
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9999–10020
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

ReflectionCoder: Learning from Reflection Sequence for
Enhanced One-off Code Generation

Houxing Ren1 Mingjie Zhan2* Zhongyuan Wu2 Aojun Zhou1

Junting Pan1,3 Hongsheng Li1,3,4*

1CUHK MMLab 2SenseTime Research 3CPII under InnoHK 4Shanghai AI Laboratory
renhouxing@gmail.com zhanmingjie@sensetime.com hsli@ee.cuhk.edu.hk

Abstract

Code generation plays a crucial role in vari-
ous tasks, such as code auto-completion and
mathematical reasoning. Previous work has
proposed numerous methods to enhance code
generation performance, including integrating
feedback from the compiler. Inspired by this,
we present ReflectionCoder, a novel approach
that effectively leverages reflection sequences
constructed by integrating compiler feedback
to improve one-off code generation perfor-
mance. Furthermore, we propose reflection
self-distillation and dynamically masked distil-
lation to effectively utilize these reflection se-
quences. Extensive experiments on three bench-
marks, i.e., HumanEval (+), MBPP (+), and
MultiPL-E, demonstrate that models fine-tuned
with our method achieve state-of-the-art perfor-
mance. Beyond the code domain, we believe
this approach can benefit other domains that fo-
cus on final results and require long reasoning
paths. Code and data are available at https://
github.com/SenseLLM/ReflectionCoder.

1 Introduction

Code generation aims to automatically produce
code based on natural language description, signifi-
cantly saving developers time and reducing human
error. In the past few decades, a lot of research
has been conducted for code modeling, such as
CodeBert (Feng et al., 2020), CodeT5 (Wang et al.,
2021). Recently, Large Language Models (LLMs)
have shown impressive modeling ability on nat-
ural language that allows them to perform vari-
ous difficult tasks (OpenAI, 2023). By training on
code domain datasets, LLMs such as CodeGen (Ni-
jkamp et al., 2023), StarCoder (Li et al., 2023),
Code Llama (Rozière et al., 2023), and DeepSeek-
Coder (Guo et al., 2024), which can accurately
understand user intents and generate code, have
shown better performance on code-related tasks.

*Corresponding author.

Leveraging this powerful capability, various works
empower LLMs in complex tasks including solv-
ing mathematics problems and logic reasoning by
integrating code and its execution result as Chain-
of-Thoughts (CoTs), such as PAL (Gao et al., 2023)
and PoT (Chen et al., 2022).

Since code generation is important in various
code-related tasks and many reasoning tasks, many
previous studies focus on achieving better code
generation performance. Integrating feedback from
the compiler is an intuitive way to help the model
reflect on previous mistakes and generate better
code. For instance, Self-Debug (Chen et al., 2023)
suggested that code LLMs be instructed to gen-
erate code, execute it, and subsequently improve
the code quality based on its execution results.
Additionally, Print-Debug (Hu et al., 2024) pro-
posed to insert print statements to generate more
detailed logs for debugging purposes. Furthermore,
OpenCodeInterpreter (Zheng et al., 2024) incorpo-
rated simulated human feedback into the interac-
tion. These studies have demonstrated that incor-
porating reflection sequences of code generation,
execution, and analysis as CoTs can enhance the
performance of code LLMs.

Inspired by these works, we propose to leverage
the reflection sequences to guide the fine-tuning
of code LLMs. The proven effectiveness of re-
flection sequences as CoTs in enhancing the code
generation performance demonstrates their inher-
ent knowledge, which can guide model fine-tuning
and result in better one-off code generation per-
formance. However, at least two challenges must
be considered when using the reflection sequences
to guide the model fine-tuning. Firstly, the reflec-
tion sequences differ from the vanilla one-off code
generation. Most of the codes in the reflection
sequences are partly modified based on previous
codes, while all codes are completed in the infer-
ence stage. The gap between the training and in-
ference stages results in relatively low utilization

9999

https://github.com/SenseLLM/ReflectionCoder
https://github.com/SenseLLM/ReflectionCoder

Write a Python function that solves the specified problem

with test cases using assert statements and execute it …

Reflection Instruction

Reflection Sequence

Instruction

def multiply_digits(n): …

Final Code

Execute an algorithm to generate …

def multiply_digits(n): ….

assert multiply_digits(999) == 9 * 9 * 9

Code Block

AssertionError Traceback (most recent call last) …

Execution Block

This indicates an issue with the function …

Analysis Block

def multiply_digits(n): …

assert multiply_digits(0) == 0

Generation Block

Test passed

Execution Block

The modified code has passed all the test cases …

Analysis Block

Figure 1: A sample of reflection sequence data contain-
ing four components: Reflection Instruction, Reflection
Sequences, Instruction, and Final code.

of the reflection sequence. Secondly, most of the
codes in reflection sequence are generated based on
previous executions and analysis, whereas a one-
off generation relies solely on a single instruction.
This disparity makes it challenging to transition
between such different prompts effectively.

Based on these concerns, we proposed Reflec-
tionCoder, a novel method to effectively lever-
age reflection sequence to perform better in one-
off code generation tasks. To bridge the gap be-
tween the reflection sequences and the vanilla code
generation, we propose reflection self-distillation.
Specifically, we carefully design a two-stage
prompt to obtain high-quality instruction answer
pairs with the same format as one-off generations.
We first employ an LLM to generate a reflection se-
quence for an instruction with a compiler, and then
task it to re-answer the instruction based on this se-
quence. After that, as shown in Figure 1, we obtain
two rounds of dialogue as [Reflection Instruction,
Reflection Sequence, Instruction, Final code]. The
second round dialogue is the same as the one-off

generation but with higher quality, which can play
the role of a teacher sample distilling knowledge
into one-off code generation. To effectively dis-
till knowledge from reflection sequence to one-off
generation, we design a novel distillation method,
namely dynamically masked distillation. Specifi-
cally, with a particular LLM, the teacher input is
the entire two-round dialogue, while the student
input is a partly masked first-round dialogue along
with an intact second-round dialogue. During the
training process, we gradually increase the mask-
ing rate to progressively enhance the difficulty of
generating the final code. In this way, LLM can
be distilled to generate the final code from easy to
difficult and achieve better performance.

Our contributions are summarized as follows:

• We propose to leverage reflection sequences
to improve the one-off code generation perfor-
mance of code LLMs, which can be generated
by LLMs and thus save annotation costs.

• On top of the idea, we propose two techniques,
namely reflection self-distillation and dynami-
cally masked distillation, which can effectively
utilize the reflection sequence to improve the
one-off code generation performance.

• Extensive experiments on HumanEval (+),
MBPP (+), MultiPl-E, APPs, LiveCodeBench,
ClassEval, and BigCodeBench demonstrate the
effectiveness of the proposed method on one-
off code generation. Notably, ReflectionCoder-
DeepSeek-Coder-33B reaches 82.9 (76.8) on
HumanEval (+) and 84.1 (72.0) on MBPP (+),
which is an on-par performance of Claude-3-
opus and surpasses early GPT-4.

2 Related Work

2.1 Large Language Models for Code
Large Language Models (Ouyang et al., 2022;
OpenAI, 2023; Anil et al., 2023b; Touvron et al.,
2023a,b; Penedo et al., 2023; Yang et al., 2023; Bai
et al., 2023; Jiang et al., 2023, 2024; Anil et al.,
2023a; Anthropic, 2024) have proven highly effec-
tive in general natural language processing (NLP)
tasks. For a specific domain such as code-related
tasks (Chen et al., 2021; Austin et al., 2021; Bavar-
ian et al., 2022; Muennighoff et al., 2023), train-
ing on large specific domain datasets can greatly
improve their efficacy. Recent studies have intro-
duced several LLMs for the code domain. Ope-
nAI introduced Codex (Chen et al., 2021), and

10000

Google introduced PaLM-Coder (Chowdhery et al.,
2023). However, these models are closed-source,
and we can only access them via API without ac-
cess to their parameters. There are also several
open-source LLMs for the code domain, such as
CodeGen (Nijkamp et al., 2023), Incoder (Fried
et al., 2023), SantaCoder (Allal et al., 2023), Star-
Coder (Li et al., 2023), StarCoder-2 (Lozhkov
et al., 2024), CodeGeeX (Zheng et al., 2023),
Code Llama (Rozière et al., 2023), and DeepSeek-
Coder (Guo et al., 2024). In addition to vanilla code
snippets, modification content of code with com-
mit messages (Muennighoff et al., 2023) and code
structure (Gong et al., 2024) are also proposed to be
the pre-train corpus. After instruction tuning, some
of these open-source models have outperformed
several closed-source models (Luo et al., 2023).

2.2 Instruction Tuning for Code

The primary objective of instruction tuning is train-
ing LLMs to align with human instructions by us-
ing a large corpus of human instructions together
with corresponding responses (Sanh et al., 2022;
Wei et al., 2022; Ouyang et al., 2022; Longpre
et al., 2023; Zhang et al., 2023). Fine-tuning upon
this method, LLMs can directly follow user in-
structions without extra demonstration and improve
their generalization capacity. Its great value is also
demonstrated in code-related applications. For ex-
ample, Code Alpaca (Chaudhary, 2023) applied
SELF-INSTRUCT (Wei et al., 2022) to fine-tune
LLMs with ChatGPT-generated instructions. Wiz-
ardCoder (Luo et al., 2023) proposed Code Evol-
Instruct, which evolves Code Alpaca data using the
ChatGPT to generate more complex and diverse
datasets. PanGu-Coder2 (Shen et al., 2023) pro-
posed Rank Responses to align Test&Teacher Feed-
back framework, which uses ranking responses as
feedback instead of the absolute value of a reward
model. In addition to starting with instructions, a
lot of work starts with existing source code. For
example, MagiCoder (Wei et al., 2023), Wave-
Coder (Yu et al., 2023), and InverseCoder (Wu
et al., 2024) proposed some methods to make full
use of source code.

2.3 Iterative Generation and Refinement

Iterative refinement approaches are often taken to
improve the generation quality. Recently, Self-
Refine (Madaan et al., 2023) and Reflexion (Shinn
et al., 2023) demonstrated that LLMs can reflect on
previous generations, generate feedback, and give

better generations based on feedback. In the code
domain, several tools can provide feedback for gen-
erated code, such as compiler, and other static tools.
Integrating feedback from these tools can help the
LLMs better reflect on themselves and generate
better codes. For example, Self-Debugging (Chen
et al., 2023) and Print-Debugging (Hu et al., 2024)
proposed to integrate the execution result of the
code as a feedback message to obtain better per-
formance. StepCoder (Dou et al., 2024) and
OpenCodeInterpreter (Zheng et al., 2024) involved
executing and iteratively refining code as multi-
turn interactions into instruction tuning, improving
the model’s debugging ability. Concurrently, Au-
toCoder (Lei et al., 2024) employed multi-turn in-
teraction to obtain high-quality instruction data and
then improve the one-off generation performance.
In contrast, our method method introduces the re-
flection sequence into the training stage instead of
just using it to filter the data.

3 Methodology

In this section, we present the methodological de-
tails of the proposed ReflectionCoder. We be-
gin with a vanilla distillation, followed by a care-
fully designed method that comprehensively ex-
tracts knowledge from the reflection sequences and
guides the model training.

3.1 Reflection Self-Distillation

Here, we present how to utilize the reflection se-
quences to enhance the fine-tuning of code LLMs.
As presented in Section 1, a piece of reflection se-
quence data includes four components: [Reflection
Instruction, Reflection Sequence, Instruction, Fi-
nal code], where the reflection sequence is divided
into three types of blocks, namely code block, ex-
ecution block, and analysis block. Their contents
are the generated executable code, the execution
results, and the code summary or error analysis,
respectively.

We construct two input samples for each re-
flection sequence to perform the reflection self-
distillation. The teacher sample is the entire re-
flection sequence, and the student sample consists
of [Instruction, Final Code], which is the same as
vanilla one-off code generation instruction tuning
data. The key distinction between them is that the
final code of the teacher sample can be generated
based on the reflection sequences with low perplex-
ity, while the student sample can only be generated

10001

Distillation

Raw

reflection sequence data

Teacher Sample Student Sample

Reflection Instruction Reflection Sequence Re-answer Instruction All Mask Dynamic Mask

Dynamically masked

reflection sequence data

Reflection Coder

Figure 2: Overview of the proposed dynamically masked distillation.

according to the instruction. The vanilla distillation
loss can be formulated as

Ls
d = KL (p(tc|tri, trs, ti) ∥ p(tc|ti)) , (1)

where tc denotes tokens of the final code, tri de-
notes tokens of the reflection instruction, trs de-
notes tokens of the reflection sequence, and ti de-
notes tokens of the instruction.

This approach enables the distillation of knowl-
edge from the sequence into a one-off generation.
The absolute position of the tokens in [Instruction,
Final Code] differs between the teacher sample and
the student sample, while [Reflection Instruction,
Reflection Sequence] exists in the teacher sample
but not in the student sample. However, the rela-
tive positions between the two tokens in [Instruc-
tion, Final Code] are the same between the teacher
sample and the student sample, which indicates
that distillation is effective for models utilizing Ro-
tary Position Embedding (Su et al., 2024), such as
Llama (Touvron et al., 2023b).

3.2 Dynamically Masked Distillation

Although vanilla distillation can distill knowledge
from reflection sequence to enhance the one-off
code generation, it could be hindered by the neg-
ative impact of contextual differences. Previous
studies on distillation show that a student model
distilled from a teacher with more parameters per-
forms worse than the one distilled from a smaller
teacher with a smaller capacity (Mirzadeh et al.,
2020). This finding suggests that the difference
between teacher and student should not be too
large. However, a significant gap exists between
our teacher-student sample pair, as the teacher sam-
ple contains the entire reflection sequence while
the student sample has no access to the reflection

procedure. This discrepancy could lead to the poor
performance of vanilla distillation.

Inspired by Curriculum Learning (Bengio et al.,
2009), we carefully design a dynamically masked
distillation method. The overall procedure is pre-
sented in Figure 2. The initial student sample is
the same as the teacher sample. During the train-
ing process, we mask all tokens of the “Reflection
Instruction” and a portion of tokens of the “Reflec-
tion Sequence”. The number of masked tokens is
gradually increased to progressively enhance the
difficulty of generating the final code, thereby en-
abling the model to effectively learn the knowledge
encoded in the reflection sequence. Then the distil-
lation loss can be formulated as

Ld = KL (p(tc|tri, trs, ti) ∥ p(tc|tprs, ti)) , (2)

where tprs denoted tokens partly masked reflection
instruction.

As shown in Figure 3, we design three dynamic
masking strategies, namely random mask, sequen-
tial mask, and block mask. All of these strategies
adjust dynamically with the mask rate, a concept re-
lated to the training process, which can be defined
as “current step/max step”. The masking details
are illustrated below:

(1) Random mask selects blocks to mask based on
the mask rate randomly. This is an intuitive
strategy used by many previous studies in the
pre-training stage such as BERT (Devlin et al.,
2019) and T5 (Raffel et al., 2020).

(2) Sequential mask selects the leftmost blocks to
mask and gradually expands the masked scope
according to the mask rate. The underlying
principle of this strategy is that later tokens are
usually more influential in generating the final

10002

C E A C E A C E A C E A

Random Mask Sequential Mask Block Mask

C E A C E A

Training

Progress

Prevent

from

Attending

Figure 3: Overview of the proposed dynamic masking strategies. Here, a cell denotes a block, ‘C’ denotes the code
block, ‘E’ denotes the execution block, and ‘A’ denotes the analysis block.

code since code generated after analysis tends to
be more accurate than those generated initially.

(3) Block mask selects some blocks according to
mask rates. Specifically, when the mask rate
exceeds 0, all execution blocks are masked.
When the mask rate exceeds 1/3, all generation
blocks are additionally masked. When the mask
rate exceeds 2/3, all analysis blocks are further
masked. The core idea of this strategy is that the
effectiveness of tokens is block-dependent. For
instance, tokens in the execution block typically
have the lowest impact.

With these dynamically masked strategies, the
learning difficulty gradually increases, contributing
to better final one-off code generation performance.
Similar to reflection self-distillation, the absolute
position of tokens in the one-off code generation
round differs between the training stage and the in-
ference stage, while “Reflection Sequence” exists
in the training stage but not in the inference stage.
However, the relative positions of the two tokens in
[Instruction, Final Code] remain the same between
the training stage and the inference stage, which
indicates that there is no gap between the training
stage and the inference stage for models utilizing
Rotary Position Embedding (Su et al., 2024).

Training loss. We employ both the next token
prediction loss and distillation loss to train the
model. For the teacher sample, we perform the
next token prediction task on “Final Code” and the
text blocks and the code blocks of “Reflection Se-
quence”, because both the queries of the user and
the execution results do not need to be generated
in the inference stage. For the student sample, we
only perform the next token prediction task on “Fi-
nal Code”. The final loss consists of the next token
prediction loss of the teacher and student samples,
and the distillation loss between the teacher and

student sample.

4 Experiments

4.1 Experimental Setup

Training Dataset. Our training dataset includes
a vanilla code instruction tuning dataset, where
each sample contains an instruction and corre-
sponding code answer and the proposed reflection
sequence dataset. For the code instruction tun-
ing dataset, we use instruction answer pairs from
an open-source code instruction tuning dataset:
CodeFeedback-Filtered-Instruction1. For the reflec-
tion sequence dataset, we first randomly select 10k
instructions with Python code in the correspond-
ing answer to conduct two rounds of dialogue with
GPT-4 Code Interpreter2, obtaining the reflection
sequence dataset. Subsequently, we use the 10k
reflection sequence data and 156k code instruction
tuning data to fine-tune DeepSeek-Coder 33B (Guo
et al., 2024). Using this fine-tuned model, we gen-
erate additional 12k reflection sequence data. The
detailed data construction process is presented in
Appendix A. Finally, we fine-tune the target model
using 22k reflection sequence data and 156k code
instruction tuning data.

Test Dataset. We evaluate our method on Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021), two of the most widely used bench-
marks for code generation. Each task in these
benchmarks includes a task description as the
prompt and a handful of test cases to check the
correctness of the LLM-generated code. Consider-
ing the insufficiency of test cases in these bench-
marks, Liu et al. (2023) proposed HumanEval+
and MBPP+, which contain 80×/35× more tests.

1https://huggingface.co/datasets/m-a-p/
CodeFeedback-Filtered-Instruction

2https://platform.openai.com/docs/assistants/
tools/code-interpreter

10003

https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction
https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction
https://platform.openai.com/docs/assistants/tools/code-interpreter
https://platform.openai.com/docs/assistants/tools/code-interpreter

Method Base
Benchmark

HumanEval HumanEval+ MBPP MBPP+

Closed-Source Models

O1-Preview (Sept 2024) (Jaech et al., 2024) - 96.3 89.0 95.5 80.2
GPT-4-Turbo (April 2024) (OpenAI, 2023) - 90.2 86.6 - -
GPT-4-Turbo (Nov 2023) (OpenAI, 2023) - 88.4 81.7 85.7 73.3
GPT-3.5-Turbo (Nov 2023) (Ouyang et al., 2022) - 76.8 70.7 82.5 69.7
Claude-3-opus (Mar 2024) (Anthropic, 2024) - 82.9 76.8 89.4 73.3
Claude-3-sonnet (Mar 2024) (Anthropic, 2024) - 70.7 62.8 83.6 69.3
Mistral Large (Mar 2024) (Jiang et al., 2023) - 70.1 62.8 72.8 59.5
Gemini Pro 1.0 (Anil et al., 2023a) - 63.4 55.5 75.4 61.4

Open-Source Models

WizardCoder (Luo et al., 2023) CL-7B 48.2 40.9 58.5 49.5
MagiCoder-S (Wei et al., 2023) CL-7B 70.7 66.5 70.6 60.1
OpenCodeInterpreter (Zheng et al., 2024) CL-7B 72.6 67.7 66.4 55.4
ReflectionCoder CL-7B 75.0 68.9 72.2 61.4

WizardCoder (Luo et al., 2023) CL-34B 73.2 64.6 75.1 63.2
OpenCodeInterpreter (Zheng et al., 2024) CL-34B 78.0 72.6 73.4 61.4
Speechless (Speechless, 2023) CL-34B 77.4 72.0 73.8 61.4
ReflectionCoder CL-34B 78.0 73.8 80.2 67.5

DeepSeek-Coder-Instruct (Guo et al., 2024) DS-6.7B 73.8 70.1 74.9 65.6
MagiCoder-S (Wei et al., 2023) DS-6.7B 76.8 70.7 69.4 69.0
OpenCodeInterpreter (Zheng et al., 2024) DS-6.7B 77.4 73.8 76.5 66.4
Artigenz-Coder (Artigenz-Coder, 2024) DS-6.7B 75.6 72.6 80.7 69.6
ReflectionCoder DS-6.7B 80.5 74.4 81.5 69.6

DeepSeek-Coder-Instruct (Guo et al., 2024) DS-33B 81.1 75.0 80.4 70.1
WizardCoder (Luo et al., 2023) DS-33B 79.9 73.2 81.5 69.3
OpenCodeInterpreter (Zheng et al., 2024) DS-33B 79.3 73.8 80.2 68.5
ReflectionCoder DS-33B 82.9 76.8 84.1 72.0

Table 1: Pass@1 accuracy on HumanEval(+) and MBPP(+). Here, ‘CL’ denotes Code Llama, and ‘DS’ denotes
DeepSeek-Coder. The best results of each base are in bold and results unavailable are left blank.

Following prior work (Liu et al., 2023; Wei et al.,
2023; Zheng et al., 2024), we use greedy decod-
ing to generate one sample and focus on com-
paring the pass@1 metric. Due to the limited
space, we present evaluation experiments on more
code-related benchmarks in Appendix B, including
MultilPL-E (Cassano et al., 2022), DS1000 (Lai
et al., 2023), APPs (Hendrycks et al., 2021a), Live-
CodeBench (Jain et al., 2024), ClassEval (Du et al.,
2023), and BigCodeBench (Zhuo et al., 2024).

Implementation Details. We test our methods
on Code Llama Python 7B/34B and DeepSeek-
Coder 6.7B/33B. We finetune all models for 2
epochs. We employ AdamW (Loshchilov and Hut-
ter, 2019) optimizer with a learning rate of 5e-5
for 6.7B/7B models and 2e-5 for 33B/34B mod-
els, a 0.05 warm-up ratio, and a cosine scheduler.
We set the batch size as 512 and the max sequence

length as 4096. To efficiently train the computation-
ally intensive models, we simultaneously employ
DeepSpeed (Rajbhandari et al., 2020) and Flash At-
tention (Dao, 2023). On 16 NVIDIA A800 80GB
GPUs, the experiments on 7B models and 34B
models take 3.5 hours and 25 hours, respectively.

In the training process, we up-sample 22k re-
flection sequence data by a factor of 2 and mix
them with 156k code instruction tuning data. For
samples in code instruction tuning data, we only
employ the next token prediction as the training
task, a.k.a., we only calculate the causal language
model loss. For samples in reflection sequence data,
we use the proposed method to calculate the loss.
We only use the block mask strategy in the order
of execution block, analysis block, and code block.
Although each strategy can bring benefits, mixing
them is no longer beneficial in the experiments.

10004

4.2 Evaluation
Baselines. We compare ReflectionCoder with
previous state-of-the-art methods, including Wiz-
ardCoder (Luo et al., 2023), Speechless (Speech-
less, 2023), DeepSeek-Coder Instruct (Guo et al.,
2024), Magicoder (Wei et al., 2023), and Open-
CodeInterpreter (Zheng et al., 2024). All the results
are consistently reported from the EvalPlus leader-
board3. The proposed method is an instruction
tuning method, so we do not present comparison
results for base models such as StarCoder (Li et al.,
2023) and Code Llama (Rozière et al., 2023).

Results. Table 1 shows the pass@1 accuracy
of different method on HumanEval (+) and
MBPP (+). Based on the results, we have the
following findings: (1) For open-source meth-
ods with parameters ranging from 6.7B to 34B,
the proposed ReflectionCoder outperforms pre-
vious state-of-the-art methods on all base mod-
els, demonstrating its effectiveness. (2) Focusing
on Code Llama, ReflectionCoder-CodeLlama-7B
even surpasses WizardCode-CodeLlama-34B on
HumanEval and HumanEval+. (3) Compared with
OpenCodeInterpreter, ReflectionCoder performs
better on various base models, which indicates
that we take better advantage of the reflection se-
quences. (4) Compared with closed-source mod-
els, ReflectionCoder-DeepSeek-Coder-33B outper-
forms Gemini Pro, Mistral Large, and Claude-3-
sonnet on all four benchmarks. It is worth noting
that ReflectionCoder-DeepSeek-Coder-33B also
achieves the on-par performance of GPT-3.5-Turbo
and Claude-3-opus.

4.3 Detailed Analysis
Here, we conduct some analytical experiments.
Due to the limited space, more analytical exper-
iments are presented in the Appendix B.

4.3.1 Ablation Study
Here, we check how each component contributes
to the final performance. We prepare three group
variants of our method: (1) The first group is re-
lated to the high-level method, which has three
variants. w/o Dynamically Mask denotes without
any dynamically mask strategy, a.k.a., the vanilla
distillation. w/o Distillation denotes without distil-
lation, a.k.a., only perform next token prediction
on the reflection data. w/o Reflection Sequence
denotes without reflection sequence parts, a.k.a.,

3https://evalplus.github.io/leaderboard.html

Method HumanEval (+) MBPP (+)

ReflectionCoder 75.0 (68.9) 72.2 (61.4)

w/o Dynamic Mask 70.7 (65.2) 70.4 (58.5)
w/o Distillation 69.5 (63.4) 70.4 (59.0)
w/o Reflection Sequence 66.5 (62.2) 68.5 (57.9)
w/o Reflection Data 65.9 (62.2) 68.5 (57.9)

w/o GPT Data 71.3 (67.1) 70.1 (59.5)
w/o DS Data 68.9 (65.2) 69.6 (58.2)

w/ Random Mask 72.0 (66.5) 70.1 (59.0)
w/ Sequential Mask 72.6 (67.7) 71.3 (60.3)
w/ Three Strategies 73.2 (65.9) 71.7 (61.2)

Table 2: Ablation results on HumanEval (+) and
MBPP (+). The metric is Pass@1 accuracy, and all
the results are based on Code Llama 7B.

train the model on reflection data but without re-
flection sequences. w/o Reflection Data denotes
without reflection data, a.k.a., only train the model
with code instruction tuning data. (2) The sec-
ond group is related to the source of the reflec-
tion data. w/o GPT-4 Data denotes only use the
12k reflection data construct from the fine-tuned
DeepSeek-Coder 33B. Note that the DeepSeek-
Coder 33B is fine-tuned with reflection Data from
GPT-4. w/o DS Data only use the 10k reflection
data construct from GPT-4. (3) The third group is
related to the masking strategy. w/ Random Mask
and w/ Sequential Mask denote replacing the block
mask with random and sequential masks, respec-
tively. w/ Three Mask Strategies denotes randomly
selecting a masking strategy in each step.

Table 2 shows the pass@1 accuracy of different
variants on HumanEval (+) and MBPP (+). As we
can see, the performance ranking can be given as:
w/o Reflection Data < w/o Distillation < w/o Dy-
namically Mask < ReflectionCoder. These results
indicate that all components are essential for im-
proving performance. Moreover, w/o Reflection
Sequence and w/o Reflection Data are almost the
same. The main reason is that w/o Reflection Se-
quence are the same as the instruction tuning data in
format, which does not introduce new knowledge
into the training. Additionally, both w/o GPT-4
Data and w/o DS Data perform worse than Reflec-
tionCoder. And w/o GPT-4 Data performs better
than w/o DS Data. A possible reason is that we
have carried out strict filtering on Reflection Data
from DS, which may impact the final performance.
Finally, w/ Random Mask, w/ Sequential Mask,
and w/ Three Mask Strategies perform better than
w/o Dynamically Mask but worse than Reflection-

10005

https://evalplus.github.io/leaderboard.html

Method HumanEval (+) MBPP (+)

w/ EAC 75.0 (68.9) 72.2 (61.4)
w/ ECA 75.0 (68.9) 70.9 (59.5)
w/ ACE 72.0 (66.5) 70.6 (60.1)
w/ AEC 73.2 (65.9) 70.9 (59.5)
w/ CAE 71.3 (65.9) 70.4 (59.8)
w/ CEA 73.2 (67.1) 72.0 (60.8)

Table 3: Effect of masked order. The metric is Pass@1
accuracy, and all the results are based on Code Llama
7B. Here, ‘C’ denotes the code block, ‘E’ denotes the
execution block, and ‘A’ denotes the analysis block.
For example, ‘ECA’ denotes first mask execution block,
then mask code block, and finally mask analysis block.

Model GPT 33B 6.7B HumanEval (+) MBPP (+)

33B ! % % 80.5 (73.8) 80.7 (69.0)
33B ! ! % 82.9 (76.8) 84.1 (72.0)

6.7B ! ! % 80.5 (74.4) 81.5 (69.6)
6.7B ! % ! 79.3 (76.2) 80.7 (68.8)
6.7B % ! % 80.5 (75.0) 81.0 (68.3)
6.7B % % ! 81.1 (76.2) 80.4 (68.3)

Table 4: Effect of data source. The metric is Pass@1
accuracy. Here, “33B” denotes Deepseek-Coder-33B
and “6.7B” denotes Deepseek-Coder-6.7B.

Coder. This indicates that while the three strategies
are effective, they are not fully compatible with
each other. A possible reason is that mixing them
destroys the curricular nature of learning, leading
to reduced effectiveness.

4.3.2 Effect of Block Masked Order
As mentioned in Section 3, the block mask masks
block in a specific order. Here, we examine the
effect of masking order by preparing six variants
with all possible orders.

Table 3 shows the pass@1 accuracy of different
orders. As we can see, the two orders that mask
execution blocks first perform better than other or-
ders, indicating that tokens in execution blocks are
generally less effective, which is intuitive. Sim-
ilarly, the two orders that mask code blocks last
also perform better, suggesting that tokens in code
blocks are more effective.

4.3.3 Effect of Data Source
As mentioned in Section 4.1, our reflection se-
quence dataset is constructed from GPT-4 and fine-
tuned Deepseek-Coder-33B. Here, we construct

Model HumanEval (+) MBPP (+)

Llama-3.1-8B-Instruct 70.1 (62.2) 72.5 (59.3)
w/ reflection 76.2 (64.7) 74.2 (62.2)
w/ distillation 74.4 (68.3) 73.0 (63.0)
w/ distillation & reflection 74.4 (67.7) 72.2 (62.4)

Table 5: Experiment on Llama-3.1-8B-Instruct. The
metric is Pass@1 accuracy. Here, “w/ reflection” de-
notes performing reflection while testing on Llama-3.1-
8B-Instruct. “w/ distillation” denotes the one-off gen-
eration performance of the model fine-tuned with self-
generated reflection sequence data. “w/ distillation &
reflection” denotes performing reflection while testing
on the model fine-tuned with the self-generated reflec-
tion sequence data.

three sets of experiments to check the effectiveness
of our method with different other data sources.

Firstly, we compared the ReflectionCoder-
Deepseek-Coder-33B with the Deepseek-Coder-
33B fine-tuned only with data from GPT-4, which
is used to construct more data in our main experi-
ments. As shown in the first group of Table 4, the
intermediate model performs worse than the final
model, which shows that the model can generate
its training data and improve itself based on our
method after only a small amount of training data
from GPT-4.

Then, we employ the Deepseek-Coder-6.7B to
act as the intermediate model. As shown in the sec-
ond group of Table 4, show that the data generated
by the DeepSeek-Coder 6.7B can still bring bene-
fits. Surprisingly, for HumanEval, the Deepseek-
Coder 6.7B fine-tuned with self-generated reflec-
tion sequence data achieves better performance.
The results also show that GPT-4 data is not the
key to improving model performance. As long as
the model learns how to reflect based on execution
results, it can generate a reflection sequence for the
model to improve itself.

4.3.4 Autonomous Enhancement
To completely exclude the factor of GPT-4, we
employ an open-source model (Llama-3.1-8B-
Instruct (Dubey et al., 2024)) that can generate re-
flection sequences without any training to act as the
data source. We first employ reflection in testing
as the reference, which first tasks the Llama-3.1-
8B-Instruct to generate the reflection sequence and
then tasks the model to generate the final code in
the test stage. Then, we task the model to generate
the reflection sequence data and use the generated
data to fine-tune itself with the proposed method.

10006

As shown in Table 5, although Llama-3.1-8B-
Instruct has undergone multiple rounds of post-
training (including SFT and multi-turn DPO), our
method can still further improve its performance
and only rely on the data generated by itself. Sur-
prisingly, on the plus dataset, the proposed method
even outperforms w/ reflection and w/ distillation &
reflection. The reason is that the expected answers
directly generated by the model have a high error
rate, making it difficult to cover boundary data and
more difficult data. Meanwhile, the data used for
training has been strictly filtered (the filtered details
are presented in Appendix A), so the quality of the
data used for training is relatively high. The filter
pass rate (only 17%) also shows that the quality of
the generated data is relatively low.

4.4 Case Study
Here, we present a case to show the effectiveness
of the proposed ReflectionCoder. Specifically, the
instruction is:
def iscube(a):

"""
Write a function that takes an

integer a and returns True if
this integer is a cube of some
integer number. Note: you may
assume the input is always valid
.

Examples:
iscube (1) ==> True
iscube (2) ==> False
iscube (-1) ==> True
iscube (64) ==> True
iscube (0) ==> True
iscube (180) ==> False
"""

We compare two generated implementations:
Response of "w/o Reflection Data"
def iscube(a):

cube_root = round(a ** (1. / 3))
return cube_root ** 3 == a

Response of ReflectionCoder
def iscube(a):

if a < 0:
a = -a

cube_root = round(a ** (1. / 3.))
return cube_root ** 3 == a

Although the solution generated by the “w/o Re-
flection Data” appears correct, it fails to account
for the behavior of the “round” function when han-
dling negative inputs. This oversight could lead
to incorrect results for negative cube numbers. In
contrast, the refined version—likely influenced by
reflective feedback—correctly handles negative in-
puts by converting them to positive values before
computing the cube root.

Model GSM8K MATH

w/o ReflectionCoder 9.9 9.6
w/ ReflectionCoder 11.1 13.6

Table 6: Experiments on two mathematical reasoning
datasets. The metric is Pass@1 accuracy.

This case highlights a key advantage of leverag-
ing reflection sequences: models can learn nuanced
behaviors of library functions, such as “round”,
through feedback during the training process. Con-
sequently, the model with access to reflection data
demonstrates a deeper and more reliable under-
standing of function semantics.

4.5 Generalization
Here, we evaluate the generalization ability of
our proposed methods. Specifically, we fine-
tune a LLaMA-3.1-8B model using the train-
ing sets of GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021b). The baseline
model is trained to directly predict the final an-
swer without any chain-of-thought (CoT). For the
proposed method, we regard the CoT as the reflec-
tion sequence and apply dynamic masking during
distillation.

As shown in Table 6, even with minimal adapta-
tion, our method yields consistent improvements
on both datasets. These results demonstrate the
potential applicability of our approach in non-code
reasoning tasks. Furthermore, our method opens up
the possibility for dynamic compression of reason-
ing paths, which may significantly reduce latency.

5 Conclusion

In this paper, we proposed ReflectionCoder, a novel
method to effectively leverage the reflection se-
quence constructed by integrating feedback from
the compiler to achieve better one-off code gen-
eration performance. We proposed two training
techniques to effectively utilize the reflection se-
quences data, namely reflection self-distillation and
dynamically masked distillation. The reflection
self-distillation aims to distillation from reflection
sequence to one-off code generation, and the dy-
namically masked distillation aims to utilize the
reflection sequence to achieve better performance
effectively. In the future, we plan to improve this
method to dynamically reduce unnecessary reason-
ing paths for domains that need to show reasoning
paths to simplify the model output.

10007

Limitations

The primary limitation of this study is its reliance
on a powerful model, such as the GPT-4 code in-
terpreter, for constructing reflection sequence data.
While this method ensures high precision and ef-
ficiency, it also incurs significant computational
costs, which may limit its accessibility and scala-
bility, particularly in resource-constrained environ-
ments. However, as large language models con-
tinue to evolve, open-source models like Llama
3.1 are beginning to exhibit similar capabilities.
We anticipate that this limitation will diminish as
these models become more advanced and widely
available. Furthermore, the reliance on Rotary Po-
sition Embedding introduces an additional restric-
tion. While effective within the specific context
of this study, it may limit the method’s generaliz-
ability and adaptability to different architectures or
alternative embedding strategies.

Ethics Statement

The models utilized in this paper, StarCoder (Li
et al., 2023), Code Llama (Rozière et al., 2023),
Deepseek-Coder (Guo et al., 2024) and Llama-
3.1 (Dubey et al., 2024), are licensed for academic
research purposes. Furthermore, the data employed
in this study, Code Instruction Tuning Dataset4, is
collected from Magicoder-OSS-Instruct5, Python
code subset of ShareGPT6, Magicoder-Evol-
Instruct7, and Evol-Instruct-Code8. All of these
datasets are constructed from GPT-3 or GPT-4,
while OpenAI permit on research access9 and all
theses datasets are licensed for research purposes.

Acknowledgment

This study was supported in part by the Centre for
Perceptual and Interactive Intelligence (CPII) Ltd.,
a CUHK-led InnoCentre under the InnoHK initia-
tive of the Innovation and Technology Commission
of the Hong Kong SAR Government, and in part by
NSFC-RGC Project N_CUHK498/24. Hongsheng
Li is a PI of CPII under the InnoHK.

4https://huggingface.co/datasets/m-a-p/
CodeFeedback-Filtered-Instruction

5https://huggingface.co/datasets/ise-uiuc/
Magicoder-OSS-Instruct-75K

6https://huggingface.co/datasets/ajibawa-2023/
Python-Code-23k-ShareGPT

7https://huggingface.co/datasets/ise-uiuc/
Magicoder-Evol-Instruct-110K

8https://huggingface.co/datasets/nickrosh/
Evol-Instruct-Code-80k-v1

9https://openai.com/policies/

References
Loubna Ben Allal, Raymond Li, Denis Kocetkov,

Chenghao Mou, Christopher Akiki, Carlos Muñoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy-
Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry
Abulkhanov, Manuel Romero, Michael Lappert,
Francesco De Toni, Bernardo García del Río, Qian
Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue
Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab
Mangrulkar, David Lansky, Huu Nguyen, Danish
Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau,
Yacine Jernite, Sean Hughes, Daniel Fried, Arjun
Guha, Harm de Vries, and Leandro von Werra. 2023.
Santacoder: don’t reach for the stars! CoRR,
abs/2301.03988.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil-
lican, David Silver, Slav Petrov, Melvin Johnson,
Ioannis Antonoglou, Julian Schrittwieser, Amelia
Glaese, Jilin Chen, Emily Pitler, Timothy P. Lilli-
crap, Angeliki Lazaridou, Orhan Firat, James Molloy,
Michael Isard, Paul Ronald Barham, Tom Henni-
gan, Benjamin Lee, Fabio Viola, Malcolm Reynolds,
Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens
Meyer, Eliza Rutherford, Erica Moreira, Kareem
Ayoub, Megha Goel, George Tucker, Enrique Pi-
queras, Maxim Krikun, Iain Barr, Nikolay Savinov,
Ivo Danihelka, Becca Roelofs, Anaïs White, Anders
Andreassen, Tamara von Glehn, Lakshman Yagati,
Mehran Kazemi, Lucas Gonzalez, Misha Khalman,
Jakub Sygnowski, and et al. 2023a. Gemini: A fam-
ily of highly capable multimodal models. CoRR,
abs/2312.11805.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernández
Ábrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan A. Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vladimir Feinberg, Fangxi-
aoyu Feng, Vlad Fienber, Markus Freitag, Xavier
Garcia, Sebastian Gehrmann, Lucas Gonzalez, and
et al. 2023b. Palm 2 technical report. CoRR,
abs/2305.10403.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

Artigenz-Coder. 2024. Artigenz-coder-ds-6.7b.

Jacob Austin, Augustus Odena, Maxwell I. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,

10008

https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction
https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT
https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
https://openai.com/policies/
https://doi.org/10.48550/ARXIV.2301.03988
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2305.10403
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://huggingface.co/Artigenz/Artigenz-Coder-DS-6.7B

Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin-
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023.
Qwen technical report. CoRR, abs/2309.16609.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,
John Schulman, Christine McLeavey, Jerry Tworek,
and Mark Chen. 2022. Efficient training of language
models to fill in the middle. CoRR, abs/2207.14255.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML 2009, Montreal,
Quebec, Canada, June 14-18, 2009, volume 382 of
ACM International Conference Proceeding Series,
pages 41–48. ACM.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q. Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. 2022. A scalable and extensible
approach to benchmarking nl2code for 18 program-
ming languages. CoRR, abs/2208.08227.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. CoRR,
abs/2211.12588.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. CoRR, abs/2304.05128.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. J. Mach. Learn. Res., 24:240:1–
240:113.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. CoRR,
abs/2307.08691.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu
Zhou, Wei Shen, Junjie Shan, Caishuang Huang,
Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou,
Tao Ji, Rui Zheng, Qi Zhang, Xuanjing Huang, and
Tao Gui. 2024. Stepcoder: Improve code generation
with reinforcement learning from compiler feedback.
CoRR, abs/2402.01391.

10009

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://doi.org/10.48550/ARXIV.2309.16609
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.48550/ARXIV.2208.08227
https://doi.org/10.48550/ARXIV.2208.08227
https://doi.org/10.48550/ARXIV.2208.08227
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.48550/ARXIV.2402.01391
https://doi.org/10.48550/ARXIV.2402.01391

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng
Sha, Xin Peng, and Yiling Lou. 2023. Classeval: A
manually-crafted benchmark for evaluating llms on
class-level code generation. CoRR, abs/2308.01861.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536–1547. Association
for Computational Linguistics.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder:
A generative model for code infilling and synthesis.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: program-aided language
models. In International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 10764–10799. PMLR.

Linyuan Gong, Mostafa Elhoushi, and Alvin Che-
ung. 2024. AST-T5: structure-aware pretraining
for code generation and understanding. CoRR,
abs/2401.03003.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. CoRR, abs/2401.14196.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021a. Measuring coding challenge com-
petence with APPS. In Proceedings of the Neural
Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Bench-
marks 2021, December 2021, virtual.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the MATH dataset. In Pro-
ceedings of the Neural Information Processing Sys-
tems Track on Datasets and Benchmarks 1, NeurIPS

Datasets and Benchmarks 2021, December 2021, vir-
tual.

Xueyu Hu, Kun Kuang, Jiankai Sun, Hongxia Yang,
and Fei Wu. 2024. Leveraging print debugging to
improve code generation in large language models.
CoRR, abs/2401.05319.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney,
Alex Iftimie, Alex Karpenko, Alex Tachard Pas-
sos, Alexander Neitz, Alexander Prokofiev, Alexan-
der Wei, Allison Tam, Ally Bennett, Ananya Ku-
mar, Andre Saraiva, Andrea Vallone, Andrew Du-
berstein, Andrew Kondrich, Andrey Mishchenko,
Andy Applebaum, Angela Jiang, Ashvin Nair, Bar-
ret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin
Sokolowsky, Boaz Barak, Bob McGrew, Borys Mi-
naiev, Botao Hao, Bowen Baker, Brandon Houghton,
Brandon McKinzie, Brydon Eastman, Camillo Lu-
garesi, Cary Bassin, Cary Hudson, Chak Ming Li,
Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
Zhang, Chris Koch, Chris Orsinger, Christopher
Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
Daniel Kappler, Daniel Levy, Daniel Selsam, David
Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Free-
man, Eddie Zhang, Edmund Wong, Elizabeth Proehl,
Enoch Cheung, Eric Mitchell, Eric Wallace, Erik
Ritter, Evan Mays, Fan Wang, Felipe Petroski Such,
Filippo Raso, Florencia Leoni, Foivos Tsimpourlas,
Francis Song, Fred von Lohmann, Freddie Sulit,
Geoff Salmon, Giambattista Parascandolo, Gildas
Chabot, Grace Zhao, Greg Brockman, Guillaume
Leclerc, Hadi Salman, Haiming Bao, Hao Sheng,
Hart Andrin, Hessam Bagherinezhad, Hongyu Ren,
Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte,
and Ilge Akkaya. 2024. Openai o1 system card.
CoRR, abs/2412.16720.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. CoRR,
abs/2403.07974.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de Las Casas,
Emma Bou Hanna, Florian Bressand, Gianna
Lengyel, Guillaume Bour, Guillaume Lample,
Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,

10010

https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://openreview.net/pdf?id=hQwb-lbM6EL
https://openreview.net/pdf?id=hQwb-lbM6EL
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://doi.org/10.48550/ARXIV.2401.03003
https://doi.org/10.48550/ARXIV.2401.03003
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/ARXIV.2401.05319
https://doi.org/10.48550/ARXIV.2401.05319
https://doi.org/10.48550/ARXIV.2412.16720
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825

Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. CoRR, abs/2401.04088.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih,
Daniel Fried, Sida I. Wang, and Tao Yu. 2023. DS-
1000: A natural and reliable benchmark for data sci-
ence code generation. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 18319–18345.
PMLR.

Bin Lei, Yuchen Li, and Qiuwu Chen. 2024. Autocoder:
Enhancing code large language model with aiev-
instruct. CoRR, abs/2405.14906.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy V, Jason Stillerman,
Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa-
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku-
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai-
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2023. Starcoder: may the source be with
you! CoRR, abs/2305.06161.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The flan collection: Designing data and methods for
effective instruction tuning. In International Con-
ference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
22631–22648. PMLR.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International

Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,
Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Cheng-
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz
Ferrandis, Lingming Zhang, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2024. Starcoder 2 and the stack v2: The
next generation. CoRR, abs/2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. CoRR, abs/2306.08568.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang
Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. 2020. Improved knowledge distilla-
tion via teacher assistant. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 5191–5198. AAAI Press.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and
Shayne Longpre. 2023. Octopack: Instruction tuning
code large language models. CoRR, abs/2308.07124.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language

10011

https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.48550/ARXIV.2401.04088
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://doi.org/10.48550/ARXIV.2405.14906
https://doi.org/10.48550/ARXIV.2405.14906
https://doi.org/10.48550/ARXIV.2405.14906
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://proceedings.mlr.press/v202/longpre23a.html
https://proceedings.mlr.press/v202/longpre23a.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://doi.org/10.1609/AAAI.V34I04.5963
https://doi.org/10.1609/AAAI.V34I04.5963
https://doi.org/10.48550/ARXIV.2308.07124
https://doi.org/10.48550/ARXIV.2308.07124
https://openreview.net/pdf?id=iaYcJKpY2B_

model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Hamza Alobeidli, Alessandro
Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and
Julien Launay. 2023. The refinedweb dataset for fal-
con LLM: outperforming curated corpora with web
data only. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: memory optimizations
toward training trillion parameter models. In Pro-
ceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2020, Virtual Event / Atlanta, Georgia,
USA, November 9-19, 2020, page 20. IEEE/ACM.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,

Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Févry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan,
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan
Ji, Jingyang Zhao, Yuenan Guo, and Qianxiang
Wang. 2023. Pangu-coder2: Boosting large lan-
guage models for code with ranking feedback. CoRR,
abs/2307.14936.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Speechless. 2023. speechless-codellama-34b-v2.0.

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng
Pan, Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Linqi Song,

10012

https://openreview.net/pdf?id=iaYcJKpY2B_
https://doi.org/10.48550/ARXIV.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/fa3ed726cc5073b9c31e3e49a807789c-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/fa3ed726cc5073b9c31e3e49a807789c-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/fa3ed726cc5073b9c31e3e49a807789c-Abstract-Datasets_and_Benchmarks.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.48550/ARXIV.2308.12950
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.48550/ARXIV.2307.14936
https://doi.org/10.48550/ARXIV.2307.14936
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://huggingface.co/uukuguy/speechless-codellama-34b-v2.0
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288

Mingjie Zhan, and Hongsheng Li. 2023. Mathcoder:
Seamless code integration in llms for enhanced math-
ematical reasoning. CoRR, abs/2310.03731.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November,
2021, pages 8696–8708. Association for Computa-
tional Linguistics.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. CoRR, abs/2312.02120.

Yutong Wu, Di Huang, Wenxuan Shi, Wei Wang,
Lingzhe Gao, Shihao Liu, Ziyuan Nan, Kaizhao
Yuan, Rui Zhang, Xishan Zhang, Zidong Du, Qi Guo,
Yewen Pu, Dawei Yin, Xing Hu, and Yunji Chen.
2024. Inversecoder: Unleashing the power of
instruction-tuned code llms with inverse-instruct.
CoRR, abs/2407.05700.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng
Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao,
Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu,
Jiaming Ji, Jian Xie, Juntao Dai, Kun Fang, Lei
Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma,
Mang Wang, Mickel Liu, MingAn Lin, Nuolan Nie,
Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng
Li, Tianyu Li, Wei Cheng, Weipeng Chen, Xian-
grong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin
Men, Xin Yu, Xuehai Pan, Yanjun Shen, Yiding
Wang, Yiyu Li, Youxin Jiang, Yuchen Gao, Yu-
peng Zhang, Zenan Zhou, and Zhiying Wu. 2023.
Baichuan 2: Open large-scale language models.
CoRR, abs/2309.10305.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2023. Wavecoder: Widespread and versatile
enhanced instruction tuning with refined data genera-
tion. CoRR, abs/2312.14187.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao,
Zi Gong, Hang Yu, Jianguo Li, and Rui Wang. 2023.
A survey on language models for code. CoRR,
abs/2311.07989.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.

Codegeex: A pre-trained model for code generation
with multilingual benchmarking on humaneval-x. In
Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD
2023, Long Beach, CA, USA, August 6-10, 2023,
pages 5673–5684. ACM.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. 2024. Opencodeinterpreter: Integrating code
generation with execution and refinement. CoRR,
abs/2402.14658.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song,
Mingjie Zhan, and Hongsheng Li. 2023. Solving
challenging math word problems using GPT-4 code
interpreter with code-based self-verification. CoRR,
abs/2308.07921.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon
Brunner, Chen Gong, Thong Hoang, Armel Randy
Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kad-
dour, Ming Xu, Zhihan Zhang, Prateek Yadav, Na-
man Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu,
Qian Liu, Zijian Wang, David Lo, Binyuan Hui,
Niklas Muennighoff, Daniel Fried, Xiaoning Du,
Harm de Vries, and Leandro von Werra. 2024. Big-
codebench: Benchmarking code generation with di-
verse function calls and complex instructions. CoRR,
abs/2406.15877.

10013

https://doi.org/10.48550/ARXIV.2310.03731
https://doi.org/10.48550/ARXIV.2310.03731
https://doi.org/10.48550/ARXIV.2310.03731
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.48550/ARXIV.2312.02120
https://doi.org/10.48550/ARXIV.2312.02120
https://doi.org/10.48550/ARXIV.2407.05700
https://doi.org/10.48550/ARXIV.2407.05700
https://doi.org/10.48550/ARXIV.2309.10305
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2311.07989
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.48550/ARXIV.2402.14658
https://doi.org/10.48550/ARXIV.2402.14658
https://doi.org/10.48550/ARXIV.2308.07921
https://doi.org/10.48550/ARXIV.2308.07921
https://doi.org/10.48550/ARXIV.2308.07921
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877

Appendix

A Data Construction

As mentioned in Section 4.1, our reflection se-
quence data is constructed from GPT-4 Code inter-
preter and fine-tuned Deepseek-Coder-33B. Here,
we present details of data construction.

A.1 GPT-4 Code Interpreter

Previous studies (Zhou et al., 2023; Wang et al.,
2023) have revealed that GPT-4 Code Interpreter 10

can write and run Python code in a sandbox exe-
cution environment to solve challenging code and
math problems. It can iterate on the incorrect code
it had previously generated by analyzing the cause
of the failure and regenerating the code until it ex-
ecutes successfully. Based on its capability, we
designed a two-stage method to prompt the GPT-
4 Code Interpreter to construct the reflection se-
quence dataset.

In the first stage, we task the GPT-4 Code Inter-
preter to generate code to solve the given problem
and test the code with assert statements. If the code
fails any of these tests, the GPT-4 Code Interpreter
will analyze the reasons for failure and regenerate
the code with necessary corrections automatically.
In this way, we get a reflection sequence of code
generation, execution, and analysis, as presented in
the blue blocks in Figure 1. The prompt detail is
shown below:

The first round prompt

Here is a programming problem for you to
tackle:

(1) Write a Python function that solves
the specified problem with craft test cases
using assert statements and execute it. Pay
special attention to edge cases to thoroughly
validate your solution’s correctness.

(2) If your code fails any of the tests,
carefully examine the root cause of the
failure. Make the necessary corrections to
your code and then retest to confirm the
fixes.

Note: At this phase, your primary

10https://platform.openai.com/docs/assistants/
tools/code-interpreter

goal is to ensure the reliability of your
code. There’s no need to delve into
in-depth problem analysis or strive for code
optimization.

Programming Problem
{problem}

In the second stage, we task the GPT-4 Code
Interpreter to generate the entire code based on
the preceding reflection sequence. Additionally,
we instruct the model to refrain from using any
words related to the preceding reflection sequence,
effectively simulating the one-off code generation.
In this way, we get the high-quality code answer,
as presented in the green block in Figure 1. The
prompt detail is shown below:

The second round prompt

Then, your task is to create a precise solu-
tion for the given programming problem.

Your answer should be complete and
standalone, avoiding references to external
resources or past exercises, and omit
phrases such as "correct version".

There is no requirement to execute
the code or provide any test/usage example.
Just present the code for the given problem
between "```python" and "```".

A.2 Deepseek-Coder-33B

Due to the high cost of calling the GPT-4 Code
Interpreter, we only construct 10k reflection se-
quence data using the prompt provided in Sec-
tion 3. To generate more reflection sequence data,
as described in Section 4, We first fine-tune the
DeepSeek-Coder 33B (Guo et al., 2024) model us-
ing 10k reflection sequence data and 156k code
instruction tuning data, which endows it with the
capability to generate code and interpret feedback
from the compiler. Then, we use this fine-tuned
model to construct more reflection sequence data.

In the constructing stage, we randomly select
another 70k instructions, whose corresponding an-
swers contain Python code, to prompt the fine-
tuned model. The following steps are performed to
implement the reflection process.

10014

https://platform.openai.com/docs/assistants/tools/code-interpreter
https://platform.openai.com/docs/assistants/tools/code-interpreter

Model Base Java JavaScript C++ PHP Swift Rust

StarCoder SC-15B 28.5 31.7 30.6 26.8 16.7 24.5
WizardCoder SC-15B 35.8 41.9 39.0 39.3 33.7 27.1

Code Llama-Python CL-7B 29.3 31.7 27.0 25.1 25.6 25.5
MagiCoder CL-7B 36.4 45.9 36.5 39.5 33.4 30.6
MagiCoder-S CL-7B 42.9 57.5 44.4 47.6 44.1 40.3
ReflectionCoder CL-7B 53.2 62.1 47.9 53.6 49.1 50.6

Code Llama-Python CL-34B 39.5 44.7 39.1 39.8 34.3 39.7
WizardCoder CL-34B 44.9 55.3 47.2 47.2 44.3 46.2
ReflectionCoder CL-34B 61.4 70.7 63.2 65.7 55.8 64.0

Table 7: Pass@1 accuracy results on MulitiPL-E. The best results of each base are in bold. Here, ‘SC’ denotes
StarCoder, and ‘CL’ denotes Code Llama.

Model Base C++ Java PHP TS C# Bash JavaScript

DS Instruct DS-6.7B 63.4 68.4 68.9 67.2 72.8 36.7 72.7
ReflectionCoder DS-6.7B 69.5 65.8 65.2 70.8 69.6 42.4 72.0

DS Instruct DS-33B 68.9 73.4 72.7 67.9 74.1 43.0 73.9
ReflectionCoder DS-33B 70.8 70.9 72.0 72.3 74.7 45.6 73.9

Table 8: Pass@1 accuracy results on MulitiPL-E. The best results of each base are in bold. Here, ‘DS’ denotes
DeepSeek-Coder.

• First, we prompt the fine-tuned model to gener-
ate a code block, which contains code and test
samples.

• Then, we employ a Jupyter Client to execute the
code and concatenate the execution result to the
prompt as an execution block.

• After that, the model generates an analysis block
for the cause if the code sample fails any of the
tests.

• The model will repeat the code generation and
analyzing process until there is no error or it
reaches a maximum of eight iterations.

We filter out 38k samples whose generated codes
contain I/O operations that can be identified by
keyword matching (e.g., "open," "dump," "pip")
or fail to resolve all errors within the maximum
of eight iterations limitation. After that, we filter
out samples that only contain one iteration, i.e., the
first generated code passes all test cases, whose test
samples may be too simple to ensure the correct-
ness of the final code. In this stage, we filter out an
additional 20k samples from the 32k samples gen-
erated in the previous stage and ultimately retain
12k high-quality samples.

To sum up, we first select 70k instructions to
iteratively construct reflection data, where 38k sam-
ples are discarded as they contain I/O operations or
exceed the maximum iteration limitation. Finally,
we filter out 20k samples with only one round of

reflection, which may have some errors in the final
code, and retain 12k high-quality samples.

B Additional Experiments

B.1 MultiPL-E
Following MagiCoder (Wei et al., 2023), we evalu-
ate six wide languages, i.e., Java, JavaScirpt, C++,
PHP, Swift, and Rust, using MultiPL-E (Cassano
et al., 2022) benchmark. We employ StarCoder (Li
et al., 2023), WizardCoder (Luo et al., 2023), Code
Llama (Rozière et al., 2023), and MagiCoder (Wei
et al., 2023) as baselines. For this comparison, we
follow MagiCoder and WizardCoder to set tem-
perature = 0.2, top_p = 0.95, max_length = 512,
and num_samples = 50. As shown in Table 7, the
proposed ReflectionCoder outperforms the previ-
ous state-of-the-art methods on both Code Llama
7B and Code Llama 34B. It shows that reflection
sequence in Python is also helpful to other lan-
guages. Surprisingly, ReflectionCoder Code Llama
7B even surpassed WizardCoder Code Llama 34B,
which further demonstrates the effectiveness of the
proposed method.

In addition, we compare our method to
DeepSeek-Coder Instruct (Guo et al., 2024) on
seven languages, which are reported in the
DeepSeek-Coder paper, i.e., C++, Java, PHP, TS,
C#, Bash, and JavaScript. For this comparison,
we adopted a greedy search approach following the
DeepSeek-Coder Instruct. As shown in Table 8, the

10015

Model Base plt np pd py scp sk tf All

Incoder 6B 28.3 4.4 3.1 4.4 2.8 2.8 3.8 7.4
CodeGen-Mono 16B 31.7 10.9 3.4 7.0 9.0 10.8 15.2 11.7
Code-Cushman-001 - 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1

StarCoder SC-15B 51.7 29.7 11.4 21.4 20.2 29.5 24.5 26.0
WizardCoder SC-15B 55.2 33.6 16.7 26.2 24.2 24.9 26.7 29.2

Code LLama CL-7B 55.3 34.5 16.4 19.9 22.3 17.6 28.5 28.0
WizardCoder CL-7B 53.5 34.4 15.2 25.7 21.0 24.5 28.9 28.4
MagiCoder CL-7B 54.6 34.8 19.0 24.7 25.0 22.6 28.9 29.9
MagiCoder-S CL-7B 55.9 40.6 28.4 40.4 28.8 35.8 37.6 37.5

ReflectionCoder CL-7B 56.2 43.1 24.5 46.7 23.1 45.5 35.6 37.8
w/o Relfexion Data CL-7B 56.0 42.7 23.0 43.6 26.7 45.8 35.6 37.4

Table 9: Pass@1 accuracy results on DS-1000 (Completion format). The best results of each base are in bold. Here,
‘SC’ denotes StarCoder, ‘CL’ denotes Code Llama.

Method APPs LiveCodeBench
ClassEval

BigCodeBench
Class Level Func Level

MagiCoderS-DS-6.7B 12.8 17.6 20.0 43.4 47.6
OpenCodeInterpreter-DS-6.7B 11.5 17.6 19.0 42.6 44.6
ReflectionCoder-DS-6.7B 14.1 18.4 25.0 44.0 47.9

OpenCodeInterpreter-DS-33B 17.5 22.3 26.0 43.4 51.0
ReflectionCoder-DS-33B 20.2 22.7 28.0 50.4 52.9

Table 10: Pass@1 accuracy on APPs, LiveCodeBench, ClassEval, and BigCodeBench.

proposed ReflectionCoder outperforms DeepSeek-
Coder Instruct in most languages. Note that the
DeepSeek-Coder Instruct is trained with 2B tokens,
while our models are trained with 300M tokens,
which also shows the effectiveness of our meth-
ods. Our method outperforms DeepSeek-Coder
Instruct in three languages on DeepSeek-Coder-
6.7B and five languages on DeepSeek-Coder-33B,
which shows that the larger model has a greater
transfer ability.

B.2 DS-1000

We also evaluate our method on the DS-1000
dataset (Lai et al., 2023), which contains 1K dis-
tinct data science coding issues, ranging from 7
popular Python data science libraries. We employ
Incoder (Fried et al., 2023), CodeGen (Nijkamp
et al., 2023), StarCoder (Li et al., 2023), Wizard-
Coder (Luo et al., 2023), Code Llama (Rozière
et al., 2023), and MagiCoder (Wei et al., 2023) as
baselines. For this comparison, we follow Magi-
Coder to set temperature = 0.2, top_p = 0.95,
max_length = 512, and num_samples = 40.

As shown in Table 9, our model outperforms
all baselines on average score. However, when
comparing our method with and without Reflec-
tion Data, where the latter is trained exclusively

with 156k one-off code generation data points, our
method does not significantly improve the DS-1000
dataset. A key factor contributing to this outcome
is the limited representation of data related to these
seven libraries in our training set, primarily due
to constraints in computational resources. For in-
stance, the need for substantial GPU resources re-
stricts our ability to fully leverage TensorFlow and
PyTorch, while the requirement for multi-modal
capabilities limits our utilization of Matplotlib. De-
spite these limitations, it is noteworthy that our
method does not adversely affect the performance
of tasks associated with these libraries.

B.3 Other Test Set

Here, we check the effectiveness of our method
on more diverse tasks, such as APPs (Hendrycks
et al., 2021a) and LiveCodeBench (Jain et al.,
2024), ClassEval (Du et al., 2023) and Big-
CodeBench (Zhuo et al., 2024). We con-
struct experiments based on Deepseek-Coder-
7B and Deepseek-Coder-33B. We employ Magi-
Coder (Wei et al., 2023) and OpenCodeInter-
preter (Zheng et al., 2024) as baselines, which used
similar fine-tuning data as our models. We use
greedy sampling to obtain the results in a zero-shot
setting for both baselines and our method. Note

10016

1 2 3 4 5
The factor of up-sample

66

68

70

72

74

76
P

as
s@

1
HumanEval

HumanEval +

(a) HumanEval (+).

1 2 3 4 5
The factor of up-sample

56

58

60

62

64

66

68

70

72

74

P
as

s@
1

MBPP

MBPP +

(b) MBPP (+).

Figure 4: Effect of the factor of up-sample. The metric
is Pass@1 accuracy, and all the results are based on
Code Llama 7B.

that for LiveCodeBench, we report the result after
2023-09-01, which is the release date of Deepseek-
Coder.

As shown in Table 10, our proposed method
improves model accuracy on the four datasets, al-
though there are no relative instructions in the train-
ing data. The results show that our method has
better generalization.

B.4 Effect of the Factor of Up-sample

As mentioned in Section 4, we up-sample the re-
flection data and mix it with the code instruction
tuning data. Here, we examine the effect of the up-
sampling factor. Specifically, we vary the factor in
the set {1, 2, 3, 4, 5}. As shown in Figures 4(a) and
4(b), a factor of 2 results in optimal performance
for most benchmarks. Due to the limited samples
in HumanEval, the pass@1 fluctuates significantly.
While a factor of 4 is optimal for HumanEval+,
a factor of 2 remains optimal for HumanEval. A
possible reason is that when the factor is too large,

Method HumanEval (+) MBPP (+)

Code Llama 7B

ReflectionCoder 75.0 (68.9) 72.2 (61.4)
w/o Reflection Data 65.9 (62.2) 68.5 (57.9)

Star Coder 7B

ReflectionCoder 68.3 (63.4) 64.3 (55.6)
w/o Reflection Data 67.7 (62.8) 66.7 (54.8)

Table 11: Effect of Rotary Position Embedding. The
metric is Pass@1 accuracy.

Method HumanEval (+) MBPP (+)

Random Mask 72.0 (66.5) 70.1 (59.0)
w/ Token Level 71.3 (66.5) 68.8 (58.2)

Sequential Mask 72.6 (67.7) 71.3 (60.3)
w/ Token Level 71.3 (67.1) 68.5 (59.0)

Table 12: Compare block-level mask strategies and
token-level mask strategies. The metric is Pass@1 accu-
racy, and all the results are based on Code Llama 7B.

the reflection sequence data is repeated excessively,
leading to overfitting and a consequent decrease in
performance.

B.5 Effect of Rotary Position Embedding

As mentioned in Section 3, our method is effective
for models utilizing Rotary Position Embedding
because the absolute positions of the tokens of the
answers in the teacher sample and the student sam-
ple are different, but the relative positions remain
the same. Here, we construct an experiment to
check the effect of Rotary Position Embedding on
our method. Specifically, we perform our method
and w/o Reflection Data on StarCoder, which uses
an Absolute Position Embedding.

Table 11 shows the results on both Code Llama
7B (w/ Rotary Position Embedding) and StarCoder
15B (w/ Absolute Position Embedding). As shown
in the table, our method can effectively improve
the performance of Code Llama 7B, but it is not so
effective for StarCoder 15B. The primary reason
is that the absolute positions of the tokens of the
final answers are different for the training stage and
the inference stage, which results in the distillation
being biased.

B.6 Token-level Dynamic Masking Strategy

In Section 3, we proposed three block-level dy-
namic masking strategies, namely random mask,
sequential mask, and block mask. Here, we test
our method with another two token-level dynamic

10017

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

0.4

0.6

0.8

1.0
M

as
k

R
at

e
Stepwise Mask Rate
Step 1/3
Step 2/3

Figure 5: The changes in masked rate during training.

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

0.1

0.2

0.3

0.4

0.5

0.6

C
au

sa
l L

M
 L

os
s

0.00

0.02

0.04

0.06

D
is

til
la

tio
n

Lo
ss

Figure 6: The changes in value of two loss components
during training.

masking strategies:

(1) Random Token mask selects tokens to mask
based on the mask rate randomly.

(2) Sequential Token mask selects the leftmost to-
kens to mask and gradually expands the masked
scope according to the mask rate.

Table 12 shows the results on both block-level
masking strategies and token-level masking strate-
gies. The block-level masking strategies signifi-
cantly outperform token-level masking strategies.
Because the token-level masking strategies may
destroy the integrity of texts or codes.

B.7 Training Procedure
Here, we visualize the evolution of the masking
rate and the training losses throughout the learning
process. As shown in Figure 5, the masking sched-
ule follows a stepwise curriculum strategy: during
the first third of the training, all execution blocks
are masked; in the second third, generation blocks
are additionally masked; and in the final third, anal-
ysis blocks are further masked. This progressive
masking design encourages the model to gradually
adapt to more challenging conditions and enhances
its robustness in code generation. As shown in Fig-
ure 6, the causal language modeling loss steadily

decreases over time, indicating consistent improve-
ments in the model’s predictive ability. In contrast,
the distillation loss displays sharp spikes at each
one-third interval, followed by a gradual decline.
These abrupt increases are caused by the sudden
introduction of new masked block types, which
temporarily raise the difficulty of the distillation
task until the model re-stabilizes.

C Training Sample

Here, we present how to organize training sam-
ples. Following chat templates of most models,
we use two special tokens to wrap the message of
user and assistant, i.e., “<|user|>”, “<|assistant|>”,
and “<|endofmessage|>”. Furthermore, we use
two special tokens to wrap the content of different
blocks, i.e., “<|text|>”, “<|code|>”, “<|execution|>”,
and “<|endofblock|>”. Then, we concatenate all
messages directly to form a piece of training data.
Note that the user message and execution block are
masked when calculating the loss because the en-
vironment provides the two contents during actual
use. Here is an example:

Reflection Instruction

<|user|>
<|text|>
Here is a programming challenge for you to
tackle:
(1) Write a Python function that solves
the specified problem with craft test cases
using assert statements and execute it. Pay
special attention to edge cases to thoroughly
validate your solution’s correctness.
(2) If your code fails any of the tests,
carefully examine the root cause of the
failure. Make the necessary corrections to
your code and then retest to confirm the
fixes.

Problem
Execute an algorithm to generate the
numerical multiplication of individual
integer components encapsulated within a
larger numeric figure.
n = 145
<|endofblock|>
<|endofmessage|>

10018

Reflection Sequence

<|assistant|>
<|code|>
def multiply _digits(n):

"""
This function takes an integer n and

returns the product of its digits.
"""
product = 1
while n > 0:

product *= n % 10
n //= 10

return product

Test cases
assert multiply _digits(145) == 4 * 5 * 1
assert multiply _digits(123) == 1 * 2 * 3
assert multiply _digits(999) == 9 * 9 * 9
assert multiply _digits(0) == 0
assert multiply _digits(10) == 1 * 0
<|endofblock|>
<|execution|>
—————————————————
————————
AssertionError Traceback
(most recent call last)
Cell In[1], line 15

13 assert multiply _digits(123) == 1 * 2
* 3

14 assert multiply _digits(999) == 9 * 9
* 9
—> 15 assert multiply _digits(0) == 0

16 assert multiply _digits(10) == 1 * 0

AssertionError:
<|endofblock|>
<|text|>
The assertion ‘assert multiply _digits(0) ==
0‘ failed. This indicates an issue with the
function when handling the case where ‘n‘
is 0.

In the current implementation, when
‘n‘ is 0, the while loop is never entered,
and thus the function returns the initial
value of ‘product‘, which is 1. How-
ever, the correct behavior should be to
return 0, as the product of the digits of 0 is 0.

I’ll correct the function to handle this
special case and retest the code.
<|endofblock|>
<|code|>
def multiply _digits(n):

"""
This function takes an integer n and

returns the product of its digits.
"""
if n == 0:

return 0

product = 1
while n > 0:

product *= n % 10
n //= 10

return product

Retesting with the original test cases and
the corrected case
assert multiply _digits(145) == 4 * 5 * 1
assert multiply _digits(123) == 1 * 2 * 3
assert multiply _digits(999) == 9 * 9 * 9
assert multiply _digits(0) == 0
assert multiply _digits(10) == 1 * 0
<|endofblock|>
<|execution|>
<|endofblock|>
<|text|>
The modified code has passed all the test
cases, including the previously failed case
for ‘n = 0‘. The function ‘multiply _digits‘
now correctly handles all tested scenarios.
<|endofblock|>
<|endofmessage|>

Instruction

<|user|>

<|text|>

Execute an algorithm to generate the nu-

merical multiplication of individual integer

components encapsulated within a larger nu-

meric figure.

n = 145

<|endofblock|>

<|endofmessage|>

10019

Final Answer

<|assistant|>
<|text|>
```python
def multiply _digits(n):

"""
This function takes an integer n and

returns the product of its digits.
"""
if n == 0:

return 0

product = 1
while n > 0:

product *= n % 10
n //= 10

return product
```
<|endofblock|>
<|endofmessage|>

D Test Prompt

Here, we present the test prompt for each test set
to facilitate reproduction.

For HumanEval, we add “Write a complete
Python function for the problem” before the origi-
nal prompt from EvalPlus (Liu et al., 2023) to make
the model follow the instructions better.

Test Prompt for HumanEval

<|user|><|text|>Write a complete Python

function for the problem.

{prompt}<|endofblock|><|endofmessage|>

<|assistant|><|text|>```python

For MBPP, we follow WizardCoder (Luo et al.,
2023) and Magicoder (Wei et al., 2023) to re-
construct the source problem from EvalPlus (Liu
et al., 2023) with some additional prompts.

Test Prompt for MBPP

<|user|><|text|> {prompt}

Your code should satisfy the following as-

sertion:

```python

{test sample}

```<|endofblock|><|endofmessage|>

<|assistant|><|text|>```python

For MultiPL-E, we put the source prompts in
both the user message and the beginning of the
assistant message to ensure that the model does not
modify the prompt and only completes it.

Test Prompt for MultiPL-E

<|user|><|text|>Write a complete {language}

function for the problem.

{prompt}<|endofblock|><|endofmessage|>

<|assistant|><|text|> ```{language}

{prompt}

For DS-1000, we directly use the source
prompts.

For APPs and LiveCodeBench, we add “Write
a complete Python script for the question, Please
note that you need to handle the stdin input, e.g. t
= int(input()).” before the original prompt to make
the model follow the instructions better.

Test Prompt for APPs / LiveCodeBench

<|user|><|text|>Write a complete Python

script for the question, Please note that

you need to handle the stdin input, e.g. t =

int(input()).

{prompt}<|endofblock|><|endofmessage|>

<|assistant|><|text|> ```python

For ClassEval, we add “Please complete the
class {class name} in the following code.” before
the original prompt to make the model follow the
instructions better.

Test Prompt for ClassEval

<|user|><|text|>Please complete the class

{class name} in the following code.

{prompt}<|endofblock|><|endofmessage|>

<|assistant|><|text|> ```python

10020

