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Abstract

Code generation plays a crucial role in vari-
ous tasks, such as code auto-completion and
mathematical reasoning. Previous work has
proposed numerous methods to enhance code
generation performance, including integrating
feedback from the compiler. Inspired by this,
we present ReflectionCoder, a novel approach
that effectively leverages reflection sequences
constructed by integrating compiler feedback
to improve one-off code generation perfor-
mance. Furthermore, we propose reflection
self-distillation and dynamically masked distil-
lation to effectively utilize these reflection se-
quences. Extensive experiments on three bench-
marks, i.e., HumanEval (+), MBPP (+), and
MultiPL-E, demonstrate that models fine-tuned
with our method achieve state-of-the-art perfor-
mance. Beyond the code domain, we believe
this approach can benefit other domains that fo-
cus on final results and require long reasoning
paths. Code and data are available at https://
github.com/SenseLLM/ReflectionCoder.

1 Introduction

Code generation aims to automatically produce
code based on natural language description, signifi-
cantly saving developers time and reducing human
error. In the past few decades, a lot of research
has been conducted for code modeling, such as
CodeBert (Feng et al., 2020), CodeT5 (Wang et al.,
2021). Recently, Large Language Models (LLMs)
have shown impressive modeling ability on nat-
ural language that allows them to perform vari-
ous difficult tasks (OpenAI, 2023). By training on
code domain datasets, LLMs such as CodeGen (Ni-
jkamp et al., 2023), StarCoder (Li et al., 2023),
Code Llama (Rozière et al., 2023), and DeepSeek-
Coder (Guo et al., 2024), which can accurately
understand user intents and generate code, have
shown better performance on code-related tasks.

*Corresponding author.

Leveraging this powerful capability, various works
empower LLMs in complex tasks including solv-
ing mathematics problems and logic reasoning by
integrating code and its execution result as Chain-
of-Thoughts (CoTs), such as PAL (Gao et al., 2023)
and PoT (Chen et al., 2022).

Since code generation is important in various
code-related tasks and many reasoning tasks, many
previous studies focus on achieving better code
generation performance. Integrating feedback from
the compiler is an intuitive way to help the model
reflect on previous mistakes and generate better
code. For instance, Self-Debug (Chen et al., 2023)
suggested that code LLMs be instructed to gen-
erate code, execute it, and subsequently improve
the code quality based on its execution results.
Additionally, Print-Debug (Hu et al., 2024) pro-
posed to insert print statements to generate more
detailed logs for debugging purposes. Furthermore,
OpenCodeInterpreter (Zheng et al., 2024) incorpo-
rated simulated human feedback into the interac-
tion. These studies have demonstrated that incor-
porating reflection sequences of code generation,
execution, and analysis as CoTs can enhance the
performance of code LLMs.

Inspired by these works, we propose to leverage
the reflection sequences to guide the fine-tuning
of code LLMs. The proven effectiveness of re-
flection sequences as CoTs in enhancing the code
generation performance demonstrates their inher-
ent knowledge, which can guide model fine-tuning
and result in better one-off code generation per-
formance. However, at least two challenges must
be considered when using the reflection sequences
to guide the model fine-tuning. Firstly, the reflec-
tion sequences differ from the vanilla one-off code
generation. Most of the codes in the reflection
sequences are partly modified based on previous
codes, while all codes are completed in the infer-
ence stage. The gap between the training and in-
ference stages results in relatively low utilization
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Write a Python function that solves the specified problem 

with test cases using assert statements and execute it …

Reflection Instruction

Reflection Sequence

Instruction

def multiply_digits(n): …

Final Code

Execute an algorithm to generate …

def multiply_digits(n): …. 

assert multiply_digits(999) == 9 * 9 * 9

Code Block

AssertionError Traceback (most recent call last) …

Execution Block

This indicates an issue with the function …

Analysis Block

def multiply_digits(n): …

assert multiply_digits(0) == 0

Generation Block

Test passed

Execution Block

The modified code has passed all the test cases …

Analysis Block

Figure 1: A sample of reflection sequence data contain-
ing four components: Reflection Instruction, Reflection
Sequences, Instruction, and Final code.

of the reflection sequence. Secondly, most of the
codes in reflection sequence are generated based on
previous executions and analysis, whereas a one-
off generation relies solely on a single instruction.
This disparity makes it challenging to transition
between such different prompts effectively.

Based on these concerns, we proposed Reflec-
tionCoder, a novel method to effectively lever-
age reflection sequence to perform better in one-
off code generation tasks. To bridge the gap be-
tween the reflection sequences and the vanilla code
generation, we propose reflection self-distillation.
Specifically, we carefully design a two-stage
prompt to obtain high-quality instruction answer
pairs with the same format as one-off generations.
We first employ an LLM to generate a reflection se-
quence for an instruction with a compiler, and then
task it to re-answer the instruction based on this se-
quence. After that, as shown in Figure 1, we obtain
two rounds of dialogue as [Reflection Instruction,
Reflection Sequence, Instruction, Final code]. The
second round dialogue is the same as the one-off

generation but with higher quality, which can play
the role of a teacher sample distilling knowledge
into one-off code generation. To effectively dis-
till knowledge from reflection sequence to one-off
generation, we design a novel distillation method,
namely dynamically masked distillation. Specifi-
cally, with a particular LLM, the teacher input is
the entire two-round dialogue, while the student
input is a partly masked first-round dialogue along
with an intact second-round dialogue. During the
training process, we gradually increase the mask-
ing rate to progressively enhance the difficulty of
generating the final code. In this way, LLM can
be distilled to generate the final code from easy to
difficult and achieve better performance.

Our contributions are summarized as follows:

• We propose to leverage reflection sequences
to improve the one-off code generation perfor-
mance of code LLMs, which can be generated
by LLMs and thus save annotation costs.

• On top of the idea, we propose two techniques,
namely reflection self-distillation and dynami-
cally masked distillation, which can effectively
utilize the reflection sequence to improve the
one-off code generation performance.

• Extensive experiments on HumanEval (+),
MBPP (+), MultiPl-E, APPs, LiveCodeBench,
ClassEval, and BigCodeBench demonstrate the
effectiveness of the proposed method on one-
off code generation. Notably, ReflectionCoder-
DeepSeek-Coder-33B reaches 82.9 (76.8) on
HumanEval (+) and 84.1 (72.0) on MBPP (+),
which is an on-par performance of Claude-3-
opus and surpasses early GPT-4.

2 Related Work

2.1 Large Language Models for Code
Large Language Models (Ouyang et al., 2022;
OpenAI, 2023; Anil et al., 2023b; Touvron et al.,
2023a,b; Penedo et al., 2023; Yang et al., 2023; Bai
et al., 2023; Jiang et al., 2023, 2024; Anil et al.,
2023a; Anthropic, 2024) have proven highly effec-
tive in general natural language processing (NLP)
tasks. For a specific domain such as code-related
tasks (Chen et al., 2021; Austin et al., 2021; Bavar-
ian et al., 2022; Muennighoff et al., 2023), train-
ing on large specific domain datasets can greatly
improve their efficacy. Recent studies have intro-
duced several LLMs for the code domain. Ope-
nAI introduced Codex (Chen et al., 2021), and
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Google introduced PaLM-Coder (Chowdhery et al.,
2023). However, these models are closed-source,
and we can only access them via API without ac-
cess to their parameters. There are also several
open-source LLMs for the code domain, such as
CodeGen (Nijkamp et al., 2023), Incoder (Fried
et al., 2023), SantaCoder (Allal et al., 2023), Star-
Coder (Li et al., 2023), StarCoder-2 (Lozhkov
et al., 2024), CodeGeeX (Zheng et al., 2023),
Code Llama (Rozière et al., 2023), and DeepSeek-
Coder (Guo et al., 2024). In addition to vanilla code
snippets, modification content of code with com-
mit messages (Muennighoff et al., 2023) and code
structure (Gong et al., 2024) are also proposed to be
the pre-train corpus. After instruction tuning, some
of these open-source models have outperformed
several closed-source models (Luo et al., 2023).

2.2 Instruction Tuning for Code

The primary objective of instruction tuning is train-
ing LLMs to align with human instructions by us-
ing a large corpus of human instructions together
with corresponding responses (Sanh et al., 2022;
Wei et al., 2022; Ouyang et al., 2022; Longpre
et al., 2023; Zhang et al., 2023). Fine-tuning upon
this method, LLMs can directly follow user in-
structions without extra demonstration and improve
their generalization capacity. Its great value is also
demonstrated in code-related applications. For ex-
ample, Code Alpaca (Chaudhary, 2023) applied
SELF-INSTRUCT (Wei et al., 2022) to fine-tune
LLMs with ChatGPT-generated instructions. Wiz-
ardCoder (Luo et al., 2023) proposed Code Evol-
Instruct, which evolves Code Alpaca data using the
ChatGPT to generate more complex and diverse
datasets. PanGu-Coder2 (Shen et al., 2023) pro-
posed Rank Responses to align Test&Teacher Feed-
back framework, which uses ranking responses as
feedback instead of the absolute value of a reward
model. In addition to starting with instructions, a
lot of work starts with existing source code. For
example, MagiCoder (Wei et al., 2023), Wave-
Coder (Yu et al., 2023), and InverseCoder (Wu
et al., 2024) proposed some methods to make full
use of source code.

2.3 Iterative Generation and Refinement

Iterative refinement approaches are often taken to
improve the generation quality. Recently, Self-
Refine (Madaan et al., 2023) and Reflexion (Shinn
et al., 2023) demonstrated that LLMs can reflect on
previous generations, generate feedback, and give

better generations based on feedback. In the code
domain, several tools can provide feedback for gen-
erated code, such as compiler, and other static tools.
Integrating feedback from these tools can help the
LLMs better reflect on themselves and generate
better codes. For example, Self-Debugging (Chen
et al., 2023) and Print-Debugging (Hu et al., 2024)
proposed to integrate the execution result of the
code as a feedback message to obtain better per-
formance. StepCoder (Dou et al., 2024) and
OpenCodeInterpreter (Zheng et al., 2024) involved
executing and iteratively refining code as multi-
turn interactions into instruction tuning, improving
the model’s debugging ability. Concurrently, Au-
toCoder (Lei et al., 2024) employed multi-turn in-
teraction to obtain high-quality instruction data and
then improve the one-off generation performance.
In contrast, our method method introduces the re-
flection sequence into the training stage instead of
just using it to filter the data.

3 Methodology

In this section, we present the methodological de-
tails of the proposed ReflectionCoder. We be-
gin with a vanilla distillation, followed by a care-
fully designed method that comprehensively ex-
tracts knowledge from the reflection sequences and
guides the model training.

3.1 Reflection Self-Distillation

Here, we present how to utilize the reflection se-
quences to enhance the fine-tuning of code LLMs.
As presented in Section 1, a piece of reflection se-
quence data includes four components: [Reflection
Instruction, Reflection Sequence, Instruction, Fi-
nal code], where the reflection sequence is divided
into three types of blocks, namely code block, ex-
ecution block, and analysis block. Their contents
are the generated executable code, the execution
results, and the code summary or error analysis,
respectively.

We construct two input samples for each re-
flection sequence to perform the reflection self-
distillation. The teacher sample is the entire re-
flection sequence, and the student sample consists
of [Instruction, Final Code], which is the same as
vanilla one-off code generation instruction tuning
data. The key distinction between them is that the
final code of the teacher sample can be generated
based on the reflection sequences with low perplex-
ity, while the student sample can only be generated
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Figure 2: Overview of the proposed dynamically masked distillation.

according to the instruction. The vanilla distillation
loss can be formulated as

Ls
d = KL (p(tc|tri, trs, ti) ∥ p(tc|ti)) , (1)

where tc denotes tokens of the final code, tri de-
notes tokens of the reflection instruction, trs de-
notes tokens of the reflection sequence, and ti de-
notes tokens of the instruction.

This approach enables the distillation of knowl-
edge from the sequence into a one-off generation.
The absolute position of the tokens in [Instruction,
Final Code] differs between the teacher sample and
the student sample, while [Reflection Instruction,
Reflection Sequence] exists in the teacher sample
but not in the student sample. However, the rela-
tive positions between the two tokens in [Instruc-
tion, Final Code] are the same between the teacher
sample and the student sample, which indicates
that distillation is effective for models utilizing Ro-
tary Position Embedding (Su et al., 2024), such as
Llama (Touvron et al., 2023b).

3.2 Dynamically Masked Distillation

Although vanilla distillation can distill knowledge
from reflection sequence to enhance the one-off
code generation, it could be hindered by the neg-
ative impact of contextual differences. Previous
studies on distillation show that a student model
distilled from a teacher with more parameters per-
forms worse than the one distilled from a smaller
teacher with a smaller capacity (Mirzadeh et al.,
2020). This finding suggests that the difference
between teacher and student should not be too
large. However, a significant gap exists between
our teacher-student sample pair, as the teacher sam-
ple contains the entire reflection sequence while
the student sample has no access to the reflection

procedure. This discrepancy could lead to the poor
performance of vanilla distillation.

Inspired by Curriculum Learning (Bengio et al.,
2009), we carefully design a dynamically masked
distillation method. The overall procedure is pre-
sented in Figure 2. The initial student sample is
the same as the teacher sample. During the train-
ing process, we mask all tokens of the “Reflection
Instruction” and a portion of tokens of the “Reflec-
tion Sequence”. The number of masked tokens is
gradually increased to progressively enhance the
difficulty of generating the final code, thereby en-
abling the model to effectively learn the knowledge
encoded in the reflection sequence. Then the distil-
lation loss can be formulated as

Ld = KL (p(tc|tri, trs, ti) ∥ p(tc|tprs, ti)) , (2)

where tprs denoted tokens partly masked reflection
instruction.

As shown in Figure 3, we design three dynamic
masking strategies, namely random mask, sequen-
tial mask, and block mask. All of these strategies
adjust dynamically with the mask rate, a concept re-
lated to the training process, which can be defined
as “current step/max step”. The masking details
are illustrated below:

(1) Random mask selects blocks to mask based on
the mask rate randomly. This is an intuitive
strategy used by many previous studies in the
pre-training stage such as BERT (Devlin et al.,
2019) and T5 (Raffel et al., 2020).

(2) Sequential mask selects the leftmost blocks to
mask and gradually expands the masked scope
according to the mask rate. The underlying
principle of this strategy is that later tokens are
usually more influential in generating the final
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Figure 3: Overview of the proposed dynamic masking strategies. Here, a cell denotes a block, ‘C’ denotes the code
block, ‘E’ denotes the execution block, and ‘A’ denotes the analysis block.

code since code generated after analysis tends to
be more accurate than those generated initially.

(3) Block mask selects some blocks according to
mask rates. Specifically, when the mask rate
exceeds 0, all execution blocks are masked.
When the mask rate exceeds 1/3, all generation
blocks are additionally masked. When the mask
rate exceeds 2/3, all analysis blocks are further
masked. The core idea of this strategy is that the
effectiveness of tokens is block-dependent. For
instance, tokens in the execution block typically
have the lowest impact.

With these dynamically masked strategies, the
learning difficulty gradually increases, contributing
to better final one-off code generation performance.
Similar to reflection self-distillation, the absolute
position of tokens in the one-off code generation
round differs between the training stage and the in-
ference stage, while “Reflection Sequence” exists
in the training stage but not in the inference stage.
However, the relative positions of the two tokens in
[Instruction, Final Code] remain the same between
the training stage and the inference stage, which
indicates that there is no gap between the training
stage and the inference stage for models utilizing
Rotary Position Embedding (Su et al., 2024).

Training loss. We employ both the next token
prediction loss and distillation loss to train the
model. For the teacher sample, we perform the
next token prediction task on “Final Code” and the
text blocks and the code blocks of “Reflection Se-
quence”, because both the queries of the user and
the execution results do not need to be generated
in the inference stage. For the student sample, we
only perform the next token prediction task on “Fi-
nal Code”. The final loss consists of the next token
prediction loss of the teacher and student samples,
and the distillation loss between the teacher and

student sample.

4 Experiments

4.1 Experimental Setup

Training Dataset. Our training dataset includes
a vanilla code instruction tuning dataset, where
each sample contains an instruction and corre-
sponding code answer and the proposed reflection
sequence dataset. For the code instruction tun-
ing dataset, we use instruction answer pairs from
an open-source code instruction tuning dataset:
CodeFeedback-Filtered-Instruction1. For the reflec-
tion sequence dataset, we first randomly select 10k
instructions with Python code in the correspond-
ing answer to conduct two rounds of dialogue with
GPT-4 Code Interpreter2, obtaining the reflection
sequence dataset. Subsequently, we use the 10k
reflection sequence data and 156k code instruction
tuning data to fine-tune DeepSeek-Coder 33B (Guo
et al., 2024). Using this fine-tuned model, we gen-
erate additional 12k reflection sequence data. The
detailed data construction process is presented in
Appendix A. Finally, we fine-tune the target model
using 22k reflection sequence data and 156k code
instruction tuning data.

Test Dataset. We evaluate our method on Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021), two of the most widely used bench-
marks for code generation. Each task in these
benchmarks includes a task description as the
prompt and a handful of test cases to check the
correctness of the LLM-generated code. Consider-
ing the insufficiency of test cases in these bench-
marks, Liu et al. (2023) proposed HumanEval+
and MBPP+, which contain 80×/35× more tests.

1https://huggingface.co/datasets/m-a-p/
CodeFeedback-Filtered-Instruction

2https://platform.openai.com/docs/assistants/
tools/code-interpreter
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Method Base
Benchmark

HumanEval HumanEval+ MBPP MBPP+

Closed-Source Models

O1-Preview (Sept 2024) (Jaech et al., 2024) - 96.3 89.0 95.5 80.2
GPT-4-Turbo (April 2024) (OpenAI, 2023) - 90.2 86.6 - -
GPT-4-Turbo (Nov 2023) (OpenAI, 2023) - 88.4 81.7 85.7 73.3
GPT-3.5-Turbo (Nov 2023) (Ouyang et al., 2022) - 76.8 70.7 82.5 69.7
Claude-3-opus (Mar 2024) (Anthropic, 2024) - 82.9 76.8 89.4 73.3
Claude-3-sonnet (Mar 2024) (Anthropic, 2024) - 70.7 62.8 83.6 69.3
Mistral Large (Mar 2024) (Jiang et al., 2023) - 70.1 62.8 72.8 59.5
Gemini Pro 1.0 (Anil et al., 2023a) - 63.4 55.5 75.4 61.4

Open-Source Models

WizardCoder (Luo et al., 2023) CL-7B 48.2 40.9 58.5 49.5
MagiCoder-S (Wei et al., 2023) CL-7B 70.7 66.5 70.6 60.1
OpenCodeInterpreter (Zheng et al., 2024) CL-7B 72.6 67.7 66.4 55.4
ReflectionCoder CL-7B 75.0 68.9 72.2 61.4

WizardCoder (Luo et al., 2023) CL-34B 73.2 64.6 75.1 63.2
OpenCodeInterpreter (Zheng et al., 2024) CL-34B 78.0 72.6 73.4 61.4
Speechless (Speechless, 2023) CL-34B 77.4 72.0 73.8 61.4
ReflectionCoder CL-34B 78.0 73.8 80.2 67.5

DeepSeek-Coder-Instruct (Guo et al., 2024) DS-6.7B 73.8 70.1 74.9 65.6
MagiCoder-S (Wei et al., 2023) DS-6.7B 76.8 70.7 69.4 69.0
OpenCodeInterpreter (Zheng et al., 2024) DS-6.7B 77.4 73.8 76.5 66.4
Artigenz-Coder (Artigenz-Coder, 2024) DS-6.7B 75.6 72.6 80.7 69.6
ReflectionCoder DS-6.7B 80.5 74.4 81.5 69.6

DeepSeek-Coder-Instruct (Guo et al., 2024) DS-33B 81.1 75.0 80.4 70.1
WizardCoder (Luo et al., 2023) DS-33B 79.9 73.2 81.5 69.3
OpenCodeInterpreter (Zheng et al., 2024) DS-33B 79.3 73.8 80.2 68.5
ReflectionCoder DS-33B 82.9 76.8 84.1 72.0

Table 1: Pass@1 accuracy on HumanEval(+) and MBPP(+). Here, ‘CL’ denotes Code Llama, and ‘DS’ denotes
DeepSeek-Coder. The best results of each base are in bold and results unavailable are left blank.

Following prior work (Liu et al., 2023; Wei et al.,
2023; Zheng et al., 2024), we use greedy decod-
ing to generate one sample and focus on com-
paring the pass@1 metric. Due to the limited
space, we present evaluation experiments on more
code-related benchmarks in Appendix B, including
MultilPL-E (Cassano et al., 2022), DS1000 (Lai
et al., 2023), APPs (Hendrycks et al., 2021a), Live-
CodeBench (Jain et al., 2024), ClassEval (Du et al.,
2023), and BigCodeBench (Zhuo et al., 2024).

Implementation Details. We test our methods
on Code Llama Python 7B/34B and DeepSeek-
Coder 6.7B/33B. We finetune all models for 2
epochs. We employ AdamW (Loshchilov and Hut-
ter, 2019) optimizer with a learning rate of 5e-5
for 6.7B/7B models and 2e-5 for 33B/34B mod-
els, a 0.05 warm-up ratio, and a cosine scheduler.
We set the batch size as 512 and the max sequence

length as 4096. To efficiently train the computation-
ally intensive models, we simultaneously employ
DeepSpeed (Rajbhandari et al., 2020) and Flash At-
tention (Dao, 2023). On 16 NVIDIA A800 80GB
GPUs, the experiments on 7B models and 34B
models take 3.5 hours and 25 hours, respectively.

In the training process, we up-sample 22k re-
flection sequence data by a factor of 2 and mix
them with 156k code instruction tuning data. For
samples in code instruction tuning data, we only
employ the next token prediction as the training
task, a.k.a., we only calculate the causal language
model loss. For samples in reflection sequence data,
we use the proposed method to calculate the loss.
We only use the block mask strategy in the order
of execution block, analysis block, and code block.
Although each strategy can bring benefits, mixing
them is no longer beneficial in the experiments.
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4.2 Evaluation
Baselines. We compare ReflectionCoder with
previous state-of-the-art methods, including Wiz-
ardCoder (Luo et al., 2023), Speechless (Speech-
less, 2023), DeepSeek-Coder Instruct (Guo et al.,
2024), Magicoder (Wei et al., 2023), and Open-
CodeInterpreter (Zheng et al., 2024). All the results
are consistently reported from the EvalPlus leader-
board3. The proposed method is an instruction
tuning method, so we do not present comparison
results for base models such as StarCoder (Li et al.,
2023) and Code Llama (Rozière et al., 2023).

Results. Table 1 shows the pass@1 accuracy
of different method on HumanEval (+) and
MBPP (+). Based on the results, we have the
following findings: (1) For open-source meth-
ods with parameters ranging from 6.7B to 34B,
the proposed ReflectionCoder outperforms pre-
vious state-of-the-art methods on all base mod-
els, demonstrating its effectiveness. (2) Focusing
on Code Llama, ReflectionCoder-CodeLlama-7B
even surpasses WizardCode-CodeLlama-34B on
HumanEval and HumanEval+. (3) Compared with
OpenCodeInterpreter, ReflectionCoder performs
better on various base models, which indicates
that we take better advantage of the reflection se-
quences. (4) Compared with closed-source mod-
els, ReflectionCoder-DeepSeek-Coder-33B outper-
forms Gemini Pro, Mistral Large, and Claude-3-
sonnet on all four benchmarks. It is worth noting
that ReflectionCoder-DeepSeek-Coder-33B also
achieves the on-par performance of GPT-3.5-Turbo
and Claude-3-opus.

4.3 Detailed Analysis
Here, we conduct some analytical experiments.
Due to the limited space, more analytical exper-
iments are presented in the Appendix B.

4.3.1 Ablation Study
Here, we check how each component contributes
to the final performance. We prepare three group
variants of our method: (1) The first group is re-
lated to the high-level method, which has three
variants. w/o Dynamically Mask denotes without
any dynamically mask strategy, a.k.a., the vanilla
distillation. w/o Distillation denotes without distil-
lation, a.k.a., only perform next token prediction
on the reflection data. w/o Reflection Sequence
denotes without reflection sequence parts, a.k.a.,

3https://evalplus.github.io/leaderboard.html

Method HumanEval (+) MBPP (+)

ReflectionCoder 75.0 (68.9) 72.2 (61.4)

w/o Dynamic Mask 70.7 (65.2) 70.4 (58.5)
w/o Distillation 69.5 (63.4) 70.4 (59.0)
w/o Reflection Sequence 66.5 (62.2) 68.5 (57.9)
w/o Reflection Data 65.9 (62.2) 68.5 (57.9)

w/o GPT Data 71.3 (67.1) 70.1 (59.5)
w/o DS Data 68.9 (65.2) 69.6 (58.2)

w/ Random Mask 72.0 (66.5) 70.1 (59.0)
w/ Sequential Mask 72.6 (67.7) 71.3 (60.3)
w/ Three Strategies 73.2 (65.9) 71.7 (61.2)

Table 2: Ablation results on HumanEval (+) and
MBPP (+). The metric is Pass@1 accuracy, and all
the results are based on Code Llama 7B.

train the model on reflection data but without re-
flection sequences. w/o Reflection Data denotes
without reflection data, a.k.a., only train the model
with code instruction tuning data. (2) The sec-
ond group is related to the source of the reflec-
tion data. w/o GPT-4 Data denotes only use the
12k reflection data construct from the fine-tuned
DeepSeek-Coder 33B. Note that the DeepSeek-
Coder 33B is fine-tuned with reflection Data from
GPT-4. w/o DS Data only use the 10k reflection
data construct from GPT-4. (3) The third group is
related to the masking strategy. w/ Random Mask
and w/ Sequential Mask denote replacing the block
mask with random and sequential masks, respec-
tively. w/ Three Mask Strategies denotes randomly
selecting a masking strategy in each step.

Table 2 shows the pass@1 accuracy of different
variants on HumanEval (+) and MBPP (+). As we
can see, the performance ranking can be given as:
w/o Reflection Data < w/o Distillation < w/o Dy-
namically Mask < ReflectionCoder. These results
indicate that all components are essential for im-
proving performance. Moreover, w/o Reflection
Sequence and w/o Reflection Data are almost the
same. The main reason is that w/o Reflection Se-
quence are the same as the instruction tuning data in
format, which does not introduce new knowledge
into the training. Additionally, both w/o GPT-4
Data and w/o DS Data perform worse than Reflec-
tionCoder. And w/o GPT-4 Data performs better
than w/o DS Data. A possible reason is that we
have carried out strict filtering on Reflection Data
from DS, which may impact the final performance.
Finally, w/ Random Mask, w/ Sequential Mask,
and w/ Three Mask Strategies perform better than
w/o Dynamically Mask but worse than Reflection-
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Method HumanEval (+) MBPP (+)

w/ EAC 75.0 (68.9) 72.2 (61.4)
w/ ECA 75.0 (68.9) 70.9 (59.5)
w/ ACE 72.0 (66.5) 70.6 (60.1)
w/ AEC 73.2 (65.9) 70.9 (59.5)
w/ CAE 71.3 (65.9) 70.4 (59.8)
w/ CEA 73.2 (67.1) 72.0 (60.8)

Table 3: Effect of masked order. The metric is Pass@1
accuracy, and all the results are based on Code Llama
7B. Here, ‘C’ denotes the code block, ‘E’ denotes the
execution block, and ‘A’ denotes the analysis block.
For example, ‘ECA’ denotes first mask execution block,
then mask code block, and finally mask analysis block.

Model GPT 33B 6.7B HumanEval (+) MBPP (+)

33B ! % % 80.5 (73.8) 80.7 (69.0)
33B ! ! % 82.9 (76.8) 84.1 (72.0)

6.7B ! ! % 80.5 (74.4) 81.5 (69.6)
6.7B ! % ! 79.3 (76.2) 80.7 (68.8)
6.7B % ! % 80.5 (75.0) 81.0 (68.3)
6.7B % % ! 81.1 (76.2) 80.4 (68.3)

Table 4: Effect of data source. The metric is Pass@1
accuracy. Here, “33B” denotes Deepseek-Coder-33B
and “6.7B” denotes Deepseek-Coder-6.7B.

Coder. This indicates that while the three strategies
are effective, they are not fully compatible with
each other. A possible reason is that mixing them
destroys the curricular nature of learning, leading
to reduced effectiveness.

4.3.2 Effect of Block Masked Order
As mentioned in Section 3, the block mask masks
block in a specific order. Here, we examine the
effect of masking order by preparing six variants
with all possible orders.

Table 3 shows the pass@1 accuracy of different
orders. As we can see, the two orders that mask
execution blocks first perform better than other or-
ders, indicating that tokens in execution blocks are
generally less effective, which is intuitive. Sim-
ilarly, the two orders that mask code blocks last
also perform better, suggesting that tokens in code
blocks are more effective.

4.3.3 Effect of Data Source
As mentioned in Section 4.1, our reflection se-
quence dataset is constructed from GPT-4 and fine-
tuned Deepseek-Coder-33B. Here, we construct

Model HumanEval (+) MBPP (+)

Llama-3.1-8B-Instruct 70.1 (62.2) 72.5 (59.3)
w/ reflection 76.2 (64.7) 74.2 (62.2)
w/ distillation 74.4 (68.3) 73.0 (63.0)
w/ distillation & reflection 74.4 (67.7) 72.2 (62.4)

Table 5: Experiment on Llama-3.1-8B-Instruct. The
metric is Pass@1 accuracy. Here, “w/ reflection” de-
notes performing reflection while testing on Llama-3.1-
8B-Instruct. “w/ distillation” denotes the one-off gen-
eration performance of the model fine-tuned with self-
generated reflection sequence data. “w/ distillation &
reflection” denotes performing reflection while testing
on the model fine-tuned with the self-generated reflec-
tion sequence data.

three sets of experiments to check the effectiveness
of our method with different other data sources.

Firstly, we compared the ReflectionCoder-
Deepseek-Coder-33B with the Deepseek-Coder-
33B fine-tuned only with data from GPT-4, which
is used to construct more data in our main experi-
ments. As shown in the first group of Table 4, the
intermediate model performs worse than the final
model, which shows that the model can generate
its training data and improve itself based on our
method after only a small amount of training data
from GPT-4.

Then, we employ the Deepseek-Coder-6.7B to
act as the intermediate model. As shown in the sec-
ond group of Table 4, show that the data generated
by the DeepSeek-Coder 6.7B can still bring bene-
fits. Surprisingly, for HumanEval, the Deepseek-
Coder 6.7B fine-tuned with self-generated reflec-
tion sequence data achieves better performance.
The results also show that GPT-4 data is not the
key to improving model performance. As long as
the model learns how to reflect based on execution
results, it can generate a reflection sequence for the
model to improve itself.

4.3.4 Autonomous Enhancement
To completely exclude the factor of GPT-4, we
employ an open-source model (Llama-3.1-8B-
Instruct (Dubey et al., 2024)) that can generate re-
flection sequences without any training to act as the
data source. We first employ reflection in testing
as the reference, which first tasks the Llama-3.1-
8B-Instruct to generate the reflection sequence and
then tasks the model to generate the final code in
the test stage. Then, we task the model to generate
the reflection sequence data and use the generated
data to fine-tune itself with the proposed method.
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As shown in Table 5, although Llama-3.1-8B-
Instruct has undergone multiple rounds of post-
training (including SFT and multi-turn DPO), our
method can still further improve its performance
and only rely on the data generated by itself. Sur-
prisingly, on the plus dataset, the proposed method
even outperforms w/ reflection and w/ distillation &
reflection. The reason is that the expected answers
directly generated by the model have a high error
rate, making it difficult to cover boundary data and
more difficult data. Meanwhile, the data used for
training has been strictly filtered (the filtered details
are presented in Appendix A), so the quality of the
data used for training is relatively high. The filter
pass rate (only 17%) also shows that the quality of
the generated data is relatively low.

4.4 Case Study
Here, we present a case to show the effectiveness
of the proposed ReflectionCoder. Specifically, the
instruction is:
def iscube(a):

"""
Write a function that takes an

integer a and returns True if
this integer is a cube of some
integer number. Note: you may
assume the input is always valid
.

Examples:
iscube (1) ==> True
iscube (2) ==> False
iscube (-1) ==> True
iscube (64) ==> True
iscube (0) ==> True
iscube (180) ==> False
"""

We compare two generated implementations:
# Response of "w/o Reflection Data"
def iscube(a):

cube_root = round(a ** (1. / 3))
return cube_root ** 3 == a

# Response of ReflectionCoder
def iscube(a):

if a < 0:
a = -a

cube_root = round(a ** (1. / 3.))
return cube_root ** 3 == a

Although the solution generated by the “w/o Re-
flection Data” appears correct, it fails to account
for the behavior of the “round” function when han-
dling negative inputs. This oversight could lead
to incorrect results for negative cube numbers. In
contrast, the refined version—likely influenced by
reflective feedback—correctly handles negative in-
puts by converting them to positive values before
computing the cube root.

Model GSM8K MATH

w/o ReflectionCoder 9.9 9.6
w/ ReflectionCoder 11.1 13.6

Table 6: Experiments on two mathematical reasoning
datasets. The metric is Pass@1 accuracy.

This case highlights a key advantage of leverag-
ing reflection sequences: models can learn nuanced
behaviors of library functions, such as “round”,
through feedback during the training process. Con-
sequently, the model with access to reflection data
demonstrates a deeper and more reliable under-
standing of function semantics.

4.5 Generalization
Here, we evaluate the generalization ability of
our proposed methods. Specifically, we fine-
tune a LLaMA-3.1-8B model using the train-
ing sets of GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021b). The baseline
model is trained to directly predict the final an-
swer without any chain-of-thought (CoT). For the
proposed method, we regard the CoT as the reflec-
tion sequence and apply dynamic masking during
distillation.

As shown in Table 6, even with minimal adapta-
tion, our method yields consistent improvements
on both datasets. These results demonstrate the
potential applicability of our approach in non-code
reasoning tasks. Furthermore, our method opens up
the possibility for dynamic compression of reason-
ing paths, which may significantly reduce latency.

5 Conclusion

In this paper, we proposed ReflectionCoder, a novel
method to effectively leverage the reflection se-
quence constructed by integrating feedback from
the compiler to achieve better one-off code gen-
eration performance. We proposed two training
techniques to effectively utilize the reflection se-
quences data, namely reflection self-distillation and
dynamically masked distillation. The reflection
self-distillation aims to distillation from reflection
sequence to one-off code generation, and the dy-
namically masked distillation aims to utilize the
reflection sequence to achieve better performance
effectively. In the future, we plan to improve this
method to dynamically reduce unnecessary reason-
ing paths for domains that need to show reasoning
paths to simplify the model output.
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Limitations

The primary limitation of this study is its reliance
on a powerful model, such as the GPT-4 code in-
terpreter, for constructing reflection sequence data.
While this method ensures high precision and ef-
ficiency, it also incurs significant computational
costs, which may limit its accessibility and scala-
bility, particularly in resource-constrained environ-
ments. However, as large language models con-
tinue to evolve, open-source models like Llama
3.1 are beginning to exhibit similar capabilities.
We anticipate that this limitation will diminish as
these models become more advanced and widely
available. Furthermore, the reliance on Rotary Po-
sition Embedding introduces an additional restric-
tion. While effective within the specific context
of this study, it may limit the method’s generaliz-
ability and adaptability to different architectures or
alternative embedding strategies.
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Appendix

A Data Construction

As mentioned in Section 4.1, our reflection se-
quence data is constructed from GPT-4 Code inter-
preter and fine-tuned Deepseek-Coder-33B. Here,
we present details of data construction.

A.1 GPT-4 Code Interpreter

Previous studies (Zhou et al., 2023; Wang et al.,
2023) have revealed that GPT-4 Code Interpreter 10

can write and run Python code in a sandbox exe-
cution environment to solve challenging code and
math problems. It can iterate on the incorrect code
it had previously generated by analyzing the cause
of the failure and regenerating the code until it ex-
ecutes successfully. Based on its capability, we
designed a two-stage method to prompt the GPT-
4 Code Interpreter to construct the reflection se-
quence dataset.

In the first stage, we task the GPT-4 Code Inter-
preter to generate code to solve the given problem
and test the code with assert statements. If the code
fails any of these tests, the GPT-4 Code Interpreter
will analyze the reasons for failure and regenerate
the code with necessary corrections automatically.
In this way, we get a reflection sequence of code
generation, execution, and analysis, as presented in
the blue blocks in Figure 1. The prompt detail is
shown below:

The first round prompt

Here is a programming problem for you to
tackle:

(1) Write a Python function that solves
the specified problem with craft test cases
using assert statements and execute it. Pay
special attention to edge cases to thoroughly
validate your solution’s correctness.

(2) If your code fails any of the tests,
carefully examine the root cause of the
failure. Make the necessary corrections to
your code and then retest to confirm the
fixes.

Note: At this phase, your primary

10https://platform.openai.com/docs/assistants/
tools/code-interpreter

goal is to ensure the reliability of your
code. There’s no need to delve into
in-depth problem analysis or strive for code
optimization.

# Programming Problem
{problem}

In the second stage, we task the GPT-4 Code
Interpreter to generate the entire code based on
the preceding reflection sequence. Additionally,
we instruct the model to refrain from using any
words related to the preceding reflection sequence,
effectively simulating the one-off code generation.
In this way, we get the high-quality code answer,
as presented in the green block in Figure 1. The
prompt detail is shown below:

The second round prompt

Then, your task is to create a precise solu-
tion for the given programming problem.

Your answer should be complete and
standalone, avoiding references to external
resources or past exercises, and omit
phrases such as "correct version".

There is no requirement to execute
the code or provide any test/usage example.
Just present the code for the given problem
between "```python" and "```".

A.2 Deepseek-Coder-33B

Due to the high cost of calling the GPT-4 Code
Interpreter, we only construct 10k reflection se-
quence data using the prompt provided in Sec-
tion 3. To generate more reflection sequence data,
as described in Section 4, We first fine-tune the
DeepSeek-Coder 33B (Guo et al., 2024) model us-
ing 10k reflection sequence data and 156k code
instruction tuning data, which endows it with the
capability to generate code and interpret feedback
from the compiler. Then, we use this fine-tuned
model to construct more reflection sequence data.

In the constructing stage, we randomly select
another 70k instructions, whose corresponding an-
swers contain Python code, to prompt the fine-
tuned model. The following steps are performed to
implement the reflection process.
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Model Base Java JavaScript C++ PHP Swift Rust

StarCoder SC-15B 28.5 31.7 30.6 26.8 16.7 24.5
WizardCoder SC-15B 35.8 41.9 39.0 39.3 33.7 27.1

Code Llama-Python CL-7B 29.3 31.7 27.0 25.1 25.6 25.5
MagiCoder CL-7B 36.4 45.9 36.5 39.5 33.4 30.6
MagiCoder-S CL-7B 42.9 57.5 44.4 47.6 44.1 40.3
ReflectionCoder CL-7B 53.2 62.1 47.9 53.6 49.1 50.6

Code Llama-Python CL-34B 39.5 44.7 39.1 39.8 34.3 39.7
WizardCoder CL-34B 44.9 55.3 47.2 47.2 44.3 46.2
ReflectionCoder CL-34B 61.4 70.7 63.2 65.7 55.8 64.0

Table 7: Pass@1 accuracy results on MulitiPL-E. The best results of each base are in bold. Here, ‘SC’ denotes
StarCoder, and ‘CL’ denotes Code Llama.

Model Base C++ Java PHP TS C# Bash JavaScript

DS Instruct DS-6.7B 63.4 68.4 68.9 67.2 72.8 36.7 72.7
ReflectionCoder DS-6.7B 69.5 65.8 65.2 70.8 69.6 42.4 72.0

DS Instruct DS-33B 68.9 73.4 72.7 67.9 74.1 43.0 73.9
ReflectionCoder DS-33B 70.8 70.9 72.0 72.3 74.7 45.6 73.9

Table 8: Pass@1 accuracy results on MulitiPL-E. The best results of each base are in bold. Here, ‘DS’ denotes
DeepSeek-Coder.

• First, we prompt the fine-tuned model to gener-
ate a code block, which contains code and test
samples.

• Then, we employ a Jupyter Client to execute the
code and concatenate the execution result to the
prompt as an execution block.

• After that, the model generates an analysis block
for the cause if the code sample fails any of the
tests.

• The model will repeat the code generation and
analyzing process until there is no error or it
reaches a maximum of eight iterations.

We filter out 38k samples whose generated codes
contain I/O operations that can be identified by
keyword matching (e.g., "open," "dump," "pip")
or fail to resolve all errors within the maximum
of eight iterations limitation. After that, we filter
out samples that only contain one iteration, i.e., the
first generated code passes all test cases, whose test
samples may be too simple to ensure the correct-
ness of the final code. In this stage, we filter out an
additional 20k samples from the 32k samples gen-
erated in the previous stage and ultimately retain
12k high-quality samples.

To sum up, we first select 70k instructions to
iteratively construct reflection data, where 38k sam-
ples are discarded as they contain I/O operations or
exceed the maximum iteration limitation. Finally,
we filter out 20k samples with only one round of

reflection, which may have some errors in the final
code, and retain 12k high-quality samples.

B Additional Experiments

B.1 MultiPL-E
Following MagiCoder (Wei et al., 2023), we evalu-
ate six wide languages, i.e., Java, JavaScirpt, C++,
PHP, Swift, and Rust, using MultiPL-E (Cassano
et al., 2022) benchmark. We employ StarCoder (Li
et al., 2023), WizardCoder (Luo et al., 2023), Code
Llama (Rozière et al., 2023), and MagiCoder (Wei
et al., 2023) as baselines. For this comparison, we
follow MagiCoder and WizardCoder to set tem-
perature = 0.2, top_p = 0.95, max_length = 512,
and num_samples = 50. As shown in Table 7, the
proposed ReflectionCoder outperforms the previ-
ous state-of-the-art methods on both Code Llama
7B and Code Llama 34B. It shows that reflection
sequence in Python is also helpful to other lan-
guages. Surprisingly, ReflectionCoder Code Llama
7B even surpassed WizardCoder Code Llama 34B,
which further demonstrates the effectiveness of the
proposed method.

In addition, we compare our method to
DeepSeek-Coder Instruct (Guo et al., 2024) on
seven languages, which are reported in the
DeepSeek-Coder paper, i.e., C++, Java, PHP, TS,
C#, Bash, and JavaScript. For this comparison,
we adopted a greedy search approach following the
DeepSeek-Coder Instruct. As shown in Table 8, the
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Model Base plt np pd py scp sk tf All

Incoder 6B 28.3 4.4 3.1 4.4 2.8 2.8 3.8 7.4
CodeGen-Mono 16B 31.7 10.9 3.4 7.0 9.0 10.8 15.2 11.7
Code-Cushman-001 - 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1

StarCoder SC-15B 51.7 29.7 11.4 21.4 20.2 29.5 24.5 26.0
WizardCoder SC-15B 55.2 33.6 16.7 26.2 24.2 24.9 26.7 29.2

Code LLama CL-7B 55.3 34.5 16.4 19.9 22.3 17.6 28.5 28.0
WizardCoder CL-7B 53.5 34.4 15.2 25.7 21.0 24.5 28.9 28.4
MagiCoder CL-7B 54.6 34.8 19.0 24.7 25.0 22.6 28.9 29.9
MagiCoder-S CL-7B 55.9 40.6 28.4 40.4 28.8 35.8 37.6 37.5

ReflectionCoder CL-7B 56.2 43.1 24.5 46.7 23.1 45.5 35.6 37.8
w/o Relfexion Data CL-7B 56.0 42.7 23.0 43.6 26.7 45.8 35.6 37.4

Table 9: Pass@1 accuracy results on DS-1000 (Completion format). The best results of each base are in bold. Here,
‘SC’ denotes StarCoder, ‘CL’ denotes Code Llama.

Method APPs LiveCodeBench
ClassEval

BigCodeBench
Class Level Func Level

MagiCoderS-DS-6.7B 12.8 17.6 20.0 43.4 47.6
OpenCodeInterpreter-DS-6.7B 11.5 17.6 19.0 42.6 44.6
ReflectionCoder-DS-6.7B 14.1 18.4 25.0 44.0 47.9

OpenCodeInterpreter-DS-33B 17.5 22.3 26.0 43.4 51.0
ReflectionCoder-DS-33B 20.2 22.7 28.0 50.4 52.9

Table 10: Pass@1 accuracy on APPs, LiveCodeBench, ClassEval, and BigCodeBench.

proposed ReflectionCoder outperforms DeepSeek-
Coder Instruct in most languages. Note that the
DeepSeek-Coder Instruct is trained with 2B tokens,
while our models are trained with 300M tokens,
which also shows the effectiveness of our meth-
ods. Our method outperforms DeepSeek-Coder
Instruct in three languages on DeepSeek-Coder-
6.7B and five languages on DeepSeek-Coder-33B,
which shows that the larger model has a greater
transfer ability.

B.2 DS-1000

We also evaluate our method on the DS-1000
dataset (Lai et al., 2023), which contains 1K dis-
tinct data science coding issues, ranging from 7
popular Python data science libraries. We employ
Incoder (Fried et al., 2023), CodeGen (Nijkamp
et al., 2023), StarCoder (Li et al., 2023), Wizard-
Coder (Luo et al., 2023), Code Llama (Rozière
et al., 2023), and MagiCoder (Wei et al., 2023) as
baselines. For this comparison, we follow Magi-
Coder to set temperature = 0.2, top_p = 0.95,
max_length = 512, and num_samples = 40.

As shown in Table 9, our model outperforms
all baselines on average score. However, when
comparing our method with and without Reflec-
tion Data, where the latter is trained exclusively

with 156k one-off code generation data points, our
method does not significantly improve the DS-1000
dataset. A key factor contributing to this outcome
is the limited representation of data related to these
seven libraries in our training set, primarily due
to constraints in computational resources. For in-
stance, the need for substantial GPU resources re-
stricts our ability to fully leverage TensorFlow and
PyTorch, while the requirement for multi-modal
capabilities limits our utilization of Matplotlib. De-
spite these limitations, it is noteworthy that our
method does not adversely affect the performance
of tasks associated with these libraries.

B.3 Other Test Set

Here, we check the effectiveness of our method
on more diverse tasks, such as APPs (Hendrycks
et al., 2021a) and LiveCodeBench (Jain et al.,
2024), ClassEval (Du et al., 2023) and Big-
CodeBench (Zhuo et al., 2024). We con-
struct experiments based on Deepseek-Coder-
7B and Deepseek-Coder-33B. We employ Magi-
Coder (Wei et al., 2023) and OpenCodeInter-
preter (Zheng et al., 2024) as baselines, which used
similar fine-tuning data as our models. We use
greedy sampling to obtain the results in a zero-shot
setting for both baselines and our method. Note
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Figure 4: Effect of the factor of up-sample. The metric
is Pass@1 accuracy, and all the results are based on
Code Llama 7B.

that for LiveCodeBench, we report the result after
2023-09-01, which is the release date of Deepseek-
Coder.

As shown in Table 10, our proposed method
improves model accuracy on the four datasets, al-
though there are no relative instructions in the train-
ing data. The results show that our method has
better generalization.

B.4 Effect of the Factor of Up-sample

As mentioned in Section 4, we up-sample the re-
flection data and mix it with the code instruction
tuning data. Here, we examine the effect of the up-
sampling factor. Specifically, we vary the factor in
the set {1, 2, 3, 4, 5}. As shown in Figures 4(a) and
4(b), a factor of 2 results in optimal performance
for most benchmarks. Due to the limited samples
in HumanEval, the pass@1 fluctuates significantly.
While a factor of 4 is optimal for HumanEval+,
a factor of 2 remains optimal for HumanEval. A
possible reason is that when the factor is too large,

Method HumanEval (+) MBPP (+)

Code Llama 7B

ReflectionCoder 75.0 (68.9) 72.2 (61.4)
w/o Reflection Data 65.9 (62.2) 68.5 (57.9)

Star Coder 7B

ReflectionCoder 68.3 (63.4) 64.3 (55.6)
w/o Reflection Data 67.7 (62.8) 66.7 (54.8)

Table 11: Effect of Rotary Position Embedding. The
metric is Pass@1 accuracy.

Method HumanEval (+) MBPP (+)

Random Mask 72.0 (66.5) 70.1 (59.0)
w/ Token Level 71.3 (66.5) 68.8 (58.2)

Sequential Mask 72.6 (67.7) 71.3 (60.3)
w/ Token Level 71.3 (67.1) 68.5 (59.0)

Table 12: Compare block-level mask strategies and
token-level mask strategies. The metric is Pass@1 accu-
racy, and all the results are based on Code Llama 7B.

the reflection sequence data is repeated excessively,
leading to overfitting and a consequent decrease in
performance.

B.5 Effect of Rotary Position Embedding

As mentioned in Section 3, our method is effective
for models utilizing Rotary Position Embedding
because the absolute positions of the tokens of the
answers in the teacher sample and the student sam-
ple are different, but the relative positions remain
the same. Here, we construct an experiment to
check the effect of Rotary Position Embedding on
our method. Specifically, we perform our method
and w/o Reflection Data on StarCoder, which uses
an Absolute Position Embedding.

Table 11 shows the results on both Code Llama
7B (w/ Rotary Position Embedding) and StarCoder
15B (w/ Absolute Position Embedding). As shown
in the table, our method can effectively improve
the performance of Code Llama 7B, but it is not so
effective for StarCoder 15B. The primary reason
is that the absolute positions of the tokens of the
final answers are different for the training stage and
the inference stage, which results in the distillation
being biased.

B.6 Token-level Dynamic Masking Strategy

In Section 3, we proposed three block-level dy-
namic masking strategies, namely random mask,
sequential mask, and block mask. Here, we test
our method with another two token-level dynamic
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during training.

masking strategies:

(1) Random Token mask selects tokens to mask
based on the mask rate randomly.

(2) Sequential Token mask selects the leftmost to-
kens to mask and gradually expands the masked
scope according to the mask rate.

Table 12 shows the results on both block-level
masking strategies and token-level masking strate-
gies. The block-level masking strategies signifi-
cantly outperform token-level masking strategies.
Because the token-level masking strategies may
destroy the integrity of texts or codes.

B.7 Training Procedure
Here, we visualize the evolution of the masking
rate and the training losses throughout the learning
process. As shown in Figure 5, the masking sched-
ule follows a stepwise curriculum strategy: during
the first third of the training, all execution blocks
are masked; in the second third, generation blocks
are additionally masked; and in the final third, anal-
ysis blocks are further masked. This progressive
masking design encourages the model to gradually
adapt to more challenging conditions and enhances
its robustness in code generation. As shown in Fig-
ure 6, the causal language modeling loss steadily

decreases over time, indicating consistent improve-
ments in the model’s predictive ability. In contrast,
the distillation loss displays sharp spikes at each
one-third interval, followed by a gradual decline.
These abrupt increases are caused by the sudden
introduction of new masked block types, which
temporarily raise the difficulty of the distillation
task until the model re-stabilizes.

C Training Sample

Here, we present how to organize training sam-
ples. Following chat templates of most models,
we use two special tokens to wrap the message of
user and assistant, i.e., “<|user|>”, “<|assistant|>”,
and “<|endofmessage|>”. Furthermore, we use
two special tokens to wrap the content of different
blocks, i.e., “<|text|>”, “<|code|>”, “<|execution|>”,
and “<|endofblock|>”. Then, we concatenate all
messages directly to form a piece of training data.
Note that the user message and execution block are
masked when calculating the loss because the en-
vironment provides the two contents during actual
use. Here is an example:

Reflection Instruction

<|user|>
<|text|>
Here is a programming challenge for you to
tackle:
(1) Write a Python function that solves
the specified problem with craft test cases
using assert statements and execute it. Pay
special attention to edge cases to thoroughly
validate your solution’s correctness.
(2) If your code fails any of the tests,
carefully examine the root cause of the
failure. Make the necessary corrections to
your code and then retest to confirm the
fixes.

### Problem
Execute an algorithm to generate the
numerical multiplication of individual
integer components encapsulated within a
larger numeric figure.
n = 145
<|endofblock|>
<|endofmessage|>
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Reflection Sequence

<|assistant|>
<|code|>
def multiply _digits(n):

"""
This function takes an integer n and

returns the product of its digits.
"""
product = 1
while n > 0:

product *= n % 10
n //= 10

return product

# Test cases
assert multiply _digits(145) == 4 * 5 * 1
assert multiply _digits(123) == 1 * 2 * 3
assert multiply _digits(999) == 9 * 9 * 9
assert multiply _digits(0) == 0
assert multiply _digits(10) == 1 * 0
<|endofblock|>
<|execution|>
—————————————————
————————
AssertionError Traceback
(most recent call last)
Cell In[1], line 15

13 assert multiply _digits(123) == 1 * 2
* 3

14 assert multiply _digits(999) == 9 * 9
* 9
—> 15 assert multiply _digits(0) == 0

16 assert multiply _digits(10) == 1 * 0

AssertionError:
<|endofblock|>
<|text|>
The assertion ‘assert multiply _digits(0) ==
0‘ failed. This indicates an issue with the
function when handling the case where ‘n‘
is 0.

In the current implementation, when
‘n‘ is 0, the while loop is never entered,
and thus the function returns the initial
value of ‘product‘, which is 1. How-
ever, the correct behavior should be to
return 0, as the product of the digits of 0 is 0.

I’ll correct the function to handle this
special case and retest the code.
<|endofblock|>
<|code|>
def multiply _digits(n):

"""
This function takes an integer n and

returns the product of its digits.
"""
if n == 0:

return 0

product = 1
while n > 0:

product *= n % 10
n //= 10

return product

# Retesting with the original test cases and
the corrected case
assert multiply _digits(145) == 4 * 5 * 1
assert multiply _digits(123) == 1 * 2 * 3
assert multiply _digits(999) == 9 * 9 * 9
assert multiply _digits(0) == 0
assert multiply _digits(10) == 1 * 0
<|endofblock|>
<|execution|>
<|endofblock|>
<|text|>
The modified code has passed all the test
cases, including the previously failed case
for ‘n = 0‘. The function ‘multiply _digits‘
now correctly handles all tested scenarios.
<|endofblock|>
<|endofmessage|>

Instruction

<|user|>

<|text|>

Execute an algorithm to generate the nu-

merical multiplication of individual integer

components encapsulated within a larger nu-

meric figure.

n = 145

<|endofblock|>

<|endofmessage|>
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Final Answer

<|assistant|>
<|text|>
```python
def multiply _digits(n):

"""
This function takes an integer n and

returns the product of its digits.
"""
if n == 0:

return 0

product = 1
while n > 0:

product *= n % 10
n //= 10

return product
```
<|endofblock|>
<|endofmessage|>

D Test Prompt

Here, we present the test prompt for each test set
to facilitate reproduction.

For HumanEval, we add “Write a complete
Python function for the problem” before the origi-
nal prompt from EvalPlus (Liu et al., 2023) to make
the model follow the instructions better.

Test Prompt for HumanEval

<|user|><|text|>Write a complete Python

function for the problem.

{prompt}<|endofblock|><|endofmessage|>

<|assistant|><|text|>```python

For MBPP, we follow WizardCoder (Luo et al.,
2023) and Magicoder (Wei et al., 2023) to re-
construct the source problem from EvalPlus (Liu
et al., 2023) with some additional prompts.

Test Prompt for MBPP

<|user|><|text|> {prompt}

Your code should satisfy the following as-

sertion:

```python

{test sample}

```<|endofblock|><|endofmessage|>

<|assistant|><|text|>```python

For MultiPL-E, we put the source prompts in
both the user message and the beginning of the
assistant message to ensure that the model does not
modify the prompt and only completes it.

Test Prompt for MultiPL-E

<|user|><|text|>Write a complete {language}

function for the problem.

{prompt}<|endofblock|><|endofmessage|>

<|assistant|><|text|> ```{language}

{prompt}

For DS-1000, we directly use the source
prompts.

For APPs and LiveCodeBench, we add “Write
a complete Python script for the question, Please
note that you need to handle the stdin input, e.g. t
= int(input()).” before the original prompt to make
the model follow the instructions better.

Test Prompt for APPs / LiveCodeBench

<|user|><|text|>Write a complete Python

script for the question, Please note that

you need to handle the stdin input, e.g. t =

int(input()).

{prompt}<|endofblock|><|endofmessage|>

<|assistant|><|text|> ```python

For ClassEval, we add “Please complete the
class {class name} in the following code.” before
the original prompt to make the model follow the
instructions better.

Test Prompt for ClassEval

<|user|><|text|>Please complete the class

{class name} in the following code.

{prompt}<|endofblock|><|endofmessage|>

<|assistant|><|text|> ```python
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