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Abstract

Large Language Models (LLMs) are increas-
ingly used in high-stakes domains like law and
research, yet their inconsistencies and response
instability raise concerns about trustworthiness.
This study evaluates six leading LLMs—GPT-
3.5, GPT-4, Claude, Gemini, Mistral, and
LLaMA 2—on rationality, stability, and eth-
ical fairness through reasoning tests, legal chal-
lenges, and bias-sensitive scenarios. Results
reveal significant inconsistencies, highlighting
trade-offs between model scale, architecture,
and logical coherence. These findings under-
score the risks of deploying LLMs in legal and
policy settings, emphasizing the need for Al
systems that prioritize transparency, fairness,
and ethical robustness.

1 Introduction

Large Language Models (LLMs) are increasingly
integrated into high-stakes domains such as law,
governance, and research, where they help ana-
lyze legal texts, generate structured arguments,
and synthesize regulatory information (Bommasani
et al., 2021; OpenAl, 2023d; Das et al., 2024).
Although models like GPT-4 and Claude achieve
near-human performance in standardized legal as-
sessments (e.g., MBE), their lack of consistency
and susceptibility to response drift raise significant
concerns about fairness, reliability, and ethical de-
ployment (OpenAl, 2023d; Katsumi and Liu, 2023;
Zhong et al., 2023).

Despite their strong performance on accuracy-
based benchmarks, LLMs frequently provide con-
tradictory responses to semantically equivalent
prompts, leading to biased or unfair decision-
making in legal and policy contexts (Bender et al.,
2021; Schramowski et al., 2022). Unlike human ex-
perts, who adhere to stable reasoning frameworks,
LLMs often fail to generalize consistently across
similar cases, creating ethical risks in Al-assisted
legal judgments, governance, and social applica-
tions (Bommarito and Katz, 2022; Choi et al., 2023;

Livermore and Southall, 2023). A core ethical con-
cern is the impact of response variability on fairness
and accountability. Inconsistent Al-generated legal
reasoning can result in unequal treatment of cases,
where identical inputs yield divergent interpreta-
tions (Livermore and Southall, 2023; Rawal et al.,
2023). This unpredictability undermines trust in Al-
assisted legal frameworks, particularly in scenarios
where model outputs influence high-stakes deci-
sions. In professional applications, where LLMs
are expected to provide stable and legally sound
interpretations, inconsistencies reinforce existing
biases or create arbitrary legal precedents (Wei-
dinger et al., 2021; Hendrycks et al., 2021).

Beyond law, LLM inconsistencies extend to
other critical domains. In medical Al, studies show
that models provide different diagnostic recommen-
dations for the same symptoms depending on phras-
ing variations, introducing unfair disparities in pa-
tient treatment (Wang et al., 2023; Gao et al., 2023).
Similarly, in financial forecasting, minor changes
in input formatting can yield significantly different
risk assessments, posing ethical concerns in Al-
driven lending and insurance policies (Weidinger
et al., 2022; Avrahami et al., 2023).

This instability in Al decision-making is partic-
ularly concerning, as logical consistency is essen-
tial for fair and unbiased outcomes (Rawal et al.,
2023). If an Al system’s reasoning fluctuates un-
der similar conditions, it risks reinforcing biases,
leading to unreliable legal, medical, or financial de-
terminations and undermining trust in Al-assisted
systems (Zhong et al., 2023). Unlike humans, who
maintain structured cognitive frameworks to ensure
stable reasoning, LL.Ms lack inherent mechanisms
to enforce consistency, resulting in arbitrary or un-
predictable outcomes across repeated trials (Bom-
masani et al., 2021; Zhong et al., 2023).

Table 1 presents an example of inconsistency
in model responses across multiple queries. It il-
lustrates the variability observed when six large
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Table 1: Diagnostic Base Rate Neglect Results Across Models

Scenario and Question

Imagine that AIDS occurs in five in every 1,000 people. Imagine also that

there is a test to diagnose the disease that always gives a positive result when
a person has AIDS. Finally, imagine that the test has a false positive rate of
15 percent. This means that the test wrongly indicates that AIDS is present
in 15 percent of the cases where the person does not have AIDS. Imagine
that we choose a person to administer the test to randomly, and that it yields
a positive result (indicates that the person has AIDS).

Question: What is the probability that the individual has AIDS, assuming
that we know nothing else about the individual’s personal or medical history?

Base Rate Neglect: 85%

Correct Answer: 3% (Burgoyne et al., 2023)

Model ChatGPT-3.5 GPT-4 Claude Llama3.2 Gemini Mistral
First Attempt (%) 25.0 25.0 10.0 85.0 14.0 73.0
Second Attempt (%) 54.0 26.0 5.2 5.0 10.0 60.0

language models are given the same query multiple
times. Despite an identical input, the models gen-
erate different outputs, exposing inconsistencies in
reasoning and decision-making. This variability
underscores the need for architectural refinements,
fine-tuning strategies, and response filtering to im-
prove stability, particularly in high-stakes applica-
tions where consistency is crucial for reliable Al
deployment.

Existing Al evaluations primarily focus on bias
detection in training data but fail to account for
decision stability over multiple test trials (Bender
et al., 2021; Stanovich, 2011). Unlike accuracy-
based benchmarks, fairness-aware Al evaluation
must consider logical stability across repeated in-
teractions. If a model exhibits response drift, it
can introduce unintended biases in legal and policy
applications, disproportionately affecting marginal-
ized communities (Hendrycks et al., 2021; Ferrara
etal., 2023).

To address this issue, we assess LLM consis-
tency by measuring response stability across mul-
tiple trials using a combination of statistical met-
rics, including the Test-Retest Consistency Score
(TRCS), Intraclass Correlation Coefficient (ICC),
and Analysis of Variance (ANOVA). This study
introduces TRCS as a novel metric for evaluating
LLM stability and fairness in high-stakes applica-
tions. Unlike traditional evaluations that prioritize
accuracy alone, our approach examines multi-trial
response patterns to identify inconsistencies that
can lead to unreliable or biased decision-making.

Our study systematically analyzes consistency
to understand LLM limitations better and offer in-
sights into how Al can improve professional and
legal decision-making.

1.1 Contributions

This study makes the following key contributions:

* Consistency Evaluation Across LLMs: As-
sessed response stability across six large lan-
guage models (LLMs) with varying architec-
tures and parameter sizes.

* Novel Consistency Metric: Introduced the
Test-Retest Consistency Score (TRCS) along-
side the Intraclass Correlation Coefficient
(ICC) and Analysis of Variance (ANOVA) for
systematic variability analysis.

* Hybrid Evaluation Dataset: Developed a
benchmark combining general reasoning tasks
and legal questions to assess logical coherence
and domain-specific legal reasoning.

* Holistic Evaluation Framework: Empha-
sized both accuracy and consistency to
support robust and ethically grounded Al
decision-making.

2 Related Work

OpenAl highlighted GPT-4’s “human-level perfor-
mance on various professional and academic bench-
marks”(OpenAl, 2023e), particularly emphasizing
its performance on the Uniform Bar Examination.
OpenAl prominently reported that GPT-4 scored
in or around the “90th percentile” or “the top 10%
of test-takers”’(OpenAl, 2023e,c,b). However, stud-
ies such as (Martinez, 2024) have raised questions
about these claims, emphasizing the importance of
assessing the model’s final scores and analyzing its
responses and explanations to determine the depth
of its legal reasoning and consistency.

The Multistate Bar Examination (MBE) is a stan-
dardized multiple-choice test designed to assess
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core legal knowledge and reasoning skills across
seven key areas: Civil Procedure, Constitutional
Law, Contracts, Criminal Law and Procedure, Evi-
dence, Real Property, and Torts (Jayakumar et al.,
2023; Riebe, 2006; Goforth, 2015; Barbri, 2024).
Developed and administered by the National Con-
ference of Bar Examiners (NCBE), the MBE serves
as a critical component of the bar admission pro-
cess in most U.S. jurisdictions and contributes sig-
nificantly to the overall Uniform Bar Examination
(UBE) score (Bommarito and Katz, 2022; Katsumi
and Liu, 2023; Heidemann, 2020).

The exam consists of 200 multiple-choice ques-
tions, split into two three-hour sessions (Nystrom,
2013; Simkovic and Mclntyre, 2015). The MBE is
designed to evaluate factual legal knowledge and
assess a candidate’s ability to apply legal princi-
ples, analyze fact patterns, and differentiate be-
tween complex legal arguments. Its standardized
nature ensures that jurisdictions can objectively
compare candidates across different regions, mak-
ing it a widely used benchmark for assessing legal
proficiency(Curcio, 2002; Schwartz, 2007; Johnson
and White, 2021).

Recent advancements in natural language pro-
cessing (NLP) have led to the increasing use of
LLMs for legal applications, including legal re-
search, document review, and decision support.
Several legal NLP benchmarks, such as Case-
HOLD (Zhong et al., 2020) and SPoT (Chalkidis
et al., 2021), evaluate models on tasks like case
retrieval and legal question answering. While these
benchmarks assess text comprehension and legal
knowledge retrieval, they do not examine whether
models reason consistently across different formu-
lations of the same legal issue. This limitation
is particularly concerning in high-stakes legal ap-
plications, where inconsistencies in Al-generated
responses could lead to incorrect interpretations of
legal principles.

Most research on LLM legal reasoning priori-
tizes accuracy while neglecting consistency. Stud-
ies evaluating LLLMs on legal and rationality tasks
assess single-instance performance, disregarding
whether models produce stable responses to iden-
tical or slightly altered prompts. Santurkar et
al.(Santurkar et al., 2023) found that despite achiev-
ing high accuracy in formal logic, causal reason-
ing, and probabilistic inference, LLMs often fail to
maintain consistency across trials. Similarly, Binz
et al.(Binz and Schulz, 2023) demonstrated that

LLMs generate hallucinated justifications and over-
confident responses, but did not examine whether
these errors persist across multiple queries.

A recent study (Macmillan-Scott and Musolesi,
2024b) evaluated LLMs using cognitive psychol-
ogy tasks to assess rationality, revealing that their
irrationality manifests differently from human
reasoning. While human errors tend to follow
predictable cognitive biases, LLM responses are
highly variable and inconsistent across repeated
trials. This lack of stability raises concerns for
applications in law and decision-making, where
logical coherence is just as critical as accuracy.

Despite these insights, most legal and rationality
benchmarks prioritize accuracy while overlooking
consistency. For example, Zhong et al.(Zhong et al.,
2020) assessed LLMs on legal entailment tasks.
Still, their study only considered single-instance
correctness, failing to capture whether models ap-
ply legal reasoning stably across multiple trials.
Similarly, studies evaluating GPT-4’s bar exam per-
formance focus on accuracy metrics without inves-
tigating whether the model maintains consistent
answers when given the exact legal prompt multi-
ple times (Bommarito and Katz, 2022; Livermore
and Southall, 2023; Choi et al., 2023). While prior
research has advanced the evaluation of LLM ra-
tionality, most studies conflate accuracy with rea-
soning ability, neglecting a critical aspect of hu-
man decision-making: consistency. In psychology
and cognitive science, rational decision-making is
about correctness and the ability to apply stable
reasoning across repeated or slightly modified sce-
narios (Stanovich, 2011).

However, existing LLM evaluations fail to mea-
sure consistency, leading to cases where models
provide contradictory answers to the same legal
question depending on minor rewording or repeti-
tion. This inconsistency highlights a fundamental
limitation in the generalization of LLMs. A well-
generalized model should perform well on unseen
tasks and maintain logical coherence when faced
with repeated questions. The inability to do so
suggests that LLMs rely heavily on surface-level
patterns rather than genuinely understanding and
internalizing legal reasoning structures. This limita-
tion is particularly critical in legal Al applications,
where unpredictable model behavior could under-
mine trust in Al-assisted decision-making.
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Table 2: Summary of Large Language Models (LLMs) by size, availability, and key features.

Model Size (Params) Availability Key Features Cite

Mistral 7B-12B Free Lightweight and efficient for smaller- (AL, 2023c)
scale tasks.

Claude 2 ~52-100B Free/Paid Safety-focused, developed by An- (Anthropic,
thropic. 2023)

LLaMA 3.2 (70B) 70B Free Open-source, widely used for research (Al, 2023a)
under Meta’s license.

Gemini 1.5 ~70B Free/Paid High reasoning performance, competi- (DeepMind,
tive with GPT-4. 2023)

ChatGPT-3.5 ~175B Free/Paid Reliable and versatile for general use. ~ (OpenAl,

2023a)

GPT-4 1-1.76T Paid Excels in complex reasoning and (OpenAl,

problem-solving. 2023d)

3 Construction of Our Evaluation

Our methodology combines domain-specific legal
evaluations with well-established rationality bench-
marks to assess the reasoning capabilities of large
language models (LLMs). We treat each model as
an independent evaluation unit, enabling fair com-
parisons across architectures, training regimes, and
parameter scales. To systematically assess relia-
bility, we employ robust statistical measures, in-
cluding the Test-Retest Consistency Score (TRCS),
Intraclass Correlation Coefficient (ICC), and Anal-
ysis of Variance (ANOVA).

We conducted six trials over 30 days. In each
trial, we presented every question twice using iden-
tical prompts, resulting in twelve responses per
question per model. This repeated-measures de-
sign controls for prompt variation and allows us
to isolate internal variability in model reasoning
across both short-term and medium-term time-
frames. Rather than administering all trials con-
secutively, we deliberately distributed the testing
schedule to capture temporal fluctuations in model
behavior. This design is essential for evaluating
high-stakes applications such as legal analysis and
rational decision-making, where consistent and co-
herent reasoning is critical. Any inconsistencies
observed across trials are attributed to internal in-
stability—such as sampling randomness, latent un-
certainty, or backend model updates—rather than
variation in input structure.

All code, Python scripts, and data used in this
study are publicly available at our GitHub repos-
itory: the Rationality of Large Language Models
project.!

"https://github.com/hala0o0o1/
Rationality-of-Large-language-models-

3.1 Evaluation Framework

We evaluated six state-of-the-art LLMs: GPT-
3.5 and GPT-4 by OpenAl, Claude by Anthropic,
Gemini by DeepMind, Mistral, and LLaMA 2 by
Meta (OpenAl, 2024b,a; Al, 2024a; DeepMind,
2024; Al, 2023b, 2024b). These models span a
range of architectures and optimization strategies,
from lightweight systems such as Mistral (7-12 bil-
lion parameters) to large-scale models like GPT-4,
which is estimated to exceed 1 trillion parameters.

All responses were generated using each model’s
official API with default settings; no parameters
were modified to ensure consistent testing condi-
tions and eliminate tuning-related bias.

For a detailed comparison of model specifica-
tions, including parameter counts, availability (free,
paid, or both), release sources, and distinctive
model features, see Table 2.

3.2 Rationality Component

We define rationality as the extent to which an
agent’s decisions conform to logical and probabilis-
tic principles under uncertainty, following dual-
process theories from cognitive science and deci-
sion theory (Stanovich, 2011; Kahneman, 2011).
Unlike intelligence, which reflects raw cognitive
ability, rationality reflects adherence to normative
reasoning standards, particularly in abstract or un-
familiar contexts.

To operationalize this construct, we use four
well-established behavioral tasks known to elicit
systematic reasoning failures in human cognition:
the Wason Selection Task (Wason, 1968) tests de-
ductive logic and conditional reasoning; the Con-
junction Fallacy Task (Tversky and Kahneman,
1983) measures probabilistic misjudgment; the
Stereotype-Based Base Rate Neglect (Tversky and
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Table 3: Examples of Rationality Tests with Descriptions and Examples

Test Type

Description

Example

Wason Selection Task

Conjunction Fallacy Task

Stereotype Base Rate Neglect

Diagnostic Base Rate Neglect

Evaluate deductive reasoning by identi-
fying conditions that falsify a rule.

Tests probabilistic reasoning, avoiding
errors where conjunctions are judged
more probable.

Measures reliance on stereotypes over
statistical information.

Assesses reliance on anecdotal cues over
statistical reasoning in diagnostic scenar-
i0s.

Rule: "If a card has a vowel on one
side, it must have an even number on
the other." Cards: A, K, 4, 7. Which
cards to turn? (Correct: A and 7).
Linda is 31, outspoken, and concerned
with social justice. Which is more likely:
(1) Linda is a bank teller, or (2) Linda
is a bank teller and a feminist? (Correct:
1).

A group has 30 engineers and 70
lawyers. A randomly chosen person
is quiet and systematic. Is this per-
son an engineer or a lawyer? (Correct:
Lawyer).

A medical test is 99% accurate. 1% of
the population has the disease. If you
test positive, what’s the probability you
have the disease? (Low: ~50%).

Table 4: Definitions of the legal reasoning tasks evaluated.

Task

Definition

Civil Procedure

Constitutional Law

Contracts
Criminal Law
Evidence
Real Property

Torts

The body of law governing the processes and rules courts follow in civil lawsuits,
including how cases are filed, tried, and appealed.

The area of law that interprets and applies the U.S. Constitution, governing the
relationships between the government and individuals and dividing powers among
government branches.

The branch of law that deals with agreements between parties, including creating,
enforcing, and breaching legally binding agreements.

The area of law defining criminal offenses and the legal process for prosecuting and
defending against charges, including arrest, trial, and sentencing.

The rules and principles that govern what information can be presented in court to
prove or disprove facts in a legal proceeding.

Land and anything permanently attached to it, such as buildings and the rights
associated with land ownership.

The area of law dealing with civil wrongs or injuries, providing remedies for individ-
uals harmed by the actions or omissions of others.

Kahneman, 1974) highlights conflicts between sta-
tistical and stereotypical rationale; and the Diagnos-
tic Base Rate Neglect (Barbey and Sloman, 2007)
evaluates Bayesian inference with diagnostic cues.

Together, these tasks capture key aspects of ra-
tionality, including logical validity, probabilistic
coherence, and bias resistance. We aim to assess an-
swer accuracy and the stability of reasoning across
repeated queries. These tests serve as diagnos-
tic tools for evaluating alignment with normative
standards of reasoning, rather than as evidence of
human-like cognition. For details about each test
type, including its description and a representative
example, see Table 3.

3.3 Legal Reasoning Component

We compiled multiple-choice questions from the
Multistate Bar Examination (MBE) for the legal

reasoning component, covering seven key domains:
Civil Procedure, Constitutional Law, Contracts,
Criminal Law and Procedure, Evidence, Real Prop-
erty, and Torts. These questions were carefully
selected to mirror the complexities that legal practi-
tioners encounter in real-world scenarios, ensuring
an assessment that goes beyond factual recall to
include higher-order reasoning (of Bar Examiners,
2024; Healy, 2004; Hutchins, 1928; Hetland, 1965;
Ackerman, 1989). For more details about the Mul-
tistate Bar Examination (MBE) and its sections,
refer to Table 4.

3.4 Measuring Consistency and Stability

We employ several statistical measures to quan-
tify the stability of model responses across mul-
tiple runs. The Test-Retest Consistency Score
(TRCS) captures the proportion of identical re-
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sponses across repeated trials, offering insight into
how consistently a model behaves when presented
with the same prompt. The Intraclass Correlation
Coefficient (ICC) assesses the reliability of model
outputs across multiple iterations (Weir, 2005).

In addition, we use Analysis of Variance
(ANOVA ) to determine whether differences in con-
sistency scores across models are statistically sig-
nificant (Kaufmann, 2010).

These metrics provide a robust framework for
evaluating consistency in rationality and legal tasks.
A high rate of Answer Reversibility—where the
same model changes its response to the same
prompt—suggests instability in reasoning and
raises concerns about the model’s reliability in pro-
fessional and high-stakes applications.

4 Consistency Analysis: Measuring
Inconsistency in Legal and Rationality
Tasks

This section evaluates large language models’ con-
sistency and generalization capabilities (LLMs) re-
garding test-retest stability, statistical validation,
and model scaling effects.

4.1 Measuring Test-Retest Stability and
Intraclass Correlation

Test-Retest Consistency Score (TRCS) analysis
reveals substantial response variability across re-
peated trials, with a standard deviation of 0.23,
indicating that even advanced large language mod-
els (LLMs) lack stable reasoning structures. Intra-
Class Correlation (ICC) scores further confirm this
instability, with low mean ICC values across all
models, demonstrating their failure to maintain con-
sistent decision-making.

Despite achieving high accuracy in legal tasks,
models still exhibit low ICC scores, suggesting that
their performance is driven by statistical pattern ex-
ploitation rather than genuine legal reasoning. Sim-
ilarly, rationality tasks such as the Wason Selection
and Conjunction Fallacy Test show low ICC values,
reinforcing the conclusion that LLMs lack inter-
nal coherence. These inconsistencies raise serious
concerns about deploying LLMs in professional
and legal domains, where stable and principled rea-
soning is essential. Unlike human experts, LLMs
can produce erratic responses, leading to unpre-
dictable decision-making that may carry significant
legal and ethical consequences. Figure 1 presents
a visualization of TRCS and ICC scores across

different LLMs. The bar chart represents TRCS
scores, measuring response consistency, while the
line plot shows ICC scores, indicating the agree-
ment between repeated responses.

TRCS and ICC Across Models

S S
ICC Score

GPT-4 GPT-3.5 Gemini Claude Llama 708 Mistral

Figure 1: TRCS and ICC Scores Across LLMs. This
figure presents each model’s Test-Retest Consistency
Score (TRCS) and Intraclass Correlation Coefficient
(ICC). TRCS (blue bars) quantifies the proportion of
identical responses across repeated trials, while ICC
(red line) captures the consistency of model behavior
across related prompts within each task domain.

4.2 Statistical Analysis of Consistency
Differences

To examine response stability further, we con-
ducted a one-way Analysis of Variance (ANOVA)
and Levene’s test across rationality and legal rea-
soning tasks. The ANOVA results (F'(3.65),p =
0.0059) indicate statistically significant differences
in consistency scores across models (p < 0.05),
confirming that at least one model exhibits dis-
tinct response stability patterns. However, Levene’s
test (F'(1.38),p = 0.245) suggests that response
variability remains statistically comparable across
models (p > 0.05).Despite GPT-4 demonstrating
greater consistency than other models, inconsisten-
cies persist. Figure 2 further illustrates the variation
in consistency scores across task types and models,
emphasizing the domain-specific performance of
each model.

4.3 Model Scale and Consistency

Our findings reveal that Claude, GPT-4, and
LLaMA 3.2 exhibit the highest consistency scores,
outperforming smaller models like GPT-3.5 and
Mistral. However, model size alone does not
guarantee consistency. Despite being significantly
larger than Claude, GPT-4 demonstrates more sig-
nificant response variability. This suggests that
alignment techniques and optimization strategies
are more critical in stability than sheer scale.
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Scatter Plot of Consistency Score Across Tests
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Figure 2: Consistency Scores Across Test Sections. This scatter plot compares the consistency scores of six
large language models (LLMs)—Claude, GPT-4, GPT-3.5, Gemini 1.5, LLaMA 3.2, and Mistral—across various
legal and rationality test sections. Each point represents a model’s score on a specific task. The plot illustrates
performance variability across domains and highlights that model size is not the sole determinant of consistency.
Notably, Claude and LLaMA 3.2 demonstrate higher consistency across multiple tasks, while GPT-4 shows greater

variability despite its scale.

Claude prioritizes consistency, whereas GPT-4’s
variability highlights the impact of different train-
ing methodologies. Similarly, LLaMA 3.2 achieves
high consistency despite being smaller than GPT-4,
reinforcing that structured learning approaches can
enhance stability without extreme parameter scal-
ing. Figure 3 compares consistency scores across
models, illustrating performance variability and
emphasizing that model size alone is not the pri-
mary determinant of stability.

Table 5 further demonstrates GPT-4’s inconsis-
tencies in legal reasoning, where identical prompts
yielded different responses and distinct logical ex-
planations.

4.4 Interpreting TRCS and ICC Divergences

TRCS and ICC capture different dimensions of
consistency: TRCS measures how reliably a model
repeats the same answer to identical prompts, while
ICC assesses stability across related but distinct
items within a domain.

Our findings show that models can exhibit high
TRCS yet low ICC. For example, GPT-4 consis-
tently answered specific legal prompts (TRCS =
1.00), but showed weak generalization across the
full legal set (ICC = 0.42). In rationality tasks such
as base rate neglect, GPT-4 was inconsistent both

within items (TRCS = 0.50) and across functions
(ICC =0.31), revealing unstable probabilistic rea-
soning.

These results highlight that relying on TRCS
alone may overstate model reliability. A combined
analysis of TRCS and ICC offers a more accurate
view of reasoning stability, essential for deploying
LLMs in high-stakes domains like law and ratio-
nality.

Average Consistency Across Models

Average Consistency Score
4 g 2 & b 2

0.0

Claude GPT-3.5 GPT-4. Gemini 15

Figure 3: Consistency Scores Across Models. This figure
compares average consistency scores across six language mod-
els. It illustrates performance variability and emphasizes that
model size is not the key determinant of stability. Claude and
GPT-4 show higher consistency, while smaller models like
LLaMA 3.2 outperform larger ones like GPT-3.5, challenging
assumptions about scale and reliability.

9949



Table 5: GPT-4 Prompt, Answer Choices, Correct Answer, and Explanation

Prompt

Answer Choices

First Attempt

Second Attempt

A factory foreman was sus-
pected of murdering the rival
of a local union leader. Af-
ter his arrest, the police asked
his aunt if she knew where
firearms could be found. She
retrieved a pistol from the bed-
room. Ballistics linked the pis-
tol to the crime, and the fore-
man’s fingerprints were found
on it. The grand jury indicted
the foreman after hearing this
Evidence. He seeks to quash

(A) No, because the Evidence
was offered before a grand jury,
not a court.

(B) No, because the pistol was
obtained by a private citizen, not
the police.

(C) Yes, because the police did
not have probable cause to seize
the pistol.

(D) Yes, because the foreman’s
aunt was acting as an agent of the
police when she obtained the pis-
tol.

(B) No, because the pistol was
obtained by a private citizen, not
the police.

Explanation: The exclusionary
Rule only applies to government
actors, and here, the foreman’s
aunt, a private citizen, voluntarily
retrieved the pistol without coer-
cion or direction from the police.
Thus, the exclusionary Rule does
not apply.

(D) Yes, because the foreman’s
aunt was acting as an agent of the
police when she obtained the pis-
tol.

Explanation: This scenario in-
volves the Fourth Amendment,
and the question is whether the
Evidence obtained by the super-
visor’s aunt, who acted as an
agent of the police, should be ex-
cluded.

the indictment.

Correct Answer: (B) No, because the pistol was obtained by a private citizen, not the police (Barbri, 2024).

4.5 Fluctuations and Inconsistencies in
Diagnostic Reasoning

We observed marked fluctuations in model per-
formance on the diagnostic base rate neglect task.
LLMs frequently solved complex Bayesian infer-
ence problems, yet failed on simpler base rate items.
In several instances, the selected answers directly
contradicted the models’ own explanations, reveal-
ing internal inconsistencies or stochastic behavior.
These findings echo the work of Macmillan-
Scott and Musolesi (Macmillan-Scott and Mu-
solesi, 2024a), who documented similar failures in
GPT-4—successfully completing advanced mathe-
matical tasks while erring on basic arithmetic and
pattern recognition. Such discrepancies underscore
a fundamental limitation: current LLMs lack sta-
ble internal reasoning mechanisms. This instabil-
ity challenges the adequacy of accuracy as a stan-
dalone metric for evaluating model reliability.

4.6 The Importance of Consistency in
High-Stakes Domains

Consistency is crucial for Al models, especially in
legal and medical fields where reliability is essen-
tial. Contradictory responses undermine credibility,
making Al unsuitable for decision-making that re-
quires precision and coherence. In legal reasoning,
inconsistencies in LLM-generated arguments can
lead to unreliable analyses, while fluctuating diag-
noses in medical applications pose significant risks.
Moreover, inconsistent outputs complicate Al gov-
ernance by reducing transparency and accountabil-
ity. Ensuring Al models are high-performing, sta-
ble, fair, and interpretable is critical for their adop-
tion in regulated environments (Stanovich, 2011;
Flanagan and Alfonso, 2013).

4.7 Challenges in Cross-Domain
Generalization

Unlike humans, LLMs struggle to generalize rea-
soning across domains and develop stable frame-
works that transfer knowledge effectively (Gen-
tner and Markman, 1997; Holyoak and Thagard,
2012). Legal professionals, for instance, demon-
strate strong rationality beyond the law, applying
structured reasoning to novel contexts (Weinreb,
2005; Gick and Holyoak, 1980). In contrast, LLMs
exhibit response inconsistencies and logical drift
in broader rationality tests despite excelling in
domain-specific tasks. Their reliance on pattern
recognition hinders cross-domain knowledge trans-
fer (Marcus, 2020; Bender et al., 2021). This in-
consistency raises ethical concerns, particularly in
law and governance. LLMs often produce contra-
dictory responses to similar prompts, posing risks
in high-stakes applications (Weidinger et al., 2021;
Hendrycks et al., 2021). Unlike human experts,
they operate in isolated silos, leading to fragmented
and unreliable decision-making.

4.8 Strategies for Enhancing LLM
Generalization and Stability

Consistency is essential for deploying large lan-
guage models (LLMs) in high-stakes legal reason-
ing and rational decision-making fields. While
techniques like Reinforcement Learning with Hu-
man Feedback (RLHF) and Retrieval-Augmented
Generation (RAG) have improved accuracy and
alignment with human preferences, they are not ex-
plicitly designed to ensure stable responses across
repeated prompts.

One approach to improving consistency is adapt-
ing RLHF to penalize contradictory outputs. For

9950



instance, if a model provides different answers to
the same legal question across multiple runs, its re-
ward should be reduced. This can be implemented
through a two-step process: first, generate several
completions for the same prompt; second, select
the best output with expert references or previous
completions. This encourages more stable and re-
producible behavior (Ouyang et al., 2022; Chris-
tiano et al., 2017).

Retrieval-based models can also be enhanced for
consistency. Instead of relying on a single retrieved
passage, the model can gather multiple related doc-
uments and generate responses that reflect agree-
ment across these sources. For example, a prompt
concerning the Fourth Amendment might retrieve
precedents such as Katz v. United States and Car-
penter v. United States to ensure alignment with
established case law. This redundancy helps reduce
hallucinations and mitigates drift in output across
trials (Lewis et al., 2020; Izacard and Grave, 2021).

Another promising direction is a model-agnostic
method called Self-Consistency Regularization
(SCR). Although not implemented in this study,
SCR penalizes variability in model responses to
the same prompt by applying entropy-based penal-
ties or majority voting across Monte Carlo samples.
Since SCR operates during inference, it can be in-
tegrated into existing systems without retraining,
making it a scalable and complementary tool for
enhancing stability.

Cognitively inspired strategies also show po-
tential. Hierarchical reasoning allows models to
decompose complex questions into smaller, inter-
pretable components (Bengio et al., 2019; Lake
et al., 2017). Meta-reasoning modules can assess
the internal coherence of outputs before finaliza-
tion, while lightweight memory systems enable
models to recall prior responses, supporting consis-
tency across interactions.

Holtzman et al. (Holtzman et al., 2021) demon-
strate that even state-of-the-art models frequently
produce inconsistent outputs when asked the same
prompt repeatedly. This underscores the impor-
tance of treating consistency as a formal evalua-
tion criterion. In our work, we adopt this view
through the use of the Test-Retest Consistency
Score (TRCS) (Lin et al., 2022; Mitchell, 2023),
which measures how often a model returns the
same answer across repeated trials. Broader adop-
tion of such metrics is critical for developing reli-
able and trustworthy LL.Ms.

Taken together, these strategies—reward-
modified RLHF, redundancy-aware retrieval,
SCR, and cognitively inspired mechanisms—offer
a promising path toward building models that
are accurate but also stable, interpretable, and
dependable in professional applications where
consistency is essential.

5 Conclusion

In this study, we investigated fairness in large lan-
guage models (LLMs) beyond accuracy, empha-
sizing consistency as a crucial factor for their re-
liability. We evaluated reasoning across six dif-
ferent LLMs and found that all exhibited a lack
of consistency, posing a significant barrier to their
deployment in high-stakes environments. Our anal-
ysis highlights the limitations of current models in
maintaining stable reasoning patterns, which are es-
sential for legal, medical, and other critical applica-
tions. Addressing these challenges requires further
research into improving model consistency, incor-
porating adaptive learning strategies, and enhanc-
ing transparency to ensure trustworthy Al decision-
making.

Limitations and Future Work

While this study highlights essential consistency
challenges in large language models, several lim-
itations remain. The analysis relies on a 30-day
evaluation period, which, although offering a rep-
resentative snapshot of consistency trends, may
not fully capture the variability in model responses
across different conditions or over time. To main-
tain feasibility, we adopted a streamlined protocol
that ensured balanced representation across model
tiers and tasks. However, this limited timeframe
may not account for longer-term fluctuations or
backend updates that could influence model perfor-
mance.

Second, the evaluation focuses primarily on le-
gal and rationality tasks. Although these are crit-
ical high-stakes areas—and rationality is founda-
tional to legal reasoning—the exclusion of other
domains limits the generalizability of our findings.
In future work, we plan to expand the evaluation
framework to include medical reasoning, computer
science, and financial decision-making to assess
cross-domain consistency better.

Third, we did not consider the potential effects
of fine-tuning or retrieval-augmented generation
(RAG) (Lewis et al., 2020; Izacard and Grave,
2021), which may enhance consistency and reli-
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ability. Future research should explore these ap-
proaches and human-in-the-loop strategies to im-
prove performance stability and trustworthiness in
real-world applications.

Finally, a key direction for future work is to
examine whether rationality generalizes across do-
mains. While rationality is critical for legal rea-
soning, it remains unclear whether LLLMs can con-
sistently apply rational principles—such as logical
validity, probabilistic reasoning, and resistance to
cognitive biases—in unfamiliar contexts. Under-
standing the scope and limits of rational general-
ization is essential for developing more robust and
trustworthy Al systems.

Acknowledgments

We are grateful to Roberto Porras, a licensed attor-
ney in New York from the University of Virginia
School of Law, and Moriah Bisewski, a licensed
attorney in Texas from the University of Houston
Law Center, for their valuable input and dialogue
while preparing this work. Their insights helped
us refine the legal components of this work and the
precision of our analysis.

We also thank Omar Kamal for his assistance in
revising the codebase and implementing the neces-
sary modifications that supported our experimental
framework.

Finally, we are thankful to Dr. Suha Beydoun
for her guidance on the rationality tasks and her
contributions to ensuring the fairness and quality
of the evaluation process.

References

Bruce Ackerman. 1989.
tics/constitutional law.
99(4):453-538.

Constitutional  poli-
Harvard Law Review,

Anthropic Al 2024a. Claude 2 and constitutional ai: A
safety-focused approach.

Meta Al 2023a. Llama 3: Open large language models.
Available at https://ai.meta.com/1lama.

Meta Al 2024b. Llama 3.2: Advancements in open-
source ai.

Mistral Al. 2023b. Mistral 7b: A high-performance
lightweight model.

Mistral AL 2023c. Mistral 7b: Lightweight and ef-
ficient large language model. Available at https:
//mistral.ai.

Anthropic. 2023.
language model.
anthropic.com.

Claude 2: Safety-centric large
Available at https://www.

Alon Avrahami, Ron Shamir, and Daniel Cohen. 2023.
Uncertainty in ai-based financial forecasting: The
role of input sensitivity and response stability. Jour-
nal of Finance and Al, 9(1):55-72.

Aron K Barbey and Steven A Sloman. 2007. Base-rate
respect: From ecological rationality to dual processes.
Behavioral and Brain Sciences, 30(3):241-254.

Barbri. 2024. Barbri Simulated MBE. SIM MBE.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, et al. 2021. On the dangers of stochastic
parrots: Can language models be too big? FAccT.

Yoshua Bengio et al. 2019. Meta-transfer learning for
few-shot learning. arXiv preprint arXiv:1910.10736.

Maximilian Binz and Eric Schulz. 2023. Using cogni-
tive science to evaluate ai rationality. Proceedings of
AAAL

Michael Bommarito and Daniel Martin Katz. 2022. Gpt-
4 and the bar exam: What do we learn? MIT Compu-
tational Law Report.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, et al. 2021. On the opportunities
and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Alexander P. Burgoyne, Michael J. Kane, and David Z.
Hambrick. 2023. Understanding diagnostic base rate
neglect: A meta-analytic review. Journal of Experi-
mental Psychology: General, 152(1):112-131.

Ilias Chalkidis, Ion Androutsopoulos, and Nikolaos Ale-
tras. 2021. Legal-bert: Pretrained transformers for
legal text mining. arXiv preprint arXiv:2103.11121.

Jonathan H. Choi et al. 2023. Chatgpt goes to law
school. arXiv preprint arXiv:2304.00067.

Paul F Christiano, Jan Leike, Tom Brown, et al. 2017.
Deep reinforcement learning from human prefer-
ences. In Advances in Neural Information Processing
Systems (NeurlPS).

A. Curcio. 2002. Bar exam performance and law school
pedagogy: A critical examination. Legal Education
Review, 15:143-167.

Arion Das, Asutosh Mishra, Amitesh Patel, Soumilya
De, V Gurucharan, and Kripabandhu Ghosh.
2024. Can llms faithfully generate their layperson-
understandable’self’?: A case study in high-stakes
domains. arXiv preprint arXiv:2412.07781.

DeepMind. 2023. Gemini 1: Multimodal large lan-
guage model. Available at https://deepmind.com/
gemini.

9952


https://doi.org/10.2307/1341333
https://doi.org/10.2307/1341333
https://www.techtarget.com/whatis/feature/12-of-the-best-large-language-models
https://www.techtarget.com/whatis/feature/12-of-the-best-large-language-models
https://ai.meta.com/llama
https://amdadulhaquemilon.medium.com/llama-3-2-vs-gpt-4-vs-openai-o1-vs-gemini-ultra-vs-claude-3-5-which-ai-model-is-right-for-you-98a1e45ae0e9
https://amdadulhaquemilon.medium.com/llama-3-2-vs-gpt-4-vs-openai-o1-vs-gemini-ultra-vs-claude-3-5-which-ai-model-is-right-for-you-98a1e45ae0e9
https://en.wikipedia.org/wiki/Mistral_AI
https://en.wikipedia.org/wiki/Mistral_AI
https://mistral.ai
https://mistral.ai
https://www.anthropic.com
https://www.anthropic.com
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://doi.org/10.1037/xge0001282
https://doi.org/10.1037/xge0001282
https://arxiv.org/abs/2304.00067
https://arxiv.org/abs/2304.00067
https://deepmind.com/gemini
https://deepmind.com/gemini

Google DeepMind. 2024. Gemini 1.5 pro: High-
performance language model.

Emilio Ferrara, Stefano Cresci, and David Lazer. 2023.
Hallucination and response drift in large language
models: Implications for fairness and bias. Nature
Machine Intelligence, 5(8):678-692.

Dawn P. Flanagan and Vincent C. Alfonso. 2013. The
Cattell-Horn-Carroll Theory and Evidence-Based As-
sessment. Springer.

Lin Gao, Mei Zhang, and Xinyu Li. 2023. Evaluat-
ing consistency in ai-assisted medical diagnostics: A
multi-trial study. Journal of Medical Al Research,
12:202-215.

Dedre Gentner and Arthur B Markman. 1997. Structure-
mapping in analogy and similarity. American psy-
chologist, 52(1):45.

Mary L Gick and Keith J Holyoak. 1980. Analogical
problem solving. Cognitive psychology, 12(3):306—
355.

Carol Goforth. 2015. Why the bar examination fails to
raise the bar. Ohio NUL Rev., 42:47.

Thomas Healy. 2004. Criminal law: A systematic ap-
proach. American Criminal Law Review, 41(1):135—
156.

B. Heidemann. 2020. Strategies for mastering the mbe:
Legal analysis and test-taking techniques. Legal Ed-
ucation Quarterly, 33:200-225.

Dan Hendrycks, Collin Burns, Saurav Kadavath, et al.
2021. Aligning ai with shared human values. arXiv
preprint arXiv:2008.02275.

Leif M. Hetland. 1965. The definition of real property.
Minnesota Law Review, 49:731-748.

Ari Holtzman, Peter West, Chandra Bhagavatula, and
Yejin Choi. 2021. Surface form competition: Why
the highest probability answer isn’t always right. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 769-784.

Keith J Holyoak and Paul Thagard. 2012. Analogy and
relational reasoning. Oxford University Press.

Robert M. Hutchins. 1928. Some observations on evi-
dence and evidence teaching. Columbia Law Review,
28(3):432-444.

Gautier Izacard and Edouard Grave. 2021. Leverag-
ing passage retrieval with generative models for
open domain question answering. arXiv preprint
arXiv:2101.00294.

Thanmay Jayakumar, Fauzan Farooqui, and Lugman
Farooqui. 2023. Large language models are legal but
they are not: Making the case for a powerful legalllm.
arXiv preprint arXiv:2311.08890.

P. Johnson and C. White. 2021. Bar exam and legal
competence: Evaluating the testing framework. Law
Ethics Journal, 28:189-210.

Daniel Kahneman. 2011. Thinking, Fast and Slow. Far-
rar, Straus and Giroux, New York.

Mina Katsumi and Brian S. Liu. 2023. Assessing ai’s
legal knowledge: Beyond standardized testing. A[
Law Review.

Stefan Kaufmann. 2010. Analysis of variance (anova).
In Wiley Interdisciplinary Reviews: Computational
Statistics. John Wiley & Sons.

Brenden M Lake, Tomer D Ullman, Joshua B Tenen-
baum, and Samuel J Gershman. 2017. Building ma-
chines that learn and think like people. Behavioral
and Brain Sciences, 40:€253.

Patrick Lewis, Ethan Perez, Aleksandra Piktus,
et al. 2020. Retrieval-augmented generation for
knowledge-intensive nlp tasks. Advances in Neural
Information Processing Systems (NeurlIPS).

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulga: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958.

Michael A. Livermore and Ashley Southall. 2023. Law
in the age of ai: Evaluating gpt-4’s legal performance.
Harvard Journal of Law and Technology.

Oliver Macmillan-Scott and Mirco Musolesi. 2024a.
(ir)rationality and cognitive biases in large language
models. Royal Society Open Science, 11(6):240255.

Olivia Macmillan-Scott and Mirco Musolesi. 2024b.
(ir)rationality and cognitive biases in large language
models. Royal Society Open Science, 11(6):240255.

Gary Marcus. 2020. The next decade in ai: Four steps
towards robust artificial intelligence. arXiv preprint
arXiv:2002.06177.

Eric Martinez. 2024. Re-evaluating gpt-4’s bar exam
performance. Artificial Intelligence and Law, pages
1-24.

Melanie Mitchell. 2023. Abstraction and generalization
in ai and human cognition. Artificial Intelligence
Review, 56:251-272.

J. Nystrom. 2013. Bar exam structure and its impact
on legal education. Journal of Legal Studies, 29:312—
330.

National Conference of Bar Examiners. 2024. Mbe sub-
ject matter outline. Available: https://www.ncbex.
org/exams/mbe/.

OpenAl. 2023a. Chatgpt-3.5: Reliable language model.
Available at https://openai.com.

OpenAl 2023b. Gpt-4 and bar exam results. Accessed:
YYYY-MM-DD.

9953


https://artificialanalysis.ai/models
https://artificialanalysis.ai/models
https://doi.org/10.2307/1114195
https://doi.org/10.2307/1114195
https://doi.org/10.1002/9781118445112.stat06938
https://doi.org/10.1098/rsos.240255
https://doi.org/10.1098/rsos.240255
https://doi.org/10.1098/rsos.240255
https://doi.org/10.1098/rsos.240255
https://www.ncbex.org/exams/mbe/
https://www.ncbex.org/exams/mbe/
https://openai.com
https://openai.com/research/bar-exam-results

OpenAl. 2023c. Gpt-4 performance benchmarks. Ac-
cessed: YYYY-MM-DD.

OpenAl. 2023d. Gpt-4 technical report. https://
openai.com/research/gpt-4.
OpenAl. 2023e. Gpt-4 technical report. Accessed:

YYYY-MM-DD.

OpenAl. 2024a. Gpt-3.5 turbo: Reliable and versatile
ai model.

OpenAl. 2024b. Gpt-40: Advancing ai reasoning and
problem-solving.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
et al. 2022. Training language models to follow
instructions with human feedback. arXiv preprint
arXiv:2203.02155.

Anika Rawal, Rishabh Gupta, and Sungjin Lee. 2023.
Assessing logical stability and bias in ai decision-
making systems. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 37(4):2850-2862.

Denise Riebe. 2006. A bar review for law schools:
Getting students on board to pass their bar exams.
BrandeiS 1J, 45:269.

Shibani Santurkar et al. 2023. Whose reasoning? evalu-
ating 1lms on logical, causal, and probabilistic tasks.
Proceedings of NeurlPS.

Patrick Schramowski, Dominik Stammer, and Volker
Tresp. 2022. Large language models are not
fair evaluators: An analysis of gpt-3’s moral
and ethical reasoning capabilities. arXiv preprint
arXiv:2203.10259.

N. Schwartz. 2007. Success strategies for bar exam
candidates. Journal of Bar Studies, 20:56-75.

M. Simkovic and F. McIntyre. 2015. Should the bar
exam be redesigned? a statistical perspective. Law
Society Review, 41:75-98.

Keith E. Stanovich. 2011. Rationality and the Reflective
Mind. Oxford University Press, New York, NY.

Amos Tversky and Daniel Kahneman. 1974. Judgment
under uncertainty: Heuristics and biases. Science,
185(4157):1124-1131.

Amos Tversky and Daniel Kahneman. 1983. Exten-
sional versus intuitive reasoning: The conjunction
fallacy in probability judgment. Psychological Re-
view, 90(4):293-315.

Meng Wang, Xiangrui Lin, et al. 2023. Towards rea-
soning in large language models: A survey. arXiv
preprint arXiv:2301.05698.

Peter C. Wason. 1968. Reasoning about a rule. Quar-
terly Journal of Experimental Psychology, 20(3):273—
281.

Laura Weidinger, lason Gabriel, Amelia Glaese, Rishi
Bommasani, et al. 2021. Ethical and social risks
of harm from language models. arXiv preprint
arXiv:2112.04359.

Laura Weidinger et al. 2022. Ethical and social risks of

large language models. Advances in Neural Informa-
tion Processing Systems, 35:35412-35423.

Lloyd L Weinreb. 2005. Legal reason: The use of anal-
ogy in legal argument. Cambridge University Press.

Joseph P. Weir. 2005. Quantifying test-retest reliability
using the intraclass correlation coefficient and the

sem. Journal of Strength and Conditioning Research,
19(1):231-240.

Hao Zhong, Jieyu Tang, Tianyang Xu, et al. 2020. Does
nlp benefit legal system? a case study of document
representation. arXiv preprint arXiv:2005.01647.

Haoyang Zhong, Yujia Wang, and Wei Yang. 2023. Can
large language models be consistent? evaluating sta-
bility in legal and policy decision-making. Al Soci-
ety, 38:1123-1140.

9954


https://openai.com/research/gpt-4-performance
https://openai.com/research/gpt-4
https://openai.com/research/gpt-4
https://openai.com/research/gpt-4
https://artificialanalysis.ai/models
https://artificialanalysis.ai/models
https://artificialanalysis.ai/models
https://artificialanalysis.ai/models
https://doi.org/10.1093/acprof:oso/9780195341140.001.0001
https://doi.org/10.1093/acprof:oso/9780195341140.001.0001
https://doi.org/10.1126/science.185.4157.1124
https://doi.org/10.1126/science.185.4157.1124
https://doi.org/10.1080/14640746808400161
https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2112.04359
https://doi.org/10.1519/15184.1
https://doi.org/10.1519/15184.1
https://doi.org/10.1519/15184.1

