PROCESSBENCH: Identifying Process Errors in Mathematical Reasoning

Chujie Zheng*

Bowen Yu* Dayiheng Liu*

Zhenru Zhang Beichen Zhang Runji Lin
Jingren Zhou

Keming Lu
Junyang Lin*

Qwen Team, Alibaba Inc.
¥ https://huggingface.co/datasets/Qwen/ProcessBench
) nttps://github.com/QwenLM/ProcessBench

Abstract

As language models regularly make mistakes
when solving math problems, automated iden-
tification of errors in the reasoning process be-
comes increasingly significant for their scalable
oversight. In this paper, we introduce PRO-
CESSBENCH for measuring the ability to iden-
tify erroneous steps in mathematical reasoning.
It consists of 3,400 test cases, primarily focused
on competition- and Olympiad-level math prob-
lems. Each test case contains a step-by-step so-
lution with error location annotated by human
experts. Models are required to identify the
earliest step that contains an error, or conclude
that all steps are correct. We conduct exten-
sive evaluation on PROCESSBENCH, involving
two types of models: process reward models
(PRMs) and critic models, where for the latter
we prompt general language models to critique
each solution step by step. We draw two main
observations: (1) Existing PRMs typically fail
to generalize to more challenging math prob-
lems beyond GSM8K and MATH. They un-
derperform both critic models (i.e., prompted
general language models) and our own trained
PRM that is straightforwardly fine-tuned on the
PRMB8OO0K dataset. (2) The best open-source
model, QwQ-32B-Preview, has demonstrated
the critique capability competitive with the pro-
prietary model GPT-4o, despite that it still lags
behind the reasoning-specialized o1-mini. We
hope PROCESSBENCH can foster future re-
search in reasoning process assessment, paving
the way toward scalable oversight of language
models.

1 Introduction

In recent years, language models have made re-
markable progress in complex reasoning tasks,
such as mathematics and programming (Hurst et al.,
2024; OpenAl, 2024; Yang et al., 2024a,b; Dubey
et al., 2024; Wake et al., 2024), yet they still make
mistakes when solving challenging problems. To

*Corresponding authors.

achieve scalable oversight (Amodei et al., 2016;
Bowman et al., 2022; Cao et al., 2024), i.e., ef-
fectively supervising Al systems that get close to
or go beyond broadly human-level performance,
particularly in complex tasks that are difficult for
general humans, we expect language models can
identify errors in their reasoning process in an auto-
mated way. However, existing benchmarks related
to assessing language models’ reasoning process
may be hard to satisfy the growing evaluation de-
mand for the error identification ability. Either
their covered problems have become less challeng-
ing for recent language models (Zhou et al., 2024;
Lightman et al., 2023), or they merely label the
correctness of final answers but lack annotations
for specific erroneous steps (Lin et al., 2024).

In this paper, we introduce PROCESSBENCH for
measuring the ability to identify erroneous steps in
mathematical reasoning. Figure 2 presents a data
example. We prioritize several principles when
designing this benchmark:

* Problem difficulty and solution diversity. PRO-
CESSBENCH primarily covers competition- and
Olympiad-level math problems and utilizes vari-
ous open-source language models to generate so-
lutions. This ensures both the difficulty of math
problems and the diversity of solution styles, en-
abling robust evaluation.

¢ Scale and accuracy. PROCESSBENCH consists
of 3,400 test cases, with all solutions annotated
with error locations by multiple human experts.
The large scale and expert annotation ensure the
data quality and the reliability of evaluation.

¢ Simplicity. PROCESSBENCH requires models to
identify the earliest erroneous step occurring in
the solution, if any exists. This straightforward
evaluation protocol enables easy adaptation for
various types of models, such as process reward
models (PRMs) and critic models.

1009

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1009-1024

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://huggingface.co/datasets/Qwen/ProcessBench
https://github.com/QwenLM/ProcessBench

Overall Performance (%)

Figure 1: Overview of evaluation results on PROCESSBENCH (see Table 3 for details).

We conduct extensive evaluation on PROCESS-
BENCH, involving two types of models: process re-
ward models (PRMs) and critic models. For PRMs,
we include multiple open-source PRMs (Wang
et al., 2024; Skywork, 2024; Xiong et al., 2024b) to
assess the correctness of each reasoning step in the
solution. For critic models, we prompt general lan-
guage models like Qwen (Yang et al., 2024a; Qwen,
2024a; Hui et al., 2024) and GPT-40 (Hurst et al.,
2024) to critique each solution step by step. We
show that, despite recent growing interest, existing
PRMs typically fail to generalize to more challeng-
ing math problems beyond GSM8K and MATH.
They underperform both critic models and our own
trained PRM that is straightforwardly fine-tuned
on the PRMS8O0OK dataset, which raises questions
about the generalization abilities and scalability of
the current data synthesis methodologies used to
build PRMs. In contrast, general language mod-
els manifest non-trivial critique capabilities that
can not only identify erroneous steps but also pro-
vide detailed explanations. The best open-source
model, QwQ-32B-Preview (Qwen, 2024b), has per-
formed competitively with the proprietary GPT-40
model, while it still lags behind the reasoning-
specialized ol-mini (OpenAl, 2024). We hope
PROCESSBENCH can catalyze future research in
automated reasoning process assessment, establish-
ing crucial foundations for scalable oversight of
language models.

2 Related Work

There exist several benchmarks or datasets related
to assessing language models’ reasoning process.
CriticBench (Lin et al., 2024) evaluates language

models’ abilities to critique solutions and correct
mistakes in various reasoning tasks. MathCheck
(Zhou et al., 2024) synthesizes solutions containing
erroneous steps using the GSM8K dataset (Cobbe
et al., 2021), in which language models are tasked
with judging the correctness of final answers or
reasoning steps. PRM80OK (Lightman et al., 2023)
builds on the MATH problems (Hendrycks et al.,
2021) and annotates the correctness and soundness
of reasoning steps in model-generated solutions. It
also has sparked a blooming of research interest
in building process reward models (PRMs) (Wang
et al., 2024; Xiong et al., 2024b,a).

PROCESSBENCH is distinguished from prior
benchmarks or datasets in three key aspects, as
highlighted in Table 1. First, PROCESSBENCH
primarily covers more challenging math problems
with competition- or Olympiad-level difficulty,
which better fit the rapidly growing capabilities
of modern language models. Second, rather than
relying on synthetic data, PROCESSBENCH lever-
ages diverse model-generated natural solutions and
employs expert annotation to label erroneous steps,
which ensures both real-world applicability and
label accuracy. Third, the large scale of PROCESS-
BENCH (3,400 test cases in total) enables more
comprehensive and robust evaluation.

There has also been extensive research on lan-
guage models’ scalable oversight (Amodei et al.,
2016; Bowman et al., 2022; Cao et al., 2024) and
studies on whether language models can identify
the errors in their own outputs. Lightman et al.
(2023); Wang et al. (2024); Luo et al. (2024) pro-
pose to train specialized reward models to super-
vise language models’ reasoning process (i.e., pro-

1010

"id": "math-22",

"generator": "Qwen2-7B-Instruct",

568"\\circ.$",
"steps": [

first cycle of \\(0\\) to \\(360"\\circ\\).

\\theta) \\] Therefore, \\(\\cos 208%\\circ

1,
"final answer correct": false,
"label": 2

"problem": "Find the integer $n,$ $0 \\le n \\le 180,$ such that $\\cos n”\\circ = \\cos

"To find the integer \\(n\\), \\(0 \\leg n \\leg 180\\), such that \\(\\cos n*\\circ = \\cos
568"\\circ\\), we can use the periodic properties of the cosine function. First, recall that
the cosine function has a period of \\ (360"\\circ\\). This means that: \\[\\cos \\theta =
\\cos (\\theta + 360k) \\] for any integer \\ (k\\).",

"Given \\ (\\cos 568~\\circ\\), we need to reduce this angle to an equivalent angle within the
We do this by subtracting multiples of

\\ (360"\\circ\\) until we get an angle within this range: \\[568"\\circ - 360"\\circ =
208"\\circ \\]1 So, \\(\\cos 568~\\circ = \\cos 208"\\circ\\).",

"However, we want to find \\(n\\) such that \\(0 \\leq n \\leq 180\\). Since cosine is also
symmetric about \\(180~\\circ\\), we know that: \\[\\cos \\theta = \\cos (180%\\circ -
\\cos (180~\\circ - 208*\\circ)\\), which
simplifies to: \\[\\cos 208*\\circ = \\cos (-28*\\circ) \\I1",

"The cosine function is also even, meaning it is symmetric about the y-axis: \\[\\cos (-
\\theta) = \\cos \\theta \\] Thus, \\[\\cos

"So, \\(n = 28"\\circ\\). Hence, the integer \\(n\\), \\ (0 \\leg n \\leg 180\\), such that
\\ (\\cos n™\\circ = \\cos 568"\\circ\\) is \\(n = 28\\). The answer is \\ (\\boxed{28}\\)."

(-28"\\circ) = \\cos 28~\\circ \\]",

Figure 2: Data example of PROCESSBENCH. The label 2 denotes that the earliest error occurs in the 2nd step
(indexed from 0). For test cases with no errors, the labels are —1.

cess reward models or PRMs). Huang et al. (2023);
Kamoi et al. (2024) argue that general language
models struggle to identify and correct their rea-
soning errors without external feedback. Saunders
et al. (2022); McAleese et al. (2024) show that lan-
guage models can be trained to write informative
critiques for both assisting human evaluation and
enabling self-refinement, which favorably scales
with increased model capabilities (or model sizes).
We believe the improved capabilities of error identi-
fication will build strong foundations for language
models’ scalable oversight.

3 Benchmark Construction

3.1 Task Definition

As shown in Figure 2, given a math problem and
a step-by-step solution, PROCESSBENCH requires
models to either identify the earliest-occurring er-
ror, or conclude that all steps are correct. Formally,
given a math problem P and its step-by-step so-
lution S = {so, ..., Sn—1}, the task is to output an
index ¢ € {—1,0,...,n — 1}, where ¢ = —1 indi-
cates that all steps are correct, and ¢ > 0 indicates
that the earliest error occurs at step s;.

Typically but non-inclusively, we consider a step
as erroneous if it contains any of the following: (1)
Mathematical errors: incorrect calculations, alge-
braic manipulations, or formula applications. (2)

Logical errors: invalid deductions, unwarranted
assumptions, or flawed reasoning steps. (3) Con-
ceptual errors: misunderstanding or misapplica-
tion of mathematical or problem concepts. (4)
Completeness errors: missing crucial conditions,
constraints, or necessary justifications that affect
the solution’s validity. Beyond these types of er-
rors, we encourage human annotators to determine
the correctness of reasoning steps based on their
own expertise. We do not require human annota-
tors to explicitly annotate error types due to the
intractability of intentional categorization.

Note that for steps after the first error, the mean-
ing of their correctness may become ambiguous or
debatable: derivations based on incorrect premises
can make sense, but still remain on a globally in-
correct reasoning path (Lightman et al., 2023). For
instance, if step k contains an error in calculating
x = 2, when it should be x = 3, subsequent steps
may follow valid algebraic rules but operate on
an incorrect value of x, making their individual
correctness hard to determine. This is why PRO-
CESSBENCH focuses on identifying the earliest-
occurring error in the reasoning process.

3.2 Data Collection

Problem Curation We collect math problems
from the test sets of four public and widely used

1011

Table 1: Comparison between PROCESSBENCH and other benchmarks or datasets related to reasoning process
assessment (Lin et al., 2024; Zhou et al., 2024; Lightman et al., 2023). t: Solution diversity denotes the diversity
of language models used for solution generation, corresponding to the “# Solution Generators” column. ¥: For
PRMS8O00K, we only count the 90 complete solutions in its phase 1 test set, as the complete solutions in its phase 2

test set are all terminated at the earliest erroneous steps.

Problem # Solution Solution Step Annotator TFIS(;e(l:]?ist'e iSnlze
Diffculty Generators Diversity! Annotation? ymng
Process Errors)
CriticBench * % 8 'S ¢ X - -
MathCheck-GSM * 1 * v Synthetic 516
PRMS00K >k 1 * v Human 90}
PROCESSBENCH %% 12 2. 8.0.¢ v Human 3,400

datasets in mathematical reasoning tasks: GSM8K
(Cobbe et al., 2021), MATH (Hendrycks et al.,
2021), OlympiadBench (He et al., 2024), and
Omni-MATH (Gao et al., 2024). Except for
GSMBK, which consists of grade school math prob-
lems, the other three datasets all contain problems
with competition- or Olympiad-level difficulty.

Solution Generation We generate solutions us-
ing the widely used Qwen (Yang et al., 2024a;
Qwen, 2024a; Yang et al., 2024b) and LLaMA
(Dubey et al., 2024) series open-source models,
resulting in twelve distinct solution generators in
total. This includes a wide range of model families,
sizes, and downstream task performance, leading
to the high diversity of solution styles. Table 4 in
Appendix B presents the breakdown of language
models used for PROCESSBENCH’s solution gener-
ation.

Solution Reformatting In mathematical reason-
ing tasks, double line breaks (i.e., “\n\n”") are com-
monly used to segment solution steps (or para-
graphs). However, we observed inconsistent step
granularity due to varying solution styles and gen-
eration randomness. Some generated solutions fre-
quently used double line breaks, resulting in nu-
merous short, logically incomplete steps, while
others used them sparingly, leading to lengthy para-
graphs that combine multiple logical components.
Such inconsistency in step granularity (and poten-
tial improper step segmentation) would impede the
standardization of human annotation criteria.

To address this issue, we adopt a solution re-
formatting method to standardize the step granu-
larity, through which the segmented paragraphs
can better correspond to logically complete and
progressive reasoning steps. Specifically, we first

replace all the line breaks with white space, and
then ask Qwen2.5-72B-Instruct to insert double
line breaks (i.e., segment paragraphs) while pre-
serving the solution content. Since we found that
Qwen2.5-72B-Instruct sometimes alters the solu-
tion content (< 0.5%), we remove those solutions
whose final answers change after reformatting (al-
though the content alteration may not influence
benchmark construction). Consequently, the refor-
matting method effectively unifies the step granu-
larity. Figure 5 in Appendix A presents an example
of solution reformatting.

Expert Annotation To ensure a balance be-
tween erroneous and correct solutions, we first
use Qwen2.5-72B-Instruct to verify the correctness
of final answers in the model-generated solutions
against the reference answers. We then respectively
sample solutions with correct or incorrect final an-
swers for subsequent annotation in a balanced way
to avoid excessive concentration on solutions from
either the weakest or strongest models.

We recruit human experts with doctoral-level
mathematical expertise for annotation, and all of
them are required to pass the mandatory profi-
ciency examination and annotation tutorial. The
annotators are designated with the same task in
§ 3.1, i.e., identifying the earliest-occurring er-
ror in each solution. However, we notice that the
competition- or Olympiad-level math problems can
still be challenging even for doctoral students ma-
joring in mathematics. According to the feedback
from the annotators, although they were not re-
quired to solve problems from scratch but rather
to identify erroneous steps in presented solutions,
they would still become quite hesitant in their an-
notations when uncertain about the correct solution
approach, which affected both the annotation speed

1012

Table 2: Statistics of PROCESSBENCH. “% Process errors” denotes the proportion of samples with erroneous
reasoning steps (i.e., annotated as erroneous) among all the samples with correct final answers. “% > n steps”
denotes the proportion of samples whose solutions have > n steps (split by double line breaks). “% 3/n agreement”
denotes the proportion of samples where the three-annotator agreement is achieved within n annotators, so

(% 3/3) + (% 3/4) + (% 3/5) = 100%.

GSMSK MATH OlympiadBench Omni-MATH

error correct error correct error correct error correct
Samples 207 193 594 406 661 339 759 241
% Process errors 200-193 _ 500-406 _ 500-339 _ 500-241 _
(correct final answers) 200 = 3.5% 00 = 18.8% 00 = 32.2% 00 = 51.8%
Steps 5.3 5.1 6.8 6.0 8.9 8.7 8.6 7.4
% > 5 steps 61.8% 575% 73.6% 704% 92.6% 923% 92.5% 81.7%
% > 10 steps 3.4% 1.6% 17.8% 8.9% 339% 27.1% 292% 21.6%
% > 15 steps 0.5% 0.0% 3.4% 2.0% 9.1% 8.8% 7.5% 4.1%
% 3/3 agreement 66.7% 959% 59.4% 91.9% 52.8% 85.0% 47.8% 80.1%
% 3/4 agreement 213% 3.6% 24.4% 4.7% 24.1% 9.1% 25.6% 13.7%
% 3/5 agreement 12.1% 0.5% 16.2% 3.4% 23.1% 5.9% 26.6% 6.2%

and quality. To ease the annotation difficulty, we 0-301 GSM8K
0.25 MATH

provide annotators with the reference solutions and
answers from the original datasets, while we still
explicitly instructed them to inspect and verify the
presented model-generated solutions step by step.

Each solution is initially assigned to three dif-
ferent experts. When the initial three annotators
cannot reach consensus, we increase the number of
annotators until three of them agree on the same re-
sult. If an agreement cannot be achieved within five
annotators (e.g., annotation distribution of (2,2, 1)
or (2,1,1,1)), we discard this solution. This leads
to an overall ~ 30% discard rate throughout the
entire annotation process. We also discard the so-
lutions where the final answers are incorrect (ac-
cording to the reference answers) but the human
annotation results are correct. Although such cases
are fairly rare (< 1%), they are mostly concentrated
in the OlympiadBench and Omni-MATH problems
(i.e., Olympiad-level ones). The agreement statis-
tics in Table 2 further evidence that the more chal-
lenging problems usually need more annotators to
achieve the annotation agreement, particularly for
those samples with incorrect final answers. These
results suggest the inherent challenge of our human
annotation task.

3.3 Statistics

The resulting PROCESSBENCH has four subsets,
consisting of 3,400 test cases in total. The detailed
statistics are shown in Table 2 and Table 4 (in Ap-
pendix B), and we also plot in Figure 3 the distri-

OlympiadBench
Omni-MATH

Frequency
o
=
w

0 2 4 6 8 10 12 14 16
Error Position

Figure 3: Distribution of error positions (indexed from 0;
truncated to 16 for better visualization), corresponding
to the label field as shown in Figure 2.

bution of error positions in erroneous samples. In
general, the more challenging the problems, the
more solution steps the models generate, and in-
correct solutions usually contain more steps than
correct ones. However, across all four subsets, a
large proportion of errors occur in the earlier steps,
such as steps 0-3 in GSM8K and MATH, and steps
1-5 in OlympiadBench and Omni-MATH.

It is noteworthy that while we have intention-
ally controlled an equal number of solutions
with incorrect and correct final answers (200
each for GSM8K and 500 each for other sub-
sets), the annotation results reveal quite different
numbers. Specifically, in the more challenging
subsets like OlympiadBench and Omni-MATH, a
larger proportion of solutions with correct final an-
swers still contain erroneous steps. For instance, in

1013

MATH

OlympiadBench

Omni-MATH

60

% Process Errors

Figure 4: Process error ratios per models and subsets, computed as the proportions of samples annotated as erroneous
among all the samples with correct final answers (same as in Table 2). The models used for solution generation
slightly vary across different subsets, see Table 4 in Appendix B. We observe that no particular models have notably
higher process error rates, while the process error rates are consistently higher on more difficult problems for

all the models.

OlympiadBench, % = 32.2% of solutions
with correct final answers are found to contain
process errors, while in Omni-MATH this propor-
tion is even higher (%;0241 = 51.8%). In con-
trast, these proportions in GSM8K and MATH are
200-193 — 3.5% and 2406 — 18.8%, respec-
tively. In Figure 4, for each model used for solu-
tion generation, we plot the ratio of samples with
erroneous reasoning steps (i.e., annotated as erro-
neous) among all the samples with correct final
answers. We observe that the process error rates
are consistently higher on more difficult problems.
To our knowledge, our work is the first to present
evidence that on more challenging math prob-
lems, current language models are more prone
to making process errors even when reaching
correct final answers. This also suggests the un-
derlying limitation of rule-based RL in mathemati-
cal reasoning (i.e., rewarding merely according to
the correctness of final answers) and further high-
lights the significance of identifying errors in the
reasoning process.

4 Evaluation

4.1 Setup

For each subset of PROCESSBENCH, we calculate
the accuracies on erroneous and correct samples,
respectively, and additionally compute their har-
monic mean as the F1 score. We primarily refer
to F1 scores to compare model performance, as
it balances model behaviors between being overly
critical and being incapable of identifying errors.
We consider two types of models in the evalua-
tion on PROCESSBENCH: process reward models

(PRMs) and critic models.

Process Reward Models (PRMs) As a recently
focal topic, PRMs are proposed to assess and su-
pervise the intermediate steps in language models’
reasoning process (Lightman et al., 2023), thus
naturally falling in the scope of our research. In
practice, PRMs are typically trained using the pro-
cess labels for intermediate reasoning steps, out-
putting either the correctness prediction or a scalar
score for each reasoning step during inference. Pre-
vious research usually evaluates PRMs based on
their improvement in the Best-of-N (BoN) perfor-
mance of another language model that generates
solutions. However, this lacks a finer-grained in-
spection on their process assessment abilities, and
the evaluation reliability can be heavily affected by
the underlying solution generation model.

Our evaluation includes several open-source
PRMs: (1) Math-Shepherd (Wang et al., 2024),
which obtains the process label for each step
via estimating the empirical probability of this
step leading to the correct final answer. (2)
Two LLaMA-3.1-based PRMs from Xiong et al.
(2024b), which roughly follow the training method-
ology of Math-Shepherd but differ in the solu-
tion generation models and optimization objectives.
(3) Two Qwen2.5-Math-based PRMs recently re-
leased by Skywork (2024). (4) We also train a
PRM by fine-tuning Qwen2.5-Math-7B-Instruct on
the PRM80OK dataset, namely Qwen2.5-Math-7B-
PRMSBOOK. See Appendix C for its training details.

For the (1)(2)(4) PRMs, we extract the earliest
erroneous step from their correctness predictions
for reasoning steps. For the (3) PRMs, which pro-

1014

Table 3: Evaluation results on PROCESSBENCH. We report the F1 score of the respective accuracies on erroneous
and correct samples. See Table 5 and Table 7 for breakdown of evaluation results.

Olympiad- Omni-
Model GSMSK MATH I“ienpch NaTH Average
Open-source Process Reward Models (PRMs)
Math-Shepherd-PRM-7B 479 29.5 24.8 23.8 31.5
RLHFlow-PRM-Mistral-8B 50.4 334 13.8 15.8 28.4
RLHFlow-PRM-Deepseek-8B 38.8 33.8 16.9 16.9 26.6
Skywork-PRM-1.5B 59.0 48.0 19.3 19.2 36.4
Skywork-PRM-7B 70.8 53.6 22.9 21.0 42.1
Qwen2.5-Math-7B-PRM800K (our trained) 68.2 62.6 50.7 44.3 56.5
Open-source language models, prompted as Critic Models
Meta-Llama-3-8B-Instruct 13.1 13.8 4.8 12.6 11.1
Meta-Llama-3-70B-Instruct 52.2 22.8 21.2 20.0 29.1
Llama-3.1-8B-Instruct 10.9 5.1 2.8 1.6 5.1
Llama-3.1-70B-Instruct 74.9 48.2 46.7 41.0 52.7
Llama-3.3-70B-Instruct 82.9 59.4 46.7 43.0 58.0
Qwen2.5-Math-7B-Instruct 26.8 25.7 14.2 12.7 19.9
Qwen2.5-Math-72B-Instruct 65.8 52.1 32.5 31.7 45.5
Qwen2.5-Coder-7B-Instruct 14.3 6.5 4.1 1.8 6.7
Qwen2.5-Coder-14B-Instruct 50.1 39.9 34.0 27.3 37.8
Qwen2.5-Coder-32B-Instruct 68.9 60.1 48.9 46.3 56.1
Qwen2-7B-Instruct 8.4 19.0 14.7 12.1 13.6
Qwen2-72B-Instruct 67.6 49.2 42.1 40.2 49.8
Qwen2.5-7B-Instruct 36.5 36.6 29.7 27.4 32.6
Qwen2.5-14B-Instruct 69.3 53.3 45.0 41.3 52.2
Qwen2.5-32B-Instruct 65.6 53.1 40.0 38.3 49.3
Qwen2.5-72B-Instruct 76.2 61.8 54.6 52.2 61.2
* QwQ-32B-Preview 88.0 78.7 57.8 61.3 71.5
Proprietary language models, prompted as Critic Models

GPT-40-0806 79.2 63.6 51.4 53.5 61.9
ol-mini 93.2 88.9 87.2 82.4 87.9

duce scalar scores for each reasoning step, we first
transform these scores into binary correctness pre-
dictions (using a threshold above which steps are
considered as correct), and then extract the earliest
erroneous step as we do for (1)(2)(4). The transfor-
mation threshold is determined as the one giving
the highest F1 score on the GSM8K subset.

Critic Models Critic models aim to provide feed-
back and critique to model-generated texts, non-
inclusively including verification, reflection, and
correction or refinement. They have demonstrated
promising utility in achieving scalable oversight
(Saunders et al., 2022; McAleese et al., 2024).
Training critic models for specific domains typ-
ically requires significant and specialized effort,
which is out of the scope of our work. Instead,
we are more interested in the critique capabilities

of general language models. The task definition
(§ 3.1) of PROCESSBENCH enables us to apply
simple prompt engineering to repurpose general
language models as critic models. We show in
Figure 6 in Appendix E the prompt template we
implement for our evaluation. Specifically, models
are prompted to return the index of the paragraph
where the earliest error occurs as the final answer,
similar to the conventional evaluation protocol for
mathematical reasoning tasks (Cobbe et al., 2021;
Hendrycks et al., 2021; Yang et al., 2024b).

Our evaluation includes the widely-used Qwen2
(Yang et al., 2024a), Qwen2.5 (Qwen, 2024a),
Qwen2.5-Math (Yang et al., 2024b), Qwen2.5-
Coder (Hui et al., 2024), and LLaMA-3 (Dubey
et al., 2024) series open-source models, as well
as the recently released QwQ-32B-Preview rea-

1015

soning model (Qwen, 2024b). We also evaluate
the proprietary GPT-4o0 (Hurst et al., 2024) and
ol-mini (OpenAl, 2024) models. We report the
performance of open-source models under majority
voting over eight samplings, while we also report
their performance under greedy decoding in Ta-
ble 9 in Appendix F. For the proprietary model
GPT-40, we report the results under greedy decod-
ing, while for o1-mini, we report the results under
single sampling as its API does not support cus-
tomized decoding parameters.

4.2 Results

We present the evaluation results in Table 3. Our
observations are summarized as follows:

Generalization Across Difficulty From GSM8K
and MATH to OlympiadBench and Omni-MATH,
with the increased difficulty of math problems, we
observe a consistent performance decline for all
the models, which suggests the common challenge
of both PRMs and critic models in generalization
abilities.

Comparison Between PRMs and Critic Models
We find that existing PRMs typically underperform
the top prompt-driven critic models even on the
simpler GSM8K and MATH subsets, suggesting
that these PRMs struggle to indicate the correctness
of the intermediate steps in mathematical reason-
ing. Moreover, when moving toward the more chal-
lenging OlympiadBench and Omni-MATH subsets,
PRMs suffer from a more notable performance de-
cline than critic models. This raises our concerns
about the generalization abilities and scalability
of the current data synthesis methodologies used
to build PRMs. More specifically, current method-
ologies, as exemplified by Math-Shepherd (Wang
et al., 2024), measure the correctness of an interme-
diate step by estimating the empirical probability
of this step leading to the correct final answer. This
kind of approach has two intuitive major issues: (1)
The process labels heavily depend on the language
model used to generate solutions (i.e., highly “on-
policy”), which would naturally fail to indicate the
correctness of reasoning steps generated by other
models. (2) As demonstrated in § 3.3, current lan-
guage models are prone to making process errors
even when reaching correct final answers. This
could substantially invalidate the estimated pro-
cess labels, particularly on the more challenging
math problems. In contrast, Qwen2.5-Math-7B-
PRMS800K, which is straightforwardly fine-tuned

on the fully human-annotated PRM80OK training
set, exhibits significantly stronger performance and
generalization ability than other PRMs.

Comparison Among Critic Models Compared
to PRMs, critic models can benefit from separate
reasoning processes when critiquing solutions, as
they can “think” more before indicating the cor-
rectness of each solution step, which leads to their
better performance in this error identification task.
Within the same model family, the error identifica-
tion performance favorably scales with increased
model sizes. Notably, the recently released rea-
soning model QwQ-32B-Preview performs best
among the open-source models and is highly
competitive with GPT-4o0. It is noteworthy that
QwQ-32B-Preview achieves more balanced accu-
racies on erroneous and correct samples (see Ta-
ble 5 and 7 in Appendix F). We show in Figure 7
an example of critique generated by QwQ-32B-
Preview to the test case in Figure 2 in Appendix G,
which not only identifies the erroneous step but also
provides the detailed thinking process and expla-
nation. Nevertheless, QwQ-32B-Preview still lags
behind ol-mini, suggesting that although the gap
in problem-solving performance is getting closer
between open-source and proprietary models, there
still exists another large gap in their critique capa-
bilities.

5 Conclusion

We introduce the PROCESSBENCH benchmark for
measuring the ability to identify erroneous steps
in mathematical reasoning, characterized by its
high problem difficulty and solution diversity, large
scale, rigorous human annotation, and simple eval-
uation protocol. Through extensive evaluation
with existing process reward models (PRMs) and
prompt-driven critic models, we draw two main
observations: (1) Existing PRMs typically un-
derperform critic models in identifying erroneous
reasoning steps, and struggle more to generalize
to challenging math problems. (2) Open-source
language models, as exemplified by QwQ-32B-
Preview, have demonstrated critique capabilities
competitive with the proprietary model GPT-4o,
yet still lag behind the reasoning-specialized o1-
mini model. We envision PROCESSBENCH as a
cornerstone testbed for advancing automated rea-
soning process assessment, a critical step toward
achieving scalable oversight of language models.

1016

6 Limitations

Despite our best efforts throughout the entire
benchmark construction process (§ 3.2), PROCESS-
BENCH may still contain inaccurate labels of er-
ror locations, particularly for the more challeng-
ing Olympiad-level math problems. Additionally,
the solutions discarded in human annotation (§ 3.2
may involve the particularly challenging problems,
which could bias the problem distribution in PRO-
CESSBENCH, although such samples may have ex-
ceeded the capabilities of the human annotators in
our annotation task.

References

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul
Christiano, John Schulman, and Dan Mané. 2016.
Concrete problems in ai safety. arXiv preprint
arXiv:1606.06565.

Samuel R Bowman, Jeeyoon Hyun, Ethan Perez, Edwin
Chen, Craig Pettit, Scott Heiner, Kamilé Lukosiiité,
Amanda Askell, Andy Jones, Anna Chen, et al. 2022.
Measuring progress on scalable oversight for large
language models. arXiv preprint arXiv:2211.03540.

Boxi Cao, Keming Lu, Xinyu Lu, Jiawei Chen, Mengjie
Ren, Hao Xiang, Peilin Liu, Yaojie Lu, Ben He,
Xianpei Han, et al. 2024. Towards scalable auto-
mated alignment of llms: A survey. arXiv preprint
arXiv:2406.01252.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang
Chen, Runxin Xu, et al. 2024. Omni-math: A univer-
sal olympiad level mathematic benchmark for large
language models. arXiv preprint arXiv:2410.07985.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. 2024. Olympiad-
bench: A challenging benchmark for promoting agi
with olympiad-level bilingual multimodal scientific
problems. arXiv preprint arXiv:2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2.5-coder
technical report. arXiv preprint arXiv:2409.12186.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han,
and Rui Zhang. 2024. When can LLMs actually
correct their own mistakes? a critical survey of self-
correction of LLMs. Transactions of the Association
for Computational Linguistics, 12:1417-1440.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo,
Haowei Liu, and Yujiu Yang. 2024. Criticbench:
Benchmarking llms for critique-correct reasoning.
arXiv preprint arXiv:2402.14809.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, and Abhinav Rastogi. 2024. Im-
prove mathematical reasoning in language models
by automated process supervision. arXiv preprint
arXiv:2406.06592.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron
Uribe, Evgenia Nitishinskaya, Maja Trebacz, and Jan
Leike. 2024. Llm critics help catch llm bugs. arXiv
preprint arXiv:2407.00215.

OpenAl. 2024. Openai ol-mini: Advancing cost-
efficient reasoning.

Team Qwen. 2024a. Qwen2.5: A party of foundation
models.

Team Qwen. 2024b. Qwq: Reflect deeply on the bound-
aries of the unknown.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills,
Long Ouyang, Jonathan Ward, and Jan Leike. 2022.
Self-critiquing models for assisting human evaluators.
arXiv preprint arXiv:2206.05802.

1017

https://doi.org/10.1162/tacl_a_00713
https://doi.org/10.1162/tacl_a_00713
https://doi.org/10.1162/tacl_a_00713
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

ol Team Skywork. 2024. Skywork-ol open series.
https://huggingface.co/Skywork.

Alan Wake, Albert Wang, Bei Chen, CX Lv, Chao Li,
Chengen Huang, Chenglin Cai, Chujie Zheng, Daniel
Cooper, Ethan Dai, et al. 2024. Yi-lightning technical
report. arXiv preprint arXiv:2412.01253.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024. Math-shepherd: Verify and reinforce LLMs
step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 9426-9439.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosen-
berg, Zhen Qin, Daniele Calandriello, Misha Khal-
man, Rishabh Joshi, Bilal Piot, Mohammad Saleh,
et al. 2024a. Building math agents with multi-
turn iterative preference learning. arXiv preprint
arXiv:2409.02392.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong
Zhang. 2024b. An implementation of gen-
erative prm. https://github.com/RLHFlow/
RLHF-Reward-Modeling.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. 2024b.
Qwen?2.5-math technical report: Toward mathemat-
ical expert model via self-improvement. arXiv
preprint arXiv:2409.12122.

Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu,
Jindong Wang, Derek F Wong, Xiaowei Huang, Qi-
ufeng Wang, and Kaizhu Huang. 2024. Is your
model really a good math reasoner? evaluating math-
ematical reasoning with checklist. arXiv preprint
arXiv:2407.08733.

1018

https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.18653/v1/2024.acl-long.510
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://github.com/RLHFlow/RLHF-Reward-Modeling

A Example of Solution Reformatting

The given equation is of an ellipse in the standard form

M The given equation is of an ellipse in
ifrac((x—h) 2hla*2) + \Eraef (g=l) “21 {2} = i, the standard form \[\frac{ (x-h)"2}{a”2} +

\frac{ (y-k)"2}{b*2} = 1,\] where \ ((h,
k)\) is the center of the ellipse, \(a\)
is the semi-major axis length, and \ (b\)
is the semi-minor axis length. In this
case, the center of the ellipse is \((6,
3)\), \(a = 5\), and \(b = 3\).

where (h, k) is the center of the ellipse, a is the semi-
major axis length, and b is the semi-minor axis length.

In this case, the center of the ellipse is $(6, 3)$, Sa = 5§,
and $b = 3$.

The foci of an ellipse are located along
the major axis, which is the line segment
connecting the two vertices of the

ellipse. The distance from the center of

: the ellipse to each focus is given by

The foci of an ellipse are located along the major axis, which
is the line segment connecting the two vertices of the ellipse.
The distance from the center of the ellipse to each focus is
given by $\sqgrt{a”2 - b"2}s.

\ (\sgrt{a”2 - b*2}\). First, we calculate

First e calculate the distance from the center to each focus: .
+ o W v + v the distance from the center to each

\I focus: \[\sqgrt{a”2 - b"2} = \sqrt{5°2 -
372} = t{25 - 9} = t{l6} = 4.
\sqrt{a’2 - b 2} = \sqrt{5°2 - 372} = \sqrt{25 - 9} = \sqrt{16) b= \sartd b= \sart{16} \
= 4.
\] Since the major axis of the ellipse is

horizontal (because \(a > b\)), the foci
are located at a distance of 4 units to
the left and right of the center of the
ellipse. Therefore, the two foci are at
\N((6 \pm 4, 3) = (2, 3)\) and \((10, 3)\).

Since the major axis of the ellipse is horizontal (because $a
> b$), the foci are located at a distance of 4 units to the
left and right of the center of the ellipse.

Therefore, the two foci are at $(6 \pm 4, 3) = (2, 3)$ and

$(10, 3)5. The one with the larger \ (x\)-coordinate

is \((10, 3)\). The answer is:

The one with the larger x-coordinate is $(10, 3)$. \ (\boxed{ (10, 3)}\).

The answer is: $\boxed{ (10, 3)1}S.

Figure 5: Example of solution reformatting. The left is the original solution (generated by Qwen2-7B-Instruct) and

the right is the reformatted one. The problem, coming from the MATH test set, is “The ellipse % + % =1

has two foci. Find the one with the larger x-coordinate. Enter your answer as an ordered pair, like (2,1).”

B Breakdown Statistics of PROCESSBENCH

Table 4: Breakdown statistics of PROCESSBENCH. T: We encountered a code bug when using Llama-3.1-70B-
Instruct and Qwen2.5-72B-Instruct to generate solutions for the MATH problems, thus their counts are all zero in
the MATH subset of PROCESSBENCH. ¥: For the more challenging OlympiadBench and Omni-MATH problems,
we exclude models with lower accuracies from subsequent annotation.

GSMSK MATH' OlympiadBench! Omni-MATH?

Generator

error correct error correct error correct error correct
Meta-Llama-3-8B-Instruct 11 13 56 14 0 0 0 0
Meta-Llama-3-70B-Instruct 16 15 92 49 0 0 0 0
Llama-3.1-8B-Instruct 38 23 86 53 116 48 131 31
Llama-3.1-70B-Instruct 7 28 0 0 85 32 103 19
Qwen2-1.5B-Instruct 37 4 36 11 0 0 0 0
Qwen2-7B-Instruct 31 21 89 42 63 45 96 35
Qwen2-72B-Instruct 9 11 56 51 64 48 71 25
Qwen2.5-1.5B-Instruct 32 10 31 43 0 0 0 0
Qwen2.5-7B-Instruct 12 15 62 35 86 37 75 29
Qwen2.5-72B-Instruct 2 21 0 0 67 38 88 38
Qwen2.5-Math-7B-Instruct 8 14 47 49 99 48 103 29
Qwen2.5-Math-72B-Instruct 4 18 39 59 81 43 92 35

207 193 594 406 661 339 759 241
Total

400 1,000 1,000 1,000

1019

C Training Details of Qwen2.5-Math-7B-PRMS800K

Qwen2.5-Math-7B-PRMS800K is obtained by fine-tuning Qwen2.5-Math-7B-Instruct on the PRM800K
training set. We replace the original language modeling head with a new reward modeling head that
outputs binary classification logits. The classification loss is computed at the second line break positions
in all the “\n\n”. We treat the original 1 and O labels in PRM8O0OK as our positive labels, while -1 as
negative ones. To eliminate test data contamination, we also remove the PRM80OK training samples that
have the same problems in PROCESSBENCH. The training was run on eight A100 80GB GPUs.

D Inference Details

For solution generation in § 3.2, all the models are set with p = 0.9,¢ = 0.7. For majority voting
evaluation in § 4, we set p = 0.8,¢ = 0.7,k = 20 for Qwen2.5-Math-7/72B-Instruct to ensure their
normal generation, while all the other models are set with only p = 0.9. All the inference in the evaluation
was run with vLLM (Kwon et al., 2023) on eight A100 80GB GPUs.

E Prompt Template for Critic Model Evaluation

The following is a math problem and a solution (split into paragraphs, enclosed with tags and
indexed from 0):

[Math Problem]

... (math problem)...
[Solution]
<paragraph_0>

... (paragraph 0 of solution)...
</paragraph 0>

<paragraph n-1>
... (paragraph n-1 of solution)...
</paragraph_n-1>

Your task is to review and critique the solution paragraph by paragraph. Once you identify an
error in a paragraph, return the index of the paragraph where the earliest error occurs. Otherwise,
return the index of -1 (which typically denotes "not found").

Please put your final answer (i.e., the index) in \boxed{}.

Figure 6: Prompt template for critic model evaluation. The blue texts indicate the input math problem and the
solution (split into paragraphs). The red texts describe the required output content and format.

1020

F Supplementary Evaluation Results

Table 5: Breakdown of evaluation results on the GSM8K and MATH subsets of PROCESSBENCH. The open-source
language models (middle block) are evaluated via majority voting over eight samplings.

GSMSK MATH
Model
error correct F1 error correct F1
Open-source Process Reward Models (PRMs)

Math-Shepherd-PRM-7B 32.4 91.7 479 18.0 82.0 29.5
RLHFlow-PRM-Mistral-8B 33.8 99.0 50.4 21.7 72.2 334
RLHFlow-PRM-Deepseek-8B 24.2 98.4 38.8 214 80.0 33.8
Skywork-PRM-1.5B 50.2 71.5 59.0 379 65.3 48.0
Skywork-PRM-7B 61.8 82.9 70.8 43.8 69.2 53.6

Qwen2.5-Math-7B-PRMS800K (our trained) 53.1 953 682 48.0 90.1 62.6

Open-source language models, prompted as Critic Models

Meta-Llama-3-8B-Instruct 42.5 7.8 13.1 28.6 9.1 13.8
Meta-Llama-3-70B-Instruct 35.7 96.9 522 13.0 93.3 22.8
Llama-3.1-8B-Instruct 44 .4 6.2 109 419 2.7 5.1

Llama-3.1-70B-Instruct 64.3 89.6 749 354 75.6 482
Llama-3.3-70B-Instruct 72.5 96.9 829 433 946 594
Qwen2.5-Math-7B-Instruct 15.5 100.0 26.8 14.8 96.8 25.7
Qwen2.5-Math-72B-Instruct 49.8 969 658 36.0 943 521
Qwen2.5-Coder-7B-Instruct 7.7 1000 143 34 98.3 6.5

Qwen?2.5-Coder-14B-Instruct 33.8 96.4 50.1 254 92.4 39.9
Qwen?2.5-Coder-32B-Instruct 54.1 94.8 68.9 449 90.6 60.1
Qwen2-7B-Instruct 40.6 4.7 84 305 13.8 19.0
Qwen2-72B-Instruct 57.0 829 67.6 37.7 70.9 492
Qwen2.5-7B-Instruct 40.6 33.2 36.5 30.8 45.1 36.6
Qwen2.5-14B-Instruct 54.6 94.8 69.3 384 874 533
Qwen?2.5-32B-Instruct 49.3 979 656 36.7 95.8 53.1
Qwen?2.5-72B-Instruct 62.8 969 762 46.3 93.1 61.8
QwQ-32B-Preview 81.6 95.3 88.0 78.1 79.3 78.7

Proprietary language models, prompted as Critic Models

GPT-40-0806 70.0 91.2 792 544 76.6 63.6
ol-mini 88.9 979 932 835 95.1 88.9

Table 6: For the two PRMs from Skywork (2024), we additionally adjust the threshold (§ 4.1) as the one leading to
the highest F1 score on each subset (i.e., each subset adopts a respective optimal threshold), which can be viewed
as the two PRMs’ upper bound performance on PROCESSBENCH. This table presents the results on the GSM8K
and MATH subsets, which are marginally higher than those in Table 5 that all adopt the threshold selected on the
GSMBSK subset.

GSMSK MATH

Model
error correct F1 error correct Fl1

Skywork-PRM-1.5B (respective thresholds) 50.2 71.5 59.0 38.2 704 495
Skywork-PRM-7B (respective thresholds) 61.8 82.9 70.8 44.1 70.9 54.4

1021

Table 7: Breakdown of evaluation results on the OlympiadBench and Omni-MATH subsets of PROCESSBENCH.
The open-source language models (middle block) are evaluated via majority voting over eight samplings.

OlympiadBench Omni-MATH
Model
error correct F1 error correct F1
Open-source Process Reward Models (PRMs)

Math-Shepherd-PRM-7B 15.0 71.1 248 142 73.0 23.8
RLHFlow-PRM-Mistral-8B 8.2 43.1 13.8 9.6 45.2 15.8
RLHFlow-PRM-Deepseek-8B 10.1 51.0 169 10.1 51.9 16.9
Skywork-PRM-1.5B 15.4 26.0 19.3 13.6 32.8 19.2
Skywork-PRM-7B 17.9 319 229 14.0 419 210

Qwen2.5-Math-7B-PRMS800K (our trained) 35.7 873 50.7 2938 86.3 443

Open-source language models, prompted as Critic Models

Meta-Llama-3-8B-Instruct 27.1 2.7 48 26.1 8.3 12.6
Meta-Llama-3-70B-Instruct 12.0 92.0 212 11.2 91.7 20.0
Llama-3.1-8B-Instruct 324 1.5 2.8 320 0.8 1.6
Llama-3.1-70B-Instruct 35.1 69.9 46.7 30.7 61.8 41.0
Llama-3.3-70B-Instruct 31.0 94.1 46.7 28.2 90.5 43.0
Qwen2.5-Math-7B-Instruct 7.7 91.7 142 69 88.0 12.7
Qwen2.5-Math-72B-Instruct 19.5 97.3 32,5 19.0 96.3 31.7
Qwen2.5-Coder-7B-Instruct 2.1 99.1 4.1 0.9 98.3 1.8
Qwen2.5-Coder-14B-Instruct 20.7 94.1 340 159 942 273
Qwen2.5-Coder-32B-Instruct 33.4 91.2 489 315 87.6 463
Qwen2-7B-Instruct 224 10.9 14.7 20.0 8.7 12.1
Qwen2-72B-Instruct 34.0 552 421 323 53.1 40.2
Qwen2.5-7B-Instruct 26.5 339 297 262 286 274
Qwen2.5-14B-Instruct 31.5 78.8 450 283 76.3 413
Qwen?2.5-32B-Instruct 25.3 959 400 24.1 92.5 38.3
Qwen2.5-72B-Instruct 38.7 926 546 36.6 909 522
QwQ-32B-Preview 614 546 578 55.7 68.0 61.3
Proprietary language models, prompted as Critic Models
GPT-40-0806 45.8 584 514 452 65.6 535
ol-mini 80.2 95.6 872 74.8 91.7 82.4

Table 8: For the two PRMs from Skywork (2024), we additionally adjust the threshold (§ 4.1) as the one leading
to the highest F1 score on each subset (i.e., each subset adopts a respective optimal threshold), which can be
viewed as the two PRMs’ upper bound performance on PROCESSBENCH. This table presents the results on the
OlympiadBench and Omni-MATH subsets, which are slightly higher than those in Table 7 that all adopt the threshold
selected on the GSMS8K subset.

OlympiadBench Omni-MATH
Model

error correct F1 error correct Fl1

Skywork-PRM-1.5B (respective thresholds) 15.3 47.5 23.1 14.0 58.5 22.6
Skywork-PRM-7B (respective thresholds) 18.9 48.1 27.1 144 58.1 23.1

1022

Table 9: Breakdown of evaluation results of the open-source language models (prompted as critic models) using
greedy decoding.

GSMSK MATH
Model

error correct F1 error correct F1

Meta-Llama-3-8B-Instruct 28.5 9.3 14.1 209 5.7 8.9
Meta-Llama-3-70B-Instruct 39.6 93.8 557 219 72.2 33.6

Llama-3.1-8B-Instruct 36.7 17.1 233 236 7.9 11.8
Llama-3.1-70B-Instruct 57.5 T7.7 66.1 37.7 53.9 44.4
Llama-3.3-70B-Instruct 66.2 96.9 78.6 384 93.1 54.4

Qwen2.5-Math-7B-Instruct 14.5 99.0 253 13.1 94.8 23.1
Qwen2.5-Math-72B-Instruct ~ 45.9 964 622 343 946 504
Qwen2.5-Coder-7B-Instruct 0.0 20.2 0.0 0.2 25.6 0.3
Qwen2.5-Coder-14B-Instruct 20.3 99.0 337 152 96.1 26.2
Qwen2.5-Coder-32B-Instruct 50.7 93.8 65.8 39.7 88.2 54.8

Qwen2-7B-Instruct 28.0 0.0 0.0 19.0 5.2 8.1
Qwen2-72B-Instruct 56.5 82.4 67.0 355 66.7 464
Qwen2.5-7B-Instruct 36.7 66.3 47.3 237 63.8 34.6
Qwen2.5-14B-Instruct 47.8 93.8 633 404 86.9 552
Qwen2.5-32B-Instruct 43.0 97.9 59.8 333 95.6 49.4
Qwen2.5-72B-Instruct 61.4 98.4 75.6 453 91.9 60.7
QwQ-32B-Preview 74.9 674 709 58.6 542 563
OlympiadBench Omni-MATH

Model

error correct F1 error correct F1

Meta-Llama-3-8B-Instruct 17.2 0.6 1.1 17.3 4.1 6.7
Meta-Llama-3-70B-Instruct 20.9 41.6 27.8 209 50.2 29.6

Llama-3.1-8B-Instruct 19.1 5.6 8.7 17.1 10.0 12.6
Llama-3.1-70B-Instruct 32.8 32.4 32.6 29.5 39.0 33.6
Llama-3.3-70B-Instruct 30.9 90.0 460 27.1 86.3 413

Qwen2.5-Math-7B-Instruct 6.4 79.1 11.8 4.7 78.0 8.9
Qwen2.5-Math-72B-Instruct ~ 17.2 95.0 292 183 93.4 30.6
Qwen2.5-Coder-7B-Instruct 0.0 13.3 0.0 0.0 27.8 0.0
Qwen2.5-Coder-14B-Instruct 9.1 95.6 16.6 6.2 95.9 11.6
Qwen2.5-Coder-32B-Instruct 31.8 86.7 46,5 31.5 84.6 459

Qwen2-7B-Instruct 14.1 29 49 137 29 4.8
Qwen2-72B-Instruct 33.4 48.1 394 304 48.1 37.3
Qwen2.5-7B-Instruct 25.4 46.0 327 26.1 43.6 326
Qwen2.5-14B-Instruct 30.9 764 440 27.0 72.6 394
Qwen2.5-32B-Instruct 22.4 90.0 359 224 87.6 35.7
Qwen2.5-72B-Instruct 33.7 88.5 489 337 884 488
QwQ-32B-Preview 37.8 319 346 295 419 346

1023

G Example of Generated Critique

Alright, I've got this math problem to solve and a solution provided, but I need to review it
paragraph by paragraph to find any errors. The problem is to find the integer \ (n\), where \ (0
\leg n \leqg 180\), such that \(\cos n”\circ = \cos 568"\circ\). Let's dive into the solution step
by step.

Paragraph 0:

The solution starts by recalling that the cosine function has a period of \(360"\circ\), which
means \ (\cos \theta = \cos (\theta + 360k)\) for any integer \(k\). That's correct. Cosine repeats
every \(360"\circ\), so adding or subtracting multiples of \(360"\circ\) doesn't change the value
of the cosine.

Paragraph 1:

Given \ (\cos 568~\circ\), the solution reduces this angle by subtracting \(360"\circ\) to get
\ (208"\circ\), since \ (568"\circ - 360”\circ = 208"\circ\). So, \(\cos 568"\circ = \cos
208”\circ\). That seems right. 208 degrees is within one cycle of \ (0"\circ\) to \(360"\circ\).

Paragraph 2:

Now, the solution mentions that cosine is symmetric about \ (180"\circ\), and states that \(\cos
\theta = \cos (180"\circ - \theta)\). Wait a minute, is that correct? Let me think about this.
Actually, cosine is symmetric about the y-axis, and the identity \ (\cos \theta = \cos (-\theta)\)
reflects that. The identity \ (\cos \theta = \cos (360"\circ - \theta)\) shows the symmetry about
\ (360"\circ\), but symmetry about \(180"\circ\) isn't directly related to cosine's even property.

Hmm, maybe I need to recall some trigonometric identities here. Let's see, the cosine of an angle
in standard position is equal to the cosine of its reference angle, but with a sign depending on
the quadrant. 208 degrees is in the third quadrant, where cosine is negative.

Alternatively, there's the identity \(\cos (180"\circ + \theta) = -\cos \theta\), but that's not
directly applicable here.

Let me double-check the symmetry properties. Cosine is an even function, meaning \ (\cos (-\theta)
= \cos \theta\), which shows symmetry about the y-axis. The identity \(\cos (360"\circ - \theta) =
\cos \theta\) shows symmetry every full cycle.

But the statement \ (\cos \theta = \cos (180"\circ - \theta)\) isn't generally true. Let's test it
with a specific angle. For example, \(\theta = 307\circ\): \(\cos 30"\circ = \sqrt{3}/2\), and

\ (\cos (1807\circ - 30"\circ) = \cos 150"\circ = -\sqrt{3}/2\). These are not equal; in fact,

they're negatives of each other.

So, it seems there's an error in this paragraph. The correct identity involving \(180"\circ\) is
\ (\cos (180"\circ - \theta) = -\cos \thetal), not \(\cos \theta\).

Therefore, the earliest error occurs in paragraph 2.
Final Answer

\[\boxed{2} \]

Figure 7: Critique generated by QwQ-32B-Preview for the test case in Figure 2.

1024

