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Abstract
Supervised fine-tuning (SFT) is widely used to
align large language models (LLMs) with in-
formation extraction (IE) tasks, such as named
entity recognition (NER). However, annotating
such fine-grained labels and training domain-
specific models is costly. Existing works typi-
cally train a unified model across multiple do-
mains, but such approaches lack adaptation and
scalability since not all training data benefits
target domains and scaling trained models re-
mains challenging. We propose the SaM frame-
work, which dynamically Selects and Merges
expert models at inference time. Specifically,
for a target domain, we select domain-specific
experts pre-trained on existing domains based
on (i) domain similarity to the target domain
and (ii) performance on sampled instances, re-
spectively. The experts are then merged to cre-
ate task-specific models optimized for the tar-
get domain. By dynamically merging experts
beneficial to target domains, we improve gener-
alization across various domains without extra
training. Additionally, experts can be added or
removed conveniently, leading to great scalabil-
ity. Extensive experiments on multiple bench-
marks demonstrate our framework’s effective-
ness, which outperforms the unified model by
an average of 10%. We further provide insights
into potential improvements, practical experi-
ence, and extensions of our framework.1

1 Introduction

Large language models (LLMs) demonstrate re-
markable performance across a wide range of
tasks (Achiam et al., 2023; Yang et al., 2024; Guo
et al., 2025a), but still struggle with information
extraction (IE) tasks (Xu et al., 2024; Ding et al.,
2024b; Fan et al., 2024b), such as Named Entity
Recognition (NER). The inherent gap between task
formulations and LLM training objectives is a crit-
ical factor underlying this limitation. To mitigate
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1https://github.com/Ding-ZJ/SaM
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Figure 1: (a) Existing methods train a general unified
model across multiple domains, while we dynamically
select and merge expert models at inference time. (b)
A trained system struggles to accommodate changes in
training data, while we flexibly add or remove expert
models, ensuring great scalability.

this, supervised fine-tuning (SFT) has become a
widely used strategy, demonstrating significant im-
provements (Wang et al., 2023a; Zhou et al., 2024b;
Fan et al., 2025).

However, annotating data and training domain-
specific models each time is costly, particularly for
fine-grained IE tasks. Most existing approaches
collect large-scale training data from multiple do-
mains to train a unified model (Wang et al., 2023a;
Sainz et al., 2024; Yang et al., 2025). Although
such models exhibit cross-domain generalization
capabilities, they frequently exhibit suboptimal per-
formance in both in-domain and out-of-domain test
scenarios. This limitation arises primarily because
(1) not all training samples universally enhance per-
formance on a given target domain (Liu et al., 2024;
Zhou et al., 2024a), and (2) inherent conflicts may
emerge across heterogeneous domains during joint
training, leading to compromised optimization ef-
ficacy (Sainz et al., 2024; Yang et al., 2025; Fan
et al., 2024a). Additionally, even when data from
the target domain is available, effectively integrat-
ing it into a trained model without compromising
performance remains challenging.
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To address these issues, we adopt a model merg-
ing strategy (Ilharco et al., 2023) to dynamically
select domain-specific models for different target
domains and fuse their parameters to obtain task-
specific models. Specifically, we first train multiple
expert models in different domains with available
data. Then, we design the SaM framework to de-
rive task-specific models by Selecting and Merging
experts from two perspectives: (i) Domain similar-
ity. We assess the domain similarity between the
target domain and each expert model, and select the
most relevant experts for parameter fusion to create
a task-specific model tailored to the target domain.
(ii) Sampling evaluation. We randomly sample k
data instances from the target domain and integrate
the predictions of all experts as pseudo-labels (no
ground truth labels required). Based on these la-
bels, we assess the performance of each expert on
the sampled data and select the best-performing
experts to merge into another task-specific model.
The two perspectives synergistically complement
each other: domain similarity provides a high-level,
coarse-grained assessment that establishes theoret-
ical priors, while sampling evaluation delivers a
fine-grained, empirical quantification of expert per-
formance to yield actionable practical guidance. By
integrating the outputs of both task-specific models,
we achieve more comprehensive results.

Compared to previous methods (Figure 1), we
allow for task-specific customization across diverse
target domains, providing improved generalization
ability without extra training. It also provides great
scalability, as experts can be easily added or re-
moved based on practical needs. Notably, our ap-
proach is orthogonal to previous studies. By lever-
aging their practical insights, we can train more
effective expert models, thereby enhancing the per-
formance of our framework. In terms of resource re-
quirements, our approach does not incur additional
training costs. By leveraging parameter-efficient
fine-tuning methods (Hu et al., 2022), we only in-
troduce minimal storage overhead. Additionally,
by employing either strategy individually or fur-
ther integrating the target models derived from both
strategies, we can achieve comparable performance
without incurring additional inference costs.

In summary, our contributions are as follows:
(1) We introduce a model-merging paradigm for
LLM-based Named Entity Recognition, enhanc-
ing adaptability and scalability. (2) We propose
a model selection strategy based on domain simi-
larity and sampling evaluation, which effectively

selects expert models beneficial to the target do-
main for merging. (3) Experimental results demon-
strate the effectiveness of our framework, which
outperforms the unified model by an average of
10% and by up to 20% in certain domains. Further
experiments analyze potential improvements, prac-
tical experience, and framework generalizability,
providing deeper practical insights.

2 Related Works

LLMs for Information Extraction Current
LLMs-based IE mainly fall into two paradigms.

One paradigm uses larger models. Training them
needs significant computational resources, and fine-
tuning them specifically for IE tasks may be not
cost-effective. However, these models excel in
instruction-following and reasoning. Therefore,
such methods focus on optimizing task instructions,
reasoning strategies, or in-context learning (ICL)
demonstrations. Li et al. (2023) show that code-
style prompts enhance IE tasks. Pang et al. (2023)
and Tong et al. (2025) prompt LLMs with more
comprehensive information to improve task under-
standing. Xie et al. (2023) and Wan et al. (2023)
introduce reasoning techniques such as Chain-of-
Thought (CoT) to guide the model in step-by-step
task completion. Xie et al. (2024) employ self-
consistency to generate reliable ICL examples.

Another paradigm uses smaller models. While
these models have weaker instruction-following
capabilities, they require much fewer training re-
sources. Such methods enhance LLMs through
supervised fine-tuning (Wang et al., 2023a). Many
studies design optimization strategies on the data
side. Yang et al. (2025) resolves conflicts and re-
dundancy in training data. Zhou et al. (2024b)
distills more diverse data from ChatGPT. Li et al.
(2024) formats training data in code style. Sainz
et al. (2024) enriches instructions with detailed task
descriptions. Ding et al. (2024a) emphasizes neg-
ative samples. In addition to instruction tuning,
Qi et al. (2024) further employs alignment train-
ing (Rafailov et al., 2024), and Guo et al. (2025b)
incorporates contrastive learning objectives. In-
stead of training one universal model, we train sev-
eral domain experts and design a merging method
to improve adaptability and scalability.

Additionally, the backbone model is also critical.
Recently, code-based LLMs have gained popular-
ity, as they may better suit IE tasks than natural
language-based LLMs (Li et al., 2023).
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Model Merging Model merging integrates mul-
tiple task-specific models at the parameter level to
create a unified model, which could handle multi-
ple tasks simultaneously and exhibit better out-of-
domain generalization. Unlike multi-task learning,
model merging reuses existing models, reducing
computational and data demands since only model
parameters are needed. Beyond simple parameter
averaging, Matena and Raffel (2022) assigns differ-
ent importance to model parameters. Ilharco et al.
(2023) applies arithmetic operations for finer con-
trol over model behavior. Jin et al. (2023) enforces
output consistency between the merged model and
its constituent models. Yu et al. (2024) and Yadav
et al. (2023) mitigate inter-model interference by
addressing parameter redundancy or sign inconsis-
tency, and weight sparsity, respectively. Lu et al.
(2024) decomposes model parameters into shared
and task-specific components. In this paper, we
introduce model merging to improve adaptability
and scalability across different target domains.

3 Methodology

In this section, we first provide an overview of the
training process of domain expert models. Then
we explain our SaM framework for selecting and
merging experts, as shown in Figure 2.

3.1 Training Domain Experts

Data Collection. We first collect more than 20
commonly used NER datasets and classify them
into six domains based on their sources: News,
Social media, Biomedical, STEM (Science, Tech-
nology, Engineering, and Mathematics), Legal, and
Traffic. We remove 90% of the NA data that con-
tains no entities. Through sampling or redundancy,
we limit the total samples per domain to between
10,000 and 50,000. The number of sampled in-
stances from each dataset was proportional to the
number of entity types it contained. Detailed infor-
mation is provided in Appendix A.

Training Data Construction. Refering to prac-
tice of prior studies (Wang et al., 2023a; Qi et al.,
2024), we format the raw data into task instructions,
inputs, and outputs for training.

The task instructions consist of: (1) Data source
description: A brief overview of the dataset source.
(2) Entity type description: Concise definition of
entity types. (3) In-context learning demonstra-
tions: 1 ∼ 5 randomly selected input-output pairs
from the training data. (4) Label drop: Excluding

the requirement for recognizing certain entity types.
(5) Label masking: Replacing entity labels with ab-
stract placeholders such as “Type1”. Empirically,
we apply (1), (2), and (3) to 70% of the data; (4)
to 30%; and (5) to 5%. These modifications are
applied independently, except (5), which should
co-occur with (2). For output parts, we adopt three
formats: JSON (e.g., “{entity span: entity type}”),
enumeration (e.g., “Type: span1, span2, ...”), and
natural language descriptions.

These strategies help enhance model robustness
to some extent. However, we claim this is not
an optimal configuration, as our focus is not on
training a best-performing model.

Model Training. Following prior work, we train
the model using instruction tuning. Given a dataset
DA = {(I,X, Y )} from domain A, where I is
the task instruction, X is the input sequence, and
Y = {yi}Li=1 is the output sequence (i.e., entity pre-
dictions), the training loss of the domain-specific
expert model MA is defined as:

LθA = −
∑

DA

L∑

t=1

logPθA(yt | I,X, y<t) (1)

where θA denotes the parameters of MA.

3.2 Selecting and Merging Experts
When handling a specific target domain, we select a
subset of expert models and fuse their parameters to
obtain task-specific models. As shown in Figure 2,
this process is conducted from two perspectives.

Selecting with Domain Similarity. Given a do-
main with raw data DA = {xi}, we obtain the cor-
responding data embeddings HA = {hi} through
a text encoder. The domain embedding is then
defined as the centroid of these data embeddings:

hA =
1

|HA|
∑

hi∈HA

hi (2)

We compute domain embeddings {hei} for do-
mains of all expert models and ht for the target
domain. Then we compute the similarity between
the expert domains and the target domain with co-
sine distances. Finally, the top-m similar expert
models are selected for model merging.

The domain embedding inherently captures the
data distribution in the embedding space. Thus, in
theory, the selected expert models exhibit a certain
degree of similarity and are expected to perform
well in the target domain due to the resemblance in
these data distributions.
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Figure 2: Framework overview. Given a target domain, we select expert models from two perspectives: (a) Domain
Similarity, which selects experts from domains most similar to the target domain. We compute the centroid of all
data embeddings as the domain embedding and measure similarities by cosine distance. (b) Sampling Evaluation,
which selects experts with better performances on sampled instances from the target domain. To reduce reliance on
ground-truth labels, we ensemble predictions from all experts as (pseudo) labels. We merge models within each
expert subset to obtain two task-specific models. The final result integrates the outputs of the two task models.

Selecting with Sampling Evaluation. The selec-
tion of experts based on domain similarity is theo-
retically sound. However, in practice, we observe
that the model with the highest domain similarity
to the target domain does not always yield the best
performance. Thus, we propose another selection
strategy driven by model performance.

Specifically, we first randomly sample k data
instances from the target domain. Then each expert
model generates predictions for them. To reduce
dependence on ground-truth labels, we aggregate
predictions via majority voting to construct pseudo-
labels, which are subsequently used to assess expert
performance. The top m experts with the highest
performance are selected for model merging.

Unlike domain similarity-based selection, this
approach prioritizes practical effectiveness. As a
result, the selected experts generally perform better
individually in the target domain. However, we
aim to obtain a superior task model through model
merging, where individual performance is not the
sole determining factor.

Merging Experts. Given a base model Mbase

and the supervised fine-tuned model Msft, we de-
note their parameters as θbase and θsft, respectively.
The delta parameter δsft = θsft − θbase serves as
a parametric representation of the model’s learned
capabilities and is also referred to as the task vec-
tor. Given multiple task-specific models {Msfti},

we can merge them into a unified model Mmerge

with diverse capabilities (Matena and Raffel, 2022;
Ilharco et al., 2023):

θmerge = θbase +Merge(δsft1 , δsft2 , · · ·) (3)

where Merge(·) denotes the model merging tech-
nique, such as simple averaging and task arith-
metic (Ilharco et al., 2023). We employ the Ties-
Merging (Yadav et al., 2023) method, which ad-
dresses parameter redundancy and sign inconsis-
tency to mitigate inter-model interference when
merging multiple models. We selected two sets of
expert models based on Domain Similarity (DS)
and Sampling Evaluation (SE), respectively. These
experts are subsequently merged to obtain two task-
specific models, MDS and MSE .

3.3 Inference

For a target domain, we obtain two task-specific
models, MDS and MSE , following the methodol-
ogy described in Section 3.2. Each model indepen-
dently generates predictions, producing two output
sets, YDS and YSE . Taking the intersection of two
sets of predictions typically enhances reliability.
However, our two task-specific models are already
tailored for the target domain and capture different
and complementary perspectives. Therefore, we
adopt their union as the final result.
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CrossNER MIT Average
AI Literature Music Politics Science Movie Restaurant

Recent
Studies

InstructUIE 48.40 48.80 54.40 49.90 49.40 63.00 20.99 47.84
UniNER 62.90 64.90 70.60 66.90 70.80 61.20 35.20 61.79
GoLLIE 59.10 62.70 67.80 57.20 55.50 63.00 43.40 58.39
KnowCoder 60.30 61.10 70.00 72.20 59.10 50.00 48.20 60.13
GLiNER 57.20 64.40 69.60 72.60 62.60 57.20 42.90 60.90
B2NER 59.00 63.70 68.60 67.80 72.00 67.60 53.30 64.57

Fully-trained Llama 54.11 63.44 72.53 62.92 59.09 64.81 49.68 60.94
Qwen 51.38 53.46 61.12 54.99 59.39 66.66 52.69 57.10

SaM (Ours) Llama 60.9812.7% 66.935.50% 73.531.4% 74.4718.4% 62.605.9% 72.1711.4% 52.996.7% 66.248.70%
Qwen 60.0115.8% 61.9916.0% 65.937.9% 67.0521.9% 62.415.1% 71.657.50% 52.900.4% 63.1310.6%

Table 1: Experimental results. We compare our method with recent studies and our fully-trained model (e.g., a
unified model trained on all data we used). The best results are highlighted in bold, while suboptimal results are
underlined. The right subscript denotes the percentage improvement compared to the fully trained model.

4 Experiments

4.1 Setup

Benchmarks, Baselines, and Metrics We evalu-
ate our framework on two widely used benchmarks
CrossNER (Liu et al., 2021) and MIT (Ushio and
Camacho-Collados, 2021), which contain datasets
from seven domains (AI, Literature, Music, Poli-
tics, Science, Movie, and Restaurant) in total.Our
experiments are under zero-shot settings (i.e., no
labeled target domain data), follow prior work. The
source data for training and the target data for eval-
uation have different distributions.

We introduce two types of baselines for com-
parison. The first is the Fully-trained model, a
single unified model trained on data from all do-
mains using the same training configuration as
us. This serves as the primary baseline to as-
sess the effectiveness of our framework. The
second includes recent studies that also train uni-
fied models but incorporate other advanced train-
ing optimizations, including InstructUIE (Wang
et al., 2023a), UniNER (Zhou et al., 2024b), GoL-
LIE (Sainz et al., 2024), KnowCoder (Li et al.,
2024), GLiNER (Zaratiana et al., 2024), and
B2NER (Yang et al., 2025). Most of these models
use LLMs as the foundation, except for GLiNER,
which contains only 300 million parameters.

Following prior studies (Wang et al., 2023a), we
use the entity-level micro-F1 score as the evalua-
tion metric, where both the entity boundary and
entity type should be correctly predicted.

Implementations We employ models from the
Qwen and Llama series as base models for our ex-
periments. Specifically, we adopt the base version
of Qwen2.5-7B and Llama3.1-8B as foundations

and train expert models using LoRA (Hu et al.,
2022). We employ the all-MiniLM-L6-v22 text en-
coder to produce text embeddings. We set m (the
number of selected models for merging) to 3. We
set k (the number of sampled data instances) to 10.
More details are reported in Appendix A.

4.2 Main Results

As shown in Table 1, our approach significantly
outperforms the fully trained model across all tar-
get domains, achieving an average improvement of
approximately 10%, with gains of up to 20% in spe-
cific domains. This demonstrates the effectiveness
and superior domain adaptability of our approach.
To ensure practical comparability, we also compare
our results with recent studies. These methods em-
ploy various training optimization strategies. For
example, B2NER mitigates redundant and conflict-
ing information in the training data. These tech-
niques are orthogonal to ours. Notably, comparing
these methods with our fully-trained model sug-
gests that refining our training configuration could
enhance our expert models and further improve the
performance of our approach. Our approach may
incur slight computational and storage overhead,
which is acceptable, as discussed in Appendix C.

4.3 Ablation Studies

We conduct ablation studies to validate the effec-
tiveness of our design, as shown in Table 2: (1)
w/o Merging, which directly uses the best expert
model. (2) w/o Domain Similarity, which selects
experts solely based on Sampling Evaluation. (3)
w/o Sampling Evaluation, which selects experts

2https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
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AI Literature Music Politics Science Movie Restaurant Average

Llama

w/o Merging 53.72 59.95 71.61 71.88 59.09 66.43 50.62 61.90
w/o Domain Similarity 58.43 59.87 72.89 74.20 59.92 68.91 51.69 63.70
w/o Sampling Evaluation 56.42 63.92 72.25 72.99 61.71 71.08 52.48 64.41
w/o Selection 60.14 63.74 74.83 73.00 63.68 67.30 47.64 64.33

SaM (Ours) 60.98 66.93 73.53 74.47 62.60 72.17 52.99 66.24

Qwen

w/o Merging 57.90 59.01 65.33 65.73 60.21 65.45 51.11 60.68
w/o Domain Similarity 58.57 61.61 65.63 68.51 59.67 70.66 52.69 62.48
w/o Sampling Evaluation 58.23 60.39 64.11 64.57 61.00 71.04 50.11 61.35
w/o Selection 57.47 60.93 64.66 60.28 61.08 69.43 47.78 60.23

SaM (Ours) 60.01 61.99 65.93 67.05 62.41 71.65 52.90 63.13

Table 2: Ablation studies. Removing certain components typically results in performance degradation, confirming
their significance. The best results are in bold, and the suboptimal ones are underlined.

Mode1 Mode2 Mode3 SaM (Ours)

AI 60.36 58.19 61.31 60.01
Literature 56.86 62.68 58.90 61.99
Music 63.78 66.50 66.85 65.93
Politics 66.05 68.27 61.30 67.05
Science 58.37 61.73 63.12 62.41
Movie 70.66 70.66 70.50 71.65
Restaurant 52.82 52.85 52.23 52.90

Average 61.27 62.98 62.03 63.13

Table 3: Merging into a single task model (based on
Qwen). “Modei” denotes the method used to further ex-
tract a final set from two expert sets for model merging.

based on Domain Similarity. (4) w/o Selection,
which merges all experts without selection. Results
demonstrate that the merged model consistently
outperforms the best individual expert, even when
the selected models are not necessarily optimal.
Overall, both expert selection strategies are effec-
tive and complementary, yielding the best results
when combined. However, in some cases, using a
single selection strategy or none at all yields better
results, likely due to expert redundancy or insuffi-
ciency, as we fix the number of selected experts to
k = 3 in our experiments. Further analysis of k are
presented in Section 4.5

4.4 Merging into a Single Task Model

Since our approach employs two task-specific mod-
els, the inference cost is doubled. To mitigate this,
we derive a single set from the two selected ex-
pert sets, reducing the number of task models to
one. We propose and evaluate three strategies, with
results in Table 3: (1) Mode1 leverages the inter-
section of the two selected expert sets. (2) Mode2
normalizes the evaluation metrics across both se-
lection strategies (e.g., the domain similarity scores
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Figure 3: Performance changes with the number of
experts. The horizontal axis is the number of experts for
merging, and the vertical denotes the F1 scores.

and F1-scores on sampled data points) to a common
scale and selects the top three experts. (3) Mode3
takes the union of the two expert sets while limit-
ing the total number of selected experts to three.
Experimental results show that Mode2 and Mode3
achieve comparable performance to us, making
them effective alternatives without increasing in-
ference costs. We refer to these as the economic
versions of our framework (SaMeco).

4.5 Numbers of Experts for Merging

This section analyzes the impact of the number
of merged models, k, with results shown in Fig-
ure 3. Here, k = 1 denotes the performance of the
best individual expert, while k = 6 corresponds to
merging all expert models. The optimal k varies
across target domains, typically ranging from 2 to
4. We set k = 3 as it yields the best average perfor-
mance. Notably, this corresponds to the merging
algorithm as well. We adopt the Ties-Merging tech-
nique, where selecting 2 ∼ 4 models for merging
is a commonly used configuration.
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Source Domains AI Literature Music Politics Science Movie Restaurant Average

Three 56.42 63.01 71.69 72.24 61.17 69.91 50.62 63.58

Six 60.98 66.93 73.53 74.47 62.60 72.17 52.99 66.24

Nine 59.90 66.93 73.53 73.61 62.78 72.17 53.84 66.11

Table 4: Performance under different number of source domains. Using six source domains yields better results
than three, but increasing to nine provides no further gains.

AI Literature Music Politics Science Movie Restaurant Average

Fully-trained 70.40 71.81 75.44 79.41 50.71 58.78 69.33 67.98

Sam(Ours) 83.45 71.81 77.11 81.56 77.14 78.01 73.33 77.49

Table 5: Performance under extreme scenarios with only one test sample (average of five trials). Our method still
functions properly and adapts better than the fully trained single-model approach.

4.6 Number of Source Domains

We set six source domains in our experiments. This
section presents a preliminary analysis of how the
number of source domains affects performance, as
shown in Table 4. While setting more source do-
mains increases the diversity of candidate models
during selection, it does not always lead to better
results. The performance relies on the similarity
between source and target domains, including con-
ceptual relevance, data distribution, and overlap in
entity types. Therefore, it’s important to balance
the number of source domains, their similarity to
target domains, and the overall complexity.

4.7 Limited Target Resources Scenarios

The model selection process leverages target-
domain raw texts for domain similarity calculation
and sampling evaluation, typically a few hundred
samples for the former and 10 for the latter. To
test our method under more constrained settings,
we simulate an extreme case with only one target-
domain instance. As shown in Table 5, our method
remains effective. However, very small sample
pools can undermine the stability of expert selec-
tion, especially for the strategy using domain sim-
ilarity. In such cases, we recommend using data
augmentation to expand the sample pool.

4.8 Weighting Experts for Merging

We employ two metrics, domain similarity and sam-
pling evaluation, to select expert models. These
metrics reflect the importance of experts. Our
framework does not consider the importance of
experts but instead assigns equal weight to all ex-
pert models. To investigate the impact, we pro-

Mode1 Mode2 SaM (Ours)

AI 60.07 59.33 60.01
Literature 62.00 62.03 61.99
Music 66.35 65.17 65.93
Politics 65.54 66.45 67.05
Science 62.27 62.15 62.41
Movie 71.20 71.48 71.65
Restaurant 53.84 52.84 52.90

Average 63.04 62.78 63.13

Table 6: Weighting experts for merging. “Modei” de-
notes the method used to weight model parameters.

pose two simple weighting strategies, as shown in
Table 6: (1) Mode1 empirically assigns weights
(1.5, 1.0, 0.5) to the top three selected experts. (2)
Mode2 uses the middle-ranked metric value as a
normalization factor to scale the three experts’ met-
rics for weighting. Experimental results suggest
that weighting has the potential to improve per-
formance (Mode1), aligning with intuitive expec-
tations. However, excessive reliance on heuris-
tics may not always be justified. For example,
while Mode2 theoretically provides a more precise
weighting based on expert importance, it underper-
forms compared to Mode1 and Ours.

4.9 Finer Adaptation for Target Domains

Beyond the weighted merging strategy in Sec-
tion 4.8, another potential approach for improve-
ments is adopting finer adaptation. Specifically,
we apply clustering to divide the target domain
into multiple splits, selecting and merging expert
models separately for each. However, as shown in
Figure 4, this finer adaptation does not enhance per-
formance. Instead, it results in an overall decline.
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Figure 4: Performance changes with the number of data
splits. The horizontal axis is the number of splits, and
the vertical denotes the entity-level F1 scores.
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Figure 5: Performance changes with the number of data
splits. We aggregate data from all domains into a unified
dataset and subsequently conduct the split analysis.

To investigate this further, we aggregate data
from all seven domains into a single dataset and
conduct experiments. As shown in Figure 5, cluster-
ing improves performance across various strategies,
including Sampling Evaluation (SE), Domain Simi-
larity (DS), and their combination. Notably, despite
the dataset spanning seven domains, the best perfor-
mance is achieved when clustering divides it into
only two or three groups. This is intuitively reason-
able, as these seven domains originate from two
broader datasets (CrossNER and MIT). The above
analysis indicates that while finer adaptation to the
target domain may bring improvements, excessive
refinement without constraints may be counterpro-
ductive. For example, treating each data point as a
distinct domain might seem optimal in theory but
leads to poor performance in practice.

4.10 Analysis of Merging Technique

In addition to the Ties-Merging algorithm (ties) we
employed, this section analyzes alternative merging
strategies, including linear, dare (Yu et al., 2024),
and their combinations. As shown in Table 7, dare
and ties are effective. We do not present the perfor-
mance of linear strategy, as this strategy leads to sig-
nificant degradation. Specifically, models merged
via the linear approach still produce some meaning-

dare-linear ties dare-ties

AI 54.67 60.01 52.57
Literature 56.22 61.99 55.81
Music 66.31 65.93 66.22
Politics 69.11 67.05 66.42
Science 62.01 62.41 61.07
Movie 68.31 71.65 65.12
Restaurant 52.12 52.90 51.40

Average 61.25 63.13 59.80

Table 7: Comparison of different merging techniques.
We compare linear, dare, ties, and some combinations.

Llama Qwen

T-SC E-SC Ours T-SC E-SC Ours

AI 54.20 60.31 60.98 51.47 57.36 60.01
Literature 64.13 58.98 66.93 54.61 56.08 61.99
Music 70.01 71.06 73.53 61.58 68.01 65.93
Politics 63.58 66.27 74.47 55.76 65.99 67.05
Science 59.01 60.03 62.60 58.73 60.99 62.41
Movie 64.72 67.78 72.17 66.58 67.86 71.65
Restaurant 50.21 50.31 52.99 52.50 50.43 52.90

Average 60.84 62.11 66.24 57.32 60.96 63.13

Table 8: Comparison with self-consistency (SC) meth-
ods. T-SC employs a fully trained model to generate
multiple outputs by adjusting the Temperature hyperpa-
rameter to the ensemble, while E-SC ensemble outputs
from different Expert models.

ful content but almost lose the ability to generate
structured outputs, which is crucial for NER and
other IE tasks. Consequently, their performance is
bad, though minor improvements can be achieved
through extensive post-processing on model out-
puts. However, combining dare with linear yields
improved results. Both dare and ties address the
issue of parameter redundancy for merging. These
findings suggest that handling parameter redun-
dancy is crucial for NER and similar structured
output tasks. Additionally, the relatively weaker
performance of the dare-ties combination may stem
from excessive redundancy reduction, which could
compromise useful capabilities of models.

4.11 Comparing with Self-Consistency

Considering that we trained multiple expert mod-
els, an intuitive approach is self-consistency
(SC) (Wang et al., 2023b), which ensembles mul-
tiple outputs through voting. Results are shown
in Table 8, where T-SC employs a full-trained
model to generate multiple outputs by adjusting the
Temperature hyperparameter to ensemble, while
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E-SC ensemble outputs from different Experts
(though this slightly deviates from the strict defi-
nition of “self”-consistency, we refer to "SC" for
simplicity). For our NER task, traditional SC (T-
SC) shows limited improvement, while E-SC offers
more significant gains due to greater output diver-
sity. However, both SC strategies perform worse
than our method and require higher inference costs.

4.12 Framework Generalization
Non-strict Domain In our experiments, each ex-
pert corresponds to a domain with real-world sig-
nificance, such as news or law. To explore a more
flexible scenario, we further test on non-strict do-
mains. Specifically, we cluster each domain dataset
into five subsets, and then sample one subset from
each domain to create five new datasets, which are
used to train five new expert models. The results
in Table 9 indicate that our framework remains
effective. Notably, the experts in this setting are
no longer tied to specific domains but function as
general-domain models while retaining diverse ca-
pabilities. This suggests that the key requirement
is a set of experts with complementary strengths,
which can enhance overall performance through
mutual reinforcement.

Multilingual Scenarios We extend our frame-
work to multilingual scenarios and conduct pre-
liminary experiments on six languages from the
WikiANN dataset (Pan et al., 2017), including Ger-
man (de), English (en), Spanish (es), Dutch (nl),
Russian (ru), and Chinese (zh). We train a model
for each language. When evaluating a target lan-
guage, the model trained on that language is not
used. The results in Table 10 provide several initial
evidence that our framework has the potential to
extend to multilingual scenarios.

5 Future Work

Unified IE and Other Tasks We conduct experi-
mental analyses with NER as a case study. Some
prior studies train a unified model for multiple
IE tasks, including NER, relation extraction (RE),
event extraction (EE), etc. Our framework can be
naturally extended to a broader IE setting by incor-
porating additional IE data to train IE experts. Ad-
ditionally, our method extends beyond these tasks
to a wide range of applications.

Detailed and Complete Design Our extended ex-
periments investigated several optimization strate-
gies. Further improvements could be realized by:

Expert Model Ours
E1 E2 E3 E4 E5

AI 56.98 57.98 56.26 48.51 55.46 60.88
Literature 65.38 65.45 55.30 56.27 62.20 67.03
Music 62.38 66.00 63.63 63.88 65.17 67.42
Politics 60.94 66.49 63.52 57.54 58.50 66.09
Science 62.56 63.31 61.38 58.23 65.72 66.75
Movie 68.75 61.97 66.58 64.68 65.02 67.98
Restaurant 44.06 34.94 49.57 50.05 43.35 52.66

Average 60.15 59.45 59.46 57.02 59.35 64.12

Table 9: Analysis of experts for non-strict domains. We
employ clustering to build five source domains and train
expert models.

Expert Model Ours
de en es nl ru zh

de – 80.69 80.75 81.00 81.74 74.99 82.42
en 72.29 – 77.10 77.51 73.08 69.18 76.84
es 86.09 87.28 – 91.30 88.46 78.85 89.67
nl 84.31 86.75 85.02 – 84.79 81.41 87.59
ru 75.91 75.68 74.44 76.93 – 61.29 78.16
zh 49.07 49.18 46.56 48.21 49.93 – 51.37

Avg 73.53 75.92 72.77 74.99 75.60 73.14 77.68

Table 10: Analysis of experts for different languages.
When evaluating a target language, the model trained
on that language is not used.

(1) Incorporating more task-specific designs. For
instance, alongside domain-level similarity, we
could also leverage entity-type similarity when
selecting source models. (2) Dynamically deter-
mining the number of merged models, k. Model
merging may be unnecessary for certain target do-
mains. As shown in Appendix B, when the tar-
get and source domains coincide, the single cor-
responding model already delivers optimal results.
Section 4.5 demonstrates that the best choice of k
varies across different target domains. Additionally,
our framework is agnostic to the model architecture
and readily extends to other model types other than
the Llama and Qwen LLM families.

6 Conclusion

We propose the Select and Merging (SaM) frame-
work for NER, which dynamically selects valuable
domain expert models for the target domain and
employs model merging to obtain the task-specific
model. Compared to prior studies, we possess su-
perior adaptability and scalability. Experimental
results demonstrate the effectiveness of our frame-
work. Extensive analysis further provides insights
into potential improvements, practical experience,
and broader extensions of our approach.
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Limitations

We acknowledge the following limitations of our
work: (1) Maintaining multiple expert models in-
troduces some additional storage overhead, despite
the use of LoRA. (2) For domain similarity calcu-
lation and clustering analysis, we simply employed
a widely used encoder model from the Hugging-
Face repository to obtain text embeddings. Further
optimization is possible. (3) Our analysis is lim-
ited to Named Entity Recognition (NER). Further
experiments are needed for other IE tasks.
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A Experimental Details

Training Data We collected 17 widely used
NER datasets and categorized them into six do-
mains based on their data sources. Table 11
presents detailed statistics for each dataset. As
described in Section 3.1, we sample these datasets
based on the proportion of their entity types while
ensuring that the total data volume per domain re-
mains between 10,000 and 50,000. The distribution
of the training data across domains is illustrated
in Figure 6, and the exact number of sampled in-
stances per dataset is listed in the “#Sampled” col-
umn of Table 11. Figure 7 and 8 show examples of
the formatted training data we constructed.

Implementation Details We adopt the Qwen2.5-
7B 3 and Llama3.1-8B 4 as foundations and train
expert models using LoRA (Hu et al., 2022). The
LoRA rank is set to 32, with three training epochs,
a batch size of 16, a learning rate of 2e− 5, and a
warmup ratio of 0.05. During LoRA training, all
linear layers are activated. We set the temperature
to 0 for LLMs when inference. All experiments are
conducted on one NVIDIA 4090 GPU.

B Data Merging or Model Merging

We use “Data Merging” to denote the prior ap-
proaches of training a unified model by integrating
data from multiple domains and “Model Merging”
to denote synthesizing a new model by merging the
parameters of expert models. This section presents
a preliminary analysis that motivates the adoption
of the model merging strategy. Specifically, we
compare three types of models: (1) Experts, which
are trained on single-domain data. (2) Data Merg-
ing, which is trained on a mixture of all domain
data. (3) Model Merging, which is obtained by
merging the parameters of all expert models.

We conduct evaluations on both in-domain and
out-of-domain settings, with the results presented
in Tables 12 and 13. Our key observations are
as follows: (1) Data Merging consistently yields
suboptimal performance in both settings. (2) In
in-domain tasks, Model Merging also performs
suboptimally and is inferior to Data Merging. (3)
In out-of-domain tasks, Model Merging generally
achieves the best performance.

The aforementioned observation is our primary
motivation for introducing model merging. For

3https://huggingface.co/Qwen/Qwen2.5-7B
4https://huggingface.co/meta-llama/Llama-3.
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Figure 6: Distribution of the training data.

in-domain tasks, directly utilizing the correspond-
ing expert model is sufficient. For out-of-domain
tasks, merging expert models improves generaliza-
tion. However, experimental results indicate that in
some cases, a single expert model performs better,
especially for in-domain tasks where merging may
be unnecessary. Combined with Section 4.5, the
number of selected experts, k, could be dynami-
cally determined, with k = 1 being a valid consid-
eration. This is a promising direction for further
enhancing the adaptability of our framework.

C Analysis of Cost

Parameter Count and Storage Cost We assume
H denotes the model dimension, r the rank of
LoRA adapters, L the number of layers, n the num-
ber of domain-specific experts, and V the vocabu-
lary size. For computational simplicity, we adopt a
simplified Transformer architecture (e.g., omitting
grouped-query attention mechanisms) in our base
models (Llama3.1 and Qwen2.5). Since our LoRA
implementation applies to all linear layers, each
domain-specific expert requires 18HrL additional
storage parameters. Consequently, storing n ex-
perts incurs a total overhead of n × 18HrL. The
base model itself requires approximately (12H2 +
13H)L + V H parameters. Given that nr ≪ H ,
the additional storage overhead remains negligible.
During inference, we merge LoRA adapters into
one or two task-specific models, achieving state-of-
the-art performance with only equivalent or dou-
bled storage costs compared to the base model.

9881

https://huggingface.co/Qwen/Qwen2.5-7B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B


Domain Dataset #Type #Train #Dev #Test #Sampled

Biomedical

AnatEM (Pyysalo and Ananiadou, 2014) 1 5,861 2,118 3,830 3,297
JNLPBA (Collier et al., 2004) 5 16,691 1,855 3,856 16,487

bc2gm (Smith et al., 2008) 1 12,500 2,500 5,000 3,297
bc4chemd (Krallinger et al., 2015) 1 30,682 30,639 26,364 3,297

bc5cdr (Li et al., 2016) 2 4,560 4,581 4,797 6,594
ncbi (Doğan et al., 2014) 1 5,432 923 940 3,297

Law E-NER (Au et al., 2022) 7 9,313 1,164 1,165 10,000

News

ACE04 (Mitchell et al., 2005) 7 6,202 745 812 9,722
ACE05 (Walker et al., 2006) 7 7,299 971 1,060 9,722
conllpp (Wang et al., 2019) 4 14,041 3,250 3,452 5,555

OntoNotes (Pradhan et al., 2013) 18 59,924 8,528 8,262 25,000

Social media

WNUT2017 (Derczynski et al., 2017) 6 3,394 1,009 1,287 6,094
HarveyNER (Chen et al., 2022) 4 3,967 1,301 1,303 4,063

BroadTweetCorpus (Derczynski et al., 2016) 3 5,334 2,001 2,000 3,047
TweetNER7 (Ushio et al., 2022) 7 7,111 886 576 7,110

STEM FabNER (Kumar and Starly, 2022) 11 9,435 2,182 2,064 10,000

Traffic FindVehicle (Guan et al., 2024) 8 21,565 20,777 20,777 21,565

Table 11: Statistics of raw training data and the number of sampled instances for training.

Biomedical Legal News Socia media STEM Traffic

Experts

Biomedical 82.57 40.02 36.61 48.09 27.27 21.05
Legal 40.40 84.79 42.36 46.90 17.92 32.48
News 53.83 48.40 85.94 48.28 23.53 41.84
Social media 53.11 41.31 42.06 66.57 24.17 22.96
STEM 28.22 16.26 22.81 23.53 76.99 24.96
Traffic 42.14 28.23 32.67 42.01 20.23 99.96

Data Merging 80.53 81.87 84.97 60.27 77.40 98.91

Model Merging 67.57 64.13 55.47 56.25 31.80 45.29

Table 12: In-domain performance of expert models, full data trained model (Data Merging), and model obtained
from merging all expert models (Model Merging).

AI Literature Music Politics Science Movie Restaurant

Experts

Biomedical 56.90 59.01 63.98 65.73 60.21 57.96 39.41
Legal 39.85 56.88 64.33 62.72 55.92 63.26 47.31
News 41.77 41.03 54.74 40.36 49.66 62.13 39.28
Social media 53.84 55.83 61.14 60.50 57.24 59.29 42.63
STEM 41.01 41.35 43.35 45.41 37.38 46.61 26.78
Traffic 49.97 50.82 62.20 64.09 53.25 65.45 52.11

Data Merging 51.38 53.46 61.12 54.99 59.39 66.66 52.69

Model Merging 57.47 61.93 64.66 60.28 61.08 69.43 47.78

Table 13: Our-of-domain performance of expert models, full data trained model (Data Merging), and model obtained
from merging all expert models (Model Merging).

Computation FLOPs Analysis Compared to
multi-task full fine-tuning (FFT), our approach uti-
lizes the same amount of training data to produce

multiple LoRA models, resulting in identical com-
putational costs during training. During inference,
however, our method employs a single task-specific
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Unified Models SaM SaMeco

InstructUIE UniNER GoLLIE B2NER Ours

Training Instances 215.9K 45.9K 165.2K 51.9K 148.1K 148.1K 148.1K
Inference Times 1× 1× 1× 1× 1× 2× 1×
Storage (Normalized) 1 1 1 1 1 1+0.02n 1+0.02n

Performance (Average) 47.84 61.79 58.39 64.57 60.94 66.24 65.49

Table 14: Comparison of Resource Requirements. We compare unified models trained across multiple domains with
our merging-based approach. SaMeco (economic) refers to integrating two task-specific models into a single one
(details in Section 4.4). For storage, we normalize the value by setting the model size to 1. Here, n represents the
number of experts. We achieve superior results with minimal additional overhead, particularly with our SaMeco.

Llama Qwen

Mode1 Mode2 Mode3 SaM(Ours) Mode1 Mode2 Mode3 SaM(Ours)

AI 60.36 58.19 61.31 60.01 54.73 55.62 57.90 60.98
Literature 56.86 62.68 58.90 61.99 60.16 59.87 63.42 66.93
Music 63.78 66.50 66.85 65.93 68.98 72.89 72.42 73.53
Politics 66.05 68.27 61.30 67.05 71.16 75.42 73.61 74.47
Science 58.37 61.73 63.12 62.41 62.19 59.58 62.78 62.60
Movie 70.66 70.66 70.50 71.65 67.07 68.91 73.44 72.17
Restaurant 52.82 52.85 52.23 52.90 51.69 51.69 54.84 52.99

Average 61.27 62.98 62.03 63.13 62.28 63.43 65.49 66.24

Table 15: Merging into a single task model. Complete experimental results of Section 4.4.

model—either derived from a single strategy or by
integrating models from both strategies—which re-
quires only one LoRA adapter. This achieves com-
parable inference costs to multi-task FFT while
delivering superior performance. When leverag-
ing models from both strategies simultaneously,
our approach incurs twice the inference cost but
further enhances performance, offering a flexible
trade-off between efficiency and effectiveness. Ta-
ble 14 compares our approach with several recent
works that train a unified model across multiple do-
mains. We compare (1) the amount of training data
(with instance-level data size provided for refer-
ence), (2) the number of inference rounds required
for model prediction, and (3) storage space require-
ments (with model size as the reference unit). We
also report the average performance.

D Experimental Supplements

Section 4.4 extracts a single expert set for merging
and presents the results based on Qwen. Here, we
supplement the results of Llama in Table 15.

Our framework is based on two perspectives:
Domain Similarity (DS) and Sampling Evaluation
(SE). The experimental section reports the overall

performance of the framework. Here, we provide
several additional experimental results regarding
these two strategies, respectively.

Section 4.5 explores the relationship between
model performance and the number of merged ex-
perts. Here, we present results for each strategy,
as shown in Figures 9 and 10. It can be seen that
the two strategies exhibit similar overall trends, but
with distinct differences. This further indicates
that both strategies are important, highlighting the
importance and complementarity of each.

Section 4.9 discusses fine-grained adaptation.
Due to the compact nature of the target domain,
this does not bring improvements and may even
reduce the performance. Here, we analyze the per-
formance of each strategy individually. As shown
in Figure 11, the Domain Similarity strategy has
a minimal impact on the subdivision (with a per-
formance difference of less than 0.2 points on av-
erage), supporting the hypothesis that the target
domain is already too homogeneous to generate
distinct splits. In contrast, Figure 12 shows sig-
nificant changes when using Sampling Evaluation,
with a general downward trend, which accounts for
the overall performance degradation.
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Input: Big # ff to @ PeckhamJohn who I have a huge amount of respect for. He knows why. 

Output:

{ "PeckhamJohn": "person" }

Query

Answer

Ta
sk

 I
ns

tr
uc

ti
on

s
Extract named entities from the given text with the correct entity labels. 

These texts are collected from Twitter social information archives.

Entity types: {'organization', 'person', 'location'}.

Below are explanations of these entity labels.

(1) organization: Covers a range of organizations, including political groups, economic
institutions, sports organizations, and media outlets.

(2) person: Personal entities, including well-known personalities and political figures.

(3) location: Pertains to names of general geographic areas and specific places, including
countries, cities, streets, and airports.

Provide your answers in the following JSON format: { "entity": "type" }.

For example:

Input: Fallen for The Fall . @ richardjgodwin asks Allan Cubitt & Gillian Anderson for the
secrets of the show 's suspense .

Output: { "richardjgodwin": "person", "Allan Cubitt": "person", "Gillian Anderson": "person"}

Input: Bet Newcastle is buzzing tonight . Congrats jakclark95 lad .

Output: { "Newcastle": "location" }

Task Description

Data Source Description

Entity Type (drop / mask)

Entity Type Description

Output Format

ICL Demonstrations

In
pu

ts
O
ur

pu
ts

Figure 7: Formatted training data example. The example consists of task instructions, inputs, and outputs for
training. For the task instructions, the Data Source Description, Entity Type drop/mask, and ICL Demonstrations
are optional, with details in section 3.1. We adopt three output formats: JSON, enumeration, and natural language
descriptions. The output format of ICL Demonstrations and Answers should be consistent with the specified.

Input: Big # ff to @ PeckhamJohn who I have a huge amount of respect for. He knows why. 

Output:

{ "PeckhamJohn": "Type1" }

Query

Answer

Ta
sk

 I
ns

tr
uc

ti
on

s
In

pu
ts

O
ur

pu
ts

Extract named entities from the given text with the correct entity labels. 

These texts are collected from Twitter social information archives.

Entity types: {'Type1'}.

Below are explanations of these entity labels.

(1) Type1: Personal entities, including well-known personalities and political figures.

Provide your answers in the following JSON format: { "entity": "type" }.

Task Description

Data Source Description

Entity Type (drop / mask)

Entity Type Description

Output Format

Figure 8: Another example of our formatted training data. The instance here is the same as that of Figure 7, adopting
the entity type drop and mask processing methods.
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57.4
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1 2 3 4 5 6
58.4
59.6
60.9

Literature

1 2 3 4 5 6
63.4
64.4
65.4

Music

1 2 3 4 5 6
60.0
62.8
65.6

Politics

1 2 3 4 5 6
60.1
61.3
62.4

Science

1 2 3 4 5 6
65.4
68.5
71.7

Movie

1 2 3 4 5 6
47.7
50.3
53.0

Restaurant

1 2 3 4 5 6
60.1
60.9
61.6

Average

Figure 9: Performance changes with the number of expert models (denotes as k). The horizontal axis is the number
of experts for merging, and the vertical denotes the entity-level F1 scores. Only using Domain Similarity for
expert selection. It can be seen that the optimal k varies across target domains, typically ranging from 2 to 4.
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AI
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Politics
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60.0
60.8
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Science
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65.0
67.7
70.5

Movie
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45.0
48.7
52.4
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59.0
60.8
62.6

Average

Figure 10: Performance changes with the number of expert models. The horizontal axis is the number of experts for
merging, and the vertical denotes the entity-level F1 scores. Only using Sampling Evaluation for expert selection.
It exhibits similar overall trends to Figure 9, but with distinct differences, indicating that both selecting strategies
are important and complementary.
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57.11
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AI

1 2 3 4 5

60.39

Literature

1 2 3 4 5
63.98
64.10
64.22

Music

1 2 3 4 5
64.11
64.35
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Politics
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60.59
61.05

Science

1 2 3 4 5
71.81
71.91
72.01

Movie

1 2 3 4 5

50.11

Restaurant
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61.33
61.50
61.67

Average

Figure 11: Performance changes with the number of data splits. The horizontal axis is the number of splits, and the
vertical denotes the entity-level F1 scores. Only using Domain Similarity for expert selection. It can be seen that
the Domain Similarity strategy has a minimal impact, since data from the target domain may be too homogeneous.
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Figure 12: Performance changes with the number of data splits. The horizontal axis is the number of splits, and
the vertical denotes the entity-level F1 scores. Only using Sampling Evaluation for expert selection. It shows
significant changes when using Sampling Evaluation, with a general downward trend.
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