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Abstract

In AI-facilitated teaching, leveraging various
query styles to interpret abstract text
descriptions is crucial for ensuring high-quality
teaching. However, current retrieval models
primarily focus on natural text-image retrieval,
making them insufficiently tailored to
educational scenarios due to the ambiguities in
the retrieval process. In this paper, we propose
a diverse expression retrieval task tailored to
educational scenarios, supporting retrieval
based on multiple query styles and expressions.
We introduce the STEM Education Retrieval
Dataset (SER), which contains over 24,000
query pairs of different styles, and the
Uni-Retrieval, an efficient and style-diversified
retrieval vision-language model based on
prompt tuning. Uni-Retrieval extracts query
style features as prototypes and builds a
continuously updated Prompt Bank containing
prompt tokens for diverse queries. This bank
can updated during test time to represent
domain-specific knowledge for different
subject retrieval scenarios. Our framework
demonstrates scalability and robustness by
dynamically retrieving prompt tokens based
on prototype similarity, effectively facilitating
learning for unknown queries. Experimental
results indicate that Uni-Retrieval outperforms
existing retrieval models in most retrieval tasks.
This advancement provides a scalable and
precise solution for diverse educational needs.

1 Introduction

Artificial Intelligence for Education (AI4EDU)
is an emerging interdisciplinary field that
leverages AI techniques to transform and enhance
instructional design, learning processes, and
assessment for education (Hwang et al., 2020).
With the growing global emphasis on the
importance of Science, Technology, Engineering,
and Mathematics (STEM) education, retrieving
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accurate resources from massive interdisciplinary
knowledge databases has become a critical
challenge.

Traditional retrieval systems are typically
designed for natural text-image contents, which
limits their utility in multi-modal STEM education
contexts (Li et al., 2024a; Wang et al., 2023).
Research indicates that these systems often fail to
capture the complexity of materials such as images,
diagrams, or interactive content, which are vital in
STEM disciplines (Shen et al., 2023). Effective
retrieval in STEM education should be able to
handle different representations (i.e., different
styles of text, image, audio, etc.) to accommodate
the diverse learning and teaching needs within
STEM subjects.

Despite advancements in text-image matching
techniques (Williams-Lekuona et al., 2022; Zhou
et al., 2024a), current retrieval systems still
encounter challenges when implemented in STEM
education (Li et al., 2025). These models are
primarily optimized for matching text and images,
neglecting the variety of query types essential in
educational scenarios, including voice, sketches,
and low-resolution images (Yang et al., 2023).
The constraints of current frameworks within
educational contexts frequently result in imprecise,
biased, or inefficient retrieval outcomes, such
deficiencies can impede teachers’ access to suitable
instructional resources (Gasmi et al., 2024).

To address above challenges, we propose
a multi-style and multi-modal retrieval task
tailored for STEM education scenarios, as
illustrated in Fig.1. The input types for this
task include text, audio, and various styles of
images, designed to meet the diverse needs of
educational contexts. To adapt to this task,
we introduce the STEM Education Multi-Style
Retrieval Dataset (SER), curated by 20 graduate
and doctoral students from disciplines such as
computer science, physics, energy, engineering,
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Figure 1: This advancement provides a scalable and precise solution for diverse educational needs. (b). Previous
retrieval models focus on text-query retrieval data. (c) Our style-diversified retrieval setting accommodates the
various query styles preferred by real educational content.

and mathematics. The dataset comprises 6,000
natural images with queries in various styles,
including sketches, art, low-resolution images,
text, and corresponding audio from different
STEM fields. For modeling, we propose a novel
plug-and-play feature representation structure
called Prompt Bank, which provides a more
universal representation of information across
different disciplines and semantics by matching
the abstract features of data. Building on Prompt
Bank, we develop a lightweight retrieval model
named Uni-Retrieval. Uni-Retrieval integrates
Prompt Bank with various basic retrieval models,
enabling efficient fine-tuning for educational
scenarios. With only a small increase in
parameters and inference time, Uni-Retrieval
delivers significant performance improvements
and fine-tuning capabilities, making it an ideal
solution for STEM education retrieval tasks.
Furthermore, it demonstrates the ability to perform
effective retrieval across multiple unknown
datasets, showcasing its scalability and adaptability
in diverse scenarios. The main contributions of this
work can be summarized as follows:

• To bridge the content gap between teacher and
student or some abstract expression in STEM
education field, we propose the multi-style
multi-modal retrieval task for the STEM
education. To adapt to this task, we construct
the STEM Education Retrieval Dataset (SER),
which contains several different subjects in
STEM education.

• To efficiently and effectively train a model
tailored to our task and dataset, we devise

the novel Uni-Retrieval algorithm, which
incorporates a sustainably updatable Prompt
Bank. Leveraging this bank, the Uni-Retrieval
can represent different subjects at a high level
and express the features of any other subjects
by combining several prompts.

• Our Uni-Retrieval shows a more strong
performance than any other previous method,
not only on our SER dataset, but also on
traditional retrieval dataset. We believe
Uni-Retrieval can bring an infinite potential
to STEM education community.

2 Preliminary

2.1 Task Formulation
We provide a formal problem formulation for
query-based retrieval. Specifically, given an image
Ii or a text prompt Pt from the style-specific query
set Qs, the retrieval model needs to compute the
score between input and target queries and rank
the corresponding answers A as high as possible.
In the task settings for STEM education retrieval,
which share a similar goal, the objective is to rank
all answers correctly in response to input queries
across various style-specific query sets Qn

s=1. If
the dataset does not contain the corresponding
different style queries, the model should list the
same category queries as the suggestions.

2.2 Dataset Construction
SER is a multi-style benchmark dataset we
construct to facilitate accurate retrieval for teachers
in STEM education. It contains a total of
24,000 text captions, audio clips and different
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Figure 2: Data construction pipeline. 1. STEM
education knowledge base. 2. Data sources: from online
resources and dataset researches. 3. Data processing:
extracting essential information from collected data,
using AIGC algorithms to generate diverse modalities.
4. Retrieval dataset: construct total 24,000 images and
multi-modal STEM educational dataset.

style queries to accommodate different educational
scenarios. As illustrated in Fig.5, SER contains:
Text and Natural Image: the most common
query type, allowing teachers to describe problems
using natural language or images for retrieval.
Audio: a communication medium in education,
enabling teachers to articulate complex queries,
which can be further enhanced with LLMs or
audio encoders. Sketch: hand-drawn sketches,
whether created by users or written on blackboards,
provide structural cues such as shape, pose,
line, and edges to describe the problem. Art:
art-style images as queries help bridge the gap
between stylistically different images and original
images, improving retrieval consistency across
styles. Low-Resolution: queries involving
lower-resolution images, such as those captured
from a distance, ensure usability in scenarios where
high-quality images are unavailable.

The details of the dataset construction pipeline
are shown in Fig.2, we use the original
STEM education image in the source dataset,
and extensively collected datasets from the
following sources: 1. online resources such as
Kaggle, GitHub, BrainPOP, Frontiers, DKlearning,
iNaturalist, AAES, etc. 2. relevant education
dataset research, such as GAN (Jin et al., 2023)
and PromptAloud (Lee et al., 2024b). To
ensure high-quality data, more than 20 Ph.D.
students from disciplines such as mathematics,

physics, chemistry, biology, electronics, computer
science, and education conducted a secondary
screening of the raw images. They also generate
multi-modal combinations (image/text/audio) by
leveraging AIGC models. Based on the natural
images, the following steps were undertaken:
Text Generation: we manually proofread the
natural text descriptions. Audio Recording:
the corresponding audio parts are recorded to
match the text captions. Sketch Images: Canny
algorithms are used to produce sketch images,
Pidinet (Su et al., 2023) is employed to optimize
and enhance low-quality sketches, and manual
refinement is performed to achieve the final results.
Art-Style Images: Flux model (Labs, 2023) is
utilized to create art-style images. Low-Resolution
Images: Gaussian Blur algorithms are applied to
generate low-resolution images. According to the
National Science Foundation (NSF)’s classification
of STEM education, we collect 6,000 original
samples spanning six styles, three modalities, and
over 22 subjects. This comprehensive dataset, as
illustrated in Appendix Fig.6, ensures diversity and
quality across multiple educational domains.

3 Uni-Retrieval model
Our model consists of three main submodules: a
prototype learning module for generating the
prototype feature for each content style (Sec.
3.1), a prompt bank for saving features in
the embedding space and selecting the prompt
tokens which can represent the input’s style (Sec.
3.2), and a feature extractor based on different
vision-language models for retrieving (Sec. 3.3).
Additionally, we further present the training and
inference process in Sec. 3.4.

3.1 Prototype Learning Module

For Uni-Retrieval, given an input query (freely
based on audio, image, or text) x ⊆ RL∗C and
a feature encoder f , map x into a d-dimensional
shared latent space (Prototype Module) using f ,
each style has m images. For style extracting,
researchers usually use the the pretrained models
which contains rich semantic information as the
feature encoders. For example, if the input queries
focus on style images, we leverage the style
encoder (Tao, 2022) to extract visual features. If
the query emphasizes the need for more textual
information from the context, the text encoder
and tokenizer, which are pretrained on large text
datasets such as the Pile (Gao et al., 2020b), can be
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utilized. The input query is embedded as follows:

Ei
0 = f(xi0), Ei

0 ⊆ Rd, i = 1, 2, . . . ,m (1)

where Ei
0 denotes the 0-th style’s i-th embedding.

And then, using the average pooling operation to
sum the different each style’s embeddings to get
the j-th prompt Pj :

Pj = AvgPool(
∑m

i=0E
i
j) (2)

3.2 Prompt Bank

The Prompt Bank builds a hidden state like TTT
(Sun et al., 2024) and mamba (Gu and Dao,
2023), which are designed to store semantic and
contextual information at a high level. Unlike
the previous method, which leverages clusters
to represent different styles, the Prompt Bank
uses hash-like sets to store universal information.
Prompt Bank contains N prompts, and each prompt
ki is associated as a value to a learnable key Pi:

Prompt_Bank={(k1, P1), . . . , (kN , PN )} (3)

We denote the key set as K = {ki}Ni=1 and
define γ to score the match between ki and Pi.
Given an input x, the γ looks up the top-n keys to
expand the feature embedding of x. The aim to use
the hash-liked structure is promoting the matching
speed between the input and the Prompt Bank’s
tokens. For Uni-Retrieval model, we calculate the
cosine similarity between the matching prompt Pji

and the key Ki:

Kx = argmin
{ji}ni=1⊆[1,N ]

∑n
i=1 γ(Pji ,Ki) (4)

The Prompt Bank is free to combine different
prompt tokens and expand feature embedding
space, allowing different tokens associated with
specific styles to jointly represent an input
query. Due to the generalization properties on
out-of-distribution of our Prompt Bank, even
unseen styles also can combine similar styles’
tokens to enhance retrieval performance by expand
the semantic/context information provided by
Prompt Bank. The expanding method is suitable
for both different styles of images and different
expression of text. Usually the special token is put
at the beginning of the sequence tokens:

xp = [CLS;Pj1 ;Pj2 ; . . . ;Pjn ;xe] (5)

where xp denotes the image’s input feature after
expanding prompt tokens; xe represents the
original sequence tokens patched from the input;
CLS is the special token used for performing
downstream tasks with different heads.

3.3 Feature Extractor

In Uni-Retrieval, we apply the ViT structure as
the visual feature extractor, leverage a tokenizer to
embed the input text query x ⊆ RL∗C , and then
utilize the transformer (Vaswani et al., 2017) as the
text encoder to extract features. The vision encoder
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and the text encoder are initialized with OpenCLIP,
and gpt-neo (Black et al., 2021) trained on the Pile
dataset as the tokenizer, respectively. What’s more,
we uses GPT-4o (Hurst et al., 2024) as the optional
choice of the external large language model to
convert the audio clips to the text sequence.

The whole sequence tokens are feed into the
feature extractor for training and inference layer
by layer. Obtained from the Prompt Bank,
visual prompt tokens represent various style
information specific to different STEM subjects,
while text prompt tokens convey distinct context
information about different STEM subjects or
different expression about the same subjects. The
parameters are sharing between visual prompts and
text prompts each layer to align vision and text
modality. In the model training phase, the vision
encoder, the tokeniser and the text encoder are fully
frozen to retain the original semantic space.

3.4 Training and Inference
For the training procedure, in every training step,
the style/context features are extracted from the
corresponding encoder f to get the prompt Pj .
Then, matching Pj and the key Kj to get the
matching prompts Pj . Besides, the tokenizer and
the patch layer map the inputs into sequence xt:

xt = Tokenizer/Patch(x) (6)

where xt denotes the temp state of features. After
selecting n prompts following the aforementioned
query strategy, the expanded feature embedding xp
is fed into the foundation model δ and getting the
final result xf . We use the CLS token to represent
the whole sequence xp following the settings of
LLaMA (Touvron et al., 2023):

xf = δ(xp)[:, 0, :] (7)

The triplet loss function L utilizes the features
xf , xr, and xh of an image or text, a retrieval
target query, and a negative sample from a different
category. Minimizing L brings the correct sample
pairs closer together while distancing the negative
sample pairs. With µ as margin and distance
function d(a, b) = (1 − a ∗ b)/(||a|| − ||b||), L
is given as:

L = max{0,
µ+ d(δ(xf ), δ(xr))− d(δ(xf ), δ(xh))} (8)

where xr, xh denotes the embedding of the retrieval
object and the negative sample respectively.
Moreover, the key in Prompt Bank will be updated

with a scale parameter λ to weight the second loss
function term:

min
k,p,L

L(xf , xr, xh) + λ
∑

Kx
γ(q(x), ksi) (9)

During the training procedure, Uni-Retrieval
will jointly train both the Prompt Bank’s keys K
and the prompt tokens P , which endow the Prompt
Bank with the capability for continuous updates.
The updatable parameters of the Uni-Retrieval
model are limited compared to full-parameter
fine-tuning, effectively saving computational
resources and enhancing training speed.

For the inference procedure, we first extract the
prototype feature for the unknown-style query input
x. We use the prototype feature as the query to
retrieve the fittest prompt tokens from the prompt
bank. If the style is unknown type, the Prompt
Bank will use several different clusters to represent
it jointly. Then we prepend the prompt tokens xp
to the feature extractor δ for retrieval. The query
embeddings are extracted in advanced and stored
in the databases to accelerate the retrieval process.

4 Experiments

4.1 Experiments Settings

We use our SER as the main experiment
analysis and another three retrieval datasets
to comprehensively evaluate the Uni-Retrieval’s
performance. For evalution metric, We evaluate
the R@1 and R@5 metrics and the inference
speed (ms) on all retrieval datasets. For R@1 and
R@5, “↑” denotes that higher is better. For ms, “↓”
denotes that quicker is better. Implement Details
are detailed in Appendix C.

4.2 Comparison Experiment

On the SER dataset, Uni-Retrieval demonstrates
superior performance across multiple scenarios
with different query styles compared to other
baselines, including multi-modality models,
cross-modality pre-trained models, and prompt
learning models. As shown in Tab.1 and Tab.4, the
T + S→ I means inputting the text and the style
images as the multi-queries and outputting the
corresponding images as the target queries. The
experiment results yield three key observations:
The Uni-Retrieval achieves the best retrieval
performance on the multi-style STEM
Education Retrieval task: This highlights
the effectiveness of Uni-Retrieval in handling
complex multi-modal queries. Due to the Prompt
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# Method Text → Image Sketch → Image Art → Image Low-Res → Image

R@1↑ R@5↑ R@1↑ R@5↑ R@1↑ R@5↑ R@1↑ R@5↑
Pretrained Cross-Modality Models

1 CLIP 54.6 78.4 47.3 68.9 46.8 71.3 53.7 72.9
2 BLIP 55.8 79.2 48.2 69.2 47.5 74.4 51.5 74.2
3 CLIP-Finetune 71.4 91.4 71.0 87.0 52.2 81.6 71.2 88.1
4 BLIP-Finetune 70.2 92.0 71.6 89.2 54.3 82.3 69.7 86.8

Large Multi-Modality Models
5 LanguageBind 60.2 86.9 52.8 78.4 49.0 78.4 59.1 80.2
6 Unified-IO2 67.5 89.2 59.6 84.1 55.9 82.9 64.3 84.0

Style Retrieval Models
7 SceneTrilogy 69.7 84.5 75.6 96.5 71.5 92.9 68.6 85.5
8 FashionNTM 50.4 81.3 68.9 88.6 67.1 88.9 45.6 77.5

Cross-Modality Prompt Learning Models
9 VPT 69.9 84.1 53.3 72.3 62.7 83.2 67.4 79.1
10 CoCoOP 72.2 86.7 53.8 74.8 66.4 87.4 70.8 81.6
11 MaPLe 73.8 87.8 62.7 78.9 67.8 89.4 71.9 86.3
12 FreestyleRet 80.1 92.5 75.3 91.5 73.0 98.3 78.0 90.7

Database-Driven Retrieval Models
13 GASKN 55.7 80.8 47.6 68.7 48.5 75.9 53.6 70.5
14 SKG 57.8 82.1 45.4 65.3 49.2 76.1 56.8 75.4
15 Uni-Retrieval 83.2 98.7 84.5 95.6 76.9 97.5 87.4 98.1

Table 1: Retrieval performance for STEM Education Retrieval task.

Method Params(M) Q2I(ms)↓ Q2T(ms)↓ T→I(Acc)↑
CLIP 427M 68ms 63ms 54.6
BLIP 891M 62ms 58ms 55.8
VPT 428M 73ms 69ms 69.9

LanguageBind 1200M 372ms 367ms 60.2
GASKN 33M 12ms 10ms 55.7

Uni-Retrieval 453M(+26) 77ms(+9) 70ms(+7) 83.2(+28.6)

Table 2: The models inference speed comparison.

Method T→I T+S→I I→T I+S→T
CLIP-Finetune 54.6 55.3(+0.7) 47.4 46.6(−0.8)

VPT 69.9 72.0(+2.1) 73.9 74.1(+0.2)

Uni-Retrieval 83.2 87.4(+4.2) 81.7 83.3(+1.6)

Table 3: Retrieval performance with multi-style queries
simultaneously on SER dataset.

Bank’s structure, Uni-Retrieval is a plug-and-play
framework that can be highly flexible applied to
various multi-modal models and enhance their
retrieval capabilities. Line 15 in Tab.1 provides a
substantial performance boost compared to both
CLIP and CLIP-Finetune, further validating the
effectiveness of our framework.
The Prototype module and Prompt Bank
significantly outperform full-parameter
fine-tuning: As shown in lines 3-4 and line 15
of Tab.1, Uni-Retrieval surpasses its fine-tuned
CLIP counterpart by a large margin. Leveraging
the prior knowledge bias introduced by the
Prototype module and the efficient memory space
of the Prompt Bank, Uni-Retrieval achieves
superior results while tuning less than 5% of
the model’s total parameters. This demonstrates
the effectiveness of Uni-Retrieval’s design

in achieving high performance with minimal
parameter adjustments.
Uni-Retrieval can simultaneously perform
and mutually enhance traditional text-image
retrieval performance: As shown in Tab.3, when
handling text-image retrieval tasks, Uni-Retrieval
allows multi-query inputs as additional references,
significantly improving retrieval capability. This
multi-query input design is not exclusive to
Uni-Retrieval and can also benefit other retrieval
models, offering a generalizable approach to
enhancing retrieval tasks.

In addition to accuracy, inference speed
is a crucial metric for evaluating retrieval
models. As shown in Tab.2, Uni-Retrieval adds
just 9ms per search iteration. Compared to
GASKN, Uni-Retrieval demonstrates significantly
stronger retrieval performance than traditional
database-driven methods. Additionally, when
compared to other cross-modality methods,
Uni-Retrieval excels in both tuning efficiency
and retrieval accuracy, further validating its
effectiveness and scalability.

4.3 Ablation Study

To quantitatively evaluate the role of prompts
in the model, we conducted ablation studies on
the insertion type and token number of prompt
tokens within Uni-Retrieval for four style metrics.
These studies aimed to assess their impact on the
style-diversified STEM education retrieval task,
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# Method I→T S→T A→T L→T T→S T→A T→L S→A S→L A→L
Metric: R@1↑ on SER Dataset

1 CLIP 47.4 38.4 37.9 38.6 38.8 37.4 35.7 36.9 34.8 31.5
2 BLIP 48.9 39.2 38.4 39.5 39.7 37.1 36.5 35.0 34.9 32.6
3 CLIP-Finetune 75.7 72.4 71.3 69.8 70.2 68.5 67.7 65.4 66.8 66.3
4 BLIP-Finetune 77.4 73.0 72.6 70.5 71.3 69.4 68.1 66.2 67.2 67.0
5 LanguageBind 55.4 54.9 53.1 53.4 49.7 48.7 49.1 46.2 46.8 45.9
6 Unified-IO2 57.3 57.2 56.3 54.5 51.1 49.9 48.6 48.0 47.2 46.8
7 SceneTrilogy 72.4 76.5 70.6 71.5 69.3 69.9 68.7 65.2 66.2 64.4
8 FashionNTM 70.6 73.3 68.9 69.6 67.1 68.0 66.5 67.5 64.8 62.4
9 VPT 73.9 71.8 70.4 68.7 69.0 68.2 67.4 66.6 64.5 63.8

10 CoCoOP 76.5 74.7 73.4 74.0 71.4 72.3 70.8 68.9 67.2 67.3
11 MaPLe 78.3 75.8 75.7 74.9 72.4 69.6 69.2 68.3 67.4 65.6
12 FreestyleRet 80.8 73.5 75.5 71.4 73.0 68.3 68.0 69.4 70.6 68.9
13 GASKN 53.8 52.9 52.6 50.7 49.4 47.9 46.0 47.1 47.3 45.9
14 SKG 54.3 51.7 50.4 51.3 48.5 46.1 45.4 46.9 47.0 45.9
15 Uni-Retrieval 81.7 76.3 74.9 77.6 73.5 74.2 78.0 71.4 72.3 70.8

Table 4: Retrieval performance for STEM Education Retrieval task.

# Type Token-Num T→I S→I A→I L→I
1 Deep 1 72.0 78.3 73.2 80.6
2 Deep 2 77.1 81.2 75.5 85.8
3 Deep 8 83.24 82.7 76.5 87.0
4 Shallow 4 68.2 75.6 70.4 77.3
5 Deep 4 83.2 84.5 76.9 87.4

Table 5: Ablation study for prompt settings.

providing insights into how prompts influence
performance and model adaptability. The shallow
type involves inserting prompt tokens only at the
first layer, while the deep type inserts prompt
tokens across all layers. The token number refers
to the number of repeated prompts.

As shown in lines 4-5 in Tab.5, the results
indicate that the deep type consistently outperforms
the shallow type. Additionally, lines 1-3 and line
5 in Tab.5 demonstrate the change on number
of prompt tokens. We observed that repeating
the prompt tokens more than four times does
not significantly improve model performance.
Instead, it rapidly increases the number of tuning
parameters, which slows down both the tuning
process and inference speed. This indicates
that four repetitions provide a balanced trade-off
between performance and computational efficiency.
Therefore, we ultimately selected four prompt
tokens to be inserted at each layer as the standard
configuration for Uni-Retrieval. This choice
effectively balances model performance, tuning
efficiency, and inference speed, which can serve as
a valuable reference for other tuning models.

We also evaluated Uni-Retrieval’s zero-shot
retrieval performance on several other multi-style
datasets. As shown in Tab.6, we compared
Uni-Retrieval against various baseline models
across three datasets: the DSR, DomainNet,

Method Text → Im. Sketch → Im. Art → Im.

R@1↑ R@5↑ R@1↑ R@5↑ R@1↑ R@5↑
Diverse-Style Retrieval Dataset

LanguageBind 71.0 95.5 50.8 79.4 58.2 86.3
CoCoOP 71.4 94.6 77.5 97.2 69.3 97.1
MaPLe 73.1 95.9 80.3 97.9 70.6 97.2

FreestyleRet 71.4 97.2 81.6 98.0 72.3 98.1
Uniretrieval 82.3 97.4 82.7 98.9 75.1 98.0

DomainNet Dataset
VPT 59.7 86.1 53.5 77.3 54.6 81.8

BLIP-Finetune 65.3 94.2 71.4 89.7 54.3 82.3
FreestyleRet 70.2 95.2 75.2 93.2 73.1 92.6
Uniretrieval 70.7 96.0 77.6 94.1 73.4 92.9

SketchCOCO Dataset
MaPLe 26.4 53.9 18.0 48.3 - -

SceneTrilogy 30.6 65.8 22.5 51.6 - -
FreestyleRet 31.5 67.3 29.6 56.1 - -
Uniretrieval 34.7 71.6 30.2 60.4 - -

Table 6: The zero-shot retrieval performance
comparison on retrieval datasets.

and SketchCOCO dataset, each representing
distinct domains of style-based queries. As
shown in Tab.6, Uni-Retrieval demonstrates
exceptional zero-shot performance across these
diverse datasets, highlighting its capability to
perform effective information retrieval in various
previously unknown databases. This performance
underscores Uni-Retrieval’s scalability and
robustness, significantly enhancing the adaptability
and effectiveness of existing retrieval models in
handling diverse and unstructured data domains.

4.4 Visualization Result

In Fig.4, we visualize the style-diversified query
inputs and their corresponding retrieval answers
from our Uni-Retrieval and the FreestyleRet
baseline model. We summarize three common
retrieval errors in the case analysis, where
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Sketch Text or Audio:

Please help me find real-life operational 
images of the chemistry experiment 
“Preparation of Carbon Dioxide”, ensuring 
that the equipment and layout in the images 
match exactly with the provided picture. subject errors shape errors

Art Natural Image Text:

Light travels at different speeds in air and water, it 
refracts at the interface between the two mediums, 
causing the pencil to appear bent at the water’s surface. 
This visual demonstration effectively illustrates the 
principle of light refraction in physics education.

Sketch

shape errors categories errors

Text:

A tower crane, used in the construction engineering
field for vertical and horizontal transportation. It 
illustrates the mechanical principle of balancing the 
center of gravity, structural stability for safety in 
construction, and key aspects of engineering practices. 

Text or Audio:

Find a schematic diagram of plant cell 
structure in biology, showing the main 
components of a typical plant cell, including 
the cell wall, cell membrane, cytoplasm, 
chloroplasts, nucleus, and vacuole structures.

Low-Res

categories errorssubject errors shape errors

Low-Res Sketch Natural ImageArt

shape errors categories errors

Natural Image

SketchArt

(a1). Input: Image+Text/Audio (b1). Output: Uni-Retrieval ✅ (c1). Baseline ❌

Retrieval Errors

Retrieval Errors

(a2). Input: Multi-Style Images (b2). Output: Uni-Retrieval ✅ (c2). Baseline ❌
Retrieval Errors

Retrieval Errors

Figure 4: The case study for our Uni-Retrieval and the FreestyleRet baseline.

subject errors, semantic errors, and color errors
represent the false retrieval result with false
subjects, semantic information, and colors. We
propose the subject error cases in Fig.4(a1)-(c1).
The subject information is contained widely in
different style queries. Thus, pose error cases
occur in sketch, art, and low-resolution queries.
Subject information is conveyed through the
primary objects in images and their corresponding
textual descriptions. Subject errors occur when
there is incorrect recognition or classification of
these objects, leading to mismatched associations
between the image and text.

Semantic errors, on the other hand, arise
from inaccuracies in describing object details.
These errors frequently occur when irrelevant
text is associated with specific parts of an object,
particularly in the context of art descriptions. Such
mismatches result in the model generating incorrect
attention maps, thereby failing to accurately
connect the visual and textual elements. Thus, in
Fig.4(a2)-(c2), most of the semantic errors occur
in the art-style retrieval task.

For the low-resolution query retrieval task,
color is vital retrieval information. We show
the color errors from the low-resolution retrieval
task. Compared to the FreestyleRet baseline
model, our Uni-Retrieval achieves fine-grained
retrieval based on subject, semantic, and color
information from style-diversified query inputs.
It demonstrates a superior understanding of

semantic information and fine-grained alignment
between modalities, particularly in the precise
description and representation of key object parts.
This highlights the significant advantages and
capabilities of our Uni-Retrieval framework.

5 Conclusion

To address the challenge of fine-grained and
efficient retrieval in STEM teaching scenarios,
we proposed a multi-style and multi-modal
STEM education retrieval task and curated a
multi-style dataset of over 24,000 samples for
model fine-tuning. To balance training efficiency
and retrieval performance, we developed a
lightweight and plug-and-play feature expression
module, Prompt Bank, and built a database-driven
accurate retrieval model, Uni-Retrieval, based
on Prompt Bank. Compared to current
state-of-the-art retrieval models, Uni-Retrieval
significantly improves retrieval performance with
only a 26M (less than 5%) increase in parameter
size and less than 10ms additional retrieval time.
Furthermore, the training and deployment costs of
Uni-Retrieval are substantially lower than those of
existing large retrieval models, making it a more
economical and practical solution for educational
scenarios. We hope Uni-Retrieval can inspire
new possibilities for the community, offering an
effective and accessible approach to retrieval in
STEM education and beyond.
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Limitation

However, our work still has some limitations that
require further research. Firstly, STEM education
differs significantly from higher education, K-12
education, humanities education, and other
scenarios in terms of data and usage requirements.
A key challenge for future research is how to
maintain efficient retrieval performance while
adapting to a wider range of educational scenarios.
Additionally, we plan to exploring how to
efficiently acquire various professional educational
knowledge based on VLMs. These improvements
aim to make Uni-Retrieval more versatile and
impactful across diverse educational domains.
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Dragan Gašević. 2020. Vision, challenges, roles and
research issues of artificial intelligence in education.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire
Cardie, Serge Belongie, et al. 2022. Visual prompt
tuning. In European Conference on Computer Vision,
pages 709–727.

Yanhao Jia, Xinyi Wu, Qinglin Zhang, Yiran Qin,
Luwei Xiao, and Shuai Zhao. 2025a. Towards robust
evaluation of stem education: Leveraging mllms in
project-based learning. ResearchGate.

Yanhao Jia, Ji Xie, S Jivaganesh, Hao Li, Xu Wu,
and Mengmi Zhang. 2025b. Seeing sound, hearing
sight: Uncovering modality bias and conflict of
ai models in sound localization. arXiv preprint
arXiv:2505.11217.

Yuxi Jin, Ping Li, Wenxiao Wang, Suiyun Zhang, Di Lin,
and Chengjiu Yin. 2023. Gan-based pencil drawing
learning system for art education on large-scale
image datasets with learning analytics. Interactive
Learning Environments, 31(5):2544–2561.

Justin Johnson, Ranjay Krishna, Michael Stark,
Li-Jia Li, David Shamma, Michael Bernstein, and
Li Fei-Fei. 2015. Image retrieval using scene graphs.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3668–3678.

Muhammad Uzair Khattak, Hanoona Rasheed,
Muhammad Maaz, Salman Khan, et al. 2023. Maple:
Multi-modal prompt learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 19113–19122.

Mert Kilickaya and Arnold WM Smeulders. 2021.
Structured visual search via composition-aware
learning. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision,
pages 1701–1710.

Iasonas Kokkinos. 2017. Ubernet: Training a universal
convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited

memory. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
6129–6138.

Soonwoo Kwon, Sojung Kim, Minju Park, Seunghyun
Lee, and Kyuseok Kim. 2024. Biped: Pedagogically
informed tutoring system for esl education. arXiv
preprint arXiv:2406.03486.

Black Forest Labs. 2023. Flux. https://github.com/
black-forest-labs/flux.

Saehyung Lee, Sangwon Yu, Junsung Park, Jihun
Yi, and Sungroh Yoon. 2024a. Interactive
text-to-image retrieval with large language models: A
plug-and-play approach. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics, pages 791–809.

Unggi Lee, Ariel Han, Jeongjin Lee, Eunseo Lee, Jiwon
Kim, Hyeoncheol Kim, and Cheolil Lim. 2024b.
Prompt aloud!: Incorporating image-generative ai
into steam class with learning analytics using prompt
data. Education and Information Technologies,
29(8):9575–9605.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021a.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021b.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059.

Ang Li, Jin Sun, Joe Yue-Hei Ng, Ruichi Yu, Vlad I
Morariu, and Larry S Davis. 2017. Generating
holistic 3d scene abstractions for text-based image
retrieval. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
193–201.

Hao Li, Jinfa Huang, Peng Jin, Guoli Song, Qi Wu,
and Jie Chen. 2023a. Weakly-supervised 3d
spatial reasoning for text-based visual question
answering. In Transactions on Image Processing,
pages 3367–3382. IEEE.

Hao Li, Yanhao Jia, Peng Jin, Zesen Cheng, Kehan Li,
Jialu Sui, Chang Liu, and Li Yuan. 2025. Freestyleret:
Retrieving images from style-diversified queries. In
European Conference on Computer Vision, pages
258–274.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven
Hoi. 2023b. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large
language models. In International conference on
machine learning, pages 19730–19742. PMLR.

Tieying Li, Xiaochun Yang, Yiping Ke, Bin Wang,
Yinan Liu, and Jiaxing Xu. 2024a. Alleviating the
inconsistency of multimodal data in cross-modal
retrieval. In 2024 IEEE 40th International
Conference on Data Engineering, pages 4643–4656.

10191

https://doi.org/10.13140/RG.2.2.36281.07522
https://doi.org/10.13140/RG.2.2.36281.07522
https://doi.org/10.13140/RG.2.2.36281.07522
https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux


Wen Li, Lixin Duan, Dong Xu, and Ivor Wai-Hung
Tsang. 2011. Text-based image retrieval using
progressive multi-instance learning. In 2011
international conference on computer vision, pages
2049–2055. IEEE.

Yongqi Li, Wenjie Wang, Leigang Qu, Liqiang Nie,
Wenjie Li, and Tat-Seng Chua. 2024b. Generative
cross-modal retrieval: Memorizing images in
multimodal language models for retrieval and beyond.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics, pages
11851–11861.

Do Long, Yiran Zhao, Hannah Brown, Yuxi Xie, James
Zhao, Nancy Chen, Kenji Kawaguchi, Michael Shieh,
and Junxian He. 2024. Prompt optimization via
adversarial in-context learning. In Proceedings of
the 62nd Annual Meeting of the Association for
Computational Linguistics, pages 7308–7327.

Jiasen Lu, Christopher Clark, Sangho Lee, Zichen
Zhang, Savya Khosla, Ryan Marten, Derek Hoiem,
and Aniruddha Kembhavi. 2024. Unified-io 2:
Scaling autoregressive multimodal models with
vision language audio and action. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 26439–26455.

Long Mai, Hailin Jin, Zhe Lin, Chen Fang, Jonathan
Brandt, and Feng Liu. 2017. Spatial-semantic image
search by visual feature synthesis. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4718–4727.

Andrei Neculai, Yanbei Chen, and Zeynep Akata.
2022. Probabilistic compositional embeddings for
multimodal image retrieval. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 4547–4557.

Xing Nie, Bolin Ni, Jianlong Chang, Gaofeng Meng,
Chunlei Huo, et al. 2023. Pro-tuning: Unified
prompt tuning for vision tasks. IEEE Transactions
on Circuits and Systems for Video Technology.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan
Sankarasubbu. 2022. Medmcqa: A large-scale
multi-subject multi-choice dataset for medical
domain question answering. In Conference on health,
inference, and learning, pages 248–260. PMLR.

Anwesan Pal, Sahil Wadhwa, Ayush Jaiswal, Xu Zhang,
Yue Wu, Rakesh Chada, Pradeep Natarajan, et al.
2023. Fashionntm: Multi-turn fashion image
retrieval via cascaded memory. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 11323–11334.

Harry A Patrinos and Noam Angrist. 2018. Global
dataset on education quality: A review and update
(2000-2017). World Bank Policy Research Working
Paper, (8592).

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang,
Kate Saenko, and Bo Wang. 2019. Moment matching

for multi-source domain adaptation. In Proceedings
of the IEEE/CVF international conference on
computer vision, pages 1406–1415.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, et al. 2021. Learning transferable visual
models from natural language supervision. In
International conference on machine learning, pages
8748–8763.

S Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Sheng Shen, Shijia Yang, Tianjun Zhang, Bohan Zhai,
Joseph E Gonzalez, Kurt Keutzer, and Trevor Darrell.
2024. Multitask vision-language prompt tuning. In
Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 5656–5667.

Tao Shen, Xiubo Geng, Chongyang Tao, Can Xu,
Guodong Long, Kai Zhang, and Daxin Jiang.
2023. Unifier: A unified retriever for large-scale
retrieval. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data
Mining, pages 4787–4799.

Karen Simonyan. 2014. Very deep convolutional
networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.

Zhuo Su, Jiehua Zhang, Longguang Wang, Hua Zhang,
Zhen Liu, Matti Pietikäinen, and Li Liu. 2023.
Lightweight pixel difference networks for efficient
visual representation learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
45(12):14956–14974.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun
Vikram, Genghan Zhang, Yann Dubois, Xinlei Chen,
Xiaolong Wang, et al. 2024. Learning to (learn at test
time): Rnns with expressive hidden states. Preprint,
arXiv:2407.04620.

Yilin Tao. 2022. Image style transfer based on
vgg neural network model. In 2022 IEEE
International Conference on Advances in Electrical
Engineering and Computer Applications (AEECA),
pages 1475–1482.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, et al. 2023. Llama:
Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in Neural Information
Processing Systems, volume 30.

Jinzhen Wang, Xin Liang, Ben Whitney, Jieyang Chen,
Qian Gong, Xubin He, et al. 2023. Improving
progressive retrieval for hpc scientific data using deep
neural network. In 2023 IEEE 39th International
Conference on Data Engineering, pages 2727–2739.

10192

https://doi.org/10.1109/TPAMI.2023.3300513
https://doi.org/10.1109/TPAMI.2023.3300513
https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2407.04620


Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang,
Joleen Liang, Jiliang Tang, Philip S Yu, and
Qingsong Wen. 2024a. Large language models for
education: A survey and outlook. arXiv preprint
arXiv:2403.18105.

Sijin Wang, Ruiping Wang, Ziwei Yao, Shiguang
Shan, and Xilin Chen. 2020. Cross-modal scene
graph matching for relationship-aware image-text
retrieval. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pages
1508–1517.

Yidong Wang, Zhuohao Yu, Wenjin Yao, Zhengran
Zeng, Linyi Yang, Cunxiang Wang, et al. 2024b.
Pandalm: An automatic evaluation benchmark
for llm instruction tuning optimization. In
The Twelfth International Conference on Learning
Representations.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,
Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot,
Jennifer Dy, and Tomas Pfister. 2022. Learning to
prompt for continual learning. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 139–149.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. 2022. Chain-of-thought prompting
elicits reasoning in large language models.
Advances in neural information processing systems,
35:24824–24837.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209.

Mikel Williams-Lekuona, Georgina Cosma, and Iain
Phillips. 2022. A framework for enabling unpaired
multi-modal learning for deep cross-modal hashing
retrieval. Journal of Imaging, 8(12):328.

Luwei Xiao, Rui Mao, Shuai Zhao, Qika Lin, Yanhao
Jia, Liang He, and Erik Cambria. 2025. Exploring
cognitive and aesthetic causality for multimodal
aspect-based sentiment analysis. IEEE Transactions
on Affective Computing.

Qu Yang, Mang Ye, Zhaohui Cai, Kehua Su, and Bo Du.
2023. Composed image retrieval via cross relation
network with hierarchical aggregation transformer.
IEEE Transactions on Image Processing.

Yongxin Yang and Timothy M Hospedales. 2016. Trace
norm regularised deep multi-task learning. arXiv
preprint arXiv:1606.04038.

Yang Yu, Meiyu Liang, Mengran Yin, Kangkang Lu,
Junping Du, and Zhe Xue. 2024. Unsupervised
multimodal graph contrastive semantic anchor
space dynamic knowledge distillation network for
cross-media hash retrieval. In 2024 IEEE 40th
International Conference on Data Engineering
(ICDE), pages 4699–4708.

Yu Zhang and Qiang Yang. 2022. A survey
on multi-task learning. IEEE Transactions
on Knowledge and Data Engineering,
34(12):5586–5609.

Shuai Zhao, Meihuizi Jia, Luu Anh Tuan, Fengjun Pan,
and Jinming Wen. 2024a. Universal vulnerabilities
in large language models: Backdoor attacks for
in-context learning. In Proceedings of the 2024
Conference on Empirical Methods in Natural
Language Processing, pages 11507–11522.

Shuai Zhao, Jinming Wen, Anh Luu, Junbo Zhao, and
Jie Fu. 2023. Prompt as triggers for backdoor attack:
Examining the vulnerability in language models. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
12303–12317.

Shuai Zhao, Xiaobao Wu, Cong-Duy Nguyen,
Meihuizi Jia, Yichao Feng, and Luu Anh Tuan.
2024b. Unlearning backdoor attacks for llms
with weak-to-strong knowledge distillation. arXiv
preprint arXiv:2410.14425.

Juncheng Zheng, Meiyu Liang, Yang Yu, Yawen Li,
and Zhe Xue. 2024. Knowledge graph enhanced
multimodal transformer for image-text retrieval. In
2024 IEEE 40th International Conference on Data
Engineering (ICDE), pages 70–82.

Hongliang Zhou, Yufan Hu, Shuai Liu, Guoxiong Zhou,
Jiaxin Xu, Aibin Chen, Yanfeng Wang, Liujun Li, and
Yahui Hu. 2024a. A precise framework for rice leaf
disease image–text retrieval using fhtw-net. Plant
Phenomics, 6:0168.

Junjie Zhou, Zheng Liu, Shitao Xiao, Bo Zhao, and
Yongping Xiong. 2024b. VISTA: Visualized text
embedding for universal multi-modal retrieval. In
Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics, pages
3185–3200.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and
Chen Change Loy. 2022a. Domain generalization: A
survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(4):4396–4415.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and
Ziwei Liu. 2022b. Conditional prompt learning
for vision-language models. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 16816–16825.

Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi
Cui, et al. 2023. Languagebind: Extending
video-language pretraining to n-modality by
language-based semantic alignment. arXiv preprint
arXiv:2310.01852.

10193

https://doi.org/10.1109/ICDE60146.2024.00357
https://doi.org/10.1109/ICDE60146.2024.00357
https://doi.org/10.1109/ICDE60146.2024.00357
https://doi.org/10.1109/ICDE60146.2024.00357
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1109/ICDE60146.2024.00013
https://doi.org/10.1109/ICDE60146.2024.00013


Art

Text: A image of a nuclear power plant.

Natural Image Sketch Low-Res

Energy

ArtNatural Image Sketch

Text: A circuit diagram with two 
different connections.

Low-Res

Physics

Text: A combination of batteries.

ArtNatural Image Sketch Low-Res
Electronics

ArtNatural Image Sketch

Text: A transverse image of the Earth.

Low-Res
Astronomy

ArtNatural Image Sketch

Text: A image of a human-liked robotic.

Low-Res

Robotics

Figure 5: The SER Dataset contains 24,000+ text captions and their corresponding queries with various styles,
including Natural, Sketch, Art, Low-Resolution (Low-Res) images and audio clips from different STEM subjects.

A Related Works

A.1 Dataset Adaptation in Education

Within the realm of education, image retrieval in
education has distinct characteristics, as images
often reflect the teaching intentions of educators.
This facilitates the rapid and accurate alignment
of visual content with teaching materials, thereby
reducing educators’ preparation workload and
enhancing the precision of learning data. While
existing researches has focused on classifying
educational data (Choi et al., 2020), they often
encounter constraints. Due to the complexity
of incorporating an expansive range of teaching
scenarios in STEM education and the scarcity of
data, numerous studies often narrow the scope to a
limited set of subject applications (Hendrycks et al.,
2021; Pal et al., 2022) or to a limited set of teaching
strategy retrievals (Kwon et al., 2024; Welbl et al.,
2017).

There is a considerable variation across existing
STEM education datasets regarding its specific
composition. Many datasets are cluttered with
irrelevant or invalid data, lack comprehensive
coverage of specialised content, and suffer from
quality assurance issues (Patrinos and Angrist,
2018). Although STEM education datasets are
assembled from interactions between learners
and large language models (Hou et al., 2024;
Wang et al., 2024a), they are generally not
well-suited for use by educators and learners across
multiple domains. Furthermore, creating a precise
and professional data retrieval repository for the
educational domain requires efficient retrieval
algorithms as support (Alzoubi et al., 2024). To
ensure efficient retrieval and usability in STEM

education scenarios, we construct the SER dataset,
which includes multiple query styles to enhance
retrieval diversity.

A.2 Multi-task Learning

In STEM education, the multi-style retrieval
model needs to leverage multi-task learning
to align features and learning across different
modal samples. Multi-task learning refers to
the simultaneous training and optimization of
multiple related tasks within a single model
(Zhang and Yang, 2022; Xiao et al., 2025;
Jia et al., 2025b,a). By sharing parameters
and representations across functions, it improves
overall performance. Compared to other transfer
learning methods, including domain adaptation
(Farahani et al., 2021) and domain generalization
(Zhou et al., 2022a), multi-task learning annotates
data and achieves CLIP-level model fine-tuning
and convergence, the data of each task in multi-task
learning is well-labeled.

Overall, multi-task learning introduces a new
tool for STEM education practitioners that may
help meet requirements, especially if speed
and efficiency are preferred over performance.
While many recent multi-task learning employ
two clusters of contemporary techniques, hard
parameter sharing and soft parameter sharing
(Ruder, 2017). In hard parameter sharing, most
or all of the parameters in the network are
shared among all tasks (Kokkinos, 2017). In soft
parameter sharing,the models are tied together
either by information sharing or by requiring
parameters to be similar (Yang and Hospedales,
2016). Consequently, our Uni-Retrieval adopts
a blended multi-task learning paradigm, adopt
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Figure 6: Concept distribution of our SER dataset. Our dataset exhibits a diverse distribution on different concept
domains.

both hard and soft parameter in different styles
of tasks. Building upon successul multi-task
learning method for CLIP, such as CoCoOP (Zhou
et al., 2022b), MaPLe (Khattak et al., 2023), and
FreestyleRet (Li et al., 2025), our study leverages
these techniques to strengthen domain adaptation
and multi-task learning.

A.3 Query-based Retrieval

Existing work in Query-based Image Retrieval
(QBIR) primarily includes content-based image
retrieval (Chen et al., 2022), text-based image
retrieval (Li et al., 2011), and multi-modal retrieval
(Neculai et al., 2022). In content-based image
retrieval, the visual features of images are directly
utilized for retrieval. However, its reliance on
fixed content and location makes it relatively
inflexible in capturing diverse user intents (Lee
et al., 2024a). Alternative methods like sketching
(Chowdhury et al., 2022, 2023a) and scene graph
construction (Johnson et al., 2015) enable the
retrieval of abstract images that are hard to describe
verbally, though they lack the intuitive ease of
natural language-based retrieval. In text-based
image retrieval, enhancements to text queries often
involve indicating content structure. However,
these approaches are either restricted by closed
vocabularies (Mai et al., 2017; Kilickaya and
Smeulders, 2021) or face substantial challenges
(Li et al., 2017) in deriving structures from
natural language descriptions. Recent multi-modal
approaches, such as cross-modal scene graph-based
image-text retrieval (Wang et al., 2020) and joint
visual-scene graph embedding for image retrieval
(Belilovsky et al., 2017), still depend on word

embeddings and image features.
Despite advancements in QBIR, challenges

including the semantic gap that can lead to
inaccurate retrieval results, high computational
complexity and resource costs for large-scale
image databases, and the high cost of obtaining
quality data annotations (Li et al., 2024b). The
application of QBIR to educational resource
retrieval is promising but has been hindered
by the complexity of educational discourse, the
limitations of educational databases, and the
associated costs (Zhou et al., 2024b). Our query
model effectively combines multi-modal retrieval
methods, integrating audio and natural language
with multi-style image inputs. The former enables
natural and rapid expression of content, while
the latter facilitates accurate and intuitive image
localization, enhancing educational data retrieval.

A.4 Prompt Tuning

Prompt tuning (Brown et al., 2020) was first
proposed in natural language processing (NLP)
and has been an efficient approach that bridges
the gap between pre-trained language models and
downstream tasks (Li et al., 2023a; Zhao et al.,
2023, 2024b). Prompt tuning leverages natural
language prompts to optimize the language model’s
ability to understand tasks, which demonstrates
exceptional performance in few-shot and zero-shot
learning. Recent studies have focused on
optimizing various components of prompt tuning,
such as prompt generation, continuous prompt
optimization (Lester et al., 2021a), and adapting to
large-scale models through methods like in-context
learning (Dong et al., 2024; Zhao et al., 2024a),
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instruction-tuning (Wang et al., 2024b), and
chain-of-thought (Wei et al., 2022). For example,
Lester et al. (2021b) leverage soft prompts to
condition frozen language models to enhance the
performance of specific downstream tasks. Long
et al. (2024) propose an adversarial in-context
learning algorithm, which leverages adversarial
learning to optimize task-related prompts.

Furthermore, prompt tuning has gradually
become a pivotal technique in computer vision
(Shen et al., 2024), enabling efficient adaptation
of pre-trained models to diverse tasks. Notable
methods include visual prompt tuning for
classification (Jia et al., 2022), learning to prompt
for continual learning (Wang et al., 2022), context
optimization and conditional prompt learning
for multi-modal models (Zhou et al., 2022b),
and prompt-based domain adaptation strategies
(Ge et al., 2023). For example, Nie et al.
(2023) introduce the pro-tuning algorithm for
learning task-specific vision prompts, applied
to downstream task input images with the
pre-trained model remaining frozen. Shen et al.
(2024) leverage cross-task knowledge to optimize
prompts, thereby enhancing the performance
of vision-language models and avoiding the
need to independently learn prompt vectors for
each task from scratch. Cho et al. (2023)
introduce distribution-aware prompt tuning for
vision-language models, optimizing prompts by
balancing inter-class dispersion and intra-class
similarity. MaPLe (Khattak et al., 2023)
further transfers text features to the visual
encoder during prompt tuning to avoid overfitting.
These approaches leverage learnable prompts
to enhance model performance across various
applications. Despite significant advancements in
previous research, challenges remain in extracting
semantic features from style-diversified images and
optimizing templates within cont.inuous prompt
tuning. In this study, we employ both NLP
and visual prompt tuning to optimize STEM
educational content retrieval, enhancing retrieval
accuracy and efficiency by adjusting prompt
tokens.

B Motivation and Scenarios

In practical teaching scenarios, teachers often
encounter the need for precise image retrieval,
such as searching for hand-drawn sketches,
student-created artistic images, blurry blackboard

Text Encoder Contrastive
Learning Vision Encoder

Compute Similarity, Rank R@1 R@5 

Database

Target Query Negative Sample 2Negative Sample 1

Training

Inference

Text/Audio-Image Pair

A Figure of
Energy-Wind Turbine

Figure 7: The pipeline of Uni-Retrieval. The
image-text/audio pairs are input into their respective
modality encoders. During the training procedure,
contrastive learning is applied between the modality
features of the positive samples (image-text/audio
pairs) and the negative samples. During the inference
procedure, the model calculates the similarity between
the modality features of the query and the embeddings
stored in the database. The retrieved results are ranked,
and the performance is evaluated using R@1/R@5 as
metrics.

drawings captured from a distance, classroom
photographs of physical objects, or images from
textbooks. However, current retrieval models
predominantly focus on text-natural image queries,
overlooking the diverse query styles common in
educational contexts. This limitation makes it
challenging for teachers to efficiently identify
and retrieve educational images or texts tailored
to diverse teaching scenarios, such as accurately
setting learning contexts, articulating key teaching
points, presenting instructional materials, and
quickly locating supplementary resources.

Our proposed method enables teachers to query
various styles’ answers with a range of retrieval
approaches, including text, image, audio, or
combinations of these modalities. This approach
ensures fast and convenient retrieval, significantly
reducing preparation time for teaching. Once
teachers input their queries, our Uni-Retrieval
system employs contrastive learning to compare
images and text, calculating similarities based
on attributes like objects, shapes, quantities, and
orientations. The system ranks all database
entries by similarity, outputting the top-1 or
top-5 results to identify the most relevant and
accurate teaching resource images, as illustrated
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in Fig. 7. This approach empowers teachers to
manage complex and dynamic teaching scenarios
effortlessly, enhancing the clarity and effectiveness
of STEM education.

C Experiments

In the database, the texts, their corresponding four
images and audio structures for each dataset can
share a single index, significantly reducing query
time. All images and text are preprocessed using
pretrained models to extract features, which are
stored as embeddings. This approach eliminates
the need for repeated feature extraction during use,
saving time and reducing computational overhead,
improving the efficiency of the retrieval system.

For the dataset selection, we choose four another
datasets except our SER dataset, including the DSR
dataset (Li et al., 2025), the ImageNet-X dataset,
the SketchCOCO dataset (Gao et al., 2020a) and
the DomainNet dataset (Peng et al., 2019). We
use internVL-1.5 (Chen et al., 2024) to annotate
the paint/sketch caption for the SketchCOCO and
the DomainNet dataset. For the model in the
prototype learning module, we choose the VGG
(Simonyan, 2014) as the feature extractor. For the
baseline selection, we apply two cross-modality
pre-trained models (CLIP (Radford et al., 2021),
BLIP (Li et al., 2023b)), two multi-modality
pre-trained models (LanguageBind (Zhu et al.,
2023), Unified-IO2 (Lu et al., 2024)), two style
retrieval models (SceneTrilogy (Chowdhury et al.,
2023b), FashionNTM (Pal et al., 2023)), four
most recent cross-modality prompt learning models
(VPT (Jia et al., 2022), CoCoOP (Zhou et al.,
2022b), MaPLe (Khattak et al., 2023), FreestyleRet
(Li et al., 2025)), and two database-driven retrieval
models (GASKN (Yu et al., 2024), MKG (Zheng
et al., 2024)) for the fair comparison. Specifically,
we fine-tune the cross-modality models (CLIP,
BLIP) on SER for convergence. We also train
the prompt learning models on SER dataset based
on VPT’s settings to adapt STEM style-diversified
inputs. As for the multi-modality models,
we evaluate the zero-shot performance on the
style-diversified STEM education retrieval task due
to multi-modality models’ comprehensionability
on multi-style image inputs.

For the experiments on the SER dataset,
Uni-Retrieval is initialized with OpenCLIP’s
weights and trained on 8 A100 GPUs with batch
size 24 per GPU and 20 training epochs. We use

AdamW as the optimizer, set the learning rate to
1e-5 with a linearly warmed up operation in the first
epochs and then decayed by the cosine learning rate
schedule. The seed is set as 42. What’s more, all
input images are resized into 224× 224 resolution
and then augmented by normalized operation. All
text are padding zero to the max length of 20.

For the fine-tuning CLIP and BLIP models, all
experiment settings are the same as Uni-Retrieval
except the learning rate is set as 1e-6. For
prompt tuning models, we both use 4 prompt
tokens to expand the token sequence. For all
transformer-based models, we use the ViT-Large
and 24-layers text transformer as the foundation
models to keep balance between performance and
efficiency.
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