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Abstract

As speech generation technology advances,
the risk of misuse through deepfake audio
has become a pressing concern, which under-
scores the critical need for robust detection sys-
tems. However, many existing speech deepfake
datasets are limited in scale and diversity, mak-
ing it challenging to train models that can gen-
eralize well to unseen deepfakes. To address
these gaps, we introduce SpeechFake, a large-
scale dataset designed specifically for speech
deepfake detection. SpeechFake includes over
3 million deepfake samples, totaling more than
3,000 hours of audio, generated using 40 differ-
ent speech synthesis tools. The dataset encom-
passes a wide range of generation techniques,
including text-to-speech, voice conversion, and
neural vocoder, incorporating the latest cutting-
edge methods. It also provides multilingual
support, spanning 46 languages. In this paper,
we offer a detailed overview of the dataset’s
creation, composition, and statistics. We also
present baseline results by training detection
models on SpeechFake, demonstrating strong
performance on both its own test sets and vari-
ous unseen test sets. Additionally, we conduct
experiments to rigorously explore how genera-
tion methods, language diversity, and speaker
variation affect detection performance. We be-
lieve SpeechFake will be a valuable resource
for advancing speech deepfake detection and
developing more robust models for evolving
generation techniques'.

1 Introduction

In recent years, speech generation technology has
rapidly advanced, with models in text-to-speech
and voice conversion systems producing highly
natural and high-quality voices (Tan et al., 2021;

Triantafyllopoulos et al., 2023; Ju et al., 2024).

**Equal contribution. TCorresponding authors.
'Dataset is released at: https://github.com/YMLLG/
SpeechFake

These systems are increasingly used in virtual
assistants, content creation, and language learn-
ing, making speech synthesis more accessible and
widely adopted. However, as the realism of syn-
thetic voices improves, so does the risk of mis-
use, especially through speech deepfakes, where
synthetic voices are used to impersonate real indi-
viduals. Such deepfakes have been employed in
fraud (Stupp, 2019), identity theft (Korshunov and
Marcel, 2018), and misinformation (Chesney and
Citron, 2019), highlighting the significant harm
they can cause. Therefore, the growing quality and
availability of speech generation systems make the
need for robust detection methods more urgent than
ever.

A key challenge in developing effective deep-
fake detection methods is the issue of generaliza-
tion. Detection models often suffer from substan-
tial performance degradation when confronted with
unseen deepfakes (Yamagishi et al., 2021; Miiller
et al., 2022), which underscores the importance of
creating comprehensive datasets to support the de-
velopment of robust detection systems. However,
current datasets for this task come with several
limitations. As shown in Table 1, many publicly
available datasets are relatively small, and the gen-
eration techniques they include are often outdated
or limited, making it challenging for models to de-
tect more advanced deepfake technologies. More-
over, most datasets primarily focus on English or
Chinese, offering limited representation of other
languages.

To address these limitations, we propose Speech-
Fake, a large-scale dataset designed to significantly
improve both the scale and diversity of data avail-
able for speech deepfake detection. The dataset
contains over 3 million speech deepfakes, amount-
ing to more than 3,000 hours. These deepfakes
are generated using 30 publicly available speech
generation tools and 10 commercial APIs, covering
a comprehensive range of speech generation meth-
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Table 1: Basic statistics of SpeechFake and its comparison with existing speech deepfake datasets. #utt, #spk, #gen

represent number of utterances, speakers and generators, respectively.

T3]

provide information on the number of speakers or generators, or the generator type is unspecified.

indicates that the dataset either does not

Dataset Year ﬁipfal‘(e #Ss?lils‘tlzsgen Generator Types Languages Access
ASVspoof2015 (Wu et al., 2014) 2015 | 246,500 106 10 TTS, VC English Public
FakeOrReal (Reimao and Tzerpos, 2019) 2019 87,285 33 7 TTS English Public
ASVspoof2019-LA (Nautsch et al., 2021) 2019 | 130,378 107 19 TTS, VC English Public
WaveFake (Frank and Schonherr, 2021) 2021 117,985 2 6 NV English, Japanese Public
ASVspoof2021-LA (Yamagishi et al., 2021) || 2021 | 148,148 67 13 TTS, VC English Public
ASVspoof2021-DF (Yamagishi et al., 2021) || 2021 | 572,616 93 100+ TTS, VC English Public
ADD?2022 (Yi et al., 2022) 2022 | 389,419 - - TTS, VC Chinese Public
CFAD (Ma et al., 2024) 2022 | 231,600 279 12 TTS Chinese Public
In-the-Wild (Miiller et al., 2022) 2022 11,816 58 - - English Public
ADD?2023 (Yi et al., 2024) 2023 | 273,847 - - TTS, VC Chinese Public
HABLA (Tamayo Flérez et al., 2023) 2023 58,000 162 6 TTS, VC Spanish Public
MLAAD (Miiller et al., 2024) 2024 82,000 - 26 TTS 23 Languages Public
CD-ADD (Li et al., 2024c) 2024 | 117,720 - 5 TTS Chinese Public
ASVspoof5 (Wang et al., 2024) 2024 | 1,211,186 | 1,922 32 TTS, VC, AT* English Restricted
VoiceWukong (Yan et al., 2024) 2024 | 413,400 - 34 TTS, VC English, Chinese Restricted
DFADD (Du et al., 2024a) 2024 | 163,500 109 5 TTS English Public
CVoiceFake (Li et al., 2024a) 2024 | 1,254,893 - 6 NV 5 Languages Public
SpoofCeleb (Jung et al., 2025) 2024 | 2,687,292 | 1,251 23 TTS English Public
SpeechFake-BD 2025 | 2,003,016 | 541 40 TTS, VC, NV English, Chinese Public Soon
SpeechFake-MD 2025 | 1,335,492 179 6 TTS, VC 46 Languages

* AT: Adversarial Attacks using Malafide (Panariello et al., 2023) or Malocopula (Todisco et al., 2024).

ods and incorporating cutting-edge techniques ca-
pable of producing highly realistic synthetic speech.
To support multilingual detection and balance lan-
guage distribution, SpeechFake is divided into two
parts: the Bilingual Dataset (BD), focused on En-
glish and Chinese, and the Multilingual Dataset
(MD), which spans 46 languages, broadening re-
search opportunities in multilingual environments.
Furthermore, unlike most existing datasets that of-
fer only binary labels (real / fake), SpeechFake pro-
vides rich metadata, including generation methods,
voice id, language, and text transcriptions, which
facilitates deeper research into the factors that influ-
ence deepfake detection and enables other potential
use cases.

In addition, we conduct a comprehensive set of
experiments to establish a baseline for SpeechFake
and explore key factors that influence deepfake
detection performance. First, we evaluate the over-
all performance across multiple datasets to assess
how well models trained on SpeechFake general-
ize to both seen and unseen data, demonstrating
strong performance (Section 4.2). Next, we analyze
cross-generator performance to examine how dif-
ferent speech generation methods affect detection
accuracy (Section 4.3). We also investigate cross-
lingual performance, exploring how models trained
on specific languages perform when exposed to
deepfakes in other languages (Section 4.4). Finally,
we assess cross-speaker performance to determine

the impact of speaker variability on detection ro-
bustness (Section 4.5). These experiments establish
a strong baseline for SpeechFake and provide valu-
able insights into the key aspects that influence
speech deepfake detection performance.

2 Related Work

Speech Generation In prior literature, speech
generation (or speech synthesis) is primarily repre-
sented by two tasks: Text-to-Speech (TTS) and
Voice Conversion (VC). TTS generates speech
from text, while VC transforms an existing speech
sample to match a target speaker’s voice without
altering its linguistic content. These two tasks often
share similar model backbones but may differ in
task-specific components.

The architecture of TTS has seen significant
evolution, starting with CNN/RNN-based mod-
els (Oord, 2016; Wang et al., 2017), progressing to
Transformer-based architectures (Li et al., 2019;
Ren et al., 2021a), and advancing further with
generative frameworks such as VAE, GAN, flow,
and diffusion models (Prenger et al., 2019; Kong
et al., 2020; Kim et al., 2021; Liu et al., 2022). Be-
sides, the field has shifted from cascaded acoustic
models with separate vocoders (Oord, 2016; Kong
et al., 2020) to fully end-to-end systems (Ren et al.,
2021a; Kim et al., 2021). More recently, the in-
tegration of Large Language Models (LLMs) into
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Figure 1: Classification of speech generation methods in SpeechFake based on input modality during inference. (a)
TTS: Generate speech from text input. (b)(c) VC: generate speech from text or speech based on target voice. (d)

NV: Generate speech from acoustic feature.

TTS has enhanced text-to-token generation (Du
et al., 2024b; Guo et al., 2024).

While traditional TTS systems generated speech
in a fixed voice, newer approaches enable multi-
speaker synthesis via speaker embeddings (Kim
et al., 2021; Betker, 2023) and support few-shot or
zero-shot voice cloning, allowing speech genera-
tion from minimal target voice samples (Arik et al.,
2018; Casanova et al., 2022; Wang et al., 2023; Qin
et al., 2023). These advancements have blurred the
line between TTS and VC.

VC has undergone a similar architectural trans-
formation. Meanwhile, early methods relied on
parallel data and statistical techniques (Godoy
et al., 2011), whereas modern VC models em-
ploy non-parallel training with adversarial and
self-supervised learning, significantly improving
conversion quality and adaptability (Kaneko and
Kameoka, 2018; Li et al., 2021).

A key component in many TTS and VC sys-
tems is neural vocoders (NV), which generate
waveforms from acoustic features (e.g., mel-
spectrograms) (Kong et al., 2020; gil Lee et al.,
2023). Traditionally integrated within TTS and
VC pipelines, vocoders were not regarded as stan-
dalone systems. However, recent studies indicate
that vocoded audio also plays a crucial role in deep-
fake detection (Frank and Schonherr, 2021; Wang
and Yamagishi, 2023, 2024).

To better align speech generation with deepfake
research, we categorize speech generation methods
into three types based on input modality at infer-
ence, as shown in Figure 1: TTS, VC (Voice Clone
or Voice Conversion), and NV (Neural Vocoder).
In this classification, TTS refers to systems that
generate speech with seen voices from text alone.
VC focuses on generating speech with target voice
reference, whether the content comes from text or
speech. Finally, NV generates speech from acous-
tic features without explicitly altering the original

voice. By adopting this classification, we encom-
pass a more comprehensive and systematic frame-
work for deepfake speech generation.

Speech Deepfake Datasets Several benchmark
datasets have been developed for speech deepfake
detection. The ASVspoof Challenge series (Wu
et al., 2014; Nautsch et al., 2021; Yamagishi et al.,
2021; Wang et al., 2024) has progressively ex-
panded from spoofing attacks on automatic speaker
verification (ASV) systems to a broader range of
speech deepfakes. Similarly, the Audio Deepfake
Detection (ADD) Challenge has released datasets
focusing on deepfake detection in Chinese (Yi et al.,
2022, 2024). Other datasets include FoR (Reimao
and Tzerpos, 2019), WaveFake (Frank and Schon-
herr, 2021), and In-the-Wild (Miiller et al., 2022),
which collect deepfake speech from various synthe-
sis methods, including open-source tools, neural
vocoders, and internet sources. Multilingual re-
sources such as HABLA (Spanish) (Tamayo Flérez
etal., 2023), MLADD (23 languages) (Miiller et al.,
2024), and CVoiceFake (5 languages) (Li et al.,
2024a) further extend language coverage.

Meanwhile, recent datasets have gradually inte-
grated advanced speech synthesis techniques. CD-
ADD (Li et al., 2024c) targets zero-shot TTS,
DFADD (Du et al., 2024a) focuses on diffusion-
based models, VoiceWukong (Yan et al., 2024) cov-
ers various synthesis methods with perturbation
variants, and SpoofCeleb (Jung et al., 2025) pro-
vides speaker-dependent deepfakes generated from
real-world and TTS-based samples.

Despite the availability of several datasets, none
offer a comprehensive combination of both large-
scale data and diversity in generation methods and
languages. Simply merging existing datasets to
create a larger benchmark would likely introduce
issues such as condition mismatches and increased
complexity in model training. SpeechFake ad-
dresses these challenges by offering a large-scale,
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Figure 2: Overview of the SpeechFake dataset. The dataset is divided into two parts: the Bilingual Dataset and the

Multilingual Dataset. The Bilingual Dataset is further categorized into three generation methods: TTS, VC, and NV.
Methods highlighted in blue represent the latest speech generation methods.

multilingual dataset that incorporates cutting-edge
synthesis techniques, providing broader and more
robust coverage for deepfake detection research.

3 Dataset Collection and Statistics

3.1 Data Collection

The data collection consists of two parts: real
speech, sourced from existing datasets, and fake
speech, generated using open-source speech gen-
eration methods or commercial APIs. Since most
speech generation methods primarily support En-
glish or Chinese, we split our dataset into two parts
to balance the samples for each language: the Bilin-
gual Dataset (BD), which includes English and Chi-
nese, and the Multilingual Dataset (MD), which
covers data from 46 languages. An overview of the
dataset composition is shown in Figure 2.

For BD, real speech data is sourced from
four datasets: LibriTTS (Zen et al., 2019) and
VCTK (Veaux et al., 2013) for English, and
AISHELLT1 (Bu et al., 2017) and AISHELLS3 (Shi
et al., 2020) for Chinese. Fake speech is gener-
ated using 30 open-source speech generation tools
and 10 commercial APIs, as detailed in Table 8.
The open-source models span a variety of architec-
tures, including GAN-based models (Kumar et al.,
2019; Kong et al., 2020), Diffusion models (Liu
et al., 2022; Huang et al., 2022b), Sequence-to-
Sequence models (Oord, 2016; Ren et al., 2021a),
and Flow or VAE models (Prenger et al., 2019;
Kim et al., 2021). Besides, we include the latest
speech generation techniques (highlighted in blue
in Figure 2), all of which were released in the past
year and represent cutting-edge advancements in
speech synthesis.

For MD, real speech data is sourced from the
CommonVoice dataset (Ardila et al., 2019), which

supports multiple languages. Fake speech data is
generated using 6 multilingual speech generation
tools, as shown in Figure 2. EdgeTTS? supports
the widest range of languages, while the other tools
cover a subset based on their respective multilin-
gual capabilities.

Data Preparation Before generation, we prepare
the necessary text or audio inputs for each gener-
ator. These inputs are sourced from real datasets,
including text transcriptions for TTS systems and
audio samples for VC and NV systems.

* Text Preprocessing: For TTS systems, we clean
the text inputs by removing special characters,
punctuation, and extra spaces. We also ensure
that each text sample maintains an appropriate
word or character count (e.g., 5-30 words for En-
glish) and provides a broad phonemic coverage.
The text is then tokenized and formatted to meet
the specific requirements of each TTS model,
with adjustments made for sentence length or
phonetic transcription where necessary.

* Audio Preprocessing: Audio samples for VC
and NV systems are resampled to the required
sampling rate and converted into the appropri-
ate formats, such as mel-spectrograms for neural
vocoders or raw waveforms for voice conversion
models. The silence at the beginning or end of
the clips is trimmed.

Data Generation During the data generation pro-
cess, the prepared inputs are fed into the respective
generators based on the system type.

e For TTS systems: The prepared text is used to
generate speech for each method. If the method
supports multiple voices, the text is evenly split

Zhttps://github.com/rany2/edge-tts.git
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Figure 3: Distribution of speech generation methods in SpeechFake-BD. Some data is hidden in experiment trials to

ensure a more balanced distribution across each method and across different test trials.
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Figure 4: Distribution of speaker gender, language, and
duration in SpeechFake. The speaker and duration statis-
tics are based on the entire dataset, while the language
distribution is specific to the MD subset.

among the available voices. An exception is
TTS_Tortoise, for which additional data is gener-
ated to support the cross-speaker experiment.

* For VC systems: Reference voices are sam-
pled from the real datasets, while the content
comes from the selected text or the correspond-
ing speech recordings. The text is generally split
equally among the reference voices. For methods
supporting style transfer (e.g., CosyVoice, Open-
Voice), we include additional data to reflect the
transformed styles.

* For NV systems: The generated speech is based
on the original input audio selected from the real
datasets, without any explicit instructions to alter
the content or voice.

Data Post-processing Once the speech is gen-

erated, we perform several post-processing steps

to ensure that the data meets the required quality
standards and is suitable for downstream tasks:

* Quality Filtering: We apply voice activity detec-
tion (VAD) to filter out speech segments shorter
than 0.5 seconds. Additionally, a selective human
review is conducted to discard generated speech
with noticeable distortions, excessive noise, or
unnatural artifacts. Approximately 1% of sam-
ples from each method are randomly selected to
ensure representative coverage of the diversity in
generation options (e.g., voices, languages).

* Format Standardization: The remaining audio
clips are standardized to a 16kHz sampling rate,
converted to mono, and saved in WAV format
to ensure consistency across all samples in the
dataset.

3.2 Dataset Statistics

The dataset partitioning for experiments is outlined
in Table 7 in the Appendix. To address the imbal-
ance between the substantial amount of fake data
and the limited real data, as well as to ensure bal-
anced test trials, we allocated approximately half
of the fake data across the train, dev, and test sets
(split 6:1:3), reserving the remainder for future ex-
periments.

The main portion of BD (train, dev, and test)
includes speech deepfakes generated using open-
source speech generation methods. It is divided
into two language partitions: BD-EN (English) and
BD-CN (Chinese), as well as three generator-based
subsets: BD-TTS, BD-VC, and BD-NV. To assess
model generalization to unseen methods, we also
created a separate unseen test set (BD-UT) using
commercial APIs. Figure 3 illustrates the distri-
bution of the different generation methods used in
BD. TTS methods account for the majority, while
VC and NV methods represent a smaller portion.
On average, each method generates around 60k ut-
terances, with 30k samples used per method for
balanced trials.

MD utilizes the same set of generation meth-
ods with multilingual support across its train, dev,
and test sets, with the key distinction being lan-
guage coverage. The dataset spans 46 languages,
including 9 primary languages with larger sam-
ple volumes: English (en), Chinese (zh), Spanish
(es), French (fr), Hindi (hi), Japanese (ja), Korean
(ko), Persian (fa), and Italian (it). As shown in
Figure 4 (c), these 9 languages account for half
of the dataset, with English and Chinese being the
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Table 2: Performance evaluation (EER%) of different models trained on ASVspoof2019 (ASV19) or SpeechFake
Bilingual Dataset (BD) across multiple test sets, including subsets of BD and other publicly available benchmarks.
For each model, the best results are bold and the second best are underlined.

Train Data Model Test Data (SpeechFake) Test Data (Others)
BD [ BD-EN [BD-CN | ASVI9 [ FOR [ WF | CFAD | ITW | CDADD]| ASV24
ASV19 3936 | 41.05 | 39.07 | 1.88 | 36.08 | 21.17 | 4395 4527  49.53 | 41.89
BD AASIST 3.48 3.98 268 | 23.62 | 2335 | 430 | 3432 | 753 | 2252 | 35.02
BD-EN 9.02 6.17 | 12.00 | 30.65 | 2899 | 854 | 4339 | 696 | 2324 | 40.82
BD-CN 1658 | 2459 | 543 | 1656 | 2548 | 588 | 3234 | 854 | 3975 | 34.39
ASVI19 2378 | 20.15 | 2493 | 0.89 6.18 348 | 2053 1007 855 141
BD 3.54 3.55 2.83 291 6.00 0.58 | 1239 | 2.01 2.42 0.71
BDEN | WEVHAASIST g 65 4.58 | 1044 | 528 8.33 096 | 2142 | 2.62 3.54 0.71
BD-CN 899 | 1140 | 451 0.99 4.88 064 | 1172 | 3.34 7.16 1.17

most prominent, while the remaining 37 languages
make up the other half. The train and dev sets
consist exclusively of English and Chinese data,
while the test set is divided into 10 subsets: one for
each of the 9 primary languages and one combined
subset for the remaining 37 languages. For the com-
bined subset, around 5,000 clips are selected per
language, with the rest reserved for future research.

Figure 4 also illustrates the distribution of
speaker gender and audio duration. We ensure a rel-
atively balanced representation of female and male
speakers in terms of gender. Regarding audio du-
ration, most clips range from 2.0 to 20.0 seconds,
with a smaller number of shorter clips (0-2 sec-
onds) and longer ones (over 20 seconds), providing
variability in length.

4 Experiments and Analysis

4.1 Experimental Settings

To evaluate deepfake detection performance, we
use two state-of-the-art models: AASIST (Jung
et al., 2022) and W2V+AASIST (Tak et al., 2022).
AASIST employs a heterogeneous stacking graph
attention network with a novel attention mechanism
to capture spoofing artifacts across both temporal
and spectral domains. W2V+AASIST integrates
Wav2Vec2.0 XLSR (Babu et al., 2021) as a fron-
tend feature extractor with AASIST serving as the
backend classifier. The training details for each
model are provided in Table 6 in the Appendix. For
evaluation, we use the Equal Error Rate (EER) as
the metric, following previous work (Yamagishi
et al., 2021; Du et al., 2024a).

4.2 Overall Performance

We first establish baseline results to demonstrate
the overall performance on the Bilingual Dataset.
For training, we include the ASVspoof2019-LA
training set (ASV19), a widely used benchmark

in speech deepfake detection research, alongside
three partitions of the BD training set (BD, BD-EN,
BD-CN). The evaluation is conducted on multiple
test sets: the BD testing sets (BD, BD-EN, BD-
CN), and some additional commonly used bench-
marks, spanning a range of datasets from older
to newer: ASVspoof2019-LA eval set (ASV19),
FakeOrReal (FOR), WaveFake (WF), In-the-Wild
(ITW), CDADD, ASVspoof5 (ASV24). Details of
the test settings are provided in Appendix B.1.

From Table 2, we observe that when models
are trained on ASV19, they perform well on its
own evaluation set but experience significant per-
formance degradation on other test sets, particu-
larly on BD, where most of the generation methods
are unseen during training. In contrast, training
on BD leads to significant accuracy improvements.
While training on the English (BD-EN) or Chinese
(BD-CN) subsets yields good performance on their
respective test sets, it results in poorer performance
on the complementary sets. This may be attributed
to the differences in the generation methods or lan-
guages included in each partition. Using the full
BD training set delivers the best overall results,
enhancing accuracy across all BD test subsets com-
pared to training on a single language subset.

When tested on external datasets, models trained
on BD consistently outperform those trained on
ASV19, except on the ASV19 test set, which is
in-domain for the ASV19-trained models. The im-
provements are particularly significant for test sets
such as WEF, ITW, and CDADD, where models
trained on BD show 50%-80% better performance
compared to those trained on ASV19. Notably,
the BD-EN and BD-CN subsets show different per-
formance patterns across test sets. BD-EN per-
forms better on English datasets such as ITW and
CDADD, while BD-CN tends to perform better
on Chinese datasets like CFAD. However, BD-CN
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also outperforms both BD-EN and BD on some En-
glish test sets, such as ASV19 and FOR. This indi-
cates that language is not the sole factor influencing
performance on these unseen test settings. Other
factors, such as generation methods and record-
ing conditions, likely contribute as well. Hence,
to accurately evaluate the impact of factors like
language, other variables should be controlled and
kept as consistent as possible across experiments.

4.3 Cross-Generator Performance

To evaluate the impact of generators on detection
performance, we conduct cross-evaluations using
three categories of generators in BD: TTS, VC, and
NV. The results are presented in Table 3.

Table 3: Performance evaluation (EER%) of different
generator types used as training sets across various test
sets. For each model, the best results are bolded, and
the second-best results are underlined.

Train Model Test Data

Data BD-TTS | BD-VC [ BD-NV | BD | BD-UT
BD-TTS 044 | 1685 | 2566 | 1426 | 053
BD-VC | AASIST| 1871 | 218 | 3531 | 2090 | 14.34
BD-NV 2344 | 4163 | 953 | 2630 | 2687
BD-TTS 101 | 978 | 1434 | 808 | 0.20
BD-vC | W2Vt | sg1 | 382 | 1826 | 881 | 935
BD-NV | AASIST | g3 | 738 | 777 | 1133 | 23.79

For each training set, the best detection perfor-
mance is consistently observed on its correspond-
ing testing set, but performance degrades signifi-
cantly when tested on other generator types. This
highlights the challenge of generalizing across un-
seen generation methods.

In terms of overall performance, models trained
on TTS data consistently deliver the best results
on the full BD test set, followed by VC, while NV-
trained models generally show lower performance.
This is likely due to the TTS subset’s diverse com-
position, which includes state-of-the-art techniques
that produce highly realistic synthetic speech. In
contrast, NV-based systems may underperform be-
cause they often rely on older methods that gen-
erate lower-quality deepfakes, making detection

more challenging for models trained on NV data.

When tested on the unseen commercial TTS
API set (BD-UT), TTS-trained models consistently
outperform those trained on VC and NV, achiev-
ing strong performance across both. This under-
scores that exposure to modern TTS data enhances
the model’s ability to detect high-quality, natural-
sounding deepfakes.

In summary, unseen generation methods present
a significant challenge for generalization in deep-
fake detection. Although training on similar gen-
eration types can somewhat improve detection per-
formance, substantial differences between gener-
ation methods still result in considerable perfor-
mance degradation. Additionally, we provide cross-
evaluation results for individual latest generation
methods in Figure 5 in the Appendix, which further
confirm these findings.

4.4 Cross-Lingual performance

To assess the impact of language on deepfake detec-
tion, we conducted experiments using MD, where
all generation methods were seen during training,
but certain languages were kept unseen. The train-
ing set includes only English and Chinese, while
the test set spans a total of 46 languages.

From Table 4, we observe that both models per-
form well on the seen English (en) and Chinese
(zh) test sets, with minimal error rates after just
20 epochs. However, for the unseen languages,
both models show a noticeable performance drop
after 20 epochs, particularly for French (fr) and
Hindi (hi). Extending the training to 50 epochs,
AASIST still exhibits a significant gap between the
seen and unseen languages, though there is some
improvement for the unseen languages and mini-
mal improvement for the seen ones. In contrast,
the W2V+AASIST model achieves generally good
performance, which can likely be attributed to the
multilingual pretraining of the Wav2Vec 2.0 XLSR
model (Babu et al., 2021).

These results suggest that language content does

Table 4: Performance evaluation (EER%) on test sets across various languages for models trained on English and
Chinese at different epochs. “9 langs” represents the combination of the 9 primary languages, while “others” refers

to the combination of remaining languages.

Test Data
Model Epoch en ‘ zh ‘ es ‘ fr ‘ hi ‘ ja ‘ ko ‘ fa ‘ it ‘ 9 langs ‘ others
AASIST 20 0.81 2.14 14.60 | 22.54 | 26.06 ‘ 9.53 4.39 9.73 6.79 10.86 6.03
50 0.60 3.48 3.74 9.70 20.25 8.95 3.46 8.62 5.18 8.49 4.93
20 0.27 1.38 7.98 12.08 11.90 ‘ 5.14 2.54 4.42 3.48 6.53 4.64
W2V+AASIST 50 0.15 0.29 0.12 0.42 0.98 0.22 0.03 0.24 0.16 0.50 0.23
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Table 5: Statistics and EER(%) results of cross-speaker
testing trials. #utt, #spk represent number of utterances
and speakers, respectively. The numbers in parentheses
represent the distribution of speakers (seen, unseen) in
the training set.

Real Fake

No. #utt #spk #utt #spk EER(%)
1 6,599 100 (100, 0) | 13,871 10 (10,0) | 0.06 +o0.01
2 5,557 100 (0, 100) | 12,377 10 (0, 10) | 0.43 0.5
3 |5557 1000, 100) | 13,871 10 (10,0) | 0.01 +o01
4 6,599 100 (100, 0) | 12,377 10 (0, 10) | 0.64 +o0.06
5 6,071 100 (50,50) | 13,677 10(5,5) | 0.49 +oo0s

affect detection performance, even when the gener-
ation methods are seen during training. However,
prior exposure to a language through multilingual
pretraining can help mitigate this effect to some
extent.

4.5 Cross-Speaker Performance

Some TTS systems are limited to generating spe-
cific voices, making it possible to detect deepfakes
by merely memorizing the speaker’s voice rather
than learning the distinct audio characteristics that
differentiate real and fake speech. This raises the
question: can a model learn to detect deepfakes
based on their inherent characteristics, or does it
simply overfit to the speaker identity?

To explore this, we created a small dataset se-
lected from BD. To minimize the influence of dif-
ferent generation methods, we exclusively used
TorToiSe (Betker, 2023), a TTS system that sup-
ports multi-speaker speech generation. The train-
ing dataset is a subset of the BD train set, consisting
of 100 real speakers and 10 fake speakers, with a
total of 34,305 utterances. As detailed in Table 5,
we designed five different test trials, varying the
combinations of seen and unseen speakers to assess
the model’s ability to generalize across speakers.
For evaluation, we trained an AASIST model over
three runs for 50 epochs on this training set.

Overall, the EERs across all five test settings
are minimal, indicating that the model can detect
deepfake-specific features rather than relying solely
on speaker identity. When comparing Settings 1
and 2, which differ in whether both real and fake
speakers are seen or unseen during training, we
observe only a slight increase in EER when speak-
ers are unseen (from 0.06% to 0.43%). In Setting
3, where real speakers are unseen and fake speak-
ers are seen, the model achieves almost perfect
detection (0.01%), likely due to more fake data

per speaker, though some speaker memorization
may be occurring. In contrast, Setting 4, with seen
real speakers and unseen fake speakers, results in
a higher EER (0.64%), suggesting that the model
struggles more with unseen fake speakers, possi-
bly relying on learned fake speaker characteristics.
Setting 5, with a mix of seen and unseen speakers,
yields an EER of 0.49%, indicating better general-
ization than Setting 4, but still some performance
drop with unseen fake speakers.

The experimental results demonstrate that the
model effectively learns deepfake-specific features
instead of overfitting to individual speaker identi-
ties. While the impact of speaker identity on detec-
tion performance is generally minimal, it becomes
more pronounced when the model encounters com-
pletely unseen fake speakers.

5 Conclusion

In conclusion, SpeechFake addresses critical gaps
in existing speech deepfake detection datasets by
providing a large-scale collection of over 3 mil-
lion deepfakes, with diverse generation methods
and languages. Through extensive experimentation,
we established baseline results and demonstrated
significant performance improvements for models
trained on SpeechFake, particularly on unseen test
sets. Our analysis of key factors, including gen-
eration methods, language diversity, and speaker
variation, shows that while generation methods and
language diversity influence detection performance,
speaker variation has minimal impact. These find-
ings highlight the challenges of generalizing across
unseen deepfakes, while showcasing SpeechFake’s
potential to advance model robustness and gener-
alization. We believe SpeechFake will be an in-
valuable resource for developing robust detection
systems, ultimately helping mitigate the risks of
deepfake misuse.

6 Limitations

While SpeechFake provides a large and diverse
dataset for speech deepfake detection, several limi-
tations exist. First, although the dataset includes 40
different speech generation tools, it does not cover
all current or emerging techniques. This is due to
the rapid pace of advancements in speech gener-
ation technology, which introduces new methods
that may not yet be represented. Additionally, the
multilingual dataset is limited in terms of genera-
tion method variety, primarily because multilingual
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speech generation systems are still scarce. For fu-
ture work, we plan to address these limitations by
continuously updating the dataset to incorporate
emerging generation techniques and expanding its
multilingual component as new techniques become
available.
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A Dataset Details

A.1 Dataset Partition

Table 7 provides the partition of SpeechFake as
additional details for Section 3.1.

A.2 Dataset Metadata

SpeechFake provides detailed metadata for each
generated speech sample, including:

* Basic Labels: Identifying real or fake speech.

* Generation Method: Specifying the tool used to
create the speech.

» Speaker/Voice ID: Providing identity labels for
the original or generated voice.

* Language ID: Indicating the language of the au-
dio sample.

* Text Transcriptions: Providing the corresponding
text for the generated speech.

A.3 Generation Methods

Table 8 presents a comprehensive list of the 40
speech generation tools used to create the Speech-
Fake dataset. These tools encompass a wide range
of techniques, including TTS, VC, and NV systems.

Notably, some methods, such as Fish Speech and
CosyVoice, can be applied to multiple generation
tasks (e.g., TTS and VC). For the 30 open-source
tools, we carefully reviewed their licenses to en-
sure compliance with the construction and release
of a publicly available dataset. The remaining 10
generation tools are commercial APIs, for which
we obtained paid access, ensuring compliance with
non-commercial research usage policies.

A.4 License and Ethics

We will release only the fake portion of the dataset,
while providing links to the real datasets used, in
compliance with their respective licenses. The
main part of the dataset will be distributed under
the CC BY-NC 4.0 license, with certain portions
licensed under alternative terms (e.g., GPL-3.0)
to meet the requirements of specific tools used in
dataset creation. Full details will be provided upon
release.

To clarify, the dataset does not include deepfakes
of identifiable real individuals. The voices in the
dataset originate from either original training data
(TTS), reference voices (VC), or original audio
(NV), none of which are identifiable. Furthermore,
all text and speech samples used in the dataset are
sourced from publicly available speech datasets
commonly used in speech generation research, and
do not contain harmful or sensitive content.

B Experiment Details

B.1 Experimental Settings

Table 6 outlines the training configurations for the
two state-of-the-art models used in our experiments.
The basic settings are consistent with the training
setup proposed by (Tak et al., 2022). Unlike previ-
ous research on deepfake detection, we opted not
to apply data augmentation in order to isolate the
fundamental effects of the audio data and avoid po-
tential biases introduced by augmentation methods,
which may not generalize well across all datasets.
Given the imbalance between deepfake and real
samples, we employed weighted cross-entropy loss
to ensure balanced training. Both models were
trained for 50 epochs on 8 A100 GPUs over 1 run
in the main experiments.

For the test settings in Section 4.2, the following
evaluation protocols were used:

* ASV19: original evaluation set.

* FOR: randomly selected 10,000 utterances due
to the small size of the original dataset.
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Table 6: Training configurations of AASIST and
W2V+AASIST models used in experiments.

Configurations AASIST  W2V+AASIST
Model Size 297K 3M
Input Audio Chunk or pad to 4s
Data augmentation None None
Optimizer Adam Adam
Learning Rate le-4 le-6
Weight Decay le-4 le-4
Batch Size 1024 512
Total Epochs 50 50

. Weighted Cross Entro
Loss Function 0.9 for real, 0.1 for falIzZ)

* WF: randomly selected 15,000 clips, as no pre-
defined train/test splits exist.

e ITW: entire dataset.
* CDADD: original test set.

* ASV24: development set, as evaluation labels
were unavailable.

B.2 Cross-model Evaluation

Building on the cross-generator performance eval-
uation in Section 4.3, we assess the impact of the
latest generation methods by evaluating models
trained on individual ones. As shown in Figure 5,
the EER remains low on corresponding test sets
but drops significantly on others. Some models
perform well on specific unseen test sets (e.g.,
FireRedTTS-trained model on ChatTTS), but re-
sults are inconsistent across all sets. This highlights
the challenge of generalizing to unseen deepfakes
and the need for more robust detection models that
can adapt to diverse generation methods.

(a) AASIST
Testing Set

ChatTTS{ 0.1 227 26.6 409 344 470 419 45.1
FireRedTTS{ 0.0 0.0 27.7 340 31.6 449 462 458
Parler{ 7.8 112 02 390 253 17.5 42.1 454 80
CosyVoice{ 6.6 57 149 0.1 273 408 346 355 60

Fish1{ 369 374 242 489 0.1 374 432 482 40

Training Set

MeloTTS 4 17.3 159 375 37.0 25.1 00 308 354
OpenVoice140.0 403 253 205 134 146 00 169

GPTSoVITS {383 46.6 39.6 36.0 47.3 26.0 49.1 0.1

(b) W2V+AASIST
Testing Set

ChatTTS{ 0.1 29 203 288 12.5 152 284 2438
FireRedTTS{ 0.0 0.0 225 263 366 33.6 42.0 43.6
Parler{ 72 82 00 316 161 239 385 33.0 80
CosyVoice{ 0.7 0.7 139 0.0 251 225 29.5 23.1 6

Fish{ 98 113 138 263 00 3.1 182 82 40

Training Set

MeloTTS4 2.1 25 21.0 300 234 00 266 31.6
OpenVoice{ 21.8 209 173 23.0 175 9.6 00 8.0

GPTSoVITS {28.7 274 303 20.8 195 199 93 0.1

Figure 5: Cross-evaluation performance (EER%) of
models trained on subsets with individual generation
methods, evaluated on their respective test sets. Eight
latest generation methods were selected.
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Table 7: Partition of the SpeechFake dataset, with real and fake data divided into train, dev, test, and optional hidden

sets.
Set Real Data Fake Data
train dev test [ total train dev test [ hidden | total
BD 75,708 12,618 37,854 | 126,180 | 633,354 105,544 315,222 | 898,896 | 1,953,016
BD-UT - - 37,854 | 37,854 - - 50,000 - 50,000
BD-EN || 38,400 6,400 19,200 | 64,000 | 389,866 64,970 193,461 | 480,585 | 1,128,882
BD-CN || 37,308 6,218 18,654 | 62,180 | 243,488 40,575 121,760 | 418,311 | 824,134
BD-TTS || 75,708 12,618 37,854 | 126,180 | 280,622 46,764 138,834 | 547,887 | 1,014,107
BD-VC || 75,708 12,618 37,854 | 126,180 | 192,210 32,031 96,115 | 214,849 | 535,205
BD-NV || 75,708 12,618 37,854 | 126,180 | 160,522 26,749 80,273 | 136,160 | 403,704
MD 60,000 10,000 152,757 | 222,757 | 208,126 34,690 726,136 | 366,540 | 1,335,492
Table 8: List of generation methods used in the creation of SpeechFake.
No. Method Generator Link
1 MelGAN (Kumar et al., 2019) NV https://github.com/kan-bayashi/ParallelWaveGAN
2 WaveGlow (Prenger et al., 2019) NV https://github.com/NVIDIA/waveglow
3 Parallel WaveGAN (Yamamoto et al., 2020) NV https://github.com/kan-bayashi/ParallelWaveGAN
4 HiFi-GAN (Kong et al., 2020) NV https://github.com/kan-bayashi/ParallelWaveGAN
5  Fullband-MelGAN (Yang et al., 2021) NV https://github.com/kan-bayashi/ParallelWaveGAN
6  StyleMelGAN (Mustafa et al., 2021) NV https://github.com/kan-bayashi/ParallelWaveGAN
7  FastDiff (Huang et al., 2022a) NV https://github.com/Rongjiehuang/FastDiff
8  BigVGAN (gil Lee et al., 2023) NV https://github.com/NVIDIA/BigVGAN
9  WaveNet (Van Den Oord et al., 2016) TTS https://github.com/r9y9/wavenet_vocoder
10 Tactotron2 (Shen et al., 2018) TTS https://github.com/NVIDIA/tacotron2
11 Glow-TTS (Kim et al., 2020) TTS https://github.com/jaywalnut310/glow-tts
12 Grad-TTS (Popov et al., 2021) TTS https://github.com/huawei-noah/Speech-Backbones
13 FastSpeech2 (Ren et al., 2021a) TTS https://github.com/ming@24/FastSpeech?2
14 PortaSpeech (Ren et al., 2021b) TTS https://github.com/keonlee9420/PortaSpeech
15 VITS (Kim et al., 2021) TTS https://github.com/jaywalnut310@/vits/tree/main
16  StarGAN-VC (Li et al., 2021) VvC https://github.com/y14579/StarGANv2-VC
17  DiffGAN-TTS (Liu et al., 2022) TTS https://github.com/keonleed420/DiffGAN-TTS
18 ProDiff-TTS (Huang et al., 2022b) TTS https://github.com/Rongjiehuang/ProDiff
19 EdgeTTS TTS https://github.com/rany2/edge-tts.git
20  TorToiSe (Betker, 2023) TTS https://github.com/neonbjb/tortoise-tts
21 StyleTTS2 (Li et al., 2024b) TTS https://github.com/y14579/StyleTTS2
22 OpenVoice (Qin et al., 2023) VvC https://github.com/myshell-ai/OpenVoice
23 GPTSoVITS vC https://github.com/RVC-Boss/GPT-SoVITS
24 Fish Speech TTS/VC https://github.com/fishaudio/fish-speech
25 MeloTTS TTS https://github.com/myshell-ai/MeloTTS
26  ChatTTS TTS https://github.com/2noise/ChatTTS
27  CosyVoice (Du et al., 2024b) TTS/VC  https://github.com/FunAudiolLLM/CosyVoice
28  Parler-TTS (Lyth and King, 2024) TTS https://github.com/huggingface/parler-tts
29  FireRedTTS (Guo et al., 2024) TTS https://github.com/FireRedTeam/FireRedTTS
30 Seed-VC VvC https://github.com/Plachtaa/seed-vc
31  Volcengine API TTS https://www.volcengine.com
32  Baidu API TTS https://cloud.baidu.com
33  AliYun API TTS https://www.aliyun.com
34 Xfyun API TTS https://www.xfyun.cn
35 Moyin API TTS https://www.moyin.com
36  Microsoft API TTS https://azure.microsoft.com
37  Google API TTS https://cloud.google.com
38 Amazon API TTS https://docs.aws.amazon.com/polly
39  OpenAl API TTS https://platform.openai.com
40 GPT40 API TTS https://platform.openai.com
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