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Abstract

Large language models (LLMs) are revolution-
izing education, with LLM-based agents play-
ing a key role in simulating student behavior. A
major challenge in student simulation is mod-
eling the diverse learning patterns of students
at various cognitive levels. However, current
LLMs, typically trained as “helpful assistants”,
target at generating perfect responses. As a
result, they struggle to simulate students with
diverse cognitive abilities, as they often pro-
duce overly advanced answers, missing the
natural imperfections that characterize student
learning and resulting in unrealistic simulations.
To address this issue, we propose a training-
free framework for student simulation. We be-
gin by constructing a cognitive prototype for
each student using a knowledge graph, which
captures their understanding of concepts from
past learning records. This prototype is then
mapped to new tasks to predict student perfor-
mance. Next, we simulate student solutions
based on these predictions and iteratively re-
fine them using a beam search method to bet-
ter replicate realistic mistakes. To validate
our approach, we construct the Student_100
dataset, consisting of 100 students working
on Python programming and 5,000 learning
records. Experimental results show that our
method consistently outperforms baseline mod-
els, achieving 100% improvement in simu-
lation accuracy and realism. Project page:
https://mccartney01.github.io/student_sim.

1 Introduction

Artificial intelligence (Al is transforming educa-
tion by seamlessly integrating into teaching and
learning (Xu et al., 2024a). Large language models
(LLMs) play a central role in this shift, excelling
in tasks such as personalized tutoring (Kwon et al.,
2024), curriculum design (Erak et al., 2024), and
adaptive assessment (Ross and Andreas, 2024).
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Figure 1: Existing LLM-based simulations struggle to
accurately replicate behaviors at varying cognitive levels
and produce overly advanced responses that undermine
the validity of the simulation.

A key way LLMs drive these advancements is
through simulation, where models typically adopt
the role of a student. Such simulations provide
researchers a cost-effective approach to evaluate
teaching strategies (Yue et al., 2024), assess in-
telligent tutoring systems (Liu et al., 2024b), and
enhance Al educational tools (Liu et al., 2024a).

Effective educational simulations must account
for students’ cognitive diversity (Xu et al., 2024b).
High-performing students tend to demonstrate
stronger comprehension and reasoning skills, while
lower-performing students may make frequent er-
rors. Thus, for LLM-based agents to effectively
simulate student behavior, they must distinguish
between different cognitive levels and generate re-
sponses that accurately reflect these differences.
This means not only simulating the near-“perfect”
solutions of high-achieving students but also gen-
erating “imperfections” of lower-performing stu-
dents, including their typical mistakes.

However, recent studies highlight that current
LLM-based agents struggle to replicate these “im-
perfections”. They often overlook the typical mis-
takes made by lower-performing students and in-
stead generate responses that are overly advanced
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Figure 2: Cognitive scores of 15 different students. The
naive prompt-based simulations tend to produce overly
advanced responses. In contrast, our method adaptively
simulates students and produces more approximated
cognitive scores.

or unrealistic (He-Yueya et al., 2024; Markel et al.,
2023; Aher et al., 2023). As shown in Figure 1,
LLMs tend to overestimate the cognitive level of
students with weaker abilities (e.g., elementary
school students), failing to replicate the expected
error-prone behaviors that typically occur. Figure
2 further illustrates this issue, showing that LLMs
frequently produce responses that exceed the cogni-
tive capabilities of these students !. This limitation
likely stems from the fact that LLMs are primarily
trained to provide accurate and helpful solutions
(Tan et al., 2023), rather than to mimic the nuanced
error patterns characteristic of student learning.

A natural approach to addressing this challenge
is fine-tuning LLLMs on error-rich datasets. For in-
stance, MalAlgoPy (Sonkar et al., 2024) defines 20
common equation transformation errors and trains
models on misconception examples to reproduce
these mistakes. While such fine-tuning can encour-
age models to generate errors, it also risks embed-
ding incorrect knowledge, potentially degrading
overall performance. Moreover, this method over-
looks the personalized nature of student learning,
as mistakes should be introduced adaptively based
on a student’s cognitive state.

To overcome these limitations, we propose a
training-free approach based on cognitive pro-
totypes to create LLM-based agents that accu-
rately replicate student task-solving behavior. Our
method begins by constructing a knowledge graph-
based cognitive prototype from a student’s past
learning records, explicitly capturing their mastery
of different knowledge concepts and serving as
the foundation for precise cognitive-level analy-
sis. Using this prototype, we predict how students

'Details about this figure are provided in Appendix B.

will approach new tasks in a concept-aware man-
ner. Specifically, our approach maps the cognitive
prototype onto the new task, enabling a deeper,
knowledge-concept-level assessment of the stu-
dent’s mastery. This allows for more precise pre-
dictions, including whether the student can cor-
rectly solve the task and what specific errors they
are likely to make. Finally, we introduce a self-
refinement approach to generate student solutions.
The model continuously self-evaluates and itera-
tively refines its responses until they align precisely
with the predicted behavior description. This not
only ensures the generation of correct solutions but
also improves the simulation of student mistakes,
leading to more realistic, natural, and cognitively
consistent student simulation.

To validate the effectiveness of our approach,
we collect the Student_100 dataset, consisting of
5,000 learning records from 100 students work-
ing on Python programming tasks. Each student’s
records provide a unique experimental scenario for
simulation. Experimental results show that our
method significantly outperforms baseline models,
producing more realistic and accurate student sim-
ulations. The contributions of this paper are:

* We identify the limitations of current LLMs in
simulating students across different cognitive lev-
els and collect a dataset for in-depth analysis.

* We propose a training-free framework using cog-
nitive prototypes to generate realistic student be-
haviors and solutions at various cognitive levels.

» Extensive experimental results prove that our
method overcomes the bias of behavioral sim-
ulations and can produce realistic simulations.

2 Related Work

2.1 LLM-based Education Simulation

Recent research explores using large language mod-
els (LLMs) to simulate educational roles, support-
ing teaching strategy evaluation (Markel et al.,
2023; Luo et al., 2024) and Al teaching assistant
development (Yue et al., 2024; Kwon et al., 2024).
For instance, Wang et al. (2024b); Daheim et al.
(2024) use LLMs for personalized error-correction,
while Liu et al. (2024b) simulate students with dif-
ferent personalities in ITS. SocraticLM(Liu et al.,
2024a) models students, teachers, and deans to sup-
port Socratic teaching and generate training data.
Accurately replicating student behavior, including
errors, is vital. Existing methods (Sonkar et al.,
2024) improve error replication by training on error-
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rich data, but risk embedding incorrect knowledge.
To address this, we propose a training-free pipeline
that predicts and refines student behavior simula-
tions for more realistic and natural modeling.

2.2 Student Cognitive State Analysis

Diagnosing students’ cognitive states and predict-
ing their behavior are key challenges in education
research. Existing methods fall into two categories:
psychometrics-based and deep learning-based ap-
proaches (Jiang et al., 2022). Psychometrics-
based methods (Stout, 2007; De La Torre, 2009)
model the relationship between performance and
knowledge state using empirical response func-
tions, while deep learning methods (Su et al., 2018;
Sun et al., 2022; Dong et al., 2025a,b; Lv et al.,
2025; Zhou et al., 2025b; Lin et al., 2024) leverage
neural networks but rely on implicit, parameterized
knowledge, making it difficult to assess mastery
of specific concepts (Wang et al., 2023b). This
limitation restricts their effectiveness in student be-
havior prediction and simulation. To address this,
we propose a knowledge graph-based approach to
model students’ cognitive prototypes. Our explicit,
natural language-driven framework enables more
precise behavior prediction and supports solution
simulation.

3 Dataset Curation

Student simulation relies on the premise that a stu-
dent’s cognitive state remains stable over a short
period. Based on this assumption, it effectively as-
sesses the student’s cognitive state using their past
learning records and predicts their behavior on new
tasks. The simulation then reproduces solution out-
comes, such as accurately solving problems related
to well-understood concepts or making reasonable
errors on tasks involving less familiar concepts.
The simulation requires datasets with three key
features: (1) a stable cognitive state for each stu-
dent, (2) sequential task-solving records, and (3) de-
tailed annotations, including task statements, solv-
ing behavior, and corresponding solutions. How-
ever, existing datasets often fail to meet all these
criteria. Knowledge tracing datasets (Liu et al.,
2023) primarily focus on correctness, lacking tex-
tual task statements, student behavior, and solu-
tions (Hu et al., 2023). In contrast, error diagnosis
datasets (Wang et al., 2024b; Daheim et al., 2024)
offer rich textual information but lack annotated
task-solving sequences, making it challenging to

model students’ cognitive states accurately.

To tackle these challenges, we develop a dataset,
Student_100, specifically tailored for the student
simulation task. The dataset originates from an on-
line programming platform—PTA?, comprising se-
quential programming records for each student. We
choose programming as the task-solving scenario
due to its complexity, error diversity and real-world
applicability (Dai et al., 2024, 2025), making it a
representative setting for student simulation®. To
ensure a stable cognitive state, only records com-
pleted within a week are included in each sequence.
Each raw record contains task statement, the so-
lution (student-written code), and its correctness.
To enhance the dataset, we recruit 10 well-trained
annotators to provide detailed task descriptions and
analyze student behavior (i.e., evaluations of the
solution) for each record.

For each student sequence, we select 40 records
as “past learning records” and 10 as “simulation
records”. The final Student_100 dataset com-
prises 100 students, each represented by 50 well-
annotated task-solving records, forming a reliable
foundation for student simulation tasks. Dataset
statistics, a sample illustration and privacy protec-
tion are presented in Appendix A.

4 Methods

4.1 Overview

Student simulation requires accurately replicating
the personalized behaviors and solutions of stu-
dents with varying cognitive levels during task-
solving. To achieve this, we propose a three-
stage framework for student simulation. Firstly,
given a student’s M past learning records P =
{Piti<i<m = {(t, i, 5i) }i<i<mr, where t;, by,
and s; represent tasks, behaviors, and solutions,
respectively, we construct a cognitive prototype
using a knowledge graph to explicitly capture the
student’s cognitive state (Section 4.2). Secondly,
foranew task ¢; (M+1 < j < M+N, where N is
the number of tasks to be simulated), this prototype
is applied to predict the student’s expected behav-
ior l;j (Section 4.3). Finally, based on the predicted
behavior, the model generates the expected solu-
tion 5; using a beam search-based self-refinement
method to ensure consistency (Section 4.4).

Zhttps://pintia.cn/
3We provide a detailed discussion on the significance of
programming tasks in Appendix A.3.
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Past Learning Records P
Record P;

Task t;: Write a program to
calculate the double of a number.

Behavior b;: Correctsolution.

Solution s;:
def calculate_double(number):
return number * 2

Record P;

Task t;: Implement a recursive
function to compute the power of
a number.

Behavior b;: The function does
not reduce the exponent.

Solution s;:
def power(base, exponent):
if exponent == 0:
return 1
else:
return base*power(base,exponent)
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Figure 3: In the first stage, we construct a student cognitive prototype by iteratively building a knowledge graph from
past learning records. This graph contains concepts, their relationships, and the local cognitive state libraries. After
processing these records, we assess the student’s mastery of each concept to create a global cognitive prototype. In
the second stage, we use this prototype to predict behavior for new tasks. Unlike traditional methods, which rely on
superficial similarities and risk incorrect retrieval, our approach maps the cognitive prototype to the task, identifying
relevant concepts for accurate predictions. In the third stage, we employ a beam search-based self-refinement
process to ensure the generated solution aligns with predicted behavior, improving simulation authenticity.

4.2 Cognitive Prototype Construction

A successful student simulation requires an inter-
pretable representation of the student’s cognitive
state. Existing methods (Hu et al., 2023; Jiang
et al., 2022) rely on implicit representations like
neural networks, which lack interpretability and
hinder behavior prediction. To address this, we
propose constructing a cognitive prototype for each
student using a knowledge graph based on their
past learning records. As shown in Figure 3, each
record P; = (t;,b;, s;) is processed iteratively to
extract relevant knowledge concepts and relation-
ships, which are organized into a natural language-
based knowledge graph to form the cognitive pro-
totype. This iterative process involves 4 key steps:

Step 1: Concept Extraction. When students
complete a task, they engage with knowledge con-
cepts at various levels, from foundational concepts
(e.g., basic coding grammar) to advanced ones (e.g.,
algorithm design). However, relying solely on the
task statement ¢; and student solution s; often lim-
its the extraction to foundational concepts, as ad-

vanced ones are rarely explicitly represented.

To address this, we use the model g, to gen-
erate a high-level task description d; = mgesc(t;),
which identifies reasoning strategies and advanced
knowledge concepts required to complete the task.
By integrating the task description d; with the past
learning record P;, we employ 7,,,4. to extract com-
prehensive, multi-level knowledge concepts:

[Vi1, Vi2, ] = Tnode(di, P;) )]
where [v; 1, v; 2, - - -| denote the extracted concepts.

Step 2: Relationship Extraction. As illus-
trated in Figure 3, after concept extraction, we an-
alyze their relationships to form the edges of the
knowledge graph. Inspired by previous work (Yang
et al., 2024), we define four candidate relationships:
“Prerequisite_of”, “Used_for”, “Hyponym_of”,
and “Part_of”*. The model Tedge then identifies
related concept pairs and classifies them into one

*Detailed explanation about the 4 relationships are pro-
vided in Appendix C.1
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of these types:
lei1, €2, ] = Tedge([Vi1s vig,---])  (2)
where [e; 1, €2, - -] denote the extracted edges.

However, overlapping edges may arise and cause
conflicts, where different relationship types are as-
signed to the same concept pair. To resolve this,
we assign an edge library to each edge and handle
inconsistencies after processing all past learning
records. Details are provided in Appendix C.2.
This ensures a consistent knowledge graph for fur-
ther cognitive state analysis.

Step 3: Local Cognitive State Analysis. The
knowledge graph constructed in previous steps in-
cludes only objective concepts and their relation-
ships, without the student’s personalized cognitive
state. Thus, we evaluate the student’s mastery of
each concept based on their task performance. For
each concept v; i, the model 7, €xamines the
student’s behavior and solution to detect any re-
lated mistakes, classifying mastery as either “Good”
(no mistakes) or “Bad” (mistake detected).

| = TMiocar (diy Py, [vi,1, ---]) 3)

where [¢; 1, -] denote the student’s local cogni-
tive state of each concept.

As shown in Figure 3, the local cognitive state
for each concept is merged into its corresponding
cognitive state library in the knowledge graph. This
enriched library will support subsequent global cog-
nitive state analysis, enabling a holistic assessment
of the student’s cognitive prototype.

Step 4: Global Cognitive Prototype Construc-
tion. After processing all past learning records,
the knowledge graph is enriched with foundational
nodes (i.e., knowledge concepts), edges (i.e., rela-
tionships), and local cognitive state analyses. To
construct the global cognitive prototype, we eval-
uate the student’s mastery of each concept based
on the cognitive state library. For each concept v,
the model 74,44, €xamines the frequency of “Good”
and “Bad” classifications and generates a summary
of the student’s overall cognitive prototype:

[cig, -

Cr = Tgiobal (Vk, [Ck,15 C 2, 7)) “4)

where C}, denotes the student’s global cognitive
state of concept vy.

This approach constructs a cognitive prototype
for each student based on a knowledge graph. With
nodes and edges expressed in clear natural lan-
guage, the prototype will effectively support subse-
quent behavior prediction and solution simulation.

4.3 Behavior Prediction

Once the student’s cognitive prototype is con-
structed, the next step is predicting their behavior
on a new task. As shown in Figure 3, a common
approach retrieves the most similar task from past
learning records. However, this method often re-
lies on textual similarity, overlooking underlying
knowledge concepts. For example, when asked
to “Write a program to calculate the factorial of a
number”, the model might retrieve a similar task
like “Write a program to calculate the double of a
number”, which requires entirely different knowl-
edge concepts and leads to inaccurate predictions.

To address this issue, we map the student’s cog-
nitive prototype onto the new task to predict their
expected behavior. Specifically, for a given task ¢,
the model 745 generates a detailed description of
the concepts assessed by the task. This description
is compared to the nodes in the knowledge graph
to compute similarity scores, and the top-p most
relevant knowledge concepts are selected as the ref-
erence set, denoted as [v1, vg, - - -, vp]. Using these
p concepts, we identify the past learning record
P (1 < 7 < M) that includes the largest num-
ber of these concepts, which is deemed the most
relevant task. By combining the student’s overall
cognitive states of these concepts with the context
of Pj, the model 7,4 predicts the student’s ex-
pected behavior of the given task:

bj = Wpred(tja[Clac’Q,"'an],Pj) (5)

where l;j denotes the predicted student behavior.

This behavior prediction leverages the student’s
cognitive prototype, ensuring predictions are based
on deep conceptual understanding rather than su-
perficial task statement similarities, and laying the
foundation for further solution simulation.

4.4 Solution Simulation

After predicting the expected student behavior Bj
for the new task ¢, we combine it with the retrieved
past learning record Pj to simulate the solution §;
that aligns with the predicted behavior. Specifi-
cally, if the predicted behavior reflects a correct
approach, the solution accurately resolves the task.
However, if the behavior indicates potential errors,
the solution should incorporate natural, intentional
mistakes consistent with the predicted behavior.
As demonstrated in Figure 3, to further refine the
coherence and quality of the simulated solution,
we employ a beam search-based self-refinement
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Algorithm 1 Beam Search-Based Self-Refinement

Input: Expected Behavior b;, Retrieved Past
Learning Record Pj., Current task ¢;, Refine
Model 7, fine, Value Model 741y, Max Iter-
ation L, Beam Size B, Threshold ¢

Output: Simulated Solution 5;

1: §]1 = Trefine(t), bj, Pj), l=1,5c=0
2: while ! < L and sc < 6 do

3: foreachk €[1,2,---,B]do

4: §é’k ~ Wrefine(tj’ i)j, ‘Pj’ §é)

5: Scl’k ~ anlue(ty i)j, Pﬁ‘? §é’k))

6: gnd for

7. k= Argmgx (scl’l, sch? .. scl’B)
g gift zél’k, sc:scl’]%, l+1+1

J J
9: end while

. 5. = g
10: return s; = 5;

method inspired by existing research (Chen et al.,
2024; Zhang et al., 2024).

As shown in Algorithm 1, the process begins
with an initial weak solution §jl, which may not

fully align with the predicted behavior Bj. Then the
solution is iteratively refined over L steps. At each
iteration [ (1 < [ < L), the model 7., updates
the current solution :§§ by leveraging the expected
behavior and the retrieved past learning record to
improve alignment. During each refinement step,
B candidate solutions are sampled to increase the
likelihood of achieving a successful refinement.

Each candidate is evaluated by model m,qye,
which assigns a score between 0 and 1 based on its
alignment with the predicted behavior. The candi-
date solution with highest score is selected as the
output for the current iteration and becomes the
starting point for the next refinement step.

The process continues until either the maximum
number of iterations L is reached or the value score
exceeds a predefined threshold J. By employing
this beam search-based self-refinement method, we
generate a final simulated solution 5; that accu-
rately aligns with the expected behavior.

S Experiments

5.1 Experiment Setup

We list the key parameter settings for our method
in Table 1. The same model is employed across
all components of our approach (i.e., Tgesc, Tnodes
Tedges Tlocals Tglobal> Tpreds Trefines and Tyqlye) tO
ensure consistency. Experiments are conducted
using four representative LLMs—LLaMA-3.3-

Parameter | M N p L B §
Value |40 10 5 3 2 09

Table 1: Key parameter settings of our method.

70B (Dubey et al., 2024), Claude-3.5-Sonnet (An-
thropic, 2024), GPT-3.5 (Ouyang et al., 2022),
and GPT-40 (OpenAl, 2023)—spanning different
model families and scales. The temperature is fixed
at 0 for reproducibility, except for 7. fine, Where
diverse sampling is enabled to increase the likeli-
hood of successful solution refinement.

Datasets. Given the substantial computational
and financial costs associated with student sim-
ulation—with around 100 different experimental
settings, as discussed in Section 5.2 and 5.3, each
requiring approximately 20 minutes per student
and multiple API calls—we conduct our analyti-
cal experiments on a randomly selected subset of
15 students (Student_15). This subset allows for
comprehensive testing while ensuring the feasibil-
ity. For the main end-to-end comparison, we extend
our analysis to all students in the Student_109,
ensuring that our results are both robust and repre-
sentative as in Appendix E.1.

To further validate the effectiveness of our
method beyond Python programming, we addi-
tionally construct two new student groups—each
comprising 5 students—for Java and C++ program-
ming, respectively. These 10 students are built
using metadata derived from the Codenet dataset
(Puri et al., 2021), demonstrating our method’s
adaptability to datasets from different program-
ming environments. Detailed experimental results
are provided in Appendix E.3.

Baselines. For behavior prediction, we compare
our prototype mapping approach with five base-
lines: 1) Random, which randomly selects a record
from past learning records as a reference; 2) Sim-
ilarity, which selects a record based on task state-
ment similarities; 3) Level (Benedetto et al., 2024),
which estimates a student’s ability level based
on the accuracy of their past learning records;
4) Level+Random, which incorporates Random
and Level; 5) Level+Similarity, which incorporates
Random and Similarity.

For solution simulation, we compare our beam
search-based self-refinement method with two base-
lines: 1) IO (Yao et al., 2023), which requires mod-
els to directly output the solution with simulation
instruct; 2) CoT (Wei et al., 2022), which indicates
a Chain-of-Thought approach.
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Behavior Prediction ‘ Random ‘ Similarity ‘ Level ‘ Level+Random ‘ Level+Similarity ‘ Prototype Mapping
Solution Simulation | I0 CoT Refine | I0 CoT Refine | 10 CoT Refine | I0 CoT Refine | I0 CoT Refine | 10 CoT Refine
Ace | 037 037 037 | 041 041 041 | 039 039 039 | 04 04 04 |043 043 043 061 0.61 0.61

LLaMA-3.3- | con, | 229 229 229 |245 245 245 | 23 23 23 |223 223 223 | 241 241 241 |299 299 299
70B-Instruct | con, | 17 179 1.8 |207 203 199 |212 22 193 | 175 175 187 |203 203 208 | 252 249 2.69
Acc [ 053 053 053 061 061 061 |042 042 042 | 049 049 049 | 047 047 047 |0.65 0.65 0.65

Claude-3.5- | con, | 274 274 274 |3.03 3.03 3.03 | 224 224 224 | 251 251 251 |244 244 244 |3.09 3.09 3.09
Sonnet Cony | 2.57 243 253 | 28 275 282 |145 177 151 | 214 199 216 |238 233 226 |291 271 299

Ace | 037 037 037 | 044 044 044 | 054 054 054 | 045 045 045 | 047 047 047 | 056 056 0.56

GPT3.5 | Conmy | 236 236 236 | 251 251 251 |2.88 288 288 |261 261 261 |266 266 266 |299 299 299

Con, | 327 333 347 |334 335 339 |333 335 337 |331 334 33 |3.17 333 335 |324 341 349

Acc | 045 045 045 | 047 047 047 | 044 044 044 | 047 047 047 | 047 047 047 | 094 094 094

GPT-40 Cony | 255 2.55 255 | 262 262 262 |244 244 244 |258 258 258 | 257 257 257 (3797 397 377

Cony | 249 245 231 |255 286 265 |227 25 245 |227 229 211 |224 236 229 (332 35 3.65

Table 2: End-to-end comparison across 6 behavior prediction and 3 solution simulation methods. Acc and Con;
metrics both evaluate behavior descriptions, yielding identical values for the same behavior prediction method.

[ | LLaMA-3.3-70B | Claude-3.5-Sonnet | GPT-3.5 | GPT-40
deses Tnodes Tglobal  Tpred Trefine Twvalue

‘ Tedges Tlocal ‘ Acc Con; Cony ‘ Acc Con; Cony ‘ Acc Con; Cony ‘ Acc Con; Cony
1 v v 041 245 199 | 0.61 3.03 282|044 251 339 |047 262 2.65
2 v v v v 0.53 2.82 216 | 064 3.09 263|045 261 312 |066 3.13 2.89
3 v v v v - - 1.98 - - 2.52 - - 3.26 - - 2.7
4 v v v 0.61 299 249 |065 3.09 271 |056 299 341 |094 3.77 35
5 v v v v 0.61 299 261 | 065 3.09 296 |056 299 321 |094 377 352
6 v v v v v 061 299 269 | 065 3.09 309 |056 299 349 (094 377 3.65

Table 3: Ablation study of each component of our method. Acc and Con, assess behavior prediction only and are
thus unaffected by the changes in the solution simulation components (i.e., Tpred, Trefine, and Tyqiue)-

Metrics. For behavior prediction, we first assess
the model’s accuracy (Acc) in determining whether
a student can correctly solve the tasks. To evaluate
the alignment between generated and ground truth
behavior descriptions, we introduce an LLM-based
metric (Cony) that scores consistency on a scale
from 1 to 5, using evaluations from ol-mini. Sim-
ilarly, solution simulation is measured with Con,,
following the same o1-mini approach as Con;.

Please note that since Acc and Con; exclusively
assess the accuracy and consistency of behavior
prediction, their values are invariant across differ-
ent solution simulation methods in Table 2 and 3.
This design ensures a clean separation of evaluation
for the two stages in our framework.

Please refer to Appendix D for experiment de-
tails and Appendix E for more experimental results.

5.2 End-to-End Performance Comparison

With 6 behavior prediction and 3 solution simula-
tion methods, we conduct end-to-end comparison
across all 18 unique configurations. The results,
shown in Table 2, reveal the following key insights:
1) Superior behavior prediction. Our proto-
type mapping approach significantly outperforms
existing methods, emphasizing the importance of
precisely capturing a student’s mastery of relevant
concepts for more accurate behavior prediction.

2) Enhanced solution simulation. With our
predicted behavior descriptions, our beam search-
based self-refinement method consistently per-
forms better, showing that iterative self-evaluation
and optimization lead to more accurate solutions,
consistent with the student’s cognitive ability.

Beyond these improvements, the end-to-end
comparison also reveals some innovative findings:

1) Stronger LLMs benefit more from self-
refinement. We observe that more powerful mod-
els (e.g., GPT-40) exhibit greater performance
gains with our method. We hypothesize that this
is due to their superior self-evaluation capabilities,
which allow them to generate more accurate assess-
ments and constructive feedback throughout the
refinement process. This iterative feedback mecha-
nism systematically corrects imperfections in initial
outputs, further enhancing simulation fidelity.

2) Self-refinement relies on high-quality be-
havior descriptions. While self-refinement gen-
erally improves solution simulation, we find that
in some cases—particularly when behavior predic-
tion quality is low—it underperforms compared to
10 or CoT prompting. We hypothesize that this is
because low-quality behavior descriptions can mis-
lead the refinement process, causing the model to
iteratively adjust solutions in the wrong direction,
ultimately degrading simulation quality. This sug-
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Figure 4: (a) Performance on different past learning
record volumes. (b) Performance on different refine-
ment iteration L and beam search sampling size B.
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Figure 5: Simulation difficulty varies across students.

gests that self-refinement is most effective when
built on accurate behavior predictions.

5.3 In-Depth Analysis

We further validate 4 vital issues as follows.

Effectiveness of each component. We evaluate the
effectiveness of each component in Table 3. The
COMPONENtS Tescs Tnodes Medges AN Tjoeqr are con-
sidered as a whole, as ablating them individually
would disrupt the entire graph-building process. 1)
Removing the entire knowledge graph and relying
solely on the most textually similar retrieved past
learning record results in a performance drop (Row
1), validating the importance of cognitive prototype
construction. 2) Without the global cognitive pro-
totype construction, we use only the local cognitive
state library for behavior prediction, leading to a
decrease in performance (Row 2). This suggests
that global cognitive state construction is crucial
to avoid overwhelming the model with excessive
local records. 3) Removing the behavior predic-
tion component 7,4 to directly generate student
solutions leads to a performance drop (Row 3),
highlighting the importance of clear and accurate
behavior descriptions in guiding solution simula-
tion effectively. 4) Removing the self-refinement
process leads to poor performance in Row 4, indi-
cating the importance of iterative refinement. How-
ever, Row 5 shows that even with only 7, fine,
without the self-evaluation component 7,4y¢, per-
formance still decreases. This underscores that
self-refinement must be guided by self-evaluation

Method Setting Score

LLaMA-3.3-70B-Instruct
The second best setting Prototype Mapping + 10 2.88
Our method Prototype Mapping + Refine | 3.08

Claude-3.5-Sonnet
The second best setting Prototype Mapping + 10 3.24

Our method Prototype Mapping + Refine | 3.27
GPT-3.5

The second best setting Random + Refine 3.29

Our method Prototype Mapping + Refine | 3.3
GPT-40

The second best setting
Our method

Prototype Mapping + CoT 3.7
Prototype Mapping + Refine | 3.75

Table 4: Human evaluation on solution simulation be-
tween our method and the second best setting.

to ensure the correct refinement direction.

Impact of past learning record volumes. As
shown in Figure 4 (a), increasing the number of
past learning records from 10 to 40 leads to con-
sistent improvements in both behavior prediction
and solution simulation. Specifically, the behav-
ior prediction accuracy reaches 0.94 at 40 records,
marking a substantial improvement. We attribute
this trend to the enhanced accuracy of the cognitive
prototype, which benefits from more past learning
records that captures a more comprehensive view of
the student’s knowledge and behavior patterns. No-
tably, performance continues to improve steadily
at 40 records, indicating that even larger past learn-
ing records could further refine student simulation
quality. Investigating the effects of larger record
volumes remains a direction for future research.
Impact of self-refinement iterations and beam
search sampling size. We conduct a grid search to
analyze the effects of the self-refinement iterations
(L) and beam search sampling size (B), where L
ranges from 1 to 5 and B ranges from 1 to 3. As
shown in Figure 4 (b), the performance of solution
simulation improves with an increasing iteration of
refinements, highlighting the limitations of current
LLMs in generating accurate student answers in a
single pass. The self-refinement process effectively
addresses initial weaknesses; however, when L ex-
ceeds 3, performance stabilizes or slightly declines.
We speculate that this is because the models tend to
over-correct the solutions, which introduces devia-
tions from realistic solutions. Therefore, we select
L = 3. A similar trend is observed for the beam
size B: performance improves as B increases, but
the gains become negligible beyond B = 2. To
balance performance and simulation cost, we set
the sampling size to B = 2.

Variability in simulation difficulty across stu-
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Task t;: This problem requires input of a Retrieved Record P;
radius (greater than 0) and uses the
constant pi from the math library to
calculate the area of a circle. Note: If the
input radius does not meet the conditions,
repeat input until the conditions are
satisfied before proceeding with the
calculation.

Task t;: This problem
requires input of a side length
of a square and calculate the
area of the square.

Behavior b; (GT): 1. The radius value in correctly.

the output is hardcoded, always
displaying as 5, regardless of the actual
input. 2. The code lacks validation to
ensure the radius is greater than 0
before proceeding with calculations.

Solution §;:
from math import pi
while True:
r = float(input(""))
ifr>0:
Solution s; (GT): area=pi*r**2
from math import pi
r=float(input("")) break
area=pi*r**2 else:
print("Radius 5, Area {:.5f}".format(area)) print("Radius must be greater than 0.")

Behavior
b;: Correct
solution.

Behavior b; : The student solve the questionx guaranteed as valid ...

print("Radius {:.5f}, Area {:.5f}".format(r, area))

Cognitive F
g YP!

Name: Input Validation Name: Output Formatting
Cognitive Prototype: Cognitive Prototype:
The student exhibited a The student exhibited
critical gap in applying frequent errors related to
validation techniques outputs with specified
when the input cannot be formats ... lack of format
understanding ..

Initial Solution 3}
from math import pi
r=float(input(""))
area=pi*r**2
print("Radius {:.5f}, Area
{:.5f}".format(r, area))
Score scj: 0.5. The
answer correctly misses

input validation but
outputs in a correct format.

Retrieved Record P;

Task t;: This problemrequires  Behavior b;: 1. No
input of a positive integer ... input check ...
Format the outputto include the 2. Wrong output
input and resultas ... format ...

Final Solution 3; :
from math import pi
r=float(input(""))

Behavior E, : 1. Missing input validation loop: The area=pi*r**2
student didn’t use a while loop to ensure the radius is print("Radius 10, Area
greater than 0. {:.5f}".format(r, area))
2. Incorrectoutput formatting: The student didn’t format
the radius and result to 5 decimal places dynamically.

Score sc;: 0.9.

Figure 6: Examples of simulated results. Similarity-based retrieval methods rely on superficial task similarities,
leading to inaccurate predictions. In contrast, our method maps the cognitive prototype to relevant concepts, ensuring
accuracy. The self-refinement process then iteratively adjusts the solution for precise simulation.

dents. We further explore the difficulty differ-
ences in simulating individual students. We analyze
the correlation between simulation quality (mea-
sured by the average Con; score) and student cog-
nitive ability scores (described in Appendix A.2),
as shown in Figure 5. The figure reveals a clear
positive correlation between simulation quality and
cognitive ability, indicating that simulating students
with higher cognitive abilities is relatively easier.
This finding aligns with expectations—students
with stronger cognitive abilities make fewer mis-
takes, and generating a fully correct solution is
inherently easier than producing a realistic and
natural simulation of a specific student’s mistakes.
This further highlights the challenge of accurately
modeling students with lower cognitive abilities, as
it requires the model to simulate not only correct
responses but also plausible, individualized errors.

5.4 Human Evaluation

We further conduct a human evaluation study to
demonstrate the effectiveness of our method. Given
the substantial number of experimental settings in-
volved in our comparisons and considering the cost
of manual assessment, we compare our method
against the second-best setting according to LLM
evaluation results in Table 2.

We recruit 10 undergraduate students with solid
Python programming skills to perform the evalua-
tion. They rate each simulated solution on a 1-5
scale, consistent with the LLM-based evaluation
rules, where higher scores indicate better simula-
tion quality. The evaluation instructions provided
to annotators are shown in Figure 15. Each solu-
tion is rated by two independent evaluators, and the
final score is computed as their average.

As shown in Table 4, our method consistently

receives higher human evaluation scores than the
baseline across all model settings. This further val-
idates the effectiveness and realism of our student
simulation framework.

5.5 Case Study

As illustrated in Figure 6, similarity-based retrieval
methods rely solely on textual similarities in task
statements, leading to the retrieval of an inappropri-
ate past learning record. This misleads the model
into incorrectly predicting the student’s behavior
as “The student solves the question correctly”, and
consequently, generating a fully correct solution,
which contradicts the real student’s answer.

In contrast, our method maps the constructed
student cognitive prototype to the task, accurately
identifying the relevant knowledge concepts the
student struggles with. By retrieving a correct
past learning record, the model makes an accu-
rate behavior prediction, explicitly describing the
mistakes the student is likely to make. Building on
this prediction, our self-refinement process itera-
tively adjusts the generated solution to reflect these
predicted mistakes, ultimately producing a realistic
and accurate simulation of the student’s solution.

6 Conclusion

In this paper we introduce a training-free frame-
work for student simulation. Our approach begins
by constructing a cognitive prototype for each stu-
dent based on past learning records to predict their
behavior. It then employs a beam search-based
self-refinement process to progressively improve
the quality of simulated solutions. Experiments
show that our framework simulates realistic and
diverse students, enhancing the realism and utility
of Al in education.
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Limitations

In this section, we discuss the limitations of our
work as follow:

* While our current validation is constrained to
programming domains, primarily due to the
accessibility of relevant data, the underlying
simulation framework is theoretically applica-
ble to a broader range of educational subjects,
such as mathematics (Huang et al., 2025). We
consider this a promising direction for future
work.

* Our current simulation primarily focuses on
textual and behavioral patterns without explic-
itly incorporating multimodal signals, such as
visual or auditory cues (Wu et al., 2024; Wang
et al., 2024a)that may also influence students’
cognitive processes. While this unimodal set-
ting enables clearer analysis of reasoning be-
haviors, we acknowledge that a more compre-
hensive understanding of student performance
may benefit from integrating multimodal data.
Exploring this dimension constitutes a valu-
able direction for future work.

Ethics Statement

As the use of large language models (LLMs) in
education grows, it is crucial to consider the ethical
implications of deploying such systems to simu-
late human-like student behaviors. While our work
explores the potential of LLMs for simulating stu-
dent cognitive states and generating educational
scenarios, this research remains an early-stage ex-
ploration and is conducted solely within controlled
experimental settings.

The simulated students in this study are designed
for research and methodological evaluation rather
than real-world teaching applications. These simu-
lations are not intended to replace human students
or educators but to provide insights into model
capabilities. We strongly emphasize that any de-
ployment of such models in educational contexts
should involve careful oversight by educators to
prevent misuse and to ensure ethical compliance.

Future work will focus on further improving the
accuracy and realism of these simulations, reducing
potential biases, and incorporating diverse perspec-
tives to enhance their applicability. We remain
committed to addressing ethical challenges and
ensuring that our work supports responsible and
beneficial advancements in Al-driven education.
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Task : This problem requires input of a
radius (greater than 0) and uses the
constant pi from the math library to
calculate the area of a circle. Note: If the

input radius does not meet the
conditions, repeat input until the
conditions are satisfied before

proceeding with the calculation.

Behavior : 1. The radius value in the
output is hardcoded, always displaying
as 5, regardless of the actual input. 2.
The code lacks validation to ensure the
radius is greater than 0 before
proceeding with calculations.

Solution :

from math import pi

r=float(input(""))

area=pi*r**2

print(”Radius 5, Area {:.5f}".format(area))

Figure 7: A sample illustration in our dataset.

A Dataset Statistics and Details

A.1 Privacy Protection

To ensure privacy protection, we excluded all per-
sonal and sensitive data, such as student names and
email addresses, retaining only anonymized unique
student IDs as individual identifiers. Furthermore,
we confirmed that the use of user-generated data
was explicitly authorized during the registration
process, as outlined in the platform’s terms of ser-
vice and privacy policy.

A.2 Dataset Statistics

In Section 3, we construct a student simulation
dataset, Student_100, comprising 100 students,
each with 40 past learning records and 10 sim-
ulation records. Each record includes a Python
programming task, the student’s solving behavior
(indicating correct or incorrect completion along
with error analysis), and the corresponding solution
(i.e., student-written code). A sample is illustrated
in Figure 7.

We further analyze the distribution of these stu-
dents’ cognitive level. Specifically, we use LLMs
to score each student’s solutions in the simulation
records on a scale of 1 to 5, where higher scores
indicate greater correctness. The scoring is evalu-
ated using the ol-mini model, and the API version
is 01-mini-2024-09-12. After scoring all solutions

Student Number
s ® 5

27 28 29 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Cognitive Score

Figure 8: The distribution of student cognitive scores in
our dataset.

Naive Prompt

You are to act as a {score}-point student (scores range from
1 to 5, with higher scores indicating better student ability).
Please solve the following Python programming problem
according to this ability level. Output your code directly.

Problem:
{problem}

Figure 9: Details of the naive prompt.

for a student, we calculate their average score to
represent their cognitive ability. The distribution of
these cognitive scores across the dataset is visual-
ized in Figure 8.

A.3 Significance of Programming Task for
Student Simulation

In this section we would like to emphasize that
programming tasks are sufficiently representative
for the student simulation task for several reasons:

* Complexity and multi-leveled nature. Pro-
gramming tasks inherently involve multiple
levels of knowledge concepts, such as syn-
tax, logical reasoning, and algorithm design.
These tasks test not only a student’s under-
standing of individual concepts but also their
ability to integrate and apply these concepts
to solve complex problems. This makes pro-
gramming tasks an ideal scenario for model-
ing and simulating student cognitive states.

* Real-world applicability. Programming is a
widely taught subject with high relevance in
modern education and professional settings.
Simulating student performance on program-
ming tasks can provide practical insights into
teaching strategies and learning patterns, mak-
ing this work impactful in real-world educa-
tional contexts.

* Error diversity. Students often encounter di-
verse and challenging errors during program-
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Type: Prerequisite_of
Description:  Parameters |:
must be understood before
defining a function.

Subgraph

Type: Prerequisite_of
Description: ...

Type: Part_of
Description: ...

Figure 10: A detailed illustration of the edge library
used in the cognitive prototype construction process.
During the iterative process, each identified relationship
is recorded in the corresponding edge’s library. After
processing all learning records, the relationship type
that appears most frequently in each edge’s library is
selected as the final type for that edge.

ming, including syntax errors, logic errors,
and runtime errors. These errors vary signifi-
cantly in complexity, providing a rich testing
ground for evaluating fine-grained behavior
prediction and solution simulation.

* Interactive and iterative nature. Programming
tasks typically require students to iteratively
refine their solutions, reflecting a natural and
realistic problem-solving process. This aligns
closely with the goals of student simulation,
where iterative behavior prediction and solu-
tion refinement are central.

We believe these characteristics make program-
ming tasks a strong representative scenario for the
student simulation problem.

A.4 Data Generalizability

The data used in this study was collected from an
online programming platform similar to LeetCode.
Despite the platform-specific origin of the data, it
has been preprocessed to ensure it is not inherently
tied to any particular platform. The preprocess-
ing includes standardizing the format of problem
statements, user solutions, and associated metadata,
which makes the data format highly generalizable.
As a result, similar data from other platforms (e.g.,
LeetCode) can be processed into the same format,
provided access to user submission records is avail-
able. This demonstrates the broader applicability
of the proposed method beyond the platform used
in this study.

Level Prompt

You will be shown a Python programming problem, and
predict that whether a student of level {level} would
correctly solve the problem. Please remind that a student's
level ranges from 1 to 5, while 1 indicates the lowest ability
and 5 indicates the highest ability. Directly output your
prediction. If you think the student will make mistakes,
provide possible details about the mistakes.

-Output Format-
Error Prediction: (Yes/No)

Error Description: (Your detailed analysis)
-Real Data-

Problem:
{problem}

Figure 11: Details of the Level prompt.
B Details on Figure 2

In Section 1, we use Figure 2 to illustrate that
LLMs with naive prompts consistently generate
correct answers, failing to simulate students with
varying abilities, particularly those with weaker
performance. In contrast, our simulation method
more accurately reflects the distribution of student
abilities.

The experiment proceeds as follows: we use the
15 students in the random selected Student_15
subset (detailed in Section 5.1) to conduct this ex-
periment. As explained in Appendix A.2, each
student in the dataset is assigned a cognitive score
evaluated by the LLM. This score serves as the
basis for constructing naive prompts, guiding the
model to respond in alignment with the correspond-
ing ability level. The specific prompt is shown in
Figure 9.

Using this naive prompt, the model generates
simulated solutions. We then apply the scoring pro-
cess described in Appendix A.2 to evaluate both
the solutions generated by naive prompts and those
produced by our method. The average score for
each simulated student is calculated as their cogni-
tive score. The results, presented in Figure 2, reveal
that naive prompts consistently yield overly correct
answers, failing to replicate weaker abilities. By
contrast, our method closely matches the actual
distribution of student abilities, providing a more
realistic simulation.

C Method Details
C.1 Details on Concept Relationships

In Step 2 of Section 4.2, we describe the construc-
tion of edges in the knowledge graph and define
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Input-Output (10) Prompt

Given a Python programming problem, you need to write
code to solve it. Your code must meet the following
requirements:

1. Based on the provided error descriptions, your code must
include and perfectly reproduce these errors.

2. Given a student’s previous code, you can use the style of
their historical code as a reference.

Directly output your code. At the end of your code, please
include <e> to indicate its completion.

-Real Data-
Student's Past Code:
{eg_code}

New Programming Problem:
{question}

Error Descriptions:
{error_desc}

Code:

Figure 12: Details of the Input-Output (I0) prompt.

four types of relationships between the nodes (i.e.,
concepts). The following provides an overview of
these relationships:

* Prerequisite_of: This relationship indi-
cates that one concept is either a defining char-
acteristic of another or a necessary prerequi-
site of it. For example, “The ability to code is
a prerequisite of software development.”

* Used_for: This relationship signifies that
one concept functions as a tool, resource,
or method to achieve another. For instance,
“Mathematics is used for solving engineering
problems.”

Hyponym_of: This hierarchical relationship
shows that one concept is a specific instance or
subtype of another. For example, “A rectangle
is a hyponym of a polygon.”

Part_of: This compositional relationship de-
notes that one concept is a component or inte-
gral part of a larger whole. For example, “A
wheel is part of a car.”

C.2 Edge Category Conflict Resolving

In Step 2 of Section 4.2, we construct edges in
the knowledge graph by defining four types of re-
lationships between nodes (i.e., concepts). Since
edges are extracted iteratively, overlapping edges
may arise, potentially leading to conflicts where

Chain-of-Thought (CoT) Prompt

Given a Python programming problem, you need to write
code to solve it. Your code must meet the following
requirements:

1. Based on the provided error descriptions, your code must
include and perfectly reproduce these errors.

2. Given a student’s previous code, you can use the style of
their historical code as a reference.

Directly output your code. At the end of your code, please
include <e> to indicate its completion.

-Real Data-
Student's Past Code:
{eg_code}

New Programming Problem:
{question}

Error Descriptions:
{error_desc}

Make a plan then write. Your output should be of the
following format:

Plan:
Your plan here.

Code:

Figure 13: Details of the Chain-of-Thought (CoT)
prompt.

different relationship types are assigned to the same
concept pair. To address this, we assign an edge
library to each edge, as shown in Figure 10. Each
identified relationship is added to the correspond-
ing edge’s library. After processing all learning
records, we resolve conflicts by selecting the most
frequently assigned relationship type in the edge
library as the final type for each edge.

C.3 Scalability and Computational Feasibility

The scalability and computational feasibility of con-
structing the graph in our framework are key con-
siderations. To address potential concerns about
large-scale graphs, it is important to clarify that our
approach is computationally manageable for the
following reasons:

Upper limit on local knowledge state analyses.
The construction of the global cognitive prototype
(Step 4) evaluates a student’s overall mastery of
each knowledge concept by aggregating local cog-
nitive state analyses from past learning records.
The number of local analyses for each concept is
directly bounded by the number of past records.
In the experiments, the maximum number of local
analyses is 17, which remains within a reasonable
computational range. Additionally, the number of
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Prompt for Con; metric

You are given a Python programming question, a student's answer code, and an analysis of errors found in the code. Then, I will
provide a new error analysis. Your task is to evaluate the new analysis and determine how accurate and reasonable it is and how

and clarity of the new analysis in comparison to the original.

-Real Data-
Question:
{question}

Student's answer code:
{gt_code}

Error Analysis:
{error_desc}

New Error Analysis:
{new_error_desc}

Output:

closely it matches the original error analysis. Please assign a score from 1 to 5, where:

* 1: The new analysis is completely unreasonable and unrelated to the actual error.

« 2: The new analysis attempts to describe the error but fails significantly or introduces unrelated issues.

« 3: The new analysis somewhat aligns with the actual error, but there are noticeable inaccuracies or omissions.

*4: The new analysis is mostly accurate and aligns well with the actual error, with only minor differences or slight deviations.
 5: The new analysis is fully accurate, natural, and matches the actual error explanation closely.

Additionally, please provide a brief explanation within 3 sentences justifying your score, focusing on the accuracy, relevance,

Format your output as (Score | Explanation), such as (5 | The new analysis is fully accurate). Do not output any other words.

Figure 14: Details of the prompt for Con; metric.

past learning records is constrained to ensure stabil-
ity in the student’s cognitive state, an assumption
critical to the student simulation task. Specifically,
only records from a one-week period are consid-
ered, during which a student typically solves no
more than 50 problems. This limitation ensures
that the number of local analyses remains compu-
tationally manageable.

Upper limit on knowledge concepts. The rela-
tionship extraction process (Step 2) focuses on an-
alyzing the relationships between knowledge con-
cepts within each task to form the edges of the
knowledge graph. To avoid redundancy and ensure
manageability, the number of extracted knowledge
concepts per task is limited to 15. This restriction
makes the relationship extraction process compu-
tationally efficient, well within the capabilities of
large language models.

C.4 Error Attribution and Traceability

To address the challenge of error attribution and
tracing within the pipeline, our system logs each
model invocation and saves the outputs of all inter-
mediate stages. This design ensures full traceabil-
ity, allowing for systematic failure analysis. When

an error occurs in the final solution simulation, it
is possible to trace outputs from previous stages,
such as behavior prediction or retrieval, to pinpoint
the root cause. This traceability supports targeted
debugging and error analysis, isolating the impact
of each stage on the system’s overall performance.

D Experiment Details

D.1 Model Details

LLaMA-3.3-70B, released by Meta Al in Decem-
ber 2024, is a 70-billion-parameter multilingual
large language model designed to advance Al ap-
plications in both research and industry. The Llama
3.3 instruction tuned text only model is optimized
for multilingual dialogue use cases and outper-
forms many of the available open source and closed
chat models on common industry benchmarks. The
test model version is LLaMA-3.3-70B-Instruct.

Claude is a large language model developed by
Anthropic, designed to generate human-like text
and assist with a wide range of tasks, including an-
swering questions, drafting content, and engaging
in conversational interactions. Built with a focus on
safety and alignment, Claude leverages advanced

9903



Prompt for Con, metric

assign a score from 1 to 5, where:

matches the nature of the described error.

output any other words.

-Real Data-
Question:
{question}

Student's answer code:
{gt_code}

Error Analysis:
{error_desc}

New Code:
{code}

Output:

You are given a Python programming question, a student's answer code, and an analysis of errors found in the code. Then, I will
provide a new code. Your task is to evaluate the new code and determine how well it reproduces the described errors. Please

* 1: The new code does not reproduce the described errors at all.

« 2: The new code attempts to reproduce some the described errors but fails significantly.

* 3: The new code somewhat reproduces some described errors but with significant differences.
*4: The new code reproduces most the described errors well, with a little differences.

* 5: The new code fully and naturally reproduces the described errors.

Additionally, please provide a brief explanation within 3 sentences justifying your score, focusing on how closely the new code

Format your output as (Score | Explanation), such as (5 | The new code successfully reproduces the described errors). Do not

Figure 15: Details of the prompt for Con, metric.

Al techniques to ensure responsible and effective
communication, making it suitable for both casual
and professional use. The tested API version is
claude-3-5-sonnet-20241022.

GPT-3.5 is an advanced language model developed
by OpenAl, designed to generate coherent and con-
textually relevant text across various domains. It
builds on the capabilities of its predecessor, GPT-3,
with improved understanding and responsiveness,
making it highly effective for tasks like content
creation, coding assistance, and conversational Al
Known for its versatility, GPT-3.5 is widely used
in applications requiring natural language under-
standing and generation. The tested API version is
gpt-3.5-turbo.

GPT-40 is OpenAl’s generation language model,
offering enhanced reasoning, creativity, and contex-
tual understanding compared to its predecessors. It
excels at complex tasks, such as advanced problem-
solving, nuanced content creation, and in-depth
conversational interactions. With improved align-
ment and multimodal capabilities, GPT-40 is de-
signed to be more reliable, accurate, and adaptable
across a wide range of applications. The tested API

version is gpt-40-2024-11-20.
D.2 Baseline Details

For behavior prediction, we compare our prototype
mapping approach with five baselines:

* Random, which randomly selects a record
from past learning records as a reference;

* Similarity, which selects a record based on
task statement similarities;

e Level (Benedetto et al., 2024), which esti-
mates a student’s ability level based on the
accuracy of their past learning records. Specif-
ically, we first compute the accuracy of a stu-
dent’s past learning records and then normal-
ize it to a range of 1 to 5, where 5 represents
the highest cognitive level. As mentioned
in Benedetto et al. (2024), this relative cog-
nitive level simulation approach yields bet-
ter results. We incorporate this level into the
prompt to indicate the student’s proficiency,
enabling the model to perform behavior pre-
diction accordingly. The prompt is shown in
Figure 11.
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Behavior Prediction ‘ Random ‘ Similarity ‘

Level

‘ Level+Random ‘ Level+Similarity ‘Prototype Mapping

Solution Simulation | 10  CoT Refine | I0 CoT Refine | IO

CoT Refine | 10 CoT Refine | I0 CoT Refine | 10 CoT Refine

Ace | 029 029 029 | 035 035 035 |034 034 034 |032 032 032 | 036 036 036 |0.67 067 0.67
LLaMA-3.3- | con, | 226 226 226 |244 244 244 | 228 228 228 |224 224 224 | 243 243 243 | 335 335 335
70B-Instruct | copn, | 2.01 202 203 | 222 223 216 |265 238 179 221 202 202 |247 231 214 |275 273 2.89
Acc | 049 049 049 | 055 055 055 [027 027 027 |035 035 035 | 036 036 036 |071 071 071

Claude-3.5- | con, | 2.87 2.87 287 |307 307 307 | 181 181 181 [225 225 225 |231 231 231 |35 35 35
Sonnet Conp | 293 277 277 | 31 301 301 |162 172 1.65 |241 228 227 | 26 256 246 |322 332 338

Ace | 037 037 037 [036 036 036 | 05 05 05 |042 042 042 | 045 045 045 | 051 051 0.51

GPT-3.5 | Comy | 247 247 247 | 247 247 247 | 287 287 287 | 266 266 266 |273 273 273 | 296 296 296

Cony | 347 356 361 | 353 351 357 354 358 359 |347 353 359 334 358 358 |346 358 3.71

Acc | 037 037 037 | 042 042 042 | 04 04 04 |055 055 055 |055 055 055 [0.89 089 0.89

GPT-40 | Com | 254 254 254 | 271 271 271 |245 245 245 |301 301 301 |301 301 301 |39 39 39

Cony | 273 289 257 |285 3.08 288 |242 285 1.83 |2.12 265 217 |248 273 227 |3.61 365 3.83

Table 5: End-to-end comparison across 6 behavior prediction and 3 solution simulation methods on the whole 100

students in Student_100.

* Level+Random, which incorporates Random
and Level. We add the randomly selected past
learning record into the Level prompt for be-
havior prediction;

* Level+Similarity, which incorporates Random
and Similarity. We add the similarity-based
retrieved past learning record into the Leve!l
prompt for behavior prediction.

For solution simulation, we compare our beam
search-based self-refinement method with two base-
lines:

¢ 10O (Yao et al., 2023), which combines the in-
put with task instructions and few-shot input-
output examples and requires models to di-
rectly output the simulated solution;

e CoT (Wei et al., 2022), which introduces a
chain of thoughts that connects the input to the
output, with each thought forming a coherent
language sequence that acts as a meaningful
intermediate step toward solving the problem.

Following Yao et al. (2023), we demonstrate the
10 and CoT prompt in Figure 12 and 13.

D.3 Metric Details

Accuracy. We calculate the average accuracy of
predicting whether each student correctly answers
the corresponding 10 simulation records to reflect
the behavior prediction quality.

Cony. To assess the alignment and consistency
between predicted and ground truth behavior de-
scriptions, we introduce Con;, a metric that utilizes
a large language model (LLM) for evaluation. Con;
assigns scores from 1 to 5, with higher values in-
dicating stronger alignment with the ground truth.

For fair and reliable comparisons, all evaluations
use ol-mini (API version: o1-mini-2024-09-12).
Con,. Similar to Con;, Con; employs ol-mini
to assign a score to each simulated solution, with
higher scores indicating better consistency with the
ground truth solutions.

Detailed prompts for Con; and Con, metric are
provided in Figure 14 and 15.

E More Experimental Results and
Analysis

E.1 End-to-end Comparison on Student_100

As shown in Section 5.2, we evaluate 6 behavior
prediction methods and 3 solution simulation ap-
proaches, resulting in 18 unique configurations for
comparison. We conduct end-to-end experiments
across all configurations using the Student_100
dataset, which includes the whole 100 students.
The results, presented in Table 5, align with the
findings in Section 5.2:

1) Evaluating a student’s cognitive ability based
solely on past learning accuracy is insufficient, as
it does not capture mastery at the knowledge con-
cept level. Even when selecting past records ran-
domly or using text similarity retrieval, prediction
accuracy remains low. This is because such meth-
ods often retrieve questions with similar wording
but different underlying concepts, leading to mis-
judgments. In contrast, our cognitive prototype,
constructed from a knowledge graph, accurately
represents a student’s mastery of relevant concepts,
enabling more precise predictions and improving
solution simulation quality.

2) Given the same prototype-mapped behavior
descriptions, Table 5 shows that simulations based
on simple IO or CoT prompts consistently under-
perform. This underscores the difficulty LLMs
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Behavior Prediction ‘ Random ‘ Similarity ‘ Level ‘ Level+Random ‘ Leve]+Slm|lamy ‘ Prototype Mapping
Solution Simulation ‘ CoT  Refine ‘ CoT  Refine ‘ CoT  Refine ‘ CoT  Refine ‘ CoT  Refine ‘ CoT  Refine
LLaMA-3.3- | ROUGE-L | 12,63 1223 1892 | 12.74 1249 21.32 | 1255 1239 2031 | 1249 13.11 19.28 | 13.95 11.88 2094 | 15.76 1359 21.37
70B-Instruct | BLEU-4 | 059 063 218 | 069 078 277 | 049 052 141 | 069 064 231 | 079 082 286 | 093 086 291
Claude-3.5- | ROUGE-L | 21.24 2096 23.67 | 21.8 2572 24.61 | 1858 2099 22.67 | 20.24 20.06 21.51 |23.59 2655 2637 | 245 2432 26.63
Sonnet BLEU-4 247 239 3.76 375 296 4.53 1.37 1.88 3.07 241 249 3.56 327 411 4.77 425 3.17 491
ROUGE-L | 23.59 19.94 2576 | 2559 19.08 26 '34 20 44 19.23 2413 22 68 19.51 2541 | 2285 2138 26.61 | 23.88 2091 27.37
GPT-3.5 BLEU-4 3.28 1.8 4.37 478 251 1.75 4.21 2.56 4.53 4.52 2.6 5.38 4.19 265 5.63
ROUGE-L | 18.12 16.28 1832 | 20.64 20.06 22.12 | 17.61 16.79 20 45 19.29 16.19 20.01 19 83 17.34 2133 | 21.64 20.35 22.28
GPT-4o BLEU-4 | 177 1.8 244 | 248 237 357 | 129 LI2 235 154 246 205 326 | 315 255 459
Table 6: End-to-end comparison results on the Student_15 dataset for captioning metrics.
Behavior Prediction ‘ Random ‘ Similarity ‘ Level ‘ Level+Random ‘ Leve1+51mllar1ty ‘ Prototype Mapping
Solution Simulation ‘ CoT  Refine ‘ CoT  Refine ‘ CoT  Refine ‘ CoT  Refine ‘ CoT  Refine ‘ CoT  Refine
LLaMA-3.3- | ROUGE-L 13 36 13.57 21.52 152 1392 23.15 | 1456 1377 2145 | 13.83 1394 22.75 | 16.17 1448 23.37 | 1749 1533 24.09
70B-Instruct | BLEU-4 062 208 | 082 081 293 | 065 058 145 | 066 0.64 233 | 092 087 299 | 098 093 3.06
Claude-3.5- | ROUGE-L | 26.16 2584 28.59 | 26.98 2691 28.87 | 2338 2293 2576 |26.59 2557 27.68 |27.61 2734 29.17 |2745 2752 29.95
Sonnet BLEU-4 329 236 4.98 438 331 5.94 2.35 1.97 3.31 3.66 283 4.55 4.81 3.61 4.94 458 3.18 5.81
ROUGE-L | 2745 22.68 29.15 | 2821 2349 30.05 | 24.39 22.13 2895 | 2647 22.63 28.94 27 I4 2428 29.86 | 27.07 2344 30.34
GPT-3.5 BLEU-4 3.89 215 5.06 5.13 238 5.73 291 2.12 4.99 4.04 243 5.13 2.81 5.95 4.66 2.56 5.71
ROUGE-L | 2299 20.96 2251 | 2397 22.65 25.15 | 1892 18.67 21.82 |21.14 1944 222 |2251 20.77 23.18 | 249 2276 26.6
GPT-4o BLEU-4 | 232 184 254 | 336 233 347 | 126 114 183 | 197 14 217 | 274 212 285 | 335 224 4.66

Table 7: End-to-end comparison results on the Student_100 dataset for captioning metrics.

face in generating accurate solutions for students
with diverse cognitive abilities in a single attempt.
Our beam search-based self-refinement method ad-
dresses this challenge by iteratively improving so-
lutions through self-evaluation and optimization.
By increasing sampling frequency, it enhances the
probability of generating accurate, contextually
consistent solutions, leading to higher-quality sim-
ulations.

E.2 Results for Captioning Metrics

We further evaluated the results of our solution
simulation using captioning metrics, specifically
ROUGE-L (Lin, 2004) and BLEU-4 (Papineni
et al., 2002). The results, shown in Tables 6 and
7, indicate that our prototype mapping and self-
refinement methods consistently achieve the best
performance in most cases.

However, we believe that captioning metrics are
not a suitable evaluation measure in the context of
student simulation. The core focus of our task eval-
uation is to assess whether we can accurately and
reasonably simulate the errors students are likely to
make, rather than simply measuring text similarity.
These metrics primarily evaluate low-level term
similarity, which is limited in scope. Thus, they
cannot effectively evaluate more complex aspects
like the logical structure or syntax of code. For ex-
ample, a student’s incorrect code may differ from
the correct version by just an indentation error, yet
these metrics fail to capture such subtle distinctions.
Therefore, we argue that captioning metrics do not

provide a reasonable evaluation framework for our
task and instead propose LLM-based metrics for
assessment.

E.3 Results on Java and C++ programming

To further validate the effectiveness of our method
beyond Python programming, we conduct addi-
tional experiments on two other programming sub-
jects: Java and C++. We source new data from a
new platform, CodeNet (Puri et al., 2021), which
features tasks with a broad range of difficulty levels.
Following the same expert annotation procedure of
Student_100 described in Section 3, we construct
two new datasets, Java_5 and C++_5, each contain-
ing 5 students with 40 past learning records and 10
test records per student.

We compare our method with baselines on these
2 datasets, and the results are shown in Table
8 and 9. Experimental results indicate that our
method consistently outperforms all baselines on
both datasets. This provides strong evidence for
the robustness of our framework across different
programming subjects, platforms, and student pro-
files.

E.4 In-Depth Analysis Details

In section 5.3, we analyze the impact of past learn-
ing volumes and the impact of self-refinement iter-
ations and beam search sampling size. These ex-
periments are conducted using the GPT-40 model
and the results are shown in Figure 4. We provide
the detailed performance in Table 11 and 12.
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Behavior Prediction ‘ Random ‘ Similarity ‘ Level Level+Random Level+Similarity ‘ Prototype Mapping
Solution Simulation | I0 CoT Refine | I0 CoT Refine | 10 CoT Refine | I0 CoT Refine | I0 CoT Refine | 10 CoT Refine
Acc | 046 046 046 | 034 034 034 | 034 034 034 [032 032 032 | 034 034 034 |0.68 0.68 0.68

LLaMA-3.3- | con, | 25 25 25 [232 232 232 |218 218 2.8 |1.88 1.88 1.88 |234 234 234 | 33 33 33
70B-Instruct | con, | 234 24 198 | 22 234 204 |274 214 166 |1.86 218 2.0 |228 248 216 |2.78 282 2.84
Acc | 046 046 046 | 054 054 054 | 03 03 03 |046 046 046 | 046 046 046 |0.56 0.56 0.56

Claude-3.5- | con, | 2.88 2.88 2.88 |3.04 304 304 | 1.8 1.8 18 |248 248 248 | 256 256 256 | 3.3 33 33
Sonnet Con, | 246 246 2.8 |266 28 276 186 158 132 |[224 20 236 | 25 242 24 |268 244 29

Acc | 046 046 046 | 034 034 034 | 046 046 046 | 046 046 046 | 042 042 042 | 052 052 052

GPT-35 | Cony | 236 236 236 | 244 244 244 |274 274 274 | 25 25 25 |248 248 248 292 292 292

Con, | 244 278 322 | 256 244 302 |252 284 286 |254 224 318 | 242 244 296 |2.68 298 3.8

Ace | 03 03 03 |05 05 05 |042 042 042 | 066 066 066 | 056 056 0.56 |0.84 0.84 0.84

GPT-40 | Cony | 248 248 248 |29 29 29 |234 234 234 |356 356 3.56 (328 328 328 |38 38 38

Cony | 228 25 26 |274 278 274 |228 28 19 |244 264 24 |224 252 21 |324 338 346

Table 8: End-to-end comparison on Java_5 dataset. Acc and Con; metrics both evaluate behavior descriptions,

yielding identical values for the same behavior prediction method.

Behavior Prediction ‘ Random ‘ Similarity ‘ Level Level+Random Level+Similarity ‘ Prototype Mapping
Solution Simulation | 10 CoT Refine | 10 CoT Refine | 10 CoT Refine | 10 CoT Refine | 10 CoT Refine | [0 CoT Refine
Acc | 034 034 034 [034 034 034 |038 038 038 |038 038 038 [038 038 038 |0.62 062 0.62

LLaMA-3.3- | con, | 23 23 23 |216 216 216 | 198 198 198 |22 22 22 |212 212 212 |30 30 30
70B-Instruct | con, | 198 234 1.86 | 222 228 22 232 252 186 | 2.1 228 18 |244 19 208 | 244 252 252
Ace | 052 052 052 | 062 062 062 |036 036 036 | 046 046 046 | 058 058 058 |0.66 0.66 0.66

Claude-3.5- | con, | 2.64 264 264 | 30 30 30 | 176 176 176 |222 222 222 |252 252 252 |316 3.16 3.16
Sonnet | con, [ 2.62 226 226 | 252 236 262 | 194 176 148 |1.86 1.88 2.1 |246 218 188 |298 3.1 3.16

Acc | 05 05 05 [052 052 052 |048 048 048 | 044 044 044 | 044 044 044 | 058 058 0.58

GPT-3.5 | Cony | 262 262 262 | 262 262 262 |236 236 236 |224 224 224 |23 23 23 |27 27 27

Cony | 298 278 282 292 266 252 |298 30 28 |3.16 306 3.16 |28 28 3.16 298 312 3.8

Ace | 05 05 05 [054 054 054 |042 042 042 | 054 054 054 | 068 068 068 |0.86 086 086

GPT-40 | Com | 25 25 25 |268 268 268 |208 208 208 |284 28 284 |32 32 32 |36 36 36

Cony | 264 3.04 3.1 |3.14 33 29 |242 308 204 |232 27 224 | 26 28 28 [332 34 342

Table 9: End-to-end comparison on C++_5 dataset. Acc and Con; metrics both evaluate behavior descriptions,
yielding identical values for the same behavior prediction method.

E.5 Bad Case Analysis

For student behavior prediction and solution sim-
ulation, our method is able to accurately identify
the relevant knowledge concepts that a problem
tests by mapping the constructed student cognitive
prototype to the task in most cases. However, this
pipeline may occasionally fail, particularly when
careless mistakes occur in the student’s solution
code. These rare but unavoidable mistakes, such
as typos or incorrect code indentation (which can
cause compilation errors in Python), may mislead
the model’s predictions. For example, if such mis-
takes appear in the simulation records of a stu-
dent with otherwise high programming abilities,
our method may incorrectly predict their behavior.

In fact, these occasional careless mistakes pose
a challenge not only for our method but also for
all baseline approaches, as they are equally sus-
ceptible to their influence (Lin et al., 2023; Wang
et al., 2023a). We attribute this issue to the sta-
tistical nature of existing methods, which assess a
student’s cognitive level from a statistical perspec-
tive, making them ineffective at handling isolated

€1rors.

We investigate whether increasing the number
of retrieved past learning records could address
this problem. The results, shown in Table 10, indi-
cate that as the number of retrieved tasks increases,
performance tends to decline. We speculate that
retrieving more tasks introduces irrelevant informa-
tion. Each retrieved task includes the problem state-
ment, the student’s solution, and expert error anal-
ysis, all of which are incorporated into the prompt
for LLMs. As the number of retrieved tasks in-
creases, the prompt becomes excessively long and
redundant, overwhelming the model with too much
information and leading to incorrect predictions.

Therefore, we recognize that predicting these
occasional careless mistakes remains a challeng-
ing problem. Our method, however, is primar-
ily designed to assess general cognitive profi-
ciency—capturing a student’s overall learning pat-
terns rather than isolated, occasional errors. Fully
addressing this issue would require additional
methodological advancements, such as incorporat-
ing causal inference to mitigate biases and reduce
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Number of | LLaMA-3.3-70B | Claude-3.5-Sonnet | GPT-35 | GPT-4o
Retrieved Tasks | Acc Con; Comy | Acc Cony Con; | Ace Con; Comy | Acc  Cony  Con,
1 0.61 299 269 | 065 3.09 299 | 056 299 349 | 094 377 3.65
2 06 302 225|063 3.1 261 | 042 253 315 073 324 3.04
3 0.61 297 24 1062 305 272|047 263 319 | 07 324 312

Table 10: Experiments on different number of retrieved past learning records.

Past Learning
Record Volumes | Con;  Comy
10 053 282 265
20 0.67 3.09 292
30 077 338 3.
40 094 377 3.65

Table 11: Detailed performance on different number of
retrieved past learning records.

the impact of confounding factors. We believe
that this challenge extends beyond the scope of our
current work and merits further exploration as an
independent research direction.

Notably, similar challenges have been explored
in other domains, such as recommendation sys-
tems (Wang et al., 2021a,b, 2022), where causal de-
biasing and counterfactual reasoning (Wang et al.,
2025; Yan et al., 2025) have been employed to
address issues like clickbait. We believe that ef-
fectively handling noise in educational data is an
important avenue for future research, and we plan
to explore this further in subsequent work.

E.6 Distinctions from Knowledge Tracing

At first glance, our task appears structurally similar
to Knowledge Tracing (KT) (Zhou et al., 2025a,
2024), as both involve modeling student learning
processes. However, direct comparison with KT
methods is not entirely appropriate due to funda-
mental differences in objectives and generalization
capabilities:

1) Differences in objectives. Student simula-
tion requires not only predicting whether a student
answers a question correctly but also diagnosing
errors in detail and simulating realistic behaviors
in the form of natural language. Our method gener-
ates explicit and interpretable descriptions of mis-
takes and solutions, whereas KT methods focus
solely on correctness prediction and lack the ability
to simulate detailed behaviors or provide natural-
language explanations.

2) Generalization limitations. KT models rely
on implicit parametric knowledge representations
and problem indices without incorporating task-
specific textual inputs (e.g., problem statements).

L
N 1 2 3 4 5

1 336 347 3.61 3.61 3.6
2 346 355 3.65 3.63 3.61
3 341 353 361 36 356

Table 12: Detailed performance on different refinement
iteration L and beam search sampling size B.

This reliance on training data restricts their ability
to generalize to out-of-distribution (OOD) cases,
such as the test data in our experiments. In contrast,
our method leverages explicit cognitive prototypes,
enabling robust performance in OOD scenarios and
zero-shot tasks.

These distinctions highlight the fundamental dif-
ferences between KT and student simulation, under-
scoring the need for tailored methodologies when
modeling student behaviors in a more interpretable
and generative manner.
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