
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 10101–10119
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Exploring How Generative MLLMs Perceive More Than CLIP
with the Same Vision Encoder

Siting Li, Pang Wei Koh, Simon Shaolei Du
University of Washington

{sitingli,pangwei,ssdu}@cs.washington.edu

Abstract

Recent research has shown that CLIP models
struggle with visual reasoning tasks that require
grounding compositionality, understanding spa-
tial relationships, or capturing fine-grained de-
tails. One natural hypothesis is that the CLIP
vision encoder does not embed essential infor-
mation for these tasks. However, we find that
this is not always the case: The encoder gath-
ers query-relevant visual information, while
CLIP fails to extract it. In particular, we
show that another branch of Vision-Language
Models (VLMs), Generative Multimodal Large
Language Models (MLLMs), achieve signif-
icantly higher accuracy than CLIP in many
of these tasks using the same vision encoder
and weights, indicating that these Generative
MLLMs perceive more—as they extract and
utilize visual information more effectively. We
conduct a series of controlled experiments and
reveal that their success is attributed to multiple
key design choices, including patch tokens, po-
sition embeddings, and prompt-based weight-
ing. On the other hand, enhancing the training
data alone or applying a stronger text encoder
does not suffice to solve the task, and additional
text tokens offer little benefit. Interestingly,
we find that fine-grained visual reasoning is
not exclusive to generative models trained by
an autoregressive loss: When converted into
CLIP-like encoders by contrastive finetuning,
these MLLMs still outperform CLIP under the
same cosine similarity-based evaluation proto-
col. Our study highlights the importance of
VLM architectural choices and suggests direc-
tions for improving the performance of CLIP-
like contrastive VLMs.

1 Introduction

Despite the success and widespread adop-
tion of Contrastive Language-Image Pretraining
(CLIP) (Radford et al., 2021), recent studies have
pointed out that state-of-the-art CLIP models still
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Figure 1: (a) Average two-way individual accuracy and
pair accuracy of CLIP-ViT-L/14-336px and LLaVA-1.5-
7B on various benchmarks (Kamath et al., 2023b; Hsieh
et al., 2024; Thrush et al., 2022; Li et al., 2024; Yarom
et al., 2024; Tong et al., 2024c). (b) CLIP and Gen-
erative MLLM architectures (using LLaVA-1.5 as an
example) for fine-grained visual reasoning tasks. We
observe that Generative MLLMs perform better in ex-
tracting and utilizing query-relevant information from
the same vision encoder.

fall short in various visual reasoning tasks, in-
cluding Winoground (Thrush et al., 2022), Sug-
arCREPE (Hsieh et al., 2024), and What’sUp (Ka-
math et al., 2023b). These benchmarks require
vision-language models (VLMs) to pair images
and captions, which are carefully designed to test
model capabilities of visio-linguistic compositional
reasoning, spatial reasoning, or fine-grained detail
understanding—areas beyond standard zero-shot
classification on ImageNet. While CLIP excels at
the latter, its performance in these visual reasoning

10101

https://github.com/lst627/CLIP-Embeds


tasks remains poor.
One plausible explanation for these shortcom-

ings is the potential information loss during the en-
coding process of the CLIP vision encoder (Tong
et al., 2024c). For example, the encoder might be-
have like a bag-of-words model which only grasps
the individual concepts in the image (“mug” and
“plate” in Figure 1), but not the structural rela-
tionship (“the mug is to the left of the
plate”) (Yuksekgonul et al., 2023).

In this work, we observe that the query-relevant
visual information could still be preserved by CLIP
vision encoder, but a better strategy is required
to extract it: As shown in Figure 1, LLaVA-1.5-
7B (Liu et al., 2024) with the same pretrained vi-
sion encoder, surpasses CLIP-ViT-L/14-336px by
a large margin on many challenging visual reason-
ing benchmarks. Particularly, on spatial reason-
ing benchmark What’sUp, while CLIP’s pair accu-
racy is lower than random chance (25%), LLaVA-
1.5 achieves beyond 50% on all four subsets (Ta-
ble 1). More evidence of other Generative MLLMs
on various benchmarks showing this phenomenon
is presented in Section 2. These results indicate
that these Generative MLLMs extract and utilize
query-relevant information more effectively from
the same CLIP vision encoder. Notably, the vision
encoder remains unchanged throughout training,
ensuring a fair comparison.

What is the driving force behind Generative
MLLMs’ extracting more visual information and
achieving strong visual reasoning performance?
How can it benefit and improve CLIP-like con-
trastive VLMs? In Section 3, we investigate these
questions by conducting controlled experiments on
various factors as follows:

• Training data. In Section 3.1, we observe little
performance gain after directly finetuning CLIP
on LLaVA-1.5’s training data and hard negatives,
indicating that training data is not the only con-
tributor.

• Token usage and position embedding. In Sec-
tion 3.2, we observe that using patch tokens in-
stead of the [CLS] token of CLIP (as proposed
in PACL (Mukhoti et al., 2023)) brings improve-
ment, and adding Rotary Position Embedding
(RoPE) (Su et al., 2024) yields higher pair accu-
racy. However, using multiple text tokens from
the CLIP text encoder as SPARC did (Bica et al.,
2024) does not help.

• Language models. In Section 3.3, we replace

the CLIP text encoder with a stronger, LLM-
converted model (Huang et al., 2024), but it does
not suffice to realize effective extraction and out-
perform random chance.

• Architecture design for image-text alignment.
In Section 3.4, we find that text generation is not
the only path to visual reasoning, as image-text
matching through cosine similarity performed by
contrastive VLMs can have strong performance
on challenging benchmarks.

• Training objective for image-text alignment.
In Section 3.4, we discover that finetuning with
autoregressive loss is not necessary for deriving a
VLM with fine-grained visual reasoning ability.

• Question as prompt. In Section 3.4, we also
investigate the role of the question as a prompt
for Generative MLLMs and find that, when fully
fused with the image, it reweights the image to-
kens, significantly aiding in the extraction of rel-
evant information and the enhancement of image
embeddings.

In Section 4, we discuss the implications of our
findings and their connection to prior work. Over-
all, we provide insights into VLM design and pro-
pose directions for improving contrastive VLMs.

2 Comparing CLIP and Generative
MLLMs’ visual reasoning performance

We begin by introducing the task setup for the com-
parison. Using score-based evaluation, we notice
a significant performance gap between CLIP and
Generative MLLMs with the same vision encoder
across several challenging visual reasoning bench-
marks, highlighting the latter’s stronger ability to
extract and utilize visual information for reasoning.

2.1 Task Setup

This paper focuses on the image-text matching task
in which VLMs are asked to choose from captions
for a given image or vice versa.
Benchmarks. We use several challenging bench-
marks, Winoground (Thrush et al., 2022), Natu-
ralBench (Li et al., 2024), SeeTrue (Yarom et al.,
2024), SugarCREPE (Hsieh et al., 2024), for as-
sessing VLMs’ compositionality. In Winoground,
each test case has two image+text pairs with
the same words in different order. For Nat-
uralBench, we use the retrieval version (de-
noted as NaturalBench-R) in the same format as
Winoground provided by Lin et al. (2024). SeeTrue
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What’sUp Subset A What’sUp Subset B
Left/Right On/Under Left/Right Front/Behind

Indiv. Pairs Indiv. Pairs Indiv. Pairs Indiv. Pairs

CLIP-ViT-L/14-336px 49.0 1.9 61.7 23.3 54.9 10.8 51.5 7.8
LLaVA-1.5-7B 96.6 93.2 76.2 52.4 98.5 97.1 76.0 52.9
Phi-3-V-3.8B 97.6 95.1 78.6 58.3 100 100 61.8 26.5
LLaMA-3-V-8B 98.1 96.1 81.1 64.1 100 100 73.0 47.1

Random chance 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0

Table 1: The two-way individual accuracy and pair accuracy of CLIP-ViT-L/14-336px and Generative MLLMs in
percentage points on four subsets of What’sUp. Generative MLLMs outperform CLIP by a large margin.

Winoground NaturalBench-R MMVP MMVP-VLM

CLIP-ViT-L/14-336px 27.8 47.8 14.0 20.7
LLaVA-1.5-7B 39.8 52.2 36.0 49.6
Phi-3-V-3.8B 35.8 50.5 30.7 31.9
LLaMA-3-V-8B 46.3 64.7 50.0 49.6

Random chance 25.0 25.0 25.0 25.0

Table 2: The pair accuracy of CLIP-ViT-L/14-336px and Generative MLLMs in percentage points on several paired
benchmarks. Generative MLLMs achieve substantially better performance than CLIP.

consists of individual image-text pairs, while Sug-
arCREPE has one image and two captions per test
case. We use MMVP(-VLM) (Tong et al., 2024c)
to test VLMs’ ability to capture visual details like
object existence, orientation, and counting. Since
MMVP is not in paired image-text format, we
manually convert it without altering content. We
adopt What’sUp A&B with COCO-spatial and
GQA-spatial (Kamath et al., 2023b) to evaluate
VLMs’ spatial reasoning. For What’sUp, each test
case includes four captions (e.g., “A dog left
of/right of/on/under a table”) and corre-
sponding images with minimal variation except for
spatial relationships. We split each test case into
two pairs—e.g., one pair contrasts “left of” ver-
sus “right of” with their ground truth images, and
the other covers the remaining captions. This yields
four benchmark subsets for A and B. COCO-spatial
and GQA-spatial have one image and two captions
per test case. More details are in Appendix A.1.

Models. Our main comparison is between CLIP-
ViT-L/14-336px (Radford et al., 2021) and Gen-
erative MLLMs that use its pretrained vision en-
coder and keep the weights frozen during training:
LLaVA-1.5-7B (Liu et al., 2024), along with Phi-3-
V-3.8B and LLaMA-3-V-8B (Rasheed et al., 2024).
In these MLLMs, the patch tokens from the CLIP
vision encoder first pass through a two-layer MLP
connector and are then used as input tokens for
a generative language model which yields the to-

ken probability determining the model response.
We also include results of CLIP-ViT-L/14-224px,
SigLIP-ViT-L/16-384px (Zhai et al., 2023), and
EVA01-ViT-g-14 (Sun et al., 2023) for reference
since they are of interest and widely used (Tong
et al., 2024a).
Evaluation protocol. For CLIP-like contrastive
VLMs, the matching score is the cosine similarity
between its image embeddings and text embed-
dings. In prior works, Generative MLLMs are com-
monly evaluated by GPT-4 (Achiam et al., 2023)
or human evaluators on generated responses. How-
ever, human evaluators are expensive for thousands
of model responses, and GPT-4 as the judge can be
incorrect and affected by user prompts. To ensure
a fair comparison, we choose to use a score-based
evaluation method and adopt the VQAScore (Lin
et al., 2024), defined as

P (“Yes”|image, “Does this figure show ‘text’?

Please answer yes or no.”)

The question template remains the same across
different benchmarks. We present the comparison
between VQAScore and response-based evaluation
in Appendix A.3.
Evaluation metrics. For SeeTrue, we report an
average AUROC of three subsets. For other bench-
marks, we use pair accuracy and individual ac-
curacy when applicable. Pair accuracy (Tong
et al., 2024c; Kamath et al., 2023b) requires correct

10103



SugarCREPE SeeTrue What’sUp A What’sUp B COCO-spatial GQA-spatial
One-obj. Two-obj. One-obj. Two-obj.

CLIP-ViT-L/14-224px 79.2 62.6 26.7 25.7 49.1 50.2 46.0 48.1
CLIP-ViT-L/14-336px 80.0 63.0 28.9 27.2 48.9 51.1 46.6 49.1
SigLIP-ViT-L/16-384px 85.2 66.8 26.7 28.7 50.3 48.6 47.8 48.7
EVA01-ViT-g-14 81.1 64.9 28.2 27.9 45.9 50.5 44.4 49.8
LLaVA-1.5-7B 88.5 76.0 69.9 65.4 89.9 88.9 94.6 95.2
Phi-3-V-3.8B 82.8 73.7 66.0 52.7 89.5 79.8 93.0 87.3
LLaMA-3-V-8B 91.2 80.7 66.7 58.6 91.9 78.9 95.3 91.4

Random chance 50.0 50.0 25.0 25.0 50.0 50.0 50.0 50.0

Table 3: Individual accuracy or AUROC of varied VLMs on visual reasoning benchmarks (spatial reasoning
benchmarks in bold). The Generative MLLMs consistently outperform CLIP models (except on SugarCREPE,
where SigLIP is better than Phi-3-V), with the largest performance gap observed in spatial reasoning.

matching for both images, and it only applies to
benchmarks with two images in a test case. In-
dividual accuracy refers to the accuracy of indi-
vidual images. For MMVP(-VLM), we follow the
original paper and use pair accuracy to represent
the correct matching for both captions and individ-
ual accuracy for individual captions instead.

2.2 Results
We present the comparison in Table 1, 2, and 3. On
these challenging benchmarks, Generative MLLMs
outperform CLIP-ViT-L/14-336px with the same
vision encoder, showing that (1) CLIP vision en-
coder has much query-relevant visual information
not utilized by CLIP, and (2) Generative MLLMs
can extract and align this information from the en-
coder more effectively. The performance gap is the
most significant on spatial reasoning, where the
CLIP models behave close to random chance for
individual accuracy and lower than random chance
for pair accuracy, but Generative MLLMs achieve
high accuracies. We further find that the Genera-
tive MLLMs can even outperform XVLM (Zeng
et al., 2021) specialized in spatial reasoning (See
Appendix B.4).

3 Investigation of the Performance Gap

The gap observed in Section 2.2 could be the re-
sult of various factors, ranging from model training
to architecture. In this section, we try to dissect
and examine which factors contribute to Genera-
tive MLLMs’ success and cause CLIP’s failure by
controlled experiments. We focus on the perfor-
mance gap on What’sUp, of which the test cases
are tightly controlled and balanced. A road map of
the experiments is illustrated in Figure 2.

3.1 Training Data
First, we hypothesize that Generative MLLMs’ vi-
sual information extraction ability benefits from
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Figure 2: An illustration for CLIP-like contrastive
VLMs and the controlled experiments in Section 3. We
first investigate the effect of training data by replacing
them with LLaVA-1.5’s training data ( 1⃝). Then, we try
different token usage for CLIP vision encoder and text
encoder ( 2⃝) and discuss the influence of using stronger
text encoders converted from LLMs ( 3⃝). Finally, we
convert LLaVA-1.5 to contrastive VLMs ( 4⃝) to study
the effect of the alignment architecture and training ob-
jective.

training data. To check the effect of data, we
use LLaVA-1.5’s training data to finetune CLIP,
SigLIP, and EVA-CLIP. We convert the datasets to
the image-caption format (Details are deferred to
Appendix B.2). By default, we freeze the vision
encoder during finetuning for strict ablation. Con-
sidering that contrastive learning relies on negative
samples beyond data quality (Robinson et al., 2020;
Kalantidis et al., 2020), we also construct hard neg-
ative captions by switching the related phrases to
their opposite (e.g., replacing “on the left” with
“on the right”). In this setting, the training objec-
tive follows NegCLIP (Yuksekgonul et al., 2023).

Results are shown in Table 4. Finetuning on
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What’sUp Subset A What’sUp Subset B
Indiv. Pairs Indiv. Pairs

CLIP 49.0 1.9 54.9 10.8
+ finetuning (ft) 50.5 1.9 53.9 5.9
+ ft + hard neg. 50.5 1.0 50.5 1.0
SigLIP 50.0 1.9 51.5 5.9
+ finetuning (ft) 49.0 1.0 51.0 3.9
+ ft + hard neg. 50.0 0.0 50.0 0.0
EVA-CLIP 49.0 1.0 50.1 4.9
+ finetuning (ft) 50.0 4.9 48.5 2.0
+ ft + hard neg. 50.0 1.9 48.0 2.0

Random chance 50.0 25.0 50.0 25.0

Table 4: The two-way individual accuracy and pair ac-
curacy results of CLIP-ViT-L/14-336px, SigLIP-ViT-
L/16-384px, and EVA01-ViT-g-14 focusing on the
Left/Right subsets of What’sUp after finetuning on
LLaVA-1.5’s training data with or without hard neg-
ative captions. After direct finetuning, the accuracies
are still quite low.

LLaVA-1.5’s training data does not help these mod-
els, even with hard negatives. Still, their accu-
racy is around random chance. We also try to un-
lock the SigLIP vision encoder during finetuning,
which does not increase the performance either
(See results in Appendix B.3). We experiment with
XVLM (Zeng et al., 2021) and observe similar re-
sults in Appendix B.4. This finding aligns with
the previous failure on finetuning them on a much
larger, preposition-focused subset of LAION (Ka-
math et al., 2023b), indicating that data alone does
not lead to stronger extraction ability.

3.2 Token Usage
Patch tokens. The output of the CLIP vision en-
coder consists of two parts: The [CLS] token, func-
tioning as the global feature of the image, and
the patch tokens, containing local information
of image patches. We notice that these Genera-
tive MLLMs employ all 576 patch tokens from the
CLIP-ViT-L/14-336px vision encoder, in contrast
to CLIP using only the projected [CLS] token.

We first perform an ablation study on LLaVA-
1.5: We change the input of its language model
to use only the [CLS] token, train this “[CLS]-
LLaVA-1.5” model from scratch (pretraining +
finetuning) using LoRA (Hu et al., 2021), and
observe that its spatial reasoning performance is
significantly worse than our reproduced LLaVA-
1.5-LoRA in Table 5. This proves the importance
of patch tokens to fine-grained visual reasoning:
Detailed information of images reside in these
patch tokens.

Inspired by this finding, we try incorporating
patch tokens in standard CLIP models. We adopt

the PACL method (Mukhoti et al., 2023) as it pro-
poses to train a vision embedder ev for patch tokens
and a text embedder et on top of the frozen CLIP
model (consisting of vision encoder fv and text
encoder ft). For input image x and text y, we
calculate the image feature v(x) by

s(x,y) = ev(fv(x)) · et(ft(y))
v(x) = ev(fv(x))

⊤ · sigmoid(10 · s(x,y))

In other words, s(x,y) determines the weight for
each projected patch token based on the text, and
v(x) is a weighted sum of all projected patch to-
kens. Then we use v(x) and et(ft(y)) as the image
and text features for CLIP training with the original
contrastive objective. During the evaluation, we
use the average of projected patch tokens ev(fv(x))
as the image feature and et(ft(y)) as the text fea-
ture. The results of training on LLaVA-1.5’s data
are shown in the second row of Table 6. It brings
higher pair accuracy to the Left/Right subset in
Subset A.
Position embeddings. Considering that the av-
erage or weighted sum does not maintain the or-
der/positional information of patch tokens, we add
Rotary Position Embeddings (RoPE) (Su et al.,
2024) to fv(x) before passing it to the vision em-
bedder ev, since RoPE is applied to visual tokens
in the language model of Generative MLLMs we
study. In the third row of Table 6, we find that
this combination yields significantly higher pair
accuracy on three subsets, showing that part of
the information comes from the order of patch
tokens. Nonetheless, the individual accuracy is not
improved by much.
Multiple text tokens. Does using multiple text
tokens of CLIP text encoder as well offer further
performance gain? In Generative MLLMs, it is nat-
ural to use multiple visual tokens and text tokens, as
they are concatenated as the input of an autoregres-
sive language model. However, it is non-trivial to
do so in contrastive VLMs. Therefore, we leverage
the SPARC method (Bica et al., 2024) to implement
the interaction between multiple visual tokens and
text tokens for CLIP: We first obtain a weighted
sum of patch tokens for each text token (named
grouped visual tokens) and then perform local con-
trastive learning between grouped visual tokens
and text tokens within each sample. The training
objective is the sum of this local contrastive loss
and the standard contrastive loss. For evaluation,
we use the average of grouped visual tokens as the
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What’sUp Subset A What’sUp Subset B
Left/Right On/Under Left/Right Front/Behind
Indiv. Pairs Indiv. Pairs Indiv. Pairs Indiv. Pairs

LLaVA-1.5-7B-LoRA 84.5 68.9 76.2 52.4 89.2 78.4 86.3 72.5
[CLS]-LLaVA-1.5-7B-LoRA 44.2 8.7 54.4 8.7 49.0 4.9 53.9 12.7

Random chance 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0

Table 5: The results of [CLS]-LLaVA-1.5-7B-LoRA and reproduced LLaVA-1.5-7B-LoRA on all subsets of
What’sUp, where [CLS]-LLaVA-1.5-7B-LoRA struggles with spatial reasoning.

What’sUp Subset A What’sUp Subset B
Left/Right On/Under Left/Right Front/Behind
Indiv. Pairs Indiv. Pairs Indiv. Pairs Indiv. Pairs

CLIP-ViT-L/14-336px 49.0 1.9 61.7 23.3 54.9 10.8 51.5 7.8
+ Patch Tokens (PT) 47.6 9.7 52.9 10.7 52.9 9.8 51.5 6.9
+ PT + RoPE 54.9 22.3 46.1 13.6 52.0 20.6 45.6 12.7
+ PT + RoPE + Multiple Text Tokens 48.1 0.0 50.0 2.9 50.0 6.9 48.0 7.8
+ PT + RoPE + Stronger Text Encoder 50.5 10.7 48.5 6.8 50.0 15.7 53.9 21.6
LLM2CLIP (Huang et al., 2024) 49.5 1.0 58.7 17.4 49.0 1.0 55.4 14.7

Random chance 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0

Table 6: The results of different token usage and leveraging a stronger text encoder for CLIP-ViT-L/14-336px on
the What’sUp benchmark after finetuning on LLaVA-1.5’s training data. CLIP with Patch tokens + RoPE has the
highest average pair accuracy.

image feature and the average of text tokens as the
text feature. Details are deferred to Appendix B.5.
Despite the complexity, this method does not help
our task (See the fourth row of Table 6). This fail-
ure might result from the hardness of training and
the insufficiency of token interaction.

3.3 Language Model

Previous research suggests that the CLIP text en-
coder fails to capture changed word orders, nega-
tion, and spatial or numerical details (Tong et al.,
2024b; Kamath et al., 2023a; Yuksekgonul et al.,
2023), while Generative MLLMs employ powerful
pretrained LLMs, which is supposed to be stronger
than the CLIP text encoder at reasoning.

Are pretrained LLMs the missing piece to ef-
fectively extracting visual information? We per-
form further experiments on finetuning CLIP with
patch tokens and RoPE on LLaVA-1.5 training data
but replacing the original CLIP text encoder with
a stronger one provided by LLM2CLIP (Huang
et al., 2024). This text encoder is converted from
Llama-3-8B-Instruct (Dubey et al., 2024) by con-
trastive finetuning and is shown to bring perfor-
mance boost to state-of-the-art CLIP models on
benchmarks such as MS COCO (Lin et al., 2014).
We keep this text encoder and the CLIP vision en-

coder frozen during our finetuning. The results are
shown in the fifth row of Table 6, where we also
attach the results of the original LLM2CLIP check-
point of CLIP-ViT-L/14-336px for reference1. We
find that a stronger text encoder does not suffice
to effectively extract more information towards
solving the task.

3.4 Alignment Architecture, Training
Objective, and Prompt

A major difference between CLIP-like contrastive
VLMs and LLaVA-like Generative MLLMs is how
they align images and texts. However, it is hard
to examine every factor involved separately: The
alignment architecture of CLIP—cosine similar-
ity between image embeddings and text embed-
dings—is bound to its training objective (con-
trastive loss) and contrastive VLM structure (dual
encoders). On the other hand, it is plausible to hy-
pothesize that contrastive VLMs cannot perform
fine-grained visual reasoning since cosine similar-
ity might be overly coarse-grained both for training
and evaluation, compared with text generation and
autoregressive loss used by Generative MLLMs.

1The original LLM2CLIP is not a fair comparison as its
implementation unfreezes the CLIP vision encoder during
finetuning.
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What’sUp Subset A What’sUp Subset B
Left/Right On/Under Left/Right Front/Behind
Indiv. Pairs Indiv. Pairs Indiv. Pairs Indiv. Pairs

CLIP-ViT-L/14-336px 49.0 1.9 61.7 23.3 54.9 10.8 51.5 7.8
LLaVA-1.5-7B-VLM2Vec-LoRA 97.1 95.1 68.0 35.9 100 100 60.8 22.5
w/o Question in Prompt 49.5 0.0 50.5 1.9 46.6 2.0 50.5 1.0

Random chance 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0

Table 7: The two-way individual accuracy and pair accuracy of CLIP-ViT-L/14-336px and LLaVA-1.5-converted
models in percentage points on four subsets of What’sUp. LLaVA-1.5-7B-VLM2Vec-LoRA outperforms CLIP on
all subsets. When there is no question in the prompt, its performance degenerates to the standard CLIP.

We bypass this obstacle in comparison by con-
verting a Generative MLLM to a CLIP-like con-
trastive VLM. On LLaVA-1.5-7B, we use the con-
verting method proposed by VLM2Vec (Jiang et al.,
2024): Specifically, we take the last layer vector
representation of the last output token of LLaVA-
1.5-7B as the output embedding. In this way, we
get the encoder for image+question(prompt) and
pure text simultaneously since LLaVA-1.5 allows
using one or zero images in the input. Follow-
ing the original paper, we use the prompt tem-
plates: “Represent the given image with the
following question: {Question}” while en-
coding the image if there is a question in the sam-
ple; “Find the text that can answer the
given query: {Question}” when there is no
image; and no additional prompt for encoding im-
age+question of LCS-558K and the captions. Then,
we finetune this encoder using contrastive loss and
LoRA (Hu et al., 2021) on LLaVA-1.5’s training
data with the CLIP vision encoder frozen. Sur-
prisingly, they exhibit strong performance without
using a large batch size (256) in Table 7 (LLaVA-
1.5-7B-VLM2Vec-LoRA). The question used for
evaluation is listed in Appendix A.4. This proves
that text generation+autoregressive loss is not
the only solution to fine-grained visual reason-
ing.

What could be the key factor of the success of
this contrastive LLaVA-1.5 compared with CLIP
models, including the standard ones and ours with
patch tokens plus RoPE in Section 3.2? We verify
that the additional question added in the prompt
when obtaining the image embeddings plays an im-
portant role here. When we change the prompt tem-
plate to “Represent the given image.” with-
out any question, the model performance degener-
ates to the standard CLIP performance as shown in
the third row of Table 7. Therefore, we conclude
that the question greatly helps the extraction

and utilization of visual information from the
vision encoder. The question helps to reweight
the patch tokens according to the context. With-
out the question, the image embeddings remain the
same regarding different tasks (e.g., coarse-grained
classification like “dog/cat”, versus fine-grained
visual reasoning like “dog to the left/right
of the table”), which could be suboptimal and
cause difficulty in alignment.

4 Discussion and Connection to Prior
Work

In this section, we first discuss how our findings
connect to the observations and conclusions in ex-
isting literature. Then, we list two directions for
improving VLM’s visual reasoning ability based
on our results.

4.1 Connection to Prior Work

Recent results of VLMs on various benchmarks for
testing fine-grained visual reasoning ability (e.g.,
compositionality, spatial reasoning, counting) re-
veal that they fail to solve simple tasks unexpect-
edly and often ignore visual patterns in the im-
age (Thrush et al., 2022; Yuksekgonul et al., 2023).
Researchers are actively exploring the root causes
of such failures. Lin et al. (2024) notices the advan-
tage of Generative MLLMs over CLIP in image-
text matching tasks. We observe the significant
discrepancy in performance when controlling the
vision encoder and thus focus on how Generative
MLLMs could outperform CLIP-like contrastive
VLMs with the same vision encoder.
Vision encoder and token usage. Tong et al.
(2024c) observes that the CLIP vision encoder
could encode visually distinct images into highly
similar embeddings, omitting essential informa-
tion and thus resulting in low accuracy on tasks
regarding the visual semantic difference. Hence,
they suggest using features from multiple vision
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encoders, which is adopted by later works (Kar
et al., 2024; Tong et al., 2024a; Xu et al., 2024).
However, we observe that this part of information
could be captured by the CLIP vision encoder but
is not extracted or aligned properly. Similar to
our observation, Koishigarina et al. (2025) argues
that CLIP is not bag-of-words uni-modally, and
the real issue of CLIP’s compositionality lies in
poor cross-modal alignment. Besides, while Tong
et al. (2024c) only calculates the similarity between
[CLS] tokens used by CLIP as evidence, we argue
that detailed information is preserved in patch to-
kens and their positions.
Text encoder. Kamath et al. (2023a) and Tong et al.
(2024b) point out that the CLIP text encoder might
discard relevant information during encoding so
that the model could not discriminate images that
differ in key aspects. Following previous efforts
in converting LLM to an encoder (BehnamGhader
et al., 2024), recent works explore using LLM-
converted encoders as the text encoder for CLIP:
LLM2CLIP (Huang et al., 2024) finds that this prac-
tice boosts performance on several retrieval tasks
on top of state-of-the-art CLIP models, but we ob-
serve its unsatisfying performance on What’sUp;
Stone et al. (2024) achieves high accuracy on
challenging benchmarks for compositionality af-
ter large-scale pretraining, although they reported
struggles on Left/Right spatial relations. We dis-
cover that a stronger text encoder is not enough for
solving the fine-grained visual reasoning task.
Training data and objective. Data-centric meth-
ods for improving CLIP-like models include se-
lecting or synthesizing higher-quality image-text
pairs (Gadre et al., 2024; Nguyen et al., 2024;
Zheng et al., 2024), involving more negative sam-
ples by manual design (Yuksekgonul et al., 2023;
Paiss et al., 2023) or larger batch size (Stone
et al., 2024). But Kamath et al. (2023b) observes
that CLIP cannot learn spatial relations even af-
ter training on a large amount of relevant data,
suggesting that we might need inductive bias or
denser supervision like XVLM (Zeng et al., 2021).
Others try applying autoregressive loss, such as
Cap/CapPa (Tschannen et al., 2023), or combining
it with contrastive loss, like CoCa (Yu et al., 2022).
Inspired by VLM2Vec (Jiang et al., 2024), we train
LLaVA-1.5-VLM2Vec and verify that task-specific
inductive bias, additional supervision, manually
designed hard negatives, or finetuning with autore-
gressive loss is not necessary for contrastive VLMs
to learn spatial relations.

Alignment architecture of contrastive VLMs.
Cross-modal alignment can be implemented by
cross-modal matching through cosine similar-
ity (Radford et al., 2021), matching by directly
outputting a score (Li et al., 2023), and generation
(outputting a response) (Liu et al., 2024; Awadalla
et al., 2023). The cross-modal contrasting is effi-
cient, yet unable to perform complex reasoning like
the generative models where Chain-of-Thought is
applicable (Wei et al., 2022). Nevertheless, our
LLaVA-1.5-VLM2Vec experiments show that ad-
vanced techniques can ignite the potential of con-
trastive VLMs in visual information extraction and
improve their visual reasoning performance.

4.2 Discussion on Improving VLMs’ Visual
Reasoning Ability

Promptable image embeddings boost perfor-
mance on fine-grained tasks. CLOC (Chen et al.,
2024) formulates the idea of promptable embed-
ding for regional understanding of images. They
pass image embeddings and spatial hints to a
prompter for obtaining region representations of
images and perform localized contrastive training.
In this way, when a grounding task only requires
information from part of the image, the representa-
tion will not be distracted by other parts and thus
lead to higher accuracy. VLM2Vec (Jiang et al.,
2024) extends the spatial hints to general prompts
and proposes a method for converting Generative
MLLMs to encoders. Our ablation study of ques-
tions in prompts for LLaVA-1.5-VLM2Vec demon-
strates the effectiveness of this technique.

Effectively utilizing vision encoders offers bene-
fits without pretraining new vision models. Our
results suggest that there is still room to enhance
VLMs with a fixed, pretrained vision encoder by
advanced extraction methods. We explore whether
this also holds for Generative MLLMs in the Ap-
pendix B.7: We try an alternative decoding algo-
rithm on LLaVA-1.5-7B for attending more to the
visual information, named Multi-Modal Mutual-
Information Decoding (Favero et al., 2024), which
leads to performance gain (+6%), on par with us-
ing interleaved visual tokens from multiple vision
encoders (I-MoF (Tong et al., 2024c)). This result
indicates that LLaVA-1.5 still misses some key in-
formation for query answering and has room for
further improvement apart from using a better vi-
sion encoder.
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5 Conclusion

Our study first reveals that Generative MLLMs
perceive fine-grained visual information more ef-
fectively using the same vision encoder than CLIP
for visual reasoning tasks. Through controlled ex-
periments, we find that patch tokens, position em-
beddings, and prompt-based image embeddings are
key differences causing the gap; however, training
data, multiple text tokens, and better text encoders
are insufficient to bridge the gap. Additionally,
text generation and finetuning with autoregressive
loss are not mandatory for strong visual reasoning.
These findings not only offer insights into VLM
design but also provide practical guidelines for en-
hancing contrastive VLMs on visual reasoning.

6 Limitations

First, for controlled experiments on data in Sec-
tion 3.1, we do not train models from scratch or
use larger batch sizes due to the limited computing
resources, so the conclusion regarding data might
be restricted.

Second, the number of visual reasoning bench-
marks we study is restricted. Therefore, we hope
that more comprehensive, unbiased, and visual-
centric reasoning benchmarks for VLMs can be
available in the future.

Third, we only study the comparison between
CLIP-ViT-L/14-336px and the Generative MLLMs
that use its vision encoder and explore the reasons
behind their discrepancy. Our conclusion is thus
restricted to them. We do not claim that all Genera-
tive MLLMs are better than contrastive VLMs in
all cases. Nevertheless, it is interesting to compare
other pairs of contrastive VLMs and Generative
MLLMs, and we leave this for future work.
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Figure 3: Example test case and evaluation method for
CLIP-like models on What’sUp benchmark. In our two-
way evaluation on benchmarks with paired images, a
test case consists of two similar images and two captions.
The model chooses one caption for each image, and it
gets one point in pair accuracy only if choosing correctly
for both images. The choices of CLIP-like models are
determined by SC , cosine similarity between image and
text embeddings.

A Benchmarks and Additional
Evaluations

A.1 Benchmark Information
What’sUp. The What’sUp benchmark (Kamath
et al., 2023b) contains 820 images of pairs of house-
hold objects captured by the authors, 408 in Subset
A and 412 in Subset B. For every object pair, all
prepositions are present in the benchmark, and thus
the images and captions are balanced, avoiding the
bias in real-world images (e.g., a cup is usually on
the table, not under the table). We corrected the
mislabeled images in the GitHub Issues and reeval-
uated the pretrained VLMs. For CLIP and XVLM’s
evaluation, we refer to the official code provided
by the What’sUp benchmark’s authors in https://
github.com/amitakamath/whatsup_vlms. The
evaluation of SigLIP and EVA-CLIP directly fol-
lows the evaluation of CLIP in the official code.
We offer an example in Figure 3 to demonstrate
how pair accuracy and individual accuracy are
computed on benchmarks with paired images like
What’sUp.

COCO-spatial and GQA-spatial. Kamath et al.
(2023b) also selects validation sample from
COCO (Lin et al., 2014) and GQA (Hudson and
Manning, 2019) targeting spatial relations (to the
left of vs to the right of, above vs below). Each test
case contains one image, one positive caption, and
one negative caption. COCO-spatial has 2687 test
cases, and GQA has 1451 test cases in total.

Winoground, NaturalBench, and SeeTrue.
Winoground (Thrush et al., 2022) is a challenging

benchmark consisting of 400 pairs of image-text
pairs. It focuses on VLM’s compositionality, with
two images and two similar captions in one test
case. A example of the captions is “some plants
surrounding a lightbulb” vs “a lightbulb
surrounding some plants.” High pair accuracy
requires VLM to match these images with their cap-
tions correctly at the same time. NaturalBench (Li
et al., 2024) is a benchmark for testing Generative
MLLMs on compositionality with unbiased Yes/No
answers. In one test case, there are two images with
two questions, and each question has "Yes" as the
answer for one image and "No" for the other image.
We use the retrieval version of NaturalBench pro-
vided by (Lin et al., 2024). SeeTrue (Yarom et al.,
2024) is an alignment bench that has 6930 human
labels for whether a given image is paired with the
text or not. We report the AUROC (Area Under the
Receiver Operating Characteristic curve) instead of
accuracy on SeeTrue. We use VQAScore’s official
code for evaluation on these benchmarks in https:
//github.com/linzhiqiu/t2v_metrics.

SugarCREPE. SugarCREPE (Hsieh et al., 2024)
is designed for evaluating VLM’s compositionality
with grammatical, sensical, and fluent hard neg-
atives. Each test case contains one image, one
positive caption, and one negative caption. There
are 7512 test cases in total.

MMVP(-VLM). The MMVP benchmark con-
tains 150 pairs of similar images, and the MMVP-
VLM benchmark has 135 pairs of similar images,
divided into nine categories. There is an overlap
between the image pairs in these two benchmarks.
We corrected the mislabeled images in the GitHub
Issues and reevaluated the pretrained VLMs. Since
MMVP is incompatible with CLIP, we convert its
questions manually. We attach the converted ver-
sion to the supplementary material for reference.

A.2 Model Weight Information
We use public pretrained weights of LLaVA-
1.5-7B (https://huggingface.co/llava-hf/
llava-1.5-7b-hf) under the Meta LLaMA
License Agreement and the weights of Phi-3-
V-3.8B in https://huggingface.co/MBZUAI/
LLaVA-Phi-3-mini-4k-instruct and LLaMA-
3-V-8B in https://huggingface.co/MBZUAI/
LLaVA-Meta-Llama-3-8B-Instruct provided
by (Ranasinghe et al., 2024) under MIT License
since they are trained with vision encoder
frozen. For contrastive VLMs, we use Ope-
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nAI’s pretrained CLIP-ViT-L/14-224px and
CLIP-ViT-L/14-336px model under MIT License,
SigLIP-ViT-L/16-384px pretrained on the WebLI
dataset (Chen et al., 2022) and EVA01-ViT-g-
14 pretrained on the LAION400M-s11b-b41k
dataset (Schuhmann et al., 2021) under Apache
2.0 License provided in the OpenCLIP repository.
In Table 5, LLaVA-1.5-7B-LoRA is reproduced.
In Table 6, the checkpoint for LLM2CLIP is
from https://huggingface.co/microsoft/
LLM2CLIP-Llama-3-8B-Instruct-CC-Finetuned
under Apache 2.0 License. We also use the text
encoder and the adapter of this checkpoint in our
experiments of using a stronger text encoder. In
Table 7, the LLaVA-1.5-7B-VLM2Vec-LoRA is
trained by ourselves with the vision encoder frozen
using the VLM2Vec method (Jiang et al., 2024).

A.3 Comparison between VQAScore and
Response-Based Evaluation

We compare the score-based evaluation, VQAS-
core (Lin et al., 2024), and the standard response-
based evaluation for Generative MLLMs on
What’sUp. Response-based evaluation requires a
question accompanied by a given image as the in-
put, and the questions used for LLaVA-1.5’s evalua-
tion are listed in Table 8. Then, the question is con-
catenated with the fixed prompt template (“USER:
<image>\n{question} ASSISTANT:”). Consider-
ing the position bias in LLMs (Wang et al., 2024),
we exchange the position of two prepositions in the
question with 50% probability on COCO-spatial
and GQA-spatial benchmarks for fair results. On
the What’sUp benchmark, the orders are always
the same for two images. Then, we use greedy
decoding to ensure reproducibility and evaluate the
outputs by keyword matching since we observe that
the outputs of Generative MLLMs are quite struc-
tured, showing their strong instruction-following
ability.

The reason why we use different commands after
the main question (e.g., “Answer left or right”,
“Choose from the two options”, and “Give a
short answer”) is that we find the LLaVA-1.5
model sensitive to such command. For instance,
we try “Answer on or under” and “Answer
with under or on” for the On/Under subset in
What’sUp Subset A, and the model accuracy is
quite low. For Phi-3-V-3.8B and LLaMA-3-V-8B,
we try these prompts and pick the one with the
highest accuracy. This is one of their limitations
that deserves future research. However, we aim to

show that they can extract such information, so we
use the best prompt to showcase its ability.

The results are shown in Table 10. We observe
that the accuracy of LLaVA-1.5-7B is increased
on On/Under and Front/Behind subsets. However,
the performance of LLaMA-3-V-8B is worsened.
Overall, they still surpass CLIP.

A.4 Evaluating VLM2Vec

For evaluation, we use the same question template
as for training (“Represent the given image
with the following question: {Question}”).
We list the questions used for VLM2Vec’s evalu-
ation in Table 9. Similar to response-based evalu-
ation for Generative MLLMs, we notice variance
when using different questions. Here, we adopt the
questions that lead to the best performance on the
benchmarks.

In addition, we show that the benefit of us-
ing a question in the prompt generalizes beyond
What’sUp. Here, we perform the same comparison
as in Table 7 on MMVP and MMVP-VLM. We
use the original question of the benchmark in the
prompt. For MMVP-VLM which does not have
questions, we manually add an MMVP-like ques-
tion to each test case without altering content or tun-
ing the prompt. We attached these questions to the
updated supplementary material. We use the same
prompt format as What’sUp (“Represent the
given image with the following question:
{Question}” or “Represent the given image.”
without any question). We observe similar results
in Table 11.

B Supplementary Experimental Details
and Results

B.1 Hyperparameters

Our code for training standard CLIP, SigLIP, and
EVA-CLIP is based on https://github.com/
mlfoundations/open_clip (Ilharco et al., 2021).
We finetune these models for five epochs with a
learning rate of 5e-6 on the combination of con-
verted LCS-558K plus converted DataMix-665K.
We use 50 steps of warmup and AdamW optimizer
with a cosine-annealing learning rate schedule. The
batch size is 512, and we train the models on 4
GPUs. The training time is less than one day.

For the [CLS]-LLaVA-1.5-7B-LoRA and repro-
duced LLaVA-1.5-7B-LoRA in Table 5, we use
the official LLaVA code in https://github.com/
haotian-liu/LLaVA released under the Apache
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Subset Question

What’sUp Subset A&B, Left/Right Is the (object 1) to the left of or to the right of
the (object 2)? Answer left or right.

What’sUp Subset A, On/Under Is the (object 1) on or under the (object 2)? Choose
from the two options.

What’sUp Subset B, Front/Behind Is the (object 1) in front of or behind the (object
2)? Answer front or behind.

What’sUp Subset A (four-way) Is the (object1) to the left of, to the right of, on,
or under the (object2)? Choose from the four options.

What’sUp Subset B (four-way) Is the (object1) to the left of, to the right of,
in front of, or behind the (object2)? Answer front,
behind, left, or right.

COCO/GQA-spatial, One obj. Is the (object 1) on the (left/right/top/bottom) or
on the (right/left/bottom/top)? Give a short answer.

COCO-spatial, Two obj. Is the (object 1) (to the left of/to the right
of/above/below) a (object 2) or (to the right of/to
the left of/below/above) a (object 2)? Give a short
answer.

GQA-spatial, Two obj. Is the (object 1) to the (left/right/front/behind) of
a (object 2) or to the (right/left/behind/front) of
a (object 2)? Give a short answer.

Table 8: Question formats for different subsets for LLaVA-1.5-7B.

Subset Question

What’sUp Subset A&B, Left/Right Is the (object 1) to the left of or to the right of
the (object 2)?

What’sUp Subset A, On/Under Is the (object 1) at the bottom of the (object2) or
at the top of the (object2)?

What’sUp Subset B, Front/Behind Is the (object 1) in the back of the (object2) or in
the front of the (object2)?

Table 9: Question formats for evaluating LLaVA-1.5-7B-VLM2Vec-LoRA.

2.0 license. The batch size, learning rate, and
other training settings are the same as described in
LLaVA-1.5 paper (Liu et al., 2024).

For the experiments in Table 6, we start
from an implementation of PACL (Mukhoti
et al., 2023) in https://github.com/NMS05/
Patch-Aligned-Contrastive-Learning. Since
we only need to train the vision embedder and
text embedder, we apply a larger batch size (4096)
and train for 10 epochs on 8 GPUs on the com-
bination of converted LCS-558K plus converted
DataMix-665K. We use 0.1 as the fixed tempera-
ture, 1e-4 as the learning rate, and Adam as the
optimizer. The training time is less than one day
for all experiments. We adopt the data augmen-

tation implemented in the codebase, except the
RandomHorizontalFlip, which discourages mod-
els from learning about Left/Right spatial relations.
When processing the captions, we follow the tech-
nique used in the codebase, which uses the original
caption randomly with a probability of 0.5, and
template+(a noun in the caption) otherwise. The
templates are: “a picture of {}.”, “itap of
{}.”, “a photograph of {}.”, “this picture
contains {}.”, “a good photo of {}.”. For
experiments with a stronger text encoder, we do
not apply this technique on DataMix-665K.

For LLaVA-1.5-7B-VLM2Vec-LoRA in Table 7,
we refer to the VLM2Vec code in https://
github.com/TIGER-AI-Lab/VLM2Vec. We use
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What’sUp Subset A What’sUp Subset B
Left/Right On/Under Left/Right Front/Behind
Indiv. Pairs Indiv. Pairs Indiv. Pairs Indiv. Pairs

CLIP-ViT-L/14-336px 49.0 1.9 61.7 23.3 54.9 10.8 51.5 7.8
LLaVA-1.5-7B 99.0 98.1 80.1 60.2 100 100 98.5 97.1
Phi-3-V-3.8B 100 100 85.4 70.9 100 100 56.9 13.7
LLaMA-3-V-8B 90.3 80.6 57.8 20.4 71.1 46.1 69.1 41.2

Table 10: Results of CLIP-ViT-L/14-336px and Generative MLLMs on four subsets in What’sUp using standard
response-based evaluation. The individual accuracy and pair accuracy are in percentage points.

MMVP MMVP-VLM

CLIP-ViT-L/14-336px 14.0 20.7
LLaVA-1.5-7B-VLM2Vec-LoRA 30.0 37.8
w/o Question in Prompt 9.3 11.9

Random chance 25.0 25.0

Table 11: The pair accuracy of CLIP-ViT-L/14-336px and LLaVA-1.5-converted models in percentage points on
MMVP and MMVP-VLM. LLaVA-1.5-7B-VLM2Vec-LoRA continues to outperform CLIP. When there is no
question in the prompt, its performance degenerates to the standard CLIP.

rank=8 for LoRA, 256 for the batch size, 1024
for maximum input token length, and 0.02 for the
temperature. We train the model for only 900 steps
on 4 GPUs for 40 hours on the combination of LCS-
558K and DataMix-665K, with a linear learning
rate schedule, 100 warmup steps, and 2e-5 as the
learning rate. Although we do not train the model
on full data, the model performance is remarkable
on What’sUp.

B.2 Converting LLaVA-1.5’s Training Data

We use LLaVA-1.5’s training data for all finetuning
experiments we include in the paper. The DataMix-
665K is under CC BY 4.0 License, while the LCS-
558K is under LAION/CC/SBU License for images
and BSD 3-Clause "New" or "Revised" License
for BLIP-generated captions. They are datasets of
English conversations.

We check the frequency of appearance of the
following keywords in DataMix-665K and LCS-
558K: on the left, on the right, to the left,
to the right, at the left, at the right. In
DataMix-665K, there are 12957 instances with at
least one of the key phrases, among which 12658
have a paired image. For captions (ground truth
answers), this number is 13473 since an instance
is paired with a multi-turn conversation. In LCS-
558K, there are 560 such instances and captions
since each instance has only one question and one

answer.
In our experiments in Section 3.1 and Sec-

tion 3.2, LCS-558K was converted from image-
text pair format to conversation format, so we re-
vert this process by using ground truth answer as
the caption. Since DataMix-665K is in a multi-
turn conversation format, we randomly pick one
answer as the caption in each epoch. In Section 3.3,
the new text encoder can encode long paragraphs,
so we use the concatenation of all answers in the
multi-turn conversation as the ground truth cap-
tion. In practice, we calculate the text embeddings
of all possible captions using the text encoder of
LLM2CLIP before training to save memory and
time. In Section 3.4, we randomly choose one turn
from the multi-turn conversation.

B.3 Results of Unlocking Image Encoder

We try unlocking the image encoder during fine-
tuning on the SigLIP-ViT-L/16-384px model. The
results are in Table 12. Still, the individual accu-
racy remains low.

B.4 Evaluating and Finetuning XVLM

Observing the similar failure of the data-informed
attempt, previous work concluded that even with
relevant, high-quality data and hard negatives,
denser supervision is likely required to let the
model learn the basic spatial relations (Kamath
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What’sUp Subset A What’sUp Subset B COCO-spatial GQA-spatial
Indiv. Pairs Indiv. Pairs One-obj. Two-obj. One-obj. Two-obj.

SigLIP-ViT-L/16-384px 50.0 1.9 51.5 5.9 48.7 50.2 51.2 47.0
+ finetuning (ft) 50.5 2.9 51.5 5.9 48.7 57.7 50.5 48.1
+ ft + hard neg. 50.0 3.9 47.1 2.0 52.3 47.0 51.8 52.7

Random chance 50.0 25.0 50.0 25.0 50.0 50.0 50.0 50.0

Table 12: Results of SigLIP-ViT-L/16-384px focusing on the Left/Right subsets of What’sUp, COCO-spatial,
and GQA-spatial benchmark with unlocked image encoder, after finetuning on LLaVA-1.5’s training data with or
without hard negative captions. The accuracy remains low on all benchmarks.

What’sUp A What’sUp B COCO-spatial GQA-spatial
One-obj. Two-obj. One-obj. Two-obj.

XVLM-16M 50.0 32.8 65.4 64.6 63.2 53.3
+ finetuning 46.4 34.6 66.8 65.2 61.3 51.2

Random chance 25.0 25.0 50.0 50.0 50.0 50.0

Table 13: Individual accuracy of XVLM-16M on the Left/Right subsets of What’sUp, COCO-spatial, and GQA-
spatial benchmark on LLaVA-1.5’s training data. LLaVA-1.5’s training data does not help improve XVLM-16M
notably.

et al., 2023b), as in XVLM (Zeng et al., 2021), a
VLM with supervision at the bounding-box level.
We attach XVLM-16M’s performance in Table 13.
We find that Generative MLLMs still beat XVLM-
16M, while they do not incorporate downstream
task-related inductive bias or denser supervision.

We explore finetuning XVLM on LLaVA-1.5’s
training data based on their official code (https:
//github.com/zengyan-97/X-VLM), but no im-
provement is observed in the results (the last row
in Table 13). The image encoder is locked dur-
ing finetuning. We use both contrastive learning
loss and image-text matching loss to finetune the
XVLM-16M model for five epochs with a learning
rate of 1e-5 and a weight decay rate of 0.01. We
use 10% steps of warmup and AdamW optimizer
with a lambda learning rate schedule. The batch
size is 128, and we train the model on 4 GPUs.
The evaluation is performed through the image-text
matching score.

B.5 Implementation Details of PACL and
SPARC

For PACL, the vision embedder applied on CLIP-
ViT-L/14-336px is the sum of a one-layer linear
projection and a two-layer nonlinear projection
with GELU as the activation function. The input
of the vision embedder is 576 1024-dimensional

patch tokens after LayerNorm and Dropout (with
probability = 0.1), and the output dimension is 768
for 576 tokens. The text embedder accepts one
768-dimensional text token and applies one-layer
linear projection on it. All output embeddings are
L2-normalized. The embedders used in SPARC
experiments share the same model structures as in
PACL. For experiments with the text encoder from
LLM2CLIP, the input dimension of the text em-
bedder is 1280 instead of 768, with other settings
unchanged.

For RoPE, we refer to the implementation in the
codebase for LLaMA in https://github.com/
huggingface/transformers. It is applied before
LayerNorm. Compared with learned or sinusoidal
position embeddings, it maintains the relative po-
sitions of tokens. We choose to use it since it is
applied in language models of Generative MLLMs
listed in Section 2.

For SPARC, we follow the pseudocode in Ap-
pendix C of Bica et al. (2024). Specifically, the out-
put of the vision embedder is 576 768-dimensional
projected patch tokens, and the output of the text
embedder is 77 768-dimensional projected text to-
kens (with padding). After multiplying them, we
get a similarity matrix of size 77× 576. Following
the SPARC paper, we first apply min-max normal-
ization to the matrix and then sparsify it by zeroing
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out all matrix entries below the threshold 1/576.
We normalize the rows of the similarity matrix,
multiply it with the patch tokens, and obtain 77
grouped visual tokens. The global representation
of the image is the mean of these grouped visual to-
kens after L2-normalization, and we get the global
representation of the text similarly. During infer-
ence, we calculate the cosine similarity between
the two global representations. When training, we
use the global representations for the standard con-
trastive loss and apply a local contrastive loss to
contrast the 77 grouped visual tokens and 77 text to-
kens within each sample. In this way, we align the
patch tokens to individual concepts represented by
text tokens. Unlike the original implementation, we
do not use a learnable temperature for contrastive
losses.

B.6 When Generative MLLMs are worse than
CLIP

We also observe that in some cases, MLLMs have
worse performance than CLIP (See Table 14). On
EqBen-mini (Wang et al., 2023), their performance
is close. On COCOCounterfactuals (Le et al.,
2024), we notice that CLIP embeddings are in-
volved in the construction of the benchmark as a
metric, which could affect the comparison.

This phenomenon is also discussed in previous
literature (Zhang et al., 2024; Geigle et al., 2024),
where they find that training on web-crawled data
teaches CLIP many rare concepts, while Generative
MLLMs are not sufficiently exposed to such data
for image-text alignment.

B.7 Alternative Decoding for Generative
MLLMs

We apply Multi-Modal Mutual-Information Decod-
ing (M3ID) (Favero et al., 2024) on LLaVA-1.5
for response-based evaluation. For token in each
decoding step t, M3ID computes the output proba-
bility with the image and without any input image,
denoted as lc and lu respectively. The latter corre-
sponds to the language priors of the answer to the
given question. Then a correction term (lc − lu)
is added to lc with weight 1−exp(−λt)

exp(−λt) if the model
is not highly confident with the token in step t
(maxk(lc)k < logα where α, λ are pre-defined hy-
perparameters). This correction prevents the VLM
from omitting the visual input and relying on the
language priors.

In Table 15, this method achieves gain (+6%)
relative to the baseline LLaVA-1.5-7B on MMVP.

We note that this is on par with I-MoF with in-
terleaved CLIP and DINO features) (Tong et al.,
2024c). This result suggests that LLaVA-1.5 did
not attend to the visual input enough and thus might
miss the key information for answering the query.
A similar finding was described through the inter-
pretability perspective on attention weights in Stan
et al. (2024).
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EqBen-mini COCOCounterfactuals

CLIP-ViT-L/14-336px 40.0 87.7
LLaVA-1.5-7B 32.9 57.9

Table 14: The pair accuracy of CLIP-ViT-L/14-336px and LLaVA-1.5-7B in percentage points.

Indiv. Pairs

LLaVA-1.5-7B 61.7 25.3
+ M3ID (Favero et al., 2024) 64.3 31.3
LLaVA-1.5-13B + I-MoF (Tong et al., 2024c) – 31.3

Random chance 50.0 25.0

Table 15: Results of LLaVA-1.5-7B with M3ID (α = 0.6, λ = 0.15) using response-based evaluation on MMVP
benchmark with the original results. M3ID encourages LLaVA-1.5-7B to attend more to the visual input, achieving
performance on par with using interleaved CLIP and DINO features.
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