E: The self-verification prompt used in the AutoGUI pipeline in UI manipulation cases. This example shows
how the LLM assigns a low score to the incorrect functionality.

(Requirements for self-verification)
Given the following inputs:
1) Webpage content: This input represents the hierarchical structure of a webpage’s elements, emphasizing semantic information and relationships. Each node in the tree
includes details such as the element’s role (e.g., button, link, heading), relevant attributes (e.g., expanded), and hierarchical relationships with other elements.
2) Task Description: This describes the action a user intends to perform (such as submitting a form, navigating to a particular section, or adjusting settings) or the information
they seek (such as a specific content piece or form field). It also introduces a candidate element for evaluation and then presents the webpage changes caused by interacting
with this element. Your task is to assess whether this element effectively facilitates the specified user action.
Your job is to:
1) Analyze the provided webpage content to understand the structure and semantics of the webpage’s elements.
2) Evaluate the Candidate Element: Determine the suitability of the specified candidate element for the described action. Consider the element’s role, attributes, and position
within the hierarchy. Your evaluation should be grounded in how well these aspects align with the required functionality for the user’s intended action.
3) Score the Element: Assign a score ranging from 0 to 3, enclosed within <score></score> tags. This score should reflect the degree to which the candidate element meets
the action’s requirements:
0: The element does not support the action in any capacity.
1: The element provides minimal support for the action.
2: The element supports the action but with limitations.
3: The element fully supports the action without significant limitations.
4) Provide Reasoning: Before presenting your score, offer a detailed explanation of your reasoning. This should cover your analysis of the webpage content, the relationship
between the candidate element and the specified action, and how these factors informed your scoring decision.
5) Format for Your Answer:
Reasoning: (Provide a comprehensive analysis covering the webpage’s insights, the relationship between the specified action and the candidate element, and the rationale
behind your scoring decision.)
Score: <score>[Y ourScoreHere]</score>
(An in-context exemplar)
Example:
Webpage content:
[0] RootWebArea ‘Rental Cars at Low, Affordable Rates’
[1] dialog ‘Vehicle Class’ modal: True
[2] radiogroup ‘Vans’
[3] radio ‘Minivans’ checked: false
[4] radio ‘Passenger Vans’ checked: false
[5] radio ‘Cargo Vans’ checked: false
[6] button ‘Cancel’
[7] button ‘Apply Filter’
Task Description: Please identify the target element. The element helps users narrow down their vehicle choices to minivans specifically
Candidate element: [3] radio ‘Minivans’
After interacting with the candidate element, the webpage exhibits these changes:
Upon clicking the “Minivans” <input> element, a new “Remove Filter” button is added to the dialog modal. The radio buttons for different vehicle classes remain unchanged,
but the “Minivans” radio button is checked after the interaction.
Reference response:
Reasoning: The provided webpage content outlines a clear hierarchical structure for selecting vehicle types on a car rental webpage, categorized into sections like Cars, Vans,
and Trucks, each with its own set of options represented as radio buttons.
The task involves narrowing vehicle choices to minivans. The candidate element is part of the ‘Vans’ radiogroup on a car rental webpage. This directly supports the user’s
action of narrowing choices to minivans. The element’s interaction leads to its checking and introduces a “Remove Filter” button. Its role, position, and functionality support
the user’s intent.
Score: <score>3</score>
(The self-verification task)
Now it’s your turn.
Current webpage content: (A UI content example)
[0] RootWebArea ‘X for Business | X tips, tools, and best practices’ focused: True
[2] link ‘Get started in your ads account’
[4] link ‘Campaign setup’
[6] link ‘Editing and optimization’
[8] link ‘Measurement’
[9] heading “Be what’s happening”
[10] StaticText ‘Spread your message, grow your audience, and get more traffic with Twitter Ads.’
=> [11] link ‘Learn more’ (The interaction target)
[13] heading ‘Twitter is where people come to discover what’s happening.’
[14] StaticText ‘With over 500 million Tweets being sent each day, ...’
[15] StaticText ‘Whether you’re a CEO strengthening their personal brand...’
[16] link ‘Get started with Twitter for Business’
[17] button ‘Get started with Twitter for Business’
[18] heading “What’s new on Twitter Business Outlook”
[20] link ‘Google’
Task Description: Please identify the target element. This element redirects users to a non-existent page, providing a custom error message and alternative content instead of
the expected information. (The functionality annotation of the element)
Candidate element: [11] link ‘Learn more’ (The interaction target)

(The interaction outcome)
After interacting with the candidate element, we navigate to a new webpage that contains these contents:
Region 1 (Header): Contains the website’s logo and navigation links.
Region 2 (Error Message): Displays an error message indicating that the page does not exist, accompanied by a humorous image and a link to potentially related content.
Region 3 (Footer): Provides links to various policy and information pages, as well as copyright information.
Overall Functionality: This webpage serves as a custom 404 error page, providing a lighthearted and engaging way to notify users that the requested page is not available.

Now please do your job. Your answer:

(LLM response)
Reasoning: The candidate element, a link labeled ‘Learn more’, is part of the webpage’s main content, surrounded by descriptions and headings related to Twitter for
Business. However, upon interacting with this element, the webpage exhibits significant changes, redirecting users to a custom 404 error page with a humorous image and a
link to potentially related content. In fact, the element’s interaction leads to a completely different webpage with an error message and alternative content, which is unrelated
to the initial webpage’s purpose. The element’s role, position, and functionality do not align with the user’s intended action.
Score: <score>0</score>

10343

Table F: The training hyper-parameters used for fine-
tuning Qwen-VL in the experiments.

Hyper-Parameter Value

Epoch 1
Global batch size 128

#GPUs 8
LoRA Rank 64
LoRA Alpha 16
Learning rate 3e-5
weight decay 0.1
ADAM Beta2 0.95
Warm-up ratio 0.01
LR scheduler Cosine

Model max length 768
LoRA ViT + LLM

DeepSpeed ZeRO-2

#Parameters
Trainable params: 234,500,864

All params: 9,891,436,032
Trainable%: 2.3707

Data type BFloat16

Table G: The training hyper-parameters used for fine-
tuning SliME in the experiments.

Hyper-Parameter Value

Epoch 1
Global batch size 128

#GPUs 8
Learning rate 3e-5
weight decay 0.0
ADAM Beta2 0.95
Warm-up ratio 0.03
LR scheduler Cosine

Model max length 2048
Frozen module ViT

DeepSpeed ZeRO-2

#Parameters
Trainable params: 7535796224

All params: 8364644352
Trainable%: 90.09

Data type BFloat16

configurations are shown in Tab. F, Tab. G, and
Tab. H.

Fine-tuning Qwen-VL-AutoGUI702k, SLiME-
AutoGUI702k, Qwen2-VL-7B-AutoGUI702k,
SeeClick w/ AutoGUI702k, UGround w/ Auto-
GUI702k consumed approximately 25 hours, 36
hours, 20 hours, 25 hours, 46 hours, respectively.

The framework used to fine-tune Qwen-VL and
SeeClick w/ AutoGUI702k is the SeeClick code-
base (Cheng et al., 2024); The framework used
to fine-tune SLiME-AutoGUI702k is the SLiME
codebase (Zhang et al., 2024b); The framework
used to fine-tune Qwen2-VL-7B-AutoGUI702k
and UGround w/ AutoGUI702k is LLaMA-
Factory (Zheng et al., 2024).

Table H: The training hyper-parameters used for fine-
tuning Qwen2-VL in the experiments.

Hyper-Parameter Value

Epoch 1
Global batch size 128

#GPUs 8
LoRA Rank 128
LoRA Alpha 256
Learning rate 3e-5
weight decay 0.0
ADAM Beta2 0.95
Warm-up ratio 0.03
LR scheduler Cosine

Model max length 2048
Frozen module ViT

DeepSpeed ZeRO-0

#Parameters
Trainable params: 322,961,408

All params: 8,614,337,024
Trainable%: 3.75

Data type BFloat16

B.3 Samples of Benchmarks
For clarity, the benchmarks’ samples are visualized
in Fig. J.

C Details for Potential Use of AutoGUI
Dataset

We mainly conduct 2-stage planning on the
AITW (Rawles et al., 2023) benchmark to assess
the benefits of our AutoGUI data on downstream
agent tasks.

As illustrated in Fig. 6, a planner is utilized
to conduct reasoning and step prediction while a
grounding model locates target elements for the
actions that require targets (click, long-press, and
hover). For other actions like swipe, back, home,
and input-text, the grounding model is not involved.
As this experiment requires the planner to describe
the expected functionality of target elements, we
use strong proprietary VLMs, such as GPT-4o-mini
and Gemini-2.0 as the planners. Expert models,
such as OS-ATLAS (Wu et al., 2024), are not used
as they typically have lost general instruction fol-
lowing capability after large-scale fine-tuning.

The results in Tab. 6 show that Qwen2-VL-7B
trained with our functionality grounding tasks can
help the planners to more accurately locate target
elements.

D Additional Experimental Analysis

D.1 Growing Grounding Performance
Brought by Scaling Data Size

To further investigate the benefit of scaling the
AutoGUI functionality data, the histogram of dis-

10344

tance from a predicted point to the ground truth
box center is plotted for the 25k, 125k, and 702k
experiments. The results in Fig. K demonstrate
that the distance distributions become denser at
lower ranges, suggesting that increasing the Auto-
GUI training data leads to consistently improved
grounding performances.

D.2 Case Analysis on FuncPred Test Split
Successful cases Fig. L demonstrates several ex-
amples of the grounding results from Qwen-VL
trained with the 25k, 125k, and 702k AutoGUI
data. The model trained with the 702k data (ours-
702k) exhibits more accurate functionality ground-
ing performance. For instance, Fig. L (a) shows
that ours-702k predicts the point right on the target
(The ‘Get an account’ button) while the other two
models slightly miss the target. Case (c) shows
that ours-702k correctly understands the functional
intent to locate the WordPress logo, in contrast
to the other models, which incorrectly focus on
the text ‘Get WordPress’. Additionally, case (f)
illustrates that ours-702k successfully locates the
three-dot menu icon, aligning with the intent to ex-
pand a dropdown menu. These results suggest that
increasing the AutoGUI training data enhances the
model’s ability to understand complex functional
intents and to recognize diverse iconic elements
accurately.
Failure cases To explore the limitations of our
model, we analyze several failure cases across the
scaling experiments, as shown in Fig. M. The pri-
mary failure cases comprise (1) Difficulty in ac-
curately locating very small target elements, as
illustrated by the tiny ‘Policy’ button in case (a);
(2) Misunderstanding functional intents, as shown
in case (b) where the three models fail to locate the
element for account creation and case (g) where
ours-702k mistakenly focuses on navigating to pre-
vious content instead of subsequent content; (3)
Challenges in recognizing abstract iconic elements,
as seen with the map style icon in case (d) and the
compass icon in case (f).

Despite these challenges, the enhanced perfor-
mance observed with ours-702k supports the po-
tential of the AutoGUI pipeline to further improve
functionality grounding. The successful cases un-
derscore that increasing the size of the training
dataset not only boosts the model’s ability to in-
terpret functional intents but also its capability to
process a variety of textual and iconic elements
effectively.

D.3 Case Analysis on MoTIF Test Split

We evaluate the instruction following ability on Mo-
TIF dataset. Our analysis focuses on two aspects:
(1) what improvements our model can achieve with
the scaling of our functionality dataset (Fig. N);
and (2) in which scenarios our model still fails to
achieve correct grounding (Fig. O).

Fig. N shows that the model can more accurately
understand the action instruction and make mean-
ingful localization as scaling improves from 125k
to 702k. For instance, when the objective is to click
sleep noise recording and click enable, the model
can comprehend the semantics of this global objec-
tive and identify turn on. Additionally, the model
can mitigate localization errors, such as the 702k
being more accurately positioned on the target ele-
ment (e.g., the icon of reservation) than the 125k.
However, MoTIF still struggles with certain tasks.
For example, as shown Fig. O, it has difficulty with
localization in fine-grained steps for the instruc-
tion search for Kingston Drive and show me the
route to it. It can be seen that the model does not
effectively understand situations involving widget
pop-ups (e.g., protocol and advertisement). This
may be attributed to the weak semantic connection
between pop-ups and the instruction. Furthermore,
the model still falls short in precise localization.
Enriching the dataset further could alleviate this
issue.

E Potential Societal Impact

The potential societal impacts of the proposed Au-
toGUI can be considered across various dimen-
sions:
Accessibility Enhancements VLMs trained with
the AutoGUI data obtain stronger UI grounding
capabilities, thereby possessing the potential to act
as UI agents. By enabling context-aware under-
standing of UI functionalities, the VLMs can help
users locate elements on complex UIs, significantly
improving accessibility features in software. This
could lead to the development of applications that
are more intuitive for users with disabilities, such
as those requiring screen readers or other assistive
technologies.
Research Impact: By reducing the labor and time
required for annotating UI data via the AutoGUI,
the industry and academia could lower costs to
easily build UI agents. This could also shift labor
demands towards more creative and strategic roles
rather than repetitive annotation tasks.

10345

Privacy and Security Concerns: Although we
employ precautions of eliminating samples related
to sensitive UI elements (e.g., avoid interacting
with elements modifying the Internet and use only
popular public websites without exposing privacy),
corner cases still exist on the vast Internet. UI
data involving either content modification or per-
sonal information are hard to discern as UI designs
are distinct and no universal detection rules exist.
Therefore, it is essential for cyber-security research
to consider the potential leakage of personal infor-
mation in the collected data and devise preemptive
protective approaches.
Potential for Bias and Fairness: The bias of the
LLMs used in the AutoGUI annotation pipeline is
probably reflected in the collected data, leading to
a trained UI-VLM that inherits the bias. Therefore,
mitigating bias in the LLM’s annotations will be im-
portant for developing fair VLM agents that align
with the values of users from diverse cultures.

10346

…

UI Transition:

Trajectories Collected by the AutoGUI Pipeline

Static UI Data Collected by SeeClick Static UI Data Collected by CogAgent

Box1 <a href="/au/shop/accessories/all" data-

feature-name="local nav" data-display-

name="Accessories" data-autom="localNavTitle"

class="localnav-title">Accessories

Collected Element-HTML pairs:

Collected Element-Text pairs:

Box1 Previous image

Box2 ENQUIRE NOW

Box2 <button type="button" class="rf-dude-

quote-overlay-trigger as-buttonlink icon icon-after

icon-pluscircle">Get delivery dates</button>

Box1 pyautogui.click("book_1")

Box2 pyautogui.press("enter")

Static UI Data Collected by OmniAct

Collected Element-script pairs:

Box Functionality: This element triggers the display of a date picker

for users to select a check-in date.

Box Functionality: This element allows users to select a specific date on the

calendar, updating the webpage content to reflect the new selection.

Collected Element-Functionality pairs:

LLM

annotation

Box pyautogui.click(398,167);

pyautogui.write(“Seattle, WA”);

pyautogui.press(“enter”)

Click a <button> named
“Check in”

Click a <td> named “2”

Click a <svg> named “”

LLM

annotation

LLM

annotation

Box Functionality: This element triggers a dropdown menu that bundles

together profile management tools for users to choose from.

Figure C: Comparing the proposed AutoGUI annotation pipeline with existing methods. AutoGUI is able to
manipulate real UIs and interact with elements hidden beneath deeper levels (e.g., the buttons hidden in collapsed
dropdown menus), thereby collecting considerably rich element-functionality annotations from the immense UI
resources on the Internet. In contrast, SeeClick (Cheng et al., 2024) only uses static webpages and collects static
element-text pairs. Likewise, CogAgent collects static element-HTML pairs while OmniAct generates Python
scripts only for visible elements. These three existing methods can only annotate visible static UI elements and
ignore the rich UI functional semantics entailed in interaction trajectories which are provided by our AutoGUI
pipeline in abundance.

10347

AXTree</>AXTree</>

UI Differences

RootWebArea 'Download – WordPress.org'

 link 'Skip to content'

 figure ''

 link 'WordPress.org'

 image 'WordPress.org'

 link 'News'

 link 'Showcase'

 link 'Hosting'

 button 'Extend submenu' expanded: False

 StaticText 'Extend'

 button 'Learn submenu' expanded: False

 StaticText 'Learn’

> button 'Community submenu' focused: True expanded: True

> StaticText 'Community’

> link 'Make WordPress’

> link 'Photo Directory’

> link 'Five for the Future’

> link 'Events’

> link 'Job Board '

button 'About submenu' expanded: False

 StaticText 'About'

 button 'Open Search' hasPopup: dialog

 link 'Get WordPress'

 main ''

 heading 'Get WordPress'

 StaticText 'Everything you …'

 StaticText 'For anyone…'

 link 'Download WordPress..'

 link 'Installation guide'

 heading 'Set up with a hosting provider’

RootWebArea 'Download – WordPress.org'

 link 'Skip to content'

 figure ''

 link 'WordPress.org'

 image 'WordPress.org'

 link 'News'

 link 'Showcase'

 link 'Hosting'

 button 'Extend submenu' expanded: False

 StaticText 'Extend'

 button 'Learn submenu' expanded: False

 StaticText 'Learn’

> button 'Community submenu' focused: True expanded: False

button 'About submenu' expanded: False

 StaticText 'About'

 button 'Open Search' hasPopup: dialog

 link 'Get WordPress'

 main ''

 heading 'Get WordPress'

 StaticText 'Everything you …'

 StaticText 'For anyone…'

 link 'Download WordPress..'

 link 'Installation guide'

 heading 'Set up with a hosting provider’

…

Unchanged button 'Extend submenu' expanded: False

Unchanged StaticText 'Extend'

Unchanged button 'Learn submenu' expanded: False

Unchanged StaticText 'Learn'

Before Attribute Update button 'Community submenu' expanded: False

After Attribute Update button 'Community submenu' focused: True expanded: True

Added link 'Make WordPress'

Added link 'Photo Directory'

Added link 'Five for the Future'

Added link 'Events'

Added link 'Job Board '

Unchanged button 'About submenu' expanded: False

Unchanged StaticText 'About'

Unchanged button 'Open Search' hasPopup: dialog

Unchanged link 'Get WordPress'

Prompt: Now please think step-by-step, examine the content variation in detail, and finally

summarize the high-level usage of the interacted element.

AutoGUI

Reasoning: After interacting with the "Community submenu" button, the

webpage content changes significantly. The button's "expanded" attribute is

updated to "True", indicating that the button is now expanded.

Additionally, the button gains focus, as indicated by the "focused: True"

attribute. The most notable change, however, is the appearance of new.

These new elements suggest that the button has triggered the display of a

submenu or dropdown list related to the "Community" theme.

Summary: This element reveals a submenu of community-related links and

resources.

Figure D: An example of the AutoGUI functionality annotation using UI AXTree differences. AutoGUI records the
AXTrees before and after interaction and then generates line-by-line differences with our custom change markers.
Subsequently, the LLM takes the differences as input to predict the element functionality.

10348

DescriptionDescription

Here is the description of the webpage regions and

overall functionality:

Region 1 (Header): Displays the webpage title and

heading.

Region 2 (Login Form): Allows users to log in to

their Facebook account by providing their email

address or phone number and password.

Region 3 (Forgot Password): Provides a link to

recover a forgotten account password.

Region 4 (Create New Account): Offers an option to

create a new Facebook account.

Overall Functionality: Enables users to access

their existing Facebook account or create a new

one, providing a gateway to the social media

platform.

Here is the description of the webpage regions and

overall functionality:

Region 1 (Header): Navigation and login

functionality

Region 2 (Main Content): Announcing updates to

Instagram Direct Message, providing a blog post

with a title, date, and content

Region 3 (Footer): Additional links and buttons

(less meaningful region, summarized in a single

sentence)

Overall Functionality: A blog post webpage

announcing updates to Instagram Direct Message,

providing a title, date, and content, with

navigation and login functionality at the top.

Prompt: Now please think step-by-step, examine the content variation in detail, and finally

summarize the high-level usage of the interacted element.

AutoGUI

Reasoning: Upon examining the webpage variations, I notice that the initial

webpage is a blog post announcing updates to Instagram Direct Message, with

navigation and login functionality at the top. After clicking the `<link>`

element named "", the webpage transitions to a new page with a Facebook title

and heading. The main content of the new webpage is a login form, allowing

users to log in to their Facebook account. Additionally, there are options to

recover a forgotten password and create a new Facebook account.

Summary: This element redirects the user to a Facebook login page, allowing

them to access their existing account or create a new one.

Describing UIs with the LLM

RootWebArea 'Facebook' focused: True

 heading 'Facebook’

 StaticText 'Log in to your Facebook account to

share.’

 StaticText 'Email address or phone number:’

 textbox ‘’

 StaticText 'Password:’

 textbox ‘’

 button 'Log in’

 link 'Forgotten account?’

 button 'Create New Account’

StaticText 'Create New Account'

RootWebArea 'New: Updates to Instagram Direct

Message | Instagram Blog' focused: True

 navigation 'Main’

button 'Site Navigation menu' expanded: False

controls: menu-list

StaticText 'Site’

StaticText 'Navigation menu’

image ‘’

link 'Log in’

button 'Navigate to the home page’

StaticText 'Navigate to the home page’

 heading 'New: Updates to Instagram Direct

Message’

StaticText 'April 11, 2017’

> link ‘’

link ‘’

link ‘’

link ‘’

link ''

AXTree</> AXTree</>

Figure E: An example of the AutoGUI functionality annotation using UI descriptions. AutoGUI records the AXTrees
before and after interaction and then prompts the LLM to describe the AXTrees in detail. Subsequently, the LLM
takes the two descriptions as input to predict the element functionality.

10349

Prompt: Before the interaction, the current webpage description is {before_description}

After clicking a <link> element named "Inbox", we navigate to a new webpage whose description is:

{after_description}

Now please think step-by-step, examine the content variation in detail, and finally calculate

scores according to the criteria. Do follow the output format "Reasoning: ... Overall score:

<score>...</score>"

AutoGUI

Reasoning:

- Explicitness of Changes: The changes are quite explicit, as clicking on the

"Inbox" link navigates to a new webpage with a distinct layout and

functionality. The new page is clearly a login page, with regions for signing

in, recovering forgotten usernames, and creating new accounts. The changes

directly suggest that the "Inbox" link is related to accessing a Yahoo Mail

account. Score: 3

- Relevance of Changes: The modifications are highly relevant to the

element's intended function. The "Inbox" link is expected to lead to a page

related to accessing mail accounts, and the new page meets this expectation

by providing a login form and options for account management. Score: 3

- Predictability of Outcome: Based on common web conventions and user

experience principles, the outcome is highly predictable. Users would

typically expect an "Inbox" link to lead to a page related to accessing their

email account, and the new page's functionality aligns with this expectation.

Score: 3

Overall score: <score>3 + 3 + 3 = 9</score>

DescriptionDescription

Region 1 (Header): Branding and navigation

(contains the Yahoo logo and link)

Region 2 (Login Form): Allows users to sign in to

their Yahoo account by entering their username,

email, or mobile number and proceeding to the next

step

Region 3 (Forgot Username Link): Provides an

option to recover forgotten usernames

Region 4 (Create Account Button): Enables users to

create a new Yahoo account

Overall Functionality: A login page that

facilitates access to Yahoo Mail accounts,

offering options for forgotten usernames and new

account creation.

Region 1 (Header): Navigation and branding region

with links to various Yahoo services and a search

button.

Region 2 (Main Content): News article listing

region displaying a collection of news articles

with images, headlines, and timestamps.

Overall Functionality: A news aggregator webpage

providing access to various news articles and

categories, allowing users to browse and read news

content.

Describing UIs with the LLM

Filling in the rejection prompt

Figure F: An example of AutoGUI prompting the LLM as a rejector to determine whether a sample shows meaningful
UI content changes sufficient for predicting the functionality of the interacted element. The sample shown is a
navigation case in which AutoGUI uses UI descriptions, instead of line-by-line differences, to make decisions.

10350

Interaction: clicking a <label> element named "1 to 4 hours"

Expected outcome: Content is filtered successfully
Rejection reason: UI is not loaded completely

Expected outcome: A pop-up window for booking appears
Rejection reason: UI no response

Interaction: clicking a <a> element named "Book Now"

Interaction: clicking a <button> element named “Add a Comment"

Expected outcome: A modal shows up for inputting a comment
Rejection reason: Log-in restriction

Figure G: Examples of samples rejected by the AutoGUI pipeline. The first sample encounters incompletely
loaded content that interferes LLM annotation. The second encounters a no-response issue where the pop-up window
fails to appear. The third shows a case where an unexpected log-in page pops up to interrupt the functionality of the
“Add a Comment” element.

10351

AutoGUI

Reasoning: The task involves identifying an element that hides promotional content and

simplifies the webpage layout. The candidate element, an empty button labeled '', is

located within the 'Office is now Microsoft 365' region.

Upon interacting with the candidate element, the webpage undergoes significant changes,

removing several elements, including images, static texts, and links, which are likely

promotional content. This alteration simplifies the webpage layout, aligning with the

task description. The element's functionality fully supports the user's intent without

any identified limitations.

Score:

<score>3</score>

RootWebArea 'Login | Microsoft 365' focused: True

 button 'All Microsoft expand to see list of

Microsoft products and services' expanded: False

 link 'Microsoft'

 button 'Microsoft 365' expanded: False

 link 'Sign in to your account’

 main ''

region 'Office is now Microsoft 365’

StaticText 'Introducing Microsoft Copilot…'

link 'Learn more’

image 'Microsoft 365 Logo’

heading 'Office is now Microsoft 365'

…

RootWebArea 'Login | Microsoft 365' focused: True

 button 'All Microsoft expand to see list of Microsoft

products and services' expanded: False

 link 'Microsoft'

 button 'Microsoft 365' expanded: False

 link 'Sign in to your account’

 main ''

 region 'Office is now Microsoft 365’

> button ''

image 'Microsoft 365 Logo’

StaticText 'Microsoft 365'

StaticText 'Microsoft Corporation'

link 'Download on the App Store®'

 StaticText 'Get the mobile app'

 StaticText 'Introducing Microsoft Copilot…'

 link 'Learn more’

 image 'Microsoft 365 Logo’

 heading 'Office is now Microsoft 365'

 …

AXTree</> AXTree</>

UI Differences

Unchanged StaticText 'Microsoft 365 '

Unchanged link 'Sign in to your account'

Unchanged main ''

Unchanged region 'Office is now Microsoft 365'

Deleted button ''

Deleted image 'Microsoft 365 Logo'

Deleted StaticText 'Microsoft 365'

Deleted StaticText 'Microsoft Corporation'

Deleted link 'Download on the App Store®'

Deleted StaticText 'Get the mobile app'

Unchanged StaticText 'Introducing Microsoft Copilot: Meet your everyday AI

companion for work and life. '

Unchanged link 'Learn more'

Unchanged image 'Microsoft 365 Logo'

Unchanged heading 'Office is now Microsoft 365'

Prompt: Please identify the target element. This element hides promotional content and simplifies the webpage

layout.

Candidate element:

[0] RootWebArea 'Login | Microsoft 365' focused: True

[1] button 'All Microsoft expand to see list of Microsoft products and services' expanded: False

[2] link 'Microsoft'

[3] button 'Microsoft 365' expanded: False

[4] StaticText 'Microsoft 365 '

[5] link 'Sign in to your account'

[6] main ''

[7] region 'Office is now Microsoft 365'

=> [8] button ''

[10] image 'Microsoft 365 Logo'

[11] StaticText 'Microsoft 365’

…

After interacting with the candidate element, the webpage exhibits these changes: {UI differences}

Filling in the prompt

Figure H: An example of AutoGUI prompting the LLM as a self-verifier to determine whether an element supports
its functionality annotation. The sample shown is a manipulation case in which AutoGUI uses UI line-by-line
differences to make decisions about whether a button fulfills the intent of hiding promotional content.

10352

This element opens a date-picker to select a check-in
date.

This element reveals a calendar.

• Criterium 1: Context-specificity

• Criterium 2: Appropriate details

This element triggers a date picker for users to
select their check-in date

Context-related description

This element switches the focus from the 'Destination'
input field to the 'Check-in Date' field, providing a date
picker.

Unnecessary details

• Criterium 3: No hallucination

This element checks an item shown in a filter dialog. This element immediately filters and reorganizes the
content of the UI.

Hallucinated functionality

√

√

√

X

X

X

This element opens a date-picker to select a check-in
date.

This element reveals a calendar.

• Criterium 1: Context-specificity

• Criterium 2: Appropriate details

This element triggers a date picker for users to
select their check-in date

Context-related description

This element switches the focus from the 'Destination'
input field to the 'Check-in Date' field, providing a date
picker.

Unnecessary details

• Criterium 3: No hallucination

This element checks an item shown in a filter dialog.

This element immediately filters and reorganizes the
content of the UI.

Hallucinated functionality

√

√

√

X

X

X

Figure I: The checking criteria used for comparing AutoGUI pipeline and the human annotator.

VisualWebBench Action Gnd.ScreenSpot (v2)

Anno. Type: Brief descriptions

Query: Windows settings

Target: (X=30,Y=800)

Anno. Type: Action intent

Query: View the content in Chinese

Target: (X=560,Y=640)

MOTIF

Anno. Type: Displayed
Text

Query: chose “how to cut
pineapple”

Target: (X=500,Y=410)

FuncPred

Anno. Type: Elem. Functionality

Query: This element adjusts the size of
the content

Target: (X=440,Y=170)

Figure J: Samples of the UI grounding benchmarks used in the experiments

10353

Figure K: Histograms of distances from predicted points to ground truth box centers. The distance from the
normalized coordinate of a predicted point to its corresponding GT box center is calculated for all samples. Then,
the histograms of these distances are illustrated to demonstrate the growing grounding performances brought by
scaling the AutoGUI data size. The averaged distance for each experiment is displayed on the subplot title.

10354

(b) Functionality: This element allows users to reorder the topic list by

view count, making it easier to find popular or frequently viewed topics.

(a) Functionality: This element navigates to a page for creating or

obtaining an account.

(c) Functionality: This element represents the primary brand or logo of

the webpage, providing users with a direct access point to the

homepage of the 'WordPress.org' website.

(d) Functionality: This element enables users to share content on

Twitter.

(e) Functionality: This element

triggers the expansion of the

search functionality on the

webpage, allowing users to access

more extensive search options.

(f) Functionality: This element

triggers additional functionality or

navigation within the webpage,

such as revealing a dropdown

menu.

(g) Functionality: This element

serves as a login gateway for the

Pinterest app, allowing users to

authenticate their accounts using

Facebook.

(h) Functionality: This element is a

password input field, allowing users

to securely enter their account

password for authentication during

the login process on the CNN

website.

Figure L: Visualization of the successful functionality grounding examples for ours-625k. The ground truth
bounding boxes, ours-625k predictions, ours-125k predictions, and ours-25k predictions are drawn in green, pink,
blue, and orange, respectively.

10355

(a) Functionality: This element provides access to the privacy policy of

GitHub, giving users important information about how their data is

managed and handled.

(b) Functionality: This element initiates the account creation process for

new users.

(c) Functionality: This element provides access to basic information and

resources about the Commons system.
(d) Functionality: This element allows users to customize the map's visual

style.

(e) Functionality: This element allows

users to navigate back to the previous

menu or page within the SONOACE

R3 | Samsung Support Bangladesh

webpage.

(f) Functionality: This element allows

users to discover and explore the

platform's trending and popular

content, providing a gateway to

various sections and categories of

the video-sharing platform.

(g) Functionality: This element advances

the user to the subsequent slide within

the slideshow of featured products and

announcements, providing a means for

users to browse through the displayed

content.

(h) Functionality: This element is an

upvote button for users to express

their approval of an article.

Figure M: Visualization of failure examples in the scaling experiments. The ground truth bounding boxes,
ours-625k predictions, ours-125k predictions, and ours-25k predictions are drawn in green, pink, blue, and orange,
respectively.

10356

Click Sleep noise recording
and click enable

Set an alarm for a nap
that is 30 minutes long

Click Reservations TabOpen sebngs and open push
nocficacons and turn off

deals and announcements

Figure N: Evaluation results of the model trained on 625k (blue dot) and 125k (red dot).

Search for Kingston Drive and show me the route to it

Figure O: Bad cases on MoTIF.

10357

Interaction: clicking a <link> element named "C#"

Human: This element navigates users to a forum related to C# questions.

AutoGUI: This element filters the webpage content to display questions related to a specific
programming language, in this case, C#.

Human: This element redirects users to a page displaying creative content and providing
search and filter functions.

Interaction: clicking a <link> element named "Creative"

AutoGUI: This element filters the showcase of WordPress-built websites by a specific
category, allowing users to focus on a particular type of website.

Interaction: clicking a <SvgRoot> element

Human: This element triggers the expansion of the current user's profile menu.

AutoGUI: This element triggers a dropdown menu for account management, providing access
to personal and business account-related features.

Figure P: Comparing the annotations generated by a trained human annotator and the proposed AutoGUI pipeline.
We can see that AutoGUI annotations are more detailed and clear than those by the human annotator.

10358

