
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 10198–10211
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

DenseLoRA: Dense Low-Rank Adaptation of Large Language Models

Lin Mu1, Xiaoyu Wang1, Li Ni1, Yang Li1, Zhize Wu2,
Peiquan Jin3, Yiwen Zhang1*

1Anhui University, 2Hefei University,
3University of Science and Technology of China,

{mulin, nili, zhangyiwen}@ahu.edu.cn {wangxiaoyu,g12114008}@stu.ahu.edu.cn

wuzz@hfuu.edu.cn jpq@ustc.edu.cn

Abstract

Low-rank adaptation (LoRA) has been de-
veloped as an efficient approach for adapt-
ing large language models (LLMs) by fine-
tuning two low-rank matrices, thereby reduc-
ing the number of trainable parameters. How-
ever, prior research indicates that many of
the weights in these matrices are redundant,
leading to inefficiencies in parameter utiliza-
tion. To address this limitation, we introduce
Dense Low-Rank Adaptation (DenseLoRA),
a novel approach that enhances parameter effi-
ciency while achieving superior performance
compared to LoRA. DenseLoRA builds upon
the concept of representation fine-tuning, incor-
porating a single Encoder-Decoder to refine
and compress hidden representations across
all adaptation layers before applying adapta-
tion. Instead of relying on two redundant
low-rank matrices as in LoRA, DenseLoRA
adapts LLMs through a dense low-rank ma-
trix, improving parameter utilization and adap-
tation efficiency. We evaluate DenseLoRA on
various benchmarks, showing that it achieves
83.8% accuracy with only 0.01% of trainable
parameters, compared to LoRA’s 80.8% accu-
racy with 0.70% of trainable parameters on
LLaMA3-8B. Additionally, we conduct exten-
sive experiments to systematically assess the
impact of DenseLoRA’s components on over-
all model performance. Code is available at
https://github.com/mulin-ahu/DenseLoRA.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Touvron et al., 2023), pre-trained on vast
general-domain datasets, have shown remark-
able generalization capabilities across a diverse
range of downstream tasks (Ruiz et al., 2023;
Thirunavukarasu et al., 2023). A common approach
for adapting LLMs to new tasks is full fine-tuning,

*Corresponding author

which involves retraining all model parameters.
However, as LLMs continue to scale, fully fine-
tuning all parameters becomes increasingly imprac-
tical due to escalating computational and memory
costs, especially in resource-constrained settings.

To address this challenge, researchers
have explored parameter-efficient fine-tuning
(PEFT) (Houlsby et al., 2019; Lialin et al.,
2023), a class of methods that adapt LLMs by
fine-tuning only a small subset of task-specific
parameters while keeping the rest of the model
frozen. PEFT achieves performance comparable
to full fine-tuning while significantly reducing
the trainable parameter. Among these methods,
low-rank adaptation (LoRA) (Hu et al., 2022) has
emerged as a particularly effective technique, as
it maintains the architecture of the LLMs and
preserves inference efficiency. LoRA draws on the
assumption that the adaptation weights of LLMs
exhibit a low "intrinsic rank," allowing updates
to be approximated efficiently with low-rank
matrices. Despite its efficiency, LoRA has limita-
tions. Empirical studies reveal that a significant
portion of the weights within LoRA’s low-rank
matrices remain inactive during adaptation, leading
to redundancy. As shown in Figure 1, many
parameters in these matrices exhibit near-zero
increments, indicating that these weights do
not contribute meaningfully to the adaptation.
While recent LoRA variants (Zhang et al., 2023;
Wang et al., 2024; Ren et al., 2024; Yin et al.,
2024) attempt to address these inefficiencies
by selectively identifying impactful weights,
they remain constraints of traditional low-rank
adaptation framework. This raises a fundamental
research question:

"Can we develop a low-rank adaptation method
that enhances model performance while leverages
a denser structure to achieve greater efficiency with
fewer trainable parameters?"

To answer this, we propose a paradigm shift:

10198

https://github.com/mulin-ahu/DenseLoRA

Figure 1: Increments of a low-rank matrix of LoRA
during training. We randomly select the slices of a
small set of low-rank matrix for demonstration.

rather than relying solely on modifying weight ma-
trices, we explore refining the hidden representa-
tions themselves. Drawing inspiration from rep-
resentation fine-tuning (Wu et al., 2024c,a) tech-
niques, we aim to enhance expressivity while
maintaining efficiency. Building on this in-
sight, we introduce Dense Low-Rank Adaptation
(DenseLoRA), a novel framework that integrates
low-rank adaptation with representation fine-tuning
to improve the adaptation efficiency of LLMs.
Specifically, DenseLoRA refines and compresses
hidden representations before adaptation, allowing
for a more efficient adaptation process with a dense
low-rank matrix.

In DenseLoRA, an Encoder module first re-
fines and compresses the hidden representations
across all adaptation layers, preserving essential
task-relevant information. A dense low-rank ma-
trix then adapts the compressed representations at
each layer. Finally, a Decoder module reconstructs
the refined representations, ensuring seamless in-
tegration with the pre-trained model. Notably, the
Encoder and Decoder are shared across all adap-
tation layers, which enhances efficiency and re-
duces redundancy. Unlike LoRA, which relies on
two redundant matrices, DenseLoRA leverages a
dense and small matrix to achieve a more efficient
and compact adaptation process. This results in a
significant reduction in trainable parameters while
maintaining effective low-rank adaptation of the
pre-trained weight matrix W0.

Our main contributions can be summarized as
follows:

• We introduce DenseLoRA, a novel PEFT

method that enhances low-rank adaptation by
utilizing a dense and small matrix. This ap-
proach leads to more efficient parameter up-
dates, reducing redundancy.

• We integrate low-rank adaptation with repre-
sentation fine-tuning, enabling DenseLoRA to
enhance the expressivity of the model while
maintaining computational efficiency.

• We conduct extensive experiments to evalu-
ate DenseLoRA performance on various tasks.
Notably, DenseLoRA adapts only 0.01% of
trainable parameters while achieving 83.8%
accuracy, surpassing LoRA’s 80.8% accuracy
with 0.70% trainable parameters on common-
sense reasoning tasks. Furthermore, we pro-
vide an in-depth analysis of its components
and their impact on performance.

2 Background

2.1 Low-Rank Adaptation (LoRA)
The core hypothesis of LoRA (Hu et al., 2022)
is that during the fine-tuning, the weight updates
exhibit a low "intrinsic rank". Building on this ob-
servation, LoRA freezes the pre-trained weights
of LLMs and incrementally updates these weights
by utilizing the product of two trainable low-rank
matrices. This approach has been demonstrated to
achieve performance comparable to full fine-tuning
across numerous benchmarks while significantly
reducing training parameters. To formally describe
LoRA’s adaptation process, let W0 ∈ Rd×k de-
note the pre-trained weight matrix. Instead of di-
rectly updating W0, LoRA applies incremental up-
dates using two low-rank matrices, expressed as
∆W = BA, where B ∈ Rd×r, A ∈ Rr×k. The
rank r is significantly smaller than both d and k (i.e.
r << min(d, k)). This approach substantially re-
duces the number of trainable parameters compared
to full fine-tuning. By incorporating these incre-
mental updates, the adapted hidden representation
ĥ ∈ Rd represented as:

ĥ = (W0 +∆W)h = W0h+BAh (1)

Here, h ∈ Rk indicates the hidden representation
before adaptation. W0 remains frozen during fine-
tuning. To ensure stability during fine-tuning, ma-
trix A is initialized using a uniform Kamining dis-
tribution (He et al., 2015), while B is set to zero, en-
suring that ∆W = 0 at the beginning of fine-tuning.

10199

Pretrained
Weights

𝑊𝑊 ∈ ℝ𝑑𝑑∗𝑘𝑘
𝐴𝐴 = 𝓝𝓝(0,𝜎𝜎2)

𝐵𝐵 = 0

r

k

x

h

(a) (a) LoRA

Encoder

Pretrained
Weights

𝑊𝑊 ∈ ℝ𝑑𝑑∗𝑘𝑘

Decoder

r

k

x

h

𝑀𝑀 ∈ ℝ𝑟𝑟∗𝑟𝑟

ℎ1

ℎ2

Unique for each Layer

Share for all Layer

𝑊𝑊𝑒𝑒 ∈ ℝ𝑟𝑟∗𝑘𝑘

𝑊𝑊𝑑𝑑 ∈ ℝ𝑑𝑑∗𝑟𝑟

𝜎𝜎(𝑊𝑊𝑒𝑒𝑥𝑥)

(b)
(b) DenseLoRA

Figure 2: Framework comparison of LoRA(left) and DenseLoRA(right).

As shown in Eq.(1), during inference, LoRA can
merge the W0 and ∆W (i.e. W

′
= W0 + ∆W).

This property ensures that LoRA does not intro-
duce any additional inference latency compared to
the original model.

2.2 Representation Fine-tuning

Recently, several studies have explored the repre-
sentation fine-tuning (Wu et al., 2024c,a) technique.
Instead of adapting model weights, these methods
focus on refining hidden representations directly,
enabling task-specific adjustments without mod-
ifying weight matrices. For example, Red (Wu
et al., 2024a) refined hidden representations by in-
troducing two learnable components: scaling vec-
tor lscaling ∈ Rd and bias vector lbias ∈ Rd. This
process can be mathematically expressed as fol-
lows:

ĥ = lscaling ⊙ h+ lbias (2)

Where ⊙ represents Hadamard product, h ∈ Rd

indicates the hidden representation.

3 Methodology

To address the inefficiencies of existing low-rank
adaptation methods, we propose Dense Low-Rank
Adaptation (DenseLoRA) a novel framework that
integrates low-rank adaptation with representation
fine-tuning. DenseLoRA overcomes the redun-
dancy issues observed in vanilla LoRA approaches
by adapting a dense, small low-rank matrix, en-
suring a more efficient use of parameters. Specif-
ically, DenseLoRA introduces a structured three-
stage process: (1) An Encoder refines and com-

presses hidden representations; (2) A denser low-
rank adaptation module adapts the model; and (3)
A Decoder reconstructs the refined representations
to ensure seamless integration with the pre-trained
model. This structured approach distinguishes
DenseLoRA from vanilla LoRA, which relies on
two low-rank matrices.

3.1 DenseLoRA Architecture
To realize this three-stage adaptation process,
DenseLoRA introduces a novel architecture (il-
lustrated in Figure 2) that integrates an Encoder-
Decoder mechanism with low-rank adaptation.
This architecture refines and compresses hidden
representations before adaptation, reducing redun-
dancy and significantly lowering the number of
trainable parameters while maintaining the model’s
expressiveness. At the core of this architecture is
the Encoder-Decoder mechanism, implemented
as fully connected neural networks, which refines
representations and adapts LLMs through the fol-
lowing three stages:

• Compression: The Encoder applies a trans-
formation using weights We ∈ Rr×k to re-
fine and compress the hidden representation
h ∈ Rk into a lower-dimensional representa-
tion. This is followed by an activation func-
tion σ(·), producing a compressed representa-
tion h

′ ∈ Rr.

• Adaptation: To fine-tune the model for down-
stream tasks, a dense low-rank matrix M ∈
Rr×r is applied to the compressed representa-
tion. This step adapts the model while keeping

10200

the pre-trained weight matrix W0 frozen.

• Reconstruction: The Decoder then recon-
structs the adapted representation back to
the original hidden dimension using weights
Wd ∈ Rd×r, followed by an activation func-
tion. This reconstruction step ensures that the
adapted representation seamlessly integrates
with the frozen pre-trained model, preserving
expressivity while maintaining efficiency.

The overall adaptation process in DenseLoRA can
be mathematically formulated as follows, combin-
ing the frozen pre-trained weights W0 with the
refined and adapted hidden representations:

ĥ = W0h+Decoder(MEncoder(h)) (3)

To enhance parameter efficiency, DenseLoRA
shares a single Encoder-Decoder across all adap-
tation layers. This strategy reduces redundancy
and significantly lowers the number of trainable
parameters. To maintain layer-specific adaptability,
DenseLoRA fine-tunes unique low-rank matrices
M ∈ Rr×r for each adaptation layer, ensuring that
adaptation remains flexible and effective across
different layers. The transformations applied by
the Encoder and Decoder can be mathematically
expressed as follows, capturing how hidden repre-
sentations are refined and reconstructed:

h
′
= Encoder(h) = σ(Weh) (4)

ĥ = Decoder(h
′
) = σ(W T

d h
′
) (5)

3.2 Parameter Analysis
Initialization Strategies: DenseLoRA employs
two categories of matrices: Shared Matrices and
Unique Matrices, each initialized to ensure stabil-
ity and efficiency during training. Shared Matrices:
These include We ∈ Rr×k and Wd ∈ Rd×r, which
are shared across different adaptation layers. The
We matrix is initialized using Kaiming initializa-
tion (He et al., 2015), while the Wd matrix is initial-
ized to zeros. This ensures that the Wd matrix does
not interfere with the output during the first forward
pass. Unique Matrices: These include M ∈ Rr×r,
which is unique to each adaptation layer. Like the
matrices We, M is also initialized using Kaiming
initialization (He et al., 2015) to promote efficient
and stable training.

By combining shared matrices for parameter effi-
ciency and unique matrices for layer-specific adapt-
ability, DenseLoRA achieves an effective balance

between fine-tuning flexibility and computational
cost.

Parameter Count: To effectively fine-tune large
language models (LLMs) while maintaining param-
eter efficiency, DenseLoRA significantly reduces
the number of trainable parameters compared to
existing LoRA variants. Let l represent the number
of adaptation layers in LLMs, and k and d repre-
sent the input and output dimensions, respectively.
The parameter count for different methods is sum-
marized as follows:

• Full Fine-Tuning (FFT): The total number
of trainable parameters is |Θ| = l × d× k.

• LoRA: LoRA reduces the parameter count
to |Θ| = l × (d + k) × r, here rank r <<
min(d, k).

• DenseLoRA: Unlike LoRA, which re-
lies on two redundant low-rank matrices,
DenseLoRA optimizes efficiency by leverag-
ing a denser structure, resulting in the follow-
ing parameter count: |Θ| = (d+k+l×r)×r,
where rank r << min(d, k).

To illustrate this advantage, we compare train-
able parameters in real-world LLM settings:

• In LLaMA2-7B with r = 16, LoRA require
approximate 28M trainable parameters, while
DenseLoRA reduces this to 0.9M , achieving
a 30× reduction

• In LLaMA3-8B with r = 16, DenseLoRA
maintains a similar reduction relative to
LoRA, confirming its scalability across mod-
els.

These results demonstrate that DenseLoRA has
significantly fewer trainable parameters, making
it a highly scalable and computationally efficient
solution for fine-tuning LLMs.

4 Experiments

In this section, we conduct extensive experiments
to evaluate the effectiveness of DenseLoRA across
various tasks. Our evaluation follows a structured
approach to ensure a comprehensive analysis.

First, we compare DenseLoRA with LoRA
and its variants by fine-tuning LLaMA2-7B and
LLaMA3-8B on commonsense reasoning tasks.

10201

LLM Method Param(%) BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.
ChatGPT - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA2-7B

LoRA 0.83 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
DenseLoRA∗ 0.01 69.9 79.5 78.2 83.0 78.0 81.5 63.8 76.6 76.3
DenseLoRA∗∗ 0.03 71.3 81.0 78.9 85.0 79.5 82.4 65.4 76.2 77.5
DenseLoRA∗∗∗ 0.06 70.2 81.8 78.8 90.0 81.9 66.2 82.6 79.2 78.8

LLaMA3-8B

LoKr 0.01 65.1 81.6 78.7 92.0 82.1 89.2 76.7 80.9 80.9
NoRA 0.10 73.3 86.4 79.1 94.1 84.3 88.2 77.5 85.0 83.1
VeRA‡ 0.01 62.2 81.6 64.8 54.5 6.18 84.4 67.2 64.6 67.7
AdaLoRA 0.35 75.1 86.4 76.7 75.4 83.3 90.4 79.1 81.4 81.4
LoRA 0.70 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
DoRA† 0.35 74.5 88.8 80.3 95.5 84.7 90.1 79.1 87.2 85.0
DoRA 0.71 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
DenseLoRA∗ 0.01 72.3 87.5 79.8 93.5 85.2 89.8 78.2 84.0 83.8
DenseLoRA∗∗ 0.02 74.3 88.0 80.3 94.5 86.0 89.7 78.7 85.6 84.6
DenseLoRA∗∗∗ 0.06 74.1 88.9 80.3 95.0 87.0 90.0 79.2 85.6 85.0

Table 1: Accuracy(%) comparison of various methods fine-tuning LLaMA2-7B and LLaMA3-8B on the common-
sense reasoning tasks. † denotes that the rank is equal to 32 in DoRA (Liu et al., 2024). ‡ denotes that we experiment
on the commonsense reasoning task using the same settings in VeRA (Liu et al., 2024), with a rank equal to 256. ∗

denotes r = 16. ∗∗ denotes r = 32. ∗∗∗ denotes r = 64.

Next, we extend our analysis to arithmetic rea-
soning, focusing on fine-tuning LLaMA3-8B mod-
els. To assess the performance of DenseLoRA un-
der limited data availability, we conduct experi-
ments by sampling a subset of the original train-
ing data and analyzing its impact on model per-
formance. Additionally, we investigate the opti-
mal tuning granularity by analyzing which weight
matrices within the transformer architecture bene-
fit the most from adaptation using DenseLoRA.
Finally, we delve deeper into the mechanics of
DenseLoRA by investigating the effects of fine-
tuning the Encoder and Decoder components and
comparing the adaptation matrix M to A and B
used in LoRA.

4.1 Commonsense Reasoning

To evaluate DenseLoRA’s performance on com-
monsense reasoning tasks, we fine-tune LLaMA2-
7B and LLaMA3-8B using a dataset comprising
170k training samples (Hu et al., 2023). These
samples are drawn from the training sets of eight
commonsense reasoning benchmarks (see Ap-
pendix A.1 for details): 1) BoolQ (Clark et al.,
2019); 2) PIQA (Bisk et al., 2020); 3) SIQA (Sap
et al., 2019); 4) HellaS. (HellaSwag) (Zellers et al.,
2019); 5) WinoG. (WinoGrande) (Sakaguchi et al.,
2021); 6) ARC-c and ARC-e (Clark et al., 2018);
7)OBQA (Mihaylov et al., 2018). All the experi-
ments are conducted using 4 Nvidia 24GB 3090

GPUs, with the training hyperparameters detailed
in Appendix A.2.

For comparative analysis, we evaluate
DenseLoRA against several LoRA variant meth-
ods: 1) ChatGPT (Wei et al., 2022), which applies
a zero-shot chain of thought approach (Kojima
et al., 2022) on GPT-3.5-turbo; 2) LoRA (Hu
et al., 2022), which updates a weight matrix
via a low-rank matrices AB; 3) LoKr (YEH
et al., 2024), which utilizes Kronecker products
for weight matrix decomposition, significantly
reducing trainable parameters; 4) NoRA (Lin
et al., 2024), which adopts a dual-layer nested
structure with singular value decomposition
(SVD), effectively leveraging original matrix
knowledge while reducing tunable parameters. 5)
VeRA (Kopiczko et al., 2024), which employs
a single pair of shared low-rank matrices across
all layers and fine-tunes small scaling vectors; 6)
AdaLoRA (Zhang et al., 2023), which fine-tunes
pre-trained weights using SVD; 7) DoRA (Liu
et al., 2024), which decomposes the pre-trained
weight into magnitude and directional components
for fine-tuning;

Main results. Table 1 presents the results of
commonsense reasoning tasks on LLaMA2-7B and
LLaMA3-8B across different ranks (16, 32, and
64). Key findings are:

1) Excellent Performance: DenseLoRA
achieves an average accuracy of 85% on LLaMA3-

10202

Method Params(%) GSM8K AQUA AddSub SVAMP Avg.
LoRA 0.70 47.1 18.1 90.6 71.9 56.9
DenseLoRA∗ 0.02 45.5 20.5 73.5 92.1 57.5
DenseLoRA∗∗ 0.06 47.2 19.7 92.4 74.5 58.5

Table 2: Accuracy(%) comparison of DenseLoRA and LoRA fine-tuning LLaMA3-8B on four arithmetic reasoning
tasks. ∗ denotes r = 32. ∗∗ denotes r = 64

8B, outperforming LoRA (80.8%) by 4.1%, while
requiring only 10% of the trainable parameters used
by LoRA. Notably, when fine-tunes just 0.01% of
the parameters, DenseLoRA still maintains 83.8%
accuracy, outperforming LoRA while reducing
trainable parameters by a factor of 70. This demon-
strates DenseLoRA’s ability to achieve high accu-
racy with minimal adaptation overhead.

2) Parameter Efficiency: Compared to other
parameter-efficient LoRA variants (VeRA, LoKr,
and NoRA), DenseLoRA achieves higher accuracy.
For instance, it achieves an accuracy of 83.8%, out-
performing LoKr by 2.9%. While LoKr reduces
training parameters via Kronecker products, it re-
quires more computational resources (training time
and GPU memory) than LoRA (Wu et al., 2024b).
In contrast, DenseLoRA maintains similar com-
putational costs to LoRA while offering superior
performance, making it a more practical solution.

3) Rank Robustness: DenseLoRA demon-
strates strong rank robustness, maintaining high ac-
curacy across rank configurations (16, 32, 64). As
the rank increases, its average accuracy consistently
improves. For example, at rank 16, DenseLoRA
fine-tunes only 1/70 of the trainable parameters
used by LoRA, yet outperforms LoRA. At rank
64, DenseLoRA’s trainable parameter increases to
0.06%, achieving 85% accuracy, surpassing LoRA
(80.8%) and approaching DoRA (85.2%).

4.2 Arithmetic Reasoning

To evaluate the effectiveness of DenseLoRA on the
arithmetic reasoning task, we fine-tuned LLaMA3-
8B on the Math10K (Hu et al., 2023) dataset
and evaluated it performance on four different
datasets, including 1) GSM8K (Cobbe et al., 2021),
2)AQUA (Ling et al., 2017), 3) AddSub (Hosseini
et al., 2014), 4) SVAMP (Patel et al., 2021). Details
of datasets are provided in Appendix A.1. We con-
duct experiments using 1 Nvidia 24GB 3090 GPU,
with hyperparameters listed in Appendix A.2.

Table 2 presents the result on 4 arithmetic rea-
soning benchmarks, demonstrating DenseLoRA’s

Figure 3: Accuracy(%) comparison of DenseLoRA and
LoRA on the commonsense reasoning 170k dataset with
fewer training samples.

strong performance with significantly fewer train-
able parameters. Notably: at rank=32, DenseLoRA
achieves superior performance using only 0.02%
trainable parameters, a 35× reduction compared
to LoRA (0.7% trainable parameters). At rank=64,
DenseLoRA attains 58.5% accuracy using only
0.06% trainable parameters, surpassing LoRA’s
56.9% (0.7% trainable parameters). These re-
sults further validate DenseLoRA’s effectiveness,
demonstrating its parameter efficiency and adapt-
ability across different reasoning tasks.

4.3 Low Resources Performance

Building on our evaluation of DenseLoRA’s param-
eter efficiency, we now examine its performance
under low-resource conditions. We randomly sam-
pled 10%, 20%, 40%, 60%, and 80% of the original
170k commonsense reasoning training dataset and
repeated the experiments using LLaMA3-8B with
a rank of 32. Figure 3 illustrates the relationship be-
tween training sample size and performance, with
detailed numbers presented in Appendix B.1. No-
tably, DenseLoRA consistently outperforms LoRA
across all sample sizes, demonstrating its ability to
generalize effectively even with limited data. For
instance, DenseLoRA trained with just 10% of the

10203

#Params(%) LoRA DenseLoRA Avg.
0.70 QKVUD - 80.8
0.25 QKV UD 83.8
0.49 UD QKV 83.2
0.01 - QKV 82.3
0.02 - UD 83.8
0.02 - QKVUD 84.6

Table 3: Accuracy(%) comparison of DenseLoRA
with several different tuning granularity fine-tuning
LLaMA3-8B. Each module is represented by its first let-
ter as follows: (Q)uery, (K)ey, (V)alue, (O)utput, (U)p,
(D)own.

data achieves an accuracy of 81.1%, which is 0.3%
higher than LoRA trained with the full dataset.
As the number of training samples increases, the
performance gap between DenseLoRA and LoRA
widens, further highlighting DenseLoRA’s ability
to effectively capture complex patterns with re-
duced data requirements.

4.4 Tuning Granularity Analysis

This section evaluates the impact of adapting dif-
ferent weight modules using DenseLoRA. Each
module is represented by its first letter as follows:
(Q)uery, (K)ey, (V)alue, (O)utput, (G)ate, (U)p,
(D)own. We conduct experiments using LLaMA3-
8B with a rank of 32 on commonsense reasoning
training samples. The result, shown Table 3, high-
light several key observations:

Consistent with the original LoRA configuration
suggested in (Hu et al., 2022), which requires tun-
ing both the Multi-head Attention and MLP layers
for optimal performance, DenseLoRA achieves su-
perior accuracy when updating both components.
Furthermore, adapting the MLP layers proves to
be more effective than tuning Multi-head Atten-
tion layers. Notably, when DenseLoRA is applied
to QKV modules, the model achieves an aver-
age of 82.3%. However, when the UD modules
are adapted instead, accuracy improves to 83.8%,
surpassing the QKV configuration. Interestingly,
even when only the UD modules are tuned using
DenseLoRA (without tuning QKV modules), the
accuracy remains at 83.8%. These findings indi-
cate that DenseLoRA is highly efficient than LoRA,
achieving superior performance with significantly
fewer trainable parameters.

Method # Params(%) Avg.
DenseLoRA 0.02 84.6
– Freeze 0.03 79.5
– Only Matrix 0.02 83.3

Table 4: Accuracy (%) comparison of several variants
of DenseLoRA.

Figure 4: Evaluate DenseLoRA with rank from 16 to
512.

4.5 Robustness of Rank

We evaluated DenseLoRA with more rank configu-
rations of 128, 256, and 512 on commonsense rea-
soning tasks using LLaMA3-8B. The correspond-
ing performance is shown in the following Fig-
ure 4. Notably, with a rank of 256 and 0.31% of the
parameters fine-tuned, DenseLoRA outperforms
LoRA (80.8%) and DoRA (85.2%) with a perfor-
mance of 85.5%. Therefore, DenseLoRA perfor-
mance can be improved by increasing the number
of parameters fine-tuned.

4.6 Understanding the DenseLoRA

Having established DenseLoRA’s empirical advan-
tages, we now examine its internal mechanisms to
better understand the advantages of DenseLoRA.
To this end, we conduct a focused investigation
on commonsense reasoning tasks using LLaMA3-
8B (rank = 32), addressing two key questions: 1)
What is the effectiveness of the representation fine-
tuning module that is the Encoder and Decoder
modules? 2) How does the adaptation matrix M
compare to matrices A and B used in LoRA?

Effectiveness of Encoder and Decoder: To
explore the role of the representation fine-tuning
module in DenseLoRA, we evaluate two key vari-
ants of the Encoder and Decoder components: 1)
Freeze: In this setting, we freeze the parameters
of both the Encoder and Decoder, keeping them

10204

Figure 5: Increments of matrix M during training.

fixed during training. This significantly reduces the
number of trainable parameters and is conceptually
similar to VeRA (Kopiczko et al., 2024). To main-
tain a comparable number of trainable parameters
to DenseLoRA, we compensate by setting the rank
to 128. 2) Only Matrix: This variant isolates the
effect of the matrix transformation by removing the
activation function, allowing us to assess whether
activation functions contribute significantly to rep-
resentation fine-tuning.

Table 4 presents the experimental result of
DenseLoRA compared to its variants. The re-
sults underscore the crucial of the Encoder and
Decoder components in the effective fine-tuning
of LLMs. Furthermore, the Only Matrix variant,
which removes the activation function, shows a
performance decrease. This finding indicates that
activation functions are not merely auxiliary com-
ponents but rather play an essential role in enhanc-
ing representation fine-tuning.

Dense Matrix M: To verify the advantages
of DenseLoRA’s dense matrix representation over
LoRA, we compare ∆M with ∆A and ∆B from
the same adaptation module and layer during train-
ing. Since A and B are significantly larger than
M, we randomly select the slices of A and B that
match the size of M. Figure 5 presents the incre-
mental updates of M, while a detailed comparison
with A and B is provided in Appendix B.3. From
the figure, we observe that M exhibits a dense up-
date pattern, where the majority of its parameters
actively contribute to the adaptation process. In
contrast, A and B show sparse updates, with most
of their parameters either remaining unchanged or
undergoing minimal modifications. These findings
demonstrate that DenseLoRA is highly parameter-

efficient, effectively utilizing a compact adaptation
matrix while maintaining strong performance.

5 Related Works

Parameter-Efficient Fine-Tuning (PEFT): It is
a widely adopted strategy aimed at fine-tuning a
limited number of parameters in LLMs while keep-
ing the remainder unchanged. These approaches
involve fine-tuning only a subset of the existing
model parameters or adding new parameters to
the model. These methods are designed to re-
duce the high computational cost of full fine-tuning
LLMs (Lialin et al., 2023; Han et al., 2024). Ex-
isting PEFT methods are primarily classified into
four types. The first type is known as adapter-
based methods. These methods involved insert-
ing adapter layers between the existing layers
in LLMs (Houlsby et al., 2019; He et al., 2021;
Karimi Mahabadi et al., 2021). The second type in-
volves prompt-based methods (Lester et al., 2021;
Razdaibiedina et al., 2023; Li and Liang, 2021).
These approaches introduced trainable soft tokens
(prompts) into the model’s input rather than mod-
ifying its internal weights. While these methods
involved altering the model’s input or architecture,
they resulted in increased inference latency com-
pared to other fine-tuning methods. The third type
of method is the low-rank method like LoRA.

Low-Rank Adaptation (LoRA) (Hu et al.,
2022): It is a technique designed for the low-rank
properties of model updates to improve parame-
ter efficiency. Specifically, LoRA used two small
matrices to approximate the weight increments dur-
ing fine-tuning. Recently, there have been numer-
ous methods exploring more efficient LoRA vari-
ants. For example, AdaLoRA (Zhang et al., 2023)
builds upon LoRA by applying Singular Value De-
composition (SVD) to prune less significant sin-
gular values, enhancing update efficiency. Addi-
tionally, DoRA (Liu et al., 2024) decomposes the
pre-trained weight into two components: magni-
tude and direction, allowing LoRA to focus solely
on directional updates. Another recent contribution,
VeRA (Kopiczko et al., 2024) introduces the use of
“scaling vectors” to adapt frozen random matrices
that are shared between layers, significantly reduc-
ing the number of trainable parameters compared
to traditional LoRA.

Representation Fine-tuning: Prior inter-
pretability research has demonstrated that hidden
representations in LLMs encode rich semantic in-

10205

formation. As a result, representation fine-tuning
has emerged as a new type of PEFT method (Wu
et al., 2024c,a; Yin et al., 2024). For example,
RED (Wu et al., 2024a) modifies the representa-
tions at intermediate layers through scaling and
biasing operations, significantly reducing the num-
ber of trainable parameters.

Our approach integrates low-rank adaptation
with representation fine-tuning, which is different
from the existing PEFT method, and achieves su-
perior performance.

6 Conclusion

To address weight redundancy in LoRA, we pro-
pose Dense Low-Rank Adaptation (DenseLoRA),
which significantly reduces the number of train-
able parameters while outperforming LoRA.
DenseLoRA achieves this by employing a shared
Encoder and Decoder across all layers to refine
and compress hidden representations before adapta-
tion. Instead of relying on two redundant low-rank
matrices, DenseLoRA fine-tunes LLMs using a
dense low-rank matrix, leading to more efficient
parameter utilization. We evaluate the effectiveness
of DenseLoRA on various benchmarks, demon-
strating that it achieves performance comparable
to LoRA while requiring only 1/70 of the trainable
parameters. DenseLoRA presents a more efficient
approach to low-rank adaptation while maintaining
and even improving model performance compared
to existing methods like LoRA.

7 Limitations

In this paper, we conduct experiments on common-
sense reasoning tasks, and arithmetic reasoning
tasks by fine-tuning LLaMA2-7B and LLaMA3-
8B. There is a broader range of tasks unexplored
using DenseLoRA, such as image generation tasks,
and visual instruction tuning tasks. We will apply
DenseLoRA in these tasks for future work.

8 Acknowledgements

This work is supported by the National Natu-
ral Science Foundation of China (No.62206004,
No.62272001, No.62072419, No.62406095), and
the Natural Science Foundation of Anhui Province
(No.2308085MF213).

References
Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,

et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. 2024. Parameter-efficient fine-
tuning for large models: A comprehensive survey.
arXiv preprint arXiv:2403.14608.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In 2015 IEEE International Conference on Computer
Vision (ICCV), pages 1026–1034.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical

10206

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058

Methods in Natural Language Processing (EMNLP),
pages 523–533, Doha, Qatar. Association for Com-
putational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria,
and Roy Lee. 2023. LLM-adapters: An adapter fam-
ily for parameter-efficient fine-tuning of large lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5254–5276, Singapore. Association
for Computational Linguistics.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neural
Information Processing Systems, volume 34, pages
1022–1035. Curran Associates, Inc.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213. Curran Associates, Inc.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M
Asano. 2024. VeRA: Vector-based random matrix
adaptation. In The Twelfth International Conference
on Learning Representations.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Vladislav Lialin, Vijeta Deshpande, and Anna
Rumshisky. 2023. Scaling down to scale up: A
guide to parameter-efficient fine-tuning. Preprint,
arXiv:2303.15647.

Cheng Lin, Lujun Li, Dezhi Li, Jie Zou, Wei Xue, and
Yike Guo. 2024. Nora: Nested low-rank adapta-
tion for efficient fine-tuning large models. Preprint,
arXiv:2408.10280.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158–167, Vancouver,
Canada. Association for Computational Linguistics.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391, Brussels, Belgium. Association
for Computational Linguistics.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094. Associa-
tion for Computational Linguistics.

Anastasiia Razdaibiedina, Yuning Mao, Madian Khabsa,
Mike Lewis, Rui Hou, Jimmy Ba, and Amjad Alma-
hairi. 2023. Residual prompt tuning: improving
prompt tuning with residual reparameterization. In
Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 6740–6757, Toronto,
Canada. Association for Computational Linguistics.

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi
Zhang, Zhaochun Ren, Maarten de Rijke, Zhumin
Chen, and Jiahuan Pei. 2024. MELoRA: Mini-
ensemble low-rank adapters for parameter-efficient
fine-tuning. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 3052–3064,
Bangkok, Thailand. Association for Computational
Linguistics.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael
Pritch, Michael Rubinstein, and Kfir Aberman. 2023.
Dreambooth: Fine tuning text-to-image diffusion
models for subject-driven generation. In 2023
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 22500–22510.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: an adver-
sarial winograd schema challenge at scale. Commun.
ACM, 64(9):99–106.

10207

https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://proceedings.neurips.cc/paper_files/paper/2021/file/081be9fdff07f3bc808f935906ef70c0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/081be9fdff07f3bc808f935906ef70c0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/2303.15647
https://arxiv.org/abs/2303.15647
https://arxiv.org/abs/2408.10280
https://arxiv.org/abs/2408.10280
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2023.findings-acl.421
https://doi.org/10.18653/v1/2023.findings-acl.421
https://doi.org/10.18653/v1/2024.acl-long.168
https://doi.org/10.18653/v1/2024.acl-long.168
https://doi.org/10.18653/v1/2024.acl-long.168
https://doi.org/10.1109/CVPR52729.2023.02155
https://doi.org/10.1109/CVPR52729.2023.02155
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. Social IQa: Com-
monsense reasoning about social interactions. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4463–
4473, Hong Kong, China. Association for Computa-
tional Linguistics.

Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. 2023. Large language
models in medicine. Nature medicine, 29(8):1930–
1940.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Haoyu Wang, Tianci Liu, Ruirui Li, Monica Xiao
Cheng, Tuo Zhao, and Jing Gao. 2024. RoseLoRA:
Row and column-wise sparse low-rank adaptation of
pre-trained language model for knowledge editing
and fine-tuning. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 996–1008, Miami, Florida, USA.
Association for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Muling Wu, Wenhao Liu, Xiaohua Wang, Tianlong Li,
Changze Lv, Zixuan Ling, Zhu JianHao, Cenyuan
Zhang, Xiaoqing Zheng, and Xuanjing Huang. 2024a.
Advancing parameter efficiency in fine-tuning via
representation editing. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13445–
13464, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Taiqiang Wu, Jiahao Wang, Zhe Zhao, and Ngai Wong.
2024b. Mixture-of-subspaces in low-rank adaptation.
Preprint, arXiv:2406.11909.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus
Geiger, Dan Jurafsky, Christopher D Manning, and
Christopher Potts. 2024c. ReFT: Representation fine-
tuning for language models. In The Thirty-eighth
Annual Conference on Neural Information Process-
ing Systems.

SHIH-YING YEH, Yu-Guan Hsieh, Zhidong Gao,
Bernard B W Yang, Giyeong Oh, and Yanmin Gong.
2024. Navigating text-to-image customization: From
lyCORIS fine-tuning to model evaluation. In The

Twelfth International Conference on Learning Repre-
sentations.

Fangcong Yin, Xi Ye, and Greg Durrett. 2024. Lofit:
Localized fine-tuning on LLM representations. In
The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791–4800, Florence,
Italy. Association for Computational Linguistics.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh In-
ternational Conference on Learning Representations.

10208

https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/2024.emnlp-main.57
https://doi.org/10.18653/v1/2024.emnlp-main.57
https://doi.org/10.18653/v1/2024.emnlp-main.57
https://doi.org/10.18653/v1/2024.emnlp-main.57
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.acl-long.726
https://doi.org/10.18653/v1/2024.acl-long.726
https://arxiv.org/abs/2406.11909
https://openreview.net/forum?id=fykjplMc0V
https://openreview.net/forum?id=fykjplMc0V
https://openreview.net/forum?id=wfzXa8e783
https://openreview.net/forum?id=wfzXa8e783
https://openreview.net/forum?id=dfiXFbECSZ
https://openreview.net/forum?id=dfiXFbECSZ
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

A Experimental Setting

A.1 Dataset

Commonsense Reasoning: tasks consist of 8
benchmarks and the details are described as fol-
lows:

• BoolQ (Clark et al., 2019): This dataset com-
prises a collection of yes/no question exam-
ples, totaling 15942 examples. These ques-
tions are naturally occurring and generated in
unprompted and unconstrained settings;

• PIQA (Bisk et al., 2020): This dataset consists
of questions with two solutions that require
physical commonsense to answer;

• SIQA (Sap et al., 2019): This dataset focuses
on analyzing people’s actions and their social
implications;

• HellaSwag: This dataset consists of common-
sense Natural Language Inference (NLI) ques-
tions, each featuring a context and multiple
endings that complete the context;

• WinoGrande (Sakaguchi et al., 2021): This
dataset presents a fill-in-a-blank task with bi-
nary options. The goal is to select the appro-
priate option for a given sentence that requires
commonsense reasoning;

• ARC-c and ARC-e (Clark et al., 2018): These
two datasets are the Challenge Set and Easy
Set of ARC (Clark et al., 2018) dataset, which
contains genuine grade-school level, multiple-
choice science questions;

• OBQA: This dataset comprises questions that
require multi-step reasoning, the use of ad-
ditional common sense knowledge, and thor-
ough text comprehension.

Arithmetic Reasoning: tasks consist of 4 bench-
marks and the details are described as follows:

• GSM8K (Cobbe et al., 2021): This dataset
consists of 8,500 high-quality, linguistically
diverse elementary math problems created by
humans;

• AQUA (Ling et al., 2017): This dataset com-
prises 100,000 multiple-choice questions fo-
cused on mathematics, encompassing a wide
range of topics and varying levels of difficulty;

HyperParmaters LLaMA2-7B LLaMA3-8B
Rank r 16 32 16 32

α 32 64 32 64
Dropout 0.05

Optimizer AdamW
LR 3e-4

LR Scheduler Linear
Batch Size 16

Warmup Stemps 100
Epochs 2
Where Q, K, V, Up, Down

Table 5: The hyperparameters for DenseLoRA on the
commonsense reasoning tasks.

HyperParmaters LLaMA3-8B
Rank r 16 32

α 32 64
Dropout 0.05

Optimizer AdamW
LR 3e-4

LR Scheduler Linear
Batch Size 16

Warmup Stemps 100
Epochs 2
Where Q, K, V, Up, Down

Table 6: The hyperparameters for DenseLoRA on the
arithmetic reasoning tasks.

• SVAMP (Simple Variations on Arithmetic
Math Word Problems) (Patel et al., 2021):
This dataset comprises arithmetic word prob-
lems appropriate for fourth-grade students and
below;

• AddSub (Hosseini et al., 2014) This dataset
consists of 395 problems specifically focused
on addition and subtraction.

A.2 Hyperparameters

Table 5 shows the detailed hyperparameters for
commonsense reasoning tasking when fine-tuning
the LLaMA3-8B and LLaMA2-7B. Table 6 shows
the detailed hyperparameters for arithmetic rea-
soning tasking when fine-tuning the LLaMA3-8B.
During the inference, we set the hyperparameters
max_new_tokens = 128.

10209

B Additional Experimental

B.1 Low Resources Experimental
Table 7 shows the details for low resources setting
of commonsense reasoning tasks when fine-tuning
the LLaMA3-8B and using the rank equal to 32.

B.2 Tuning Granularity Analysis
This section is a detail experiment result of adapt-
ing different weight modules using DenseLoRA.
Each module is represented by its first letter as fol-
lows: (Q)uery, (K)ey, (V)alue, (O)utput, (G)ate,
(U)p, (D)own. We conduct experiments using
LLaMA3-8B with a rank of 32 on commonsense
reasoning training samples. The result, shown Ta-
ble 8

B.3 Compared M and A, B
we compare ∆M with ∆A and ∆B from the same
adaptation module and layer during training. Since
A and B are significantly larger than M, we ran-
domly select the slices of A and B that match the
size of M. The detailed result is shown in Figure 6.

10210

Ratio BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.
10% 71.6 85.0 76.4 90.3 79.2 89.6 77.7 78.6 81.1
20% 63.5 86.6 78.6 92.2 81.8 77.7 89.8 81.8 81.5
40% 73.4 86.8 78.7 93.2 85.1 77.5 90.0 83.0 83.6
60% 68.6 87.4 79.5 93.9 84.4 78.2 90.2 84.4 83.3
80% 72.9 88.4 79.3 94.1 85.5 78.2 90.6 84.0 84.1

Table 7: Accuracy(%) comparison of fewer training samples methods fine-tuning LLaMA3-8B on the commonsense
reasoning 170k dataset in (Hu et al., 2023). Ratio denotes the ratio of trained parameters. We set the rank = 32.

Params(%)
Method

BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.
LoRA DenseLoRA

0.25 QKV UD 74.3 86.7 79.9 94.2 85.6 77.0 88.5 83.8 83.8
0.49 UD QKV 72.5 88.0 81.4 93.8 84.1 74.7 86.8 84.0 83.2
0.01 - QKV 72.2 86.5 78.6 90.8 82.4 77.0 90.2 80.4 82.3
0.02 - UD 71.0 87.3 78.9 94.0 84.8 79.3 90.3 84.4 83.8

Table 8: Accuracy(%) comparison of several different tuning granularity of DenseLoRA fine-tuning LLaMA3-8B.
Each module is represented by its first letter as follows: (Q)uery, (K)ey, (V)alue, (O)utput, (U)p, (D)own.

(a) (a) ∆A (b) (b) ∆B (c) (c) ∆M

Figure 6: Increamts of matrices A and B of LoRA compared to matrix M of DenseLoRA. We randomly select the
slices of a small set of A and B for demonstration.

10211

