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Abstract

Generative Retrieval (GR) introduces a new in-
formation retrieval paradigm that directly gen-
erates unique document identifiers (DocIDs).
The key challenge of GR lies in creating ef-
fective yet discrete DocIDs that preserve se-
mantic relevance for similar documents while
differentiating dissimilar ones. However, exist-
ing methods generate DocIDs solely based on
the textual content of documents, which may
result in DocIDs with weak semantic connec-
tions for similar documents due to variations
in expression. Therefore, we propose using
queries as a bridge to connect documents with
varying relevance levels for learning improved
DocIDs. In this paper, we propose Multi-
lEvel Relevance document identifier learning
for Generative rEtrieval (MERGE), a novel ap-
proach that utilizes multi-level document rele-
vance to learn high-quality DocIDs. MERGE
incorporates three modules: a multi-relevance
query-document alignment module to effec-
tively align document representations with re-
lated queries, an outer-level contrastive learn-
ing module to capture binary-level relevance,
and an inner-level multi-level relevance learn-
ing module to distinguish documents with dif-
ferent relevance levels. Our approach en-
codes rich hierarchical semantic information
and maintains uniqueness across documents.
Experimental results on real-world multilin-
gual e-commerce search datasets demonstrate
that MERGE significantly outperforms existing
methods, underscoring its effectiveness. The
source code is available at https://github.
com/zhangfw123/MERGE.

1 Introduction

Information Retrieval (IR) plays a vital role
in helping users find relevant information from
large datasets, with applications spanning web
search (Liu et al., 2017; Zhang et al., 2020, 2022a)

†Corresponding authors: Fuzhen Zhuang, Wei Lin, and
Zhao Zhang

and question answering (Karpukhin et al., 2020a;
Nie et al., 2020; Liu et al., 2024a,b; Zhang et al.,
2022b, 2024a,b). Traditionally, IR methods are cat-
egorized into sparse retrieval and dense retrieval.
Sparse retrieval, such as BM25 (Robertson et al.,
2009), relies on probabilistic ranking using term
frequency, inverse document frequency, and docu-
ment length normalization to rank documents ef-
fectively. As IR evolved, dense retrieval emerged,
leveraging deep learning to transform queries and
documents into dense vectors, thereby capturing
more nuanced semantic relationships and enhanc-
ing retrieval accuracy (Karpukhin et al., 2020b; Ni
et al., 2022b; Xiong et al., 2020). Recently, the de-
velopment of pre-trained language models (PLMs)
has given rise to Generative Retrieval (GR) (Kuo
et al., 2024; Li et al., 2025; Wang et al., 2024; Pan
et al., 2024). A notable method is the Differentiable
Search Index (DSI) (Tay et al., 2022a), which lever-
ages the contextual understanding capabilities of
PLMs to generate document identifiers (DocIDs)
directly from queries, thereby obviating the need
for additional indexing or ranking mechanisms. GR
demonstrates strong query understanding capabili-
ties, enabling it to handle complex long-tail queries
in e-commerce scenarios (Yuan et al., 2024; Wu
et al., 2024b).

One critical aspect of learning in GR is the gen-
eration of DocIDs. In GR, documents are typically
represented as sequences of tokens to generate their
corresponding DocIDs. A well-constructed DocID
not only maintains semantic relevance for each doc-
ument but also ensures unique identification, allow-
ing similar documents to share similar IDs. While
several studies have explored DocID learning (Tang
et al., 2024; Li et al., 2023; Wang et al., 2023), most
remain preliminary in terms of incorporating rele-
vance, often introducing relevance only at a binary
level or not at all. Many GR-related works gen-
erally employ standard methods to obtain DocIDs
and subsequently focus on improvements during
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the model training phase. In this paper, we argue
that DocID is crucial for effective GR, and relying
solely on a document’s representation is insufficient
for generating high-quality DocIDs. Instead, it is
essential to utilize multi-level relevance informa-
tion between queries and documents. Specifically,
queries can act as a bridge to establish connections
among documents. Typically, the relevance be-
tween a query and a document set captures explicit
similarities among documents, with those exhibit-
ing higher relevance levels aligning more closely
with the given query. Incorporating this informa-
tion into DocID learning can effectively capture
hierarchical semantics. This approach ensures that
semantically related documents produce similar
DocIDs while distinguishing between documents
with varying levels of relevance under the same
query. Consequently, this ensures the uniqueness
and discriminability of the generated IDs.

To this end, we propose a novel approach named
Multi-lEvel Relevance document identifier learn-
ing for Generative rEtrieval (MERGE), designed
to generate high-quality DocIDs. Our method cap-
tures multi-level relevance through a learnable Do-
cID generation method named Residual Quantiza-
tion Variational Autoencoder (RQ-VAE) (Rajput
et al., 2023), which employs multi-layer codebooks
to generate hierarchical indices for documents.
First, we design a multi-relevance query-document
alignment mechanism that aligns document rep-
resentations with their related queries. To further
ensure the relevance of similar documents, we intro-
duce an outer-level contrastive learning module that
captures binary-level relevance by drawing relevant
documents closer together while pushing irrelevant
ones apart. Additionally, to enhance differentiation
among relevant documents, we propose an inner-
level multi-level relevance learning strategy that
distinguishes documents with different levels of
relevance. By integrating these components, we
achieve semantically rich and well-differentiated
DocIDs, effectively training the GR model for im-
proved retrieval performance. Here, we summarize
our contributions:

• We incorporate multi-level relevance into the
learning process for DocID generation, aim-
ing to generate semantically rich and well-
differentiated DocIDs.

• To effectively capture multi-level relevance,
we design a query-document alignment mech-
anism alongside outer-level contrastive learn-

ing and inner-level multi-level relevance learn-
ing, aiming to capture semantic relevance
across different levels.

• We perform experiments across three lan-
guages using a challenging e-commerce prod-
uct search dataset, and the results clearly
demonstrate the superiority of our method.

2 Related Work

2.1 Sparse and Dense Retrieval
Sparse and dense retrieval are fundamental in in-
formation retrieval. Sparse retrieval, like BM25
(Robertson et al., 2009), focuses on term-document
matching. Dense retrieval, exemplified by Dense
Passage Retrieval (DPR) (Karpukhin et al., 2020b),
uses neural embeddings for semantic matching.
ANCE (Xiong et al., 2020) enhances this by
improving training efficiency. Hybrid models,
such as COIL (Ma et al., 2021), combine sparse
and dense approaches to leverage both term in-
teractions and dense representations. Sentence-
transformers (Reimers, 2019) further advance
dense retrieval by generating high-quality sentence
embeddings for better semantic understanding. Re-
cent works, like learned sparse representations by
Zhou et al., bridge the gap between traditional and
neural methods.

2.2 Generative Retrieval
Recent advances in generative retrieval have intro-
duced various innovative approaches. DSI (Tay
et al., 2022a) transforms documents into DocIDs
and utilizes transformers for end-to-end retrieval,
while SE-DSI (Tang et al., 2023) enhances this
with semantic learning strategies. SEAL (Bevilac-
qua et al., 2022) introduces autoregressive search
engines generating substrings as DocIDs. Gen-
RRL (Zhou et al., 2023) incorporates reinforce-
ment learning to obtain the relevance feedback.
LTRGR (Li et al., 2024) utilizes the ranking task to
optimize GR models. NOVO (Wang et al., 2023)
generates learnable document identifiers, and RI-
POR (Zeng et al., 2024) focuses on scalable gen-
erative retrieval frameworks. Wu et al. proposed
multi-vector dense retrieval, and GDR (Yuan et al.,
2024) addresses memory efficiency in generative
dense retrieval. SEATER (Si et al., 2023) employs
Constrained K-means to construct a balanced K-ary
tree, adding an alignment loss to improve token re-
lationship understanding. GenRet (Sun et al., 2024)
uses an Encoder-Decoder structure to generate ID
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tokens step-by-step. Hi-gen (Wu et al., 2024b) uti-
lizes prior category information for clustering with
k-means. D2-DocID (Cheng et al., 2025) intro-
duces learnable document identifiers that are both
descriptive and discriminative. GR2 (Tang et al.,
2024) incorporates multi-graded relevance during
the retrieval process and implements multi-graded
constrained contrastive training. However, during
the ID encoding phase, it only uses the simplest rel-
evant and non-relevant information for contrastive
learning, which is significantly different from our
approach. Our method aims to incorporate multi-
level relevance information during the encoding
phase to achieve two objectives: (1) ensuring that
DocIDs of irrelevant documents are more dis-
tant, and (2) ensuring that DocIDs of relevant
documents are closer.

3 Methodology

In the following, we present MERGE, including
the DocID generation method and the model train-
ing process. Given a query q, the set of doc-
uments relevant to q is represented as: Dq =
{D1

q , . . . ,DL
q },Dn

q = {dq,n1 , dq,n2 , . . . }(q ∈ Q)
where Q is the set of all queries, Dn

q represents the
n-th level relevant document set of q, and L denotes
the highest relevance level, representing the docu-
ments most relevant to the query q. We employ a
pre-trained language model, such as BERT (Kenton
and Toutanova, 2019) or T5 (Raffel et al., 2020), to
encode the document text into dense vector embed-
dings. These embeddings are subsequently utilized
to train the RQ-VAE (Rajput et al., 2023) method.
During the learning process, we implement multi-
level relevance learning by crafting loss functions
with distinct objectives, thereby producing high-
quality DocIDs. For GR model training, we utilize
queries as input and DocIDs as output to train the
sequence-to-sequence model.

3.1 DocID Learning via Multi-level Relevance

In retrieval tasks, the number of documents is large.
Previous GR methods of statically constructing IDs,
such as hierarchical clustering, cannot effectively
capture the relationships between documents. To
achieve relevance learning, we adopt a learnable
DocID generation method named RQ-VAE (Rajput
et al., 2023), which is a multi-level vector quanti-
zation method that generates semantic IDs by re-
cursively quantizing residuals at each level using
separate codebooks. Additionally, its multi-level

construction of ID facilitates the introduction of
multi-level relevance in our tasks.

3.1.1 Basic DocID Learning
The RQ-VAE process consists of three key phases:
Document Encoding. Given a document d with
text information (e.g., title or content), we first
extract its semantic embedding d using PLMs.
Residual Quantization (RQ). RQ encodes the in-
put embedding d to learn a latent representation
z = E(d) (E is a deep neural network (DNN)
encoder that maps the input embedding to a low-
dimensional vector), which serves as the initial
residual at the 0-th level, denoted as r0 = z.
At each quantization level l, there is a codebook
Cl = {elk}Kk=1, where elk is the k-th vector in code-
book at level l and K is the codebook size. To pre-
vent codebook collapse, each codebook is initial-
ized using k-means clustering (the cluster number
is the codebook size k) on the latent representations
{zi} from the first training batch.

The initial residual r0 is then used to find the
index of the nearest embedding in C0, given by
c0 = argmink ∥r0 − e0k∥2. More generally, at
each level l, the residual update follows the rule
cl = argmink ∥rl − elk∥2, and the residual is iter-
atively updated as rl+1 = rl − elcl . This recursive
residual approximation ultimately generates an ID
tuple (c0, . . . , cm−1) with a coarse-to-fine granu-
larity, where m is the maximum level of RQ.
Reconstruction & Training. After generating Do-
cIDs, the quantized representation ẑ =

∑m−1
l=0 elcl

is fed into a DNN decoder D to reconstruct the
input d via a reconstruction loss:

Lrecon = ∥d−D(ẑ)∥22. (1)

The training objective combines reconstruction
loss Lrecon with codebook commitment Lrq:

LRQ-VAE = Lrecon + Lrq,

Lrq =
m−1∑

l=0

(
∥sg[rl]− elcl∥

2
2 + α∥rl − sg[elcl ]∥

2
2

)
,

(2)
where sg[·] denotes the stop-gradient operation,
which prevents gradient updates for the quantized
embeddings during backpropagation. The first term
in Lrq ensures that the codebook vectors elcl are
close to the corresponding residuals rl. The sec-
ond term, weighted by the hyperparameter α, con-
strains the residuals to remain close to the selected
codebook entries.
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Figure 1: Overall architecture of MERGE. (a) Multi-relevance Query-document Alignment, which aligns the
document representations to the related queries with different levels. (b) Outer-level Relevance Contrastive Learning,
which is employed to differentiate between relevant and irrelevant documents. (c) Inner-level Multi-level relevance
Learning, which is utilized to distinguish between varying levels of relevance among documents.

3.1.2 Multi-level Relevance DocID Learning

To incorporate multi-level relevance into DocID,
we design Multi-relevance Query-document align-
ment, Outer-level Relevance Contrastive Learning,
and Inner-level Multi-level Relevance Learning to
optimize the learning of RQ-VAE.
Multi-relevance Query-document alignment. In
the context of document retrieval, similar docu-
ments might have different expressions, leading
to embeddings generated by PLMs that may not
position relevant documents in close proximity. To
address this, we introduce a query-document align-
ment mechanism during text encoding. Specifi-
cally, in real-world datasets, queries are typically
short, whereas documents are often much longer,
resulting in inconsistencies in the distribution of
the encoding space. To avoid this, we represent a
query by averaging the embeddings of the docu-
ment set DL

q with the highest relevance level under
the given query, formulated as follows:

q =
1

|DL
q |

|DL
q |∑

i=1

zq,Li , (3)

where zq,Li denotes the embedding of the i-th doc-
ument in the set DL

q obtained by RQ encoder E.
Then, we introduce a hierarchical alignment loss

function to align the representations of all relevant

documents of query q, as follows:

Lalign =
1

|Q|
∑

q∈Q
wj

L∑

j=1

1

|Dj
q|

|Dj
q |∑

k=1

Dist(dq,j
k −q).

(4)
We adopt the cosine similarity as distance for

alignment. wj = 1/(L − j + 1) represents the
alignment weight for the j-th level of relevance.
Outer-level Relevance Contrastive Learning.
The core of this module lies in binary-level rele-
vance learning, which seeks to discriminate irrel-
evant documents and simultaneously enhance the
connections among relevant documents. Specifi-
cally, let Drel

q = {dq1, dq2, . . . } denote the document
set relevant to query q in a training batch Dbatch.
We employ InfoNCE (Oord et al., 2018) loss at
each quantization layer l to pull the residual vector
of relevant documents closer while pushing irrele-
vant ones apart, as follows:

Ll
outer =

∑

dqi ,d
q
j∈Drel

q

log
exp(sim(r

dqi
l , r

dqj
l )/τ)

∑
d∈Dbatch

exp(sim(r
dqi
l , rdl )/τ)

,

(5)
where τ controls similarity distribution sharpness,
sim(·, ·) is cosine similarity, and rdl denotes the
residual vector at the l-th quantization layer for
document d in RQ.
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Inner-level Multi-level Relevance Learning. Af-
ter learning binary-level relevance, the model still
fails to perceive the different relevance levels
among documents, leading to similar DocIDs be-
ing assigned to all relevant documents. To address
this, we further introduce inner-level multi-level
relevance learning, which optimizes document
representations across different relevance levels,
thereby enabling the DocID assignments to distin-
guish documents with different levels of relevance.
Specifically, for a query q, we employ a triplet
loss (Schroff et al., 2015) to enforce differentia-
tion among documents of different relevance levels,
formulated as follows:

Ll
inner =

∑

(d,d+,d−)∈T
max(0, γ+

sim(rdl , r
d−
l )− sim(rdl , r

d+

l )),

(6)

where T is the set of learning triplets. rdl , r
d+

l ,
and rd

−
l represent the residuals at l-th level of doc-

ument d, d+, and d−, respectively. d, d+ ∈ Da
q

and d− ∈ Db
q (a > b), ensuring that the positive

document d+ and anchor document d have higher
relevance levels than the negative document d−.
This encourages the model to learn a representation
space where more relevant documents are closer
to the query than less relevant ones, thereby distin-
guishing different levels of relevance effectively.

3.1.3 Full DocID Learning
Finally, we incorporate the aforementioned multi-
level relevance learning method in the learning
progress of RQ-VAE. For outer-level and inner-
level learning in section 3.1.2 and 3.1.2, we intro-
duce a trade-off weight βl (0 ≤ βl ≤ 1) for the l-th
layer in RQ to ensure distinct optimization objec-
tives across different codebook layers. Specifically,
in the early layers of RQ, we prioritize optimizing
Louter to ensure that irrelevant documents are as-
signed to different ID tokens. In contrast, in the
later layers, we strengthen optimizing Linner to fur-
ther differentiate documents with different levels of
relevance. This hierarchical optimization strategy
enables the generated DocIDs to encode both hier-
archical semantic information and discriminative
capacity. The combined relevance learning loss is
formulated as follows:

Lrel =
1

m

m−1∑

l=0

(
βlLl

outer + (1− βl)Ll
inner

)
. (7)

Here βl decreases as the layer l increases. The
newly formulated training objective for RQ-VAE
is presented as follows:

LIDgen = LRQ-VAE + λ1Lalign + λ2Lrel, (8)

where λ1, λ2 are trade-off parameters to balance
the weights of losses.

For DocIDs that remain colliding generated
by RQ-VAE, we adopted the Sinkhorn algo-
rithm(Cuturi, 2013) to re-assign unique DocIDs.

3.2 Model Training

Using the trained RQ-VAE model, we generate a
unique ID for each document. If a document is
assigned the ID tuple (1, 0, 2), we organize it into a
DocID in the form of: <a_1><b_0><c_2>. Each el-
ement in this sequence, such as <a_1>, represents a
distinct token added to the vocabulary for training.

We map the documents in the query-document
pairs of the training data to the constructed DocIDs,
forming the training data for GR. Specifically, we
place a special token <retrieval> at the begin-
ning of the query text to indicate that the model
needs to perform a retrieval task. The retrieval
task aims to generate a unique DocID as the opti-
mization target. To make the model aware that the
earlier generated tokens are more important, we
introduce a position weight to improve the original
loss function. Finally, we train the sequence-to-
sequence transformer model (Raffel et al., 2020;
Xue et al., 2021)) with the following loss function:

L = −
T∑

t=1

wt · logP (yt|y<t, q), (9)

where q is the input query, T denotes the length
of DocID, yt is the t-th token of the target Do-
cID, y<t represents the previously generated to-
kens, and wt = 1/

√
t is the position weight at po-

sition t, weighting scheme ensures that the model
pays more attention to the accuracy of the earlier
tokens in the DocID.

4 Experiment

In this section, we analyze our model’s effective-
ness and address: 1) RQ1: How does MERGE
compare to state-of-the-art baselines? 2) RQ2:
How do different modules impact MERGE’s per-
formance? 3) RQ3: How do different loss weights
affect MERGE? 4) RQ4: What is the quality of
MERGE-generated DocIDs?
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4.1 Experimental Setup

Datasets. We utilize the publicly available ESCI
dataset (Reddy et al., 2022), a large-scale, multilin-
gual dataset for query-product semantic matching.
ESCI includes challenging search queries with up
to 40 potentially relevant products per query, an-
notated with relevance labels (Exact, Substitute,
Complement, Irrelevant). Each query-product pair
is enriched with additional metadata, spanning En-
glish, Japanese, and Spanish. Notably, the dataset
features many queries with negation conditions
(e.g., "not" and "without") and numerous product
attribute constraints (e.g., size, price, functionality).
These factors result in low term overlap between
queries and documents, posing significant chal-
lenges for retrieval models. Appendix A presents
more information of datasets.
Baselines. To evaluate our model, we use three
baseline categories: sparse, dense, and genera-
tive retrieval models. For sparse retrieval, we
use BM25 (Robertson et al., 2009). For dense re-
trieval, we consider DPR (Karpukhin et al., 2020c),
Sentence-T5 (Ni et al., 2022a) for English, and
multilingual MPNet (Song et al., 2020) for other
languages. For generative retrieval, we include
DSI (Tay et al., 2022a) (DSInaive and DSIsemantic),
NCI (Wang et al., 2022), LTRGR (Li et al., 2024),
and RIPOR (Zeng et al., 2024). Appendix B pro-
vides a detailed description of the baselines.
Evaluation Metrics. We evaluate our model using
Recall@k (R@k) and NDCG@k, two standard
metrics for ranking tasks. Recall@k measures the
fraction of relevant items retrieved in the top-k
results, reflecting the model’s ability to identify
relevant candidates. NDCG@k evaluates the rank-
ing quality by considering the position of relevant
items, with higher weights given to top-ranked re-
sults. We choose Recall@10, 100 (R@10, 100),
and NDCG@100 as the evaluation metrics, which
are widely used in information retrieval.
Implementation Details. We reproduce the re-
sults of all baseline models on the ESCI dataset
using official open-source implementations to en-
sure consistency and comparability. For English-
language datasets, we employ a pre-trained T5-
base model as the backbone for generative retrieval,
while for datasets in other languages, we use the
mT5-base model. During the DocID learning stage,
these models are utilized to extract semantic rep-
resentations of documents. For the Codebook
configuration, we define the DocID length as 4,

which requires the use of four codebooks, each
with a size of 256. The RQ-VAE is trained for
300 epochs using a batch size of 2048 and the
AdamW optimizer. The λ1 for Lalign is set to
0.01. The λ2 for Lrel is set to 0.001. The βl bal-
ancing the inner- and outer-level losses are set as
β0 = 1.0, β1 = 0.75, β2 = 0.5, β3 = 0.25. All ex-
periments are conducted on a computing platform
equipped with eight A100 80G GPUs. For detailed
hyperparameter settings and additional implemen-
tation specifics, please refer to the Appendix C.

4.2 Performance of MERGE (RQ1)

1) MERGE outperforms state-of-the-art GR mod-
els on three ESCI datasets, demonstrating its ef-
fectiveness. Additionally, it surpasses the dense
retrieval model Sentence-T5 in NDCG@100 and
RECALL@10, highlighting its ability to gener-
ate highly relevant documents. 2) While RIPOR
demonstrates competitive performance (achieving
second-best results in GR models), its training
methodology necessitates a complex multi-phase
optimization procedure requiring multiple warm-
up stages, which introduces significant implemen-
tation complexity. In contrast, our approach es-
tablishes superior performance by generating high-
quality DocIDs and employing a simple generative
model training, which is simple and effective. 3)
MERGE significantly outperforms the vanilla RQ-
VAE, indicating the importance of learning high-
quality DocIDs.

4.3 Ablation Studies (RQ2)

To explore the roles of different modules in
MERGE, we present experimental results of several
variants of MERGE on ESCI-English, as shown in
Table 2. Here, w/o Lalign indicates the removal
of the loss Lalign; w/o Louter refers to using only
the loss Linner, which means setting βl to 0.0; w/o
Linner sets βl to 1.0; and w/o wt means not using
positional weights during model training. We draw
the following conclusions: 1) Performance drops
after removing each component, confirming the
effectiveness of the three losses and weighted train-
ing strategy. 2) Removing the outer-level relevance
contrastive loss Louter leads to the largest decline,
highlighting the critical role of relevance in DocID
learning and its ability to mitigate poor encoding
quality from low-quality text. 3) All MERGE vari-
ants outperform vanilla RQ-VAE, underscoring the
importance of each module.
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Table 1: Performance of different models on ESCI in terms of R@10, 100 (%) and NDCG@100 (%). The best
results are highlighted in bold, while the second-best results are underlined in all groups.

Type Model
ESCI-English ESCI-Spanish ESCI-Japanese

R@10 R@100 NDCG@100 R@10 R@100 NDCG@100 R@10 R@100 NDCG@100

Sparse BM25(2009) 0.28 1.41 1.07 0.71 2.21 1.91 0.23 1.29 1.11

Dense

DPR(2020c) 5.43 23.79 10.95 4.61 21.86 10.42 6.02 21.36 11.12
sentence-T5(2022a) 6.35 27.85 11.64 - - - - - -
multilingual MPNet(2019) 2.99 12.24 5.32 2.72 11.62 5.71 1.21 4.22 2.30

Generative

DSInaive(2022a) 0.49 1.74 1.36 0.97 4.63 3.08 0.42 2.36 1.59
DSIsemantic(2022a) 1.88 7.21 3.94 7.26 26.40 15.64 5.99 22.30 13.33
NCI(2022) 4.22 15.39 8.40 7.66 29.02 16.64 6.20 22.84 14.00
vanilla RQ-VAE(2023) 5.19 19.52 9.94 8.03 29.50 17.21 6.24 23.01 14.09
LTRGR(2024) 2.68 10.55 8.67 7.85 28.56 17.88 6.38 23.31 14.45
RIPOR(2024) 5.49 22.17 10.82 8.73 31.28 18.20 6.43 23.80 14.47

MERGE 6.73 25.02 12.58 9.86 32.39 18.79 6.67 25.92 15.42

Table 2: Ablation Study on ESCI-English dataset.

Model R@10 R@100 NDCG@100

MERGE 6.73 25.02 12.58

w/o Lalign 6.22 22.91 11.51
w/o Louter 6.14 20.94 10.81
w/o Linner 6.23 23.52 11.69
w/o wt 6.34 23.62 11.86

vanilla RQ-VAE 5.19 19.52 9.94
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Figure 2: Parameter analysis on λ1 and λ2.

4.4 Parameter Analysis (RQ3)

To investigate the impact of different weights of
losses, we conducted experiments with varying
values of λ1 and λ2. The value of λ1 deter-
mines the weight of the multi-relevance query-
document alignment, while λ2 controls the multi-
level relevance learning among documents. Fig-
ure 2 presents the NDCG@100 results on the ESCI-
English dataset for different combinations of λ1

and λ2. As shown in Figure 2(a), as the weight of
the multi-relevance query-document alignment de-
creases, the NDCG@100 score initially increases

and then decreases. This is because an excessively
large λ1 forces the representations of query-related
documents to cluster too closely, reducing the dis-
criminability among documents. Conversely, an
overly small λ1 leads to insufficient alignment, re-
sulting in performance degradation. Figure 2(b)
illustrates the results under different levels of rel-
evance learning, which also exhibit an initial in-
crease followed by a decrease. We hypothesize
that this trend arises because the magnitude of λ2

determines the degree to which document repre-
sentations are pulled closer or pushed apart, thus
leading to the observed pattern.

4.5 Analysis of Generated DocIDs (RQ4)
To further validate the quality of the DocIDs gen-
erated by MERGE, we conduct a statistical anal-
ysis to count the number of unique ID tokens as-
signed by each layer of RQ for the same query.
Table 3 shows the average Unique ID Count per
layer across all queries. A smaller value indicates
a higher overlap of relevant DocIDs for the same
query. As can be seen from the table, the DocIDs
generated by MERGE allocate fewer and more con-
centrated ID tokens in the first three layers, while
the vanilla RQ-VAE exhibits a more dispersed dis-
tribution. In the final layer, the number of ID tokens
allocated by MERGE is similar to that of vanilla
RQ-VAE, which further demonstrates the goal of
our proposed DocID: an ID that incorporates better
hierarchical semantic information while maintain-
ing independence.

To further explore the distribution across differ-
ent ID layers, we illustrates the connections among
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Figure 3: Visualization of different documents under three queries: 1) query #1: “car wash cannon”. 2) query #2:
“sasquatch cookie cutter”. 3) query #3: “logitech mx master 3”.

Table 3: Average unique ID count per layer for all
queries.

Model Layer1 Layer2 Layer3 Layer4

MERGE 4.65 12.00 13.85 15.39
vanilla RQ-VAE 6.55 12.90 14.54 15.56

different layers of DocIDs in Figure 4. Red nodes
denote different queries, while other colors rep-
resent the first through fourth layers of tokens in
DocIDs, with each layer comprising 256 tokens.
The node size signifies the degree of connectiv-
ity, and the edge thickness indicates the extent of
overlapping edges. It is evident that MERGE more
effectively achieves the objective that relevant doc-
uments have overlap distributions at the lower lev-
els of DocIDs (e.g., layer 1 and 2), demonstrating
a proclivity to assign identical IDs. Conversely,
the distributions at the higher layers of DocIDs is
similar to the vanilla RQ-VAE, exhibiting a more
dispersed allocation. This suggests that MERGE
can utilize queries as bridges to effectively cap-
ture document hierarchies, generating semantically
meaningful and distinct DocIDs.

Besides, we analyze three distinct queries, vi-
sualizing their document representations encoded
by DNN encoder of RQ-VAE via PCA (Figure 3).
The visualization indicates that the vanilla RQ-VAE
results exhibit some overlap in the document rep-
resentations associated with these three queries.
Notably, some results for query #2 (depicted by
circles) in the vanilla RQ-VAE are positioned near
query #1, despite the two queries being largely
unrelated. In contrast, our model, MERGE, demon-
strates a superior ability to distinguish these doc-
uments, as emphasized by the square dashed box.
As indicated by the rectangular dashed box, our

MERGE vanilla RQ-VAE
Layer 4

Layer 3

Layer 2

Layer 1

query

Figure 4: Layer distribution of DocIDs to six queries.

model effectively draws numerous highly relevant
documents (shown in orange) closer to the query
(depicted in red), thus demonstrating the effective-
ness of our carefully designed multi-level relevance
learning approach. For additional analysis of Do-
cIDs, see Appendix D.

5 Conclusion

This paper explores opportunities to enhance GR
by more comprehensively aligning DocID learn-
ing with the multi-level relevance observed be-
tween queries and documents. To address this, we
propose Multi-lEvel Relevance document identi-
fier learning for Generative rEtrieval (MERGE),
a novel approach that leverages multi-level rele-
vance learning to generate high-quality DocIDs.
MERGE learns effective DocIDs by aligning docu-
ment representations with queries and incorporat-
ing binary-level and multi-level relevance. We de-
sign relevance learning modules, including query-
document alignment, outer-level contrastive learn-
ing, and inner-level multi-level relevance learning,
and introduce positional weighting to emphasize
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earlier tokens. We conduct extensive experiments
to demonstrate the effectiveness of MERGE. Fi-
nally, we performed extensive analysis to verify the
quality of the DocIDs generated by MERGE.

6 Limitations

Although MERGE demonstrates superior capa-
bility in capturing multi-level relevance between
queries and documents, it still faces limitations
inherent to generative retrieval (GR) approaches.
GR, which relies on generative language models,
remains substantially less efficient compared to tra-
ditional dense retrieval (DR). Furthermore, while
it shows advantages in generating more relevant
documents, the framework exhibits inferior docu-
ment coverage performance relative to DR. This is
evident in the RECALL@100 metric on the ESCI-
English dataset, where MERGE underperforms
compared to DR baselines.
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A Details of Datasets

In the process of selecting a dataset, we require
a publicly available dataset with multi-level rel-
evance annotations. The commonly used eval-
uation datasets for existing GR models, such
as NQ (Kwiatkowski et al., 2019) and MS-
MARCO (Nguyen et al., 2016) (NQ is an open-
domain question-answering dataset released by
Google, and MSMARCO is a dataset released
by Microsoft), are binary-level relevance datasets.
Moreover, the number of documents relevant to
each query is almost always one, making them
unsuitable for our multi-level relevance learning.
Therefore, we did not choose these two datasets for
evaluation. To validate the effectiveness of multi-
level relevance learning, we considered search
datasets from the e-commerce domain, where re-
trieval often needs to account for different lev-
els of relevance. Consequently, we employed the
ESCI dataset0 (Reddy et al., 2022), an Amazon
e-commerce product search dataset.

0https://github.com/amazon-science/esci-data
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The ESCI dataset is a comprehensive dataset de-
signed to advance research in the semantic match-
ing of queries and products. It includes challenging
search queries and provides up to 40 potentially
relevant results for each query, along with ESCI rel-
evance judgments (Exact, Substitute, Complement,
Irrelevant) that indicate the relevance of the product
to the query. Each query-product pair is enriched
with additional information. The dataset is mul-
tilingual, featuring queries in English, Japanese,
and Spanish. Each example within the dataset
contains the following fields: example_id, query,
query_id, product_id, product_locale, esci_label,
small_version, large_version, split, product_title,
product_description, product_bullet_point, prod-
uct_brand, product_color, and source. The primary
aim of releasing this dataset is to establish a bench-
mark for developing new ranking strategies and
simultaneously identifying interesting result cate-
gories, such as substitutes, to enhance the customer
experience during product searches. One of the key
tasks explored in the literature using this dataset is
Query-Product Ranking, where the objective is to
rank the products such that relevant products are
positioned above non-relevant ones. Table 4 gives
an example from ESCI dataset. From the given
example, it is evident that the query encompasses
both positive product conditions and negative con-
straints. In this query, the text in red font represents
the size, the text in blue font indicates the color, the
text in orange font denotes the name of items, the
text in green font signifies certain negation condi-
tions, and the final text in black font describes some
functional attributes. Items rated as E (Exact) opti-
mally fulfill the query’s requirements. Conversely,
items rated as S (Substitute) and C (Complement),
while partially matching the query, fail to meet the
criteria set by the negative conditions.

Due to the absence of some documents from the
training set in the test set, the DocIDs in the test set
might not have been learned. Therefore, we filtered
out the untrained documents from the test set. We
choose the small version of ESCI for evaluation.
Table 5 presents the statistics of ESCI dataset.

B Details of Baselines

Here, we will provide detailed information about
baselines:

• BM25 (Robertson et al., 2009): BM25 is a
classic sparse retrieval model that emphasizes
term-document matching by leveraging term

frequency and inverse document frequency for
effective information retrieval.

• DPR (Karpukhin et al., 2020c): DPR em-
ploys neural embeddings to facilitate semantic
matching, enhancing retrieval effectiveness by
capturing deeper contextual relationships be-
tween queries and documents.

• Sentence-T5 (Ni et al., 2022a): Sentence-T5
advances dense retrieval by generating high-
quality sentence embeddings that improve se-
mantic understanding.

• Multilingual MPNet (Song et al., 2020):
Multilingual MPNet extends dense retrieval
capabilities to multiple languages, utilizing
transformer-based embeddings to capture se-
mantic nuances across diverse linguistic con-
texts.

• DSInaive (Tay et al., 2022a): DSInaive employs
numerical IDs as DocIDs and performs end-
to-end retrieval using transformers.

• DSIsemantic (Tay et al., 2022a): DSIsemantic
utilizes a hierarchical k-means approach to
cluster document representations, combining
category indices from each layer to form the
DocID.

• vanilla RQ-VAE (Rajput et al., 2023): The
vanilla RQ-VAE generates DocIDs using the
RQ-VAE method without incorporating any
additional modules. Subsequently, it trains ei-
ther the T5 or mT5 model to perform retrieval
tasks.

• NCI (Wang et al., 2022): NCI leverages
neural architectures to improve document re-
trieval effectiveness.

• LTRGR (Li et al., 2024): LTRGR utilizes
an auxiliary ranking task to optimize already
trained GR models.

• RIPOR (Zeng et al., 2024): RIPOR empha-
sizes scalable generative retrieval frameworks,
providing robust solutions for handling large-
scale retrieval tasks efficiently.

C Implementation Details

For all baseline models, since they have not been
evaluated on the ESCI dataset (Reddy et al., 2022),
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Table 4: Example of ESCI-English dataset.

Query Relevance Label Product Title

1-1/2 inch black sink drain without
overflow -pop

E(Exact) Pop Up Sink Drain Stopper
Without Overflow, Bathroom

Faucet Lavatory Vessel Pop Up,
Black

1-1/2 inch black sink drain without
overflow -pop

S(Substitute) KES Bathroom Sink Drain with
Strainer Basket Hair Catcher Anti
Clog Pop Up Drain Stopper Vanity
Vessel Sink with Overflow, Matte

Black S2013A-BK

1-1/2 inch black sink drain without
overflow -pop

C(Complement) Universal Bathtub Stopper for
Shower and Jacuzzi Drain Stopper,

Kitchen Silicone Sink Stopper
(Black1)

1-1/2 inch black sink drain without
overflow -pop

I(Irrelevant) Royal Imports 5lb Small
Decorative Ornamental River

Pebbles Rocks for Fresh Water
Fish Animal Plant Aquariums,
Landscaping, Home Decor etc.

with Netted Bag, Small - Natural

Table 5: Statistics of the Dataset

Train Test

Dataset #Documents # Queries # Q-D Pairs # Queries # Q-D Pairs

ESCI-English (US) 482,105 20,888 348,537 6,803 37,220
ESCI-Spanish (ES) 167,761 5,632 126,419 1,743 14,763
ESCI-Japanese (JP) 233,850 7,284 174,640 2,210 18,482

which contains multi-level relevance labels, we
reproduce their results on this dataset using the
official open-source implementations. While RI-
POR, NCI, and LTRGR all employ doc2query-
generated pseudo queries (PQs, a technique proven
to enhance performance) (Tay et al., 2022b), our
method operates without relying on this component.
To ensure fairness: For LTRGR — which explic-
itly states model-agnostic design — we implement
their framework on our DSI baseline excluding
PQs. For RIPOR and NCI retain their original PQ
implementations due to deep architectural depen-
dencies. All these models are trained based on
T5-base (Raffel et al., 2020) or mT5-base (Xue
et al., 2021). When reproducing the Dense retrieval
model, the candidate set for each query consists of
all the documents, which is closer to practical appli-

cation scenarios as it provides a comprehensive as-
sessment of the model’s performance in real-world
conditions. For English-language datasets, we em-
ploy a pre-trained T5-base (Raffel et al., 2020)
model as the backbone for generative retrieval. For
datasets in other languages, we use mT5-base (Xue
et al., 2021) as the backbone. During the DocID
learning stage, we leverage T5 or mT5 to extract
semantic representations of documents. Regarding
the Codebook configuration, we define the DocID
length as 4, requiring four codebooks, each with a
size of 256. In the training of RQ-VAE, we random
sample one relevant document for each document
in a batch for relevance learning. we set the hyper-
parameters as follows: the weight α of the commit-
ment loss Lrq is set to 1.0; in Lrel, the weights
βl balancing the inner- and outer-level losses are

10078



(a) First Layer ID:<a_253> (b) Second Layer ID:<a_253><b_36> (c) Second Layer ID:<a_253><b_240>

Figure 5: Case studies of Word Clouds on the generative DocIDs.

Table 6: Comparison of generated DocIDs for the same queries with different levels of relevance using MERGE and
vanilla RQ-VAE.

Query Model Relevance Label Product ID Generated IDs

size 16 white jeans for girls

MERGE

E
B009NGM9PG <a_220><b_102><c_227><d_33>
B00502KEGS <a_220><b_102><c_227><d_245>

S
B07LFTL35F <a_220><b_102><c_191><d_31>

B076MNHVVT <a_220><b_102><c_145><d_215>
B07F1BTMQD <a_220><b_102><c_106><d_42>

vanilla RQ-VAE

E
B009NGM9PG <a_22><b_71><c_97><d_125>
B00502KEGS <a_22><b_71><c_186><d_191>

S
B07LFTL35F <a_87><b_13><c_179><d_110>

B076MNHVVT <a_22><b_15><c_180><d_70>
B07F1BTMQD <a_87><b_97><c_92><d_7>

set as β0 = 1.0, β1 = 0.75, β2 = 0.5, β3 = 0.25;
the weight λ1 of the alignment loss Lalign is set to
0.01; the weight of Lrel is set to 0.001; the tem-
perature τ in Louter is set to 0.7; and the margin
γ in Linner is set to 0.2. RQ-VAE is trained for
300 epochs with a batch size of 2048 using the
AdamW optimizer (Loshchilov, 2017). During the
model training phase, we use a learning rate of
5e-4 and train for 100 epochs. All experiments
are conducted on a computing platform equipped
with eight A100 80G GPUs. We employed AI ex-
clusively for grammatical refinement and sentence
polishing.

D Other Analysis of DocIDs

D.1 Word clouds of product titles at different
ID levels

We provide several case studies to further illus-
trate the DocIDs. Figure 5 presents word clouds
of product titles at different ID levels. Figure 5(a)
shows the word cloud generated from product ti-

tles with the first-layer ID <a_253>, which pri-
marily represents protective cases for electronic
products of various brands, including Apple and
Samsung. Figures 5(b) and 5(c) display the word
clouds of product titles corresponding to two sub-
IDs under <a_253>. It can be observed that
<a_253><b_36> mostly represents cases for tablets,
while <a_253><b_240> focuses on cases for ear-
phones, such as airpods. This demonstrates that our
model can effectively learn fine-grained category
information of products and assign appropriate Do-
cIDs.

D.2 DocIDs comparison between MERGE
and vanilla RQ-VAE

We present several cases to demonstrate the DocIDs
generated by the MERGE model and the vanilla
RQ-VAE. Table 6 shows the DocIDs with different
relevance levels encoded by the two models under
the same query. The red font indicates the common
prefix of DocIDs generated by the MERGE model,
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Table 7: Comparison of generated DocIDs for two similar queries with different levels of relevance using MERGE
and vanilla RQ-VAE.

Model Query Relevance Label Product ID Generated IDs

MERGE

black pride blackout curtains
E B07TB5DQYH <a_41><b_250><c_169><d_76>
S B08DKNMJ7Z <a_41><b_116><c_9><d_246>

bathroom curtains window pink
E B07XDFYSJG <a_41><b_146><c_185><d_128>
S B078PRT27T <a_41><b_160><c_148><d_135>

vanilla RQ-VAE

black pride blackout curtains
E B07TB5DQYH <a_215><b_237><c_64><d_231>
S B08DKNMJ7Z <a_168><b_255><c_170><d_6>

bathroom curtains window pink
E B07XDFYSJG <a_144><b_58><c_140><d_155>
S B078PRT27T <a_104><b_220><c_40><d_96>

while the blue font indicates the common prefix
for vanilla RQ-VAE. It can be observed that the
DocIDs of relevant documents generated by the
MERGE model have a longer common prefix and
can distinguish documents of different relevance
levels. In contrast, the results from vanilla RQ-
VAE are less effective, as relevant documents may
not be assigned the same first-digit ID.

Table 7 presents the results of documents under
two similar queries. Both queries are related to
"curtain." From these, we can also observe that
the query acts as an effective bridge, as the results
generated by MERGE have a common first-digit
ID prefix, distinguishing different documents only
at the second digit. In contrast, vanilla RQ-VAE
assigns different and non-overlapping DocIDs to
each item.
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