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Abstract
Speculative Decoding (SD) is a promising
method for reducing the inference latency
of large language models (LLMs). A well-
designed draft model and an effective draft can-
didate tree construction method are key to en-
hancing the acceleration effect of SD. In this
paper, we first propose the Effective Draft De-
coder (EDD), which treats the LLM as a power-
ful encoder and generates more accurate draft
tokens by leveraging the encoding results as
soft prompts. Furthermore, we use KL diver-
gence instead of the standard cross-entropy loss
to better align the draft model’s output with the
LLM. Next, we introduce the Pruned Candi-
date Tree (PCT) algorithm to construct a more
efficient candidate tree. Specifically, we found
that the confidence scores predicted by the draft
model are well-calibrated with the acceptance
probability of draft tokens. Therefore, PCT es-
timates the expected time gain for each node in
the candidate tree based on confidence scores
and retains only the nodes that contribute to ac-
celeration, pruning away redundant nodes. We
conducted extensive experiments with various
LLMs across four datasets. The experimental
results verify the effectiveness of our proposed
method, which significantly improves the per-
formance of SD and reduces the inference la-
tency of LLMs.

1 Introduction

Large language models (LLMs) have achieved ex-
cellent performance in various natural language
processing tasks and have garnered much atten-
tion (OpenAI, 2023; Touvron et al., 2023; Zheng
et al., 2023). However, the autoregressive decoding
paradigm adopted by LLMs requires generating to-
kens one by one, which results in high inference la-
tency. To overcome the speed bottleneck of this se-
rial generation method, speculative decoding (SD)
has been proposed as a feasible solution (Leviathan
et al., 2022; Chen et al., 2023a). As shown in Fig-
ure 1, the primary process of SD involves quickly
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Figure 1: Comparison between autoregressive decoding
(left) and speculative decoding (right).

generating multiple draft tokens through a draft
model and then verifying whether these tokens are
accepted in parallel by a target model (LLM). This
process leverages the parallel computing capabili-
ties of devices such as GPUs, significantly reducing
inference latency. More importantly, SD is a loss-
less acceleration method that can strictly ensure the
final generated result is completely consistent with
autoregressive decoding.

Existing works on SD improvement can be di-
vided into two main directions. The first direction
focuses on enhancing the draft model (Cai et al.,
2024; Zhou et al., 2023; Elhoushi et al., 2024).
For example, MEDUSA (Cai et al., 2024) uses a
non-autoregressive approach to generate draft to-
kens, increasing the draft model’s inference speed.
DistillSpec (Zhou et al., 2023) adapts knowledge
distillation to better align the draft model with the
target model, thereby increasing the acceptance
rate of draft tokens. However, these methods treat
the draft model as an independent model and do
not utilize the results encoded by LLMs to assist
in generating draft tokens. The second direction is
to generate multiple draft candidate sequences to
improve the average acceptance length (Du et al.,
2024; Cai et al., 2024; Miao et al., 2023). For in-
stance, SpecInfer (Miao et al., 2023) constructs
a candidate tree-based speculative inference and
verification system to improve the decoding effi-
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ciency of LLMs. However, the candidate trees
constructed by previous methods contain many re-
dundant nodes, leading to unnecessary computation
and time overhead.

Therefore, in this paper, we propose new solu-
tions from the two aforementioned perspectives
to address the shortcomings of previous methods
and further improve the efficiency of SD. First, we
design an Effective Draft Decoder (EDD), which
generates subsequent draft tokens based on the en-
coding results from LLMs. LLMs have powerful
text understanding capabilities and can effectively
encode the semantic information of input sentences.
Previous studies (Kasai et al., 2020; Gu and Kong,
2020) have shown that, given a powerful encoder,
a single-layer autoregressive decoder is sufficient
to achieve excellent generation quality. Therefore,
we treat the LLM as an encoder to generate soft
prompts, which allows the EDD to obtain more
contextual information and make more accurate
predictions. In addition, unlike previous methods
(Du et al., 2024; Cai et al., 2024; Li et al., 2024b)
that use cross-entropy loss to fit the output of the
draft model to the training set, we use KL diver-
gence to directly align the probability distribution
predicted by the draft model with the target model,
thereby further improving the acceptance rate.

Second, we found that the prediction confidence
of the draft model is well-calibrated with the token
acceptance rate through experiments. Based on
this, we proposed the Pruned Candidate Tree (PCT)
algorithm, which dynamically prunes the candidate
tree according to the confidence score of the draft
tokens and intelligently determines the depth of the
tree. Specifically, we estimate the impact of each
node on the expected inference latency and remove
nodes that could increase this value, significantly
improving the final inference speed.

We chose the LLaMA2-Chat series (Touvron
et al., 2023) and the Vicuna1.5 series (Zheng et al.,
2023) LLMs as the target models and conducted
experiments on four datasets across different tasks.
The experimental results verify the effectiveness
of our method. First, EDD effectively utilizes the
information encoded by LLMs, and its predicted
results are closer to the target model. Second, the
PCT algorithm fully unleashes the potential of the
draft model and significantly increases the average
acceptance length. When combining the two, our
method achieves speedups of 3.27× and 3.38× for
LLaMA2-Chat 13B and Vicuna1.5 13B on the MT-
Bench (Zheng et al., 2023). The main contributions

of this paper are summarized as follows:

• We designed the EDD framework, which
incorporates the encoded information from
LLMs into the draft model and trains it using
the knowledge distillation method, allowing it
to better align with the target model.

• We proposed the PCT algorithm, which effec-
tively prunes candidate trees while maintain-
ing a high average acceptance length, signifi-
cantly reducing inference latency.

• Extensive experiments verify the effectiveness
of our proposed method, which can be easily
applied to various LLMs and achieves better
performance than previous SD methods.

2 Preliminaries

Speculative decoding allows autoregressive LLMs
to generate multiple tokens in a single forward
pass without compromising generation quality
(Leviathan et al., 2022). Each iteration of spec-
ulative decoding is divided into two stages: draft-
ing and verification (as shown in Figure 1). In
the drafting stage, SD uses a draft model, which is
more efficient than the target model, to generate the
subsequent m draft tokens (di+1, di+2, ..., di+m)
based on the previous content t≤i. In the veri-
fication phase, SD determines whether to accept
these draft tokens based on the prediction results
of the target model. There are two acceptance
strategies: speculative decoding and speculative
sampling, which correspond to the greedy search
and standard sampling of the target model, respec-
tively. In this work, we primarily adopt the specula-
tive decoding acceptance strategy. After inputting
t≤i and draft tokens into the target model for a
forward pass, the subsequent prediction results
(ti+1, ti+2, . . . , ti+m, ti+m+1) are obtained in par-
allel through greedy search. Among these, due to
the causal mask, the generation process of ti+1 is
identical to autoregressive decoding, so ti+1 must
be accepted. This ensures that at least one new
token is generated in each iteration. Subsequently,
SD performs judgments from left to right:

{
Accept tj , if dj−1 = tj−1

Reject tj , if dj−1 ̸= tj−1
(1)

where i+2 ≤ j ≤ i+m+1. In addition, SD only
accepts tokens before the first rejection to ensure
that the generated results are exactly the same as
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Figure 2: Overview of our proposed Effective Draft Decoder. EDD treats LLM as an encoder and uses the hidden
state of LLM as a soft prompt to generate subsequent token drafts autoregressively. To select appropriate hidden
states, we conduct hyperparameter experiments in Section 4.3.1.

the autoregressive decoding. Finally, the accepted
tokens are concatenated with the previous content
as the input for the next iteration. From the SD
generation process, it can be seen that ensuring
both the efficiency of the draft model and the ac-
ceptance rate of the generated draft tokens is the
key to reducing inference latency.

3 Method

This section introduces the two components of our
approach. In Section 3.1, we present the model
architecture and training process of the proposed
EDD. In Section 3.2, we analyze the correlation
between the predicted confidence and the accep-
tance rate, and provide the design principle and
implementation details of our PCT algorithm.

3.1 Effective Draft Decoder
Model Architecture. In this paper, we use
decoder-only LLMs as the target models, which
typically consist of an embedding layer, multiple
Transformer layers, and an LM head. The main
time consumption during the forward pass is caused
by the multiple Transformer layers. Our EDD uses
the same model structure as the LLMs but contains
only one Transformer layer. Therefore, although
it still employs autoregressive decoding, its gener-
ation speed is significantly faster than that of the
LLMs, ensuring the efficiency of the draft model.
However, the size gap between the draft model and
the target model can lead to a significant perfor-
mance gap, resulting in a low acceptance rate. As
a result, we no longer consider the draft model as
a separate model but rather as an extension mod-
ule of the LLM. Specifically, we treat the LLM

as an encoder that can effectively encode previous
content. At the same time, the draft model acts
as a decoder, generating subsequent draft tokens
based on the hidden states provided by the LLM
(as shown in Figure 2).

Previous research (Kasai et al., 2020; Gu and
Kong, 2020) has shown that, given a powerful en-
coder, even a shallow decoder can achieve excellent
generation quality. Therefore, EDD leverages the
powerful encoding capabilities of LLMs, signifi-
cantly improving model performance. In addition,
unlike GLIDE (Du et al., 2024) and EAGLE (Li
et al., 2024b), our approach uses the LLM encoding
result as a soft prompt for EDD without any modi-
fications to the draft model, ensuring consistency
between the draft and target models.

Training Strategies. We copy the parameters of
the embedding layer and LM head from the target
LLM to EDD for better initialization, and all param-
eters in EDD are updated. We train the EDD using
the standard encoder-decoder model training pro-
cess. Specifically, we first use the LLM (frozen) to
encode the input text T = (t1, t2, . . . , tn) to obtain
the hidden states H = (h1, h2, . . . , hn). Next, we
employ the teacher-forcing strategy to input both
T and H into the EDD, generating its predicted
probability distribution:

Pd(T | H) =
n∏

i=1

Pd (ti | t<i, H) (2)

However, EDD cannot obtain the encoding infor-
mation of all texts during inference and can only
generate subsequent tokens based on the previous
text. To maintain consistency with the inference
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Figure 3: (a) Example of a dual-block attention mask
where the block length L is set to 2. (b) Average accep-
tance rate of draft tokens in different confidence bins.

process, we propose a dual-block mask mechanism
for efficient training. Specifically, we divide T into
multiple blocks of length L, corresponding to the
multiple draft processes. As shown in Figure 3(a),
when the draft model predicts ti in the j-th block,
the mask ensures that the draft model can only ac-
cess the previous tokens in the j-th block and the
hidden states corresponding to blocks 0 to j − 1:

Pd(T | H) =

n∏

i=1

Pd (ti | tj∗L:i, h≤j∗L) (3)

where j =
⌊
i
L

⌋
. Since the number of accepted draft

tokens may vary in each iteration during inference,
we randomly select different block lengths for the
division at each step during the training phase to
improve the model’s robustness.

Furthermore, we found that previous methods
(Leviathan et al., 2022; Du et al., 2024) use the
standard cross-entropy loss to train the draft model,
which deviates from the actual training objective.
In the SD scenario, we prefer that the probability
distribution predicted by the draft model is consis-
tent with the target model rather than the training
data. Therefore, we use KL divergence as the train-
ing loss to force the probability distribution pre-
dicted by the EDD to be close to the target LLM:

DKL (Pt∥Pd) =
∑

x

Pt(x) log
Pt(x)

Pd(x)
(4)

where Pt is the probability distribution predicted
by the LLM, which can be obtained simultaneously
during the encoding process. Through this soft-
label knowledge distillation training method, the
EDD can learn more fine-grained information and
effectively align with the target model.

3.2 Pruned Candidate Tree
Previous works (Cai et al., 2024; Li et al., 2024b)
constructed draft candidate trees to improve the

average acceptance length. However, their candi-
date tree, constructed with a fixed width and depth,
contains many redundant nodes, resulting in unnec-
essary overhead. To address this issue, we propose
the PCT algorithm, which intelligently determines
the width and depth of the candidate tree.

Analysis. Inspired by GLIDE (Du et al., 2024),
we first explored the correlation between the draft
model’s prediction confidence (maximum probabil-
ity) and the acceptance rate through experiments.
Specifically, we trained EDD as the draft model,
used LLaMA2-Chat 13B as the target model, and
conducted experiments on the MT-Bench (Zheng
et al., 2023). We required EDD to generate a draft
sequence of length 10 each time and counted the
confidence score and acceptance rate of each draft
token1. We divided the confidence scores into 10 in-
terval bins and plotted the corresponding reliability
diagrams. As shown in Figure 3(b), the confidence
is well-calibrated (Guo et al., 2017) with the ac-
ceptance rate (Expected Calibration Error = 0.019),
showing a high positive correlation. Therefore, we
can effectively prune the candidate tree based on
the confidence score of the draft tokens.

Design Principle. We first focus on a specific
draft sequence (d1, d2, . . . , dm) in the candidate
tree. Assume that the time required for a forward
pass of the draft model and the target model is
sd and st, respectively, and that the probability of
accepting the j-th draft token dj is pj . So, the ex-
pected time gain from performing the j-th drafting
step can then be evaluated as follows:

(1− pj) ·(st + sd)+pj ·sd−st = sd−pj ·st (5)

Therefore, if pj < sd/st, the j-th drafting step is
more likely to increase the inference latency and
should not be executed. Note that dj is accepted,
meaning that it and all the draft tokens before it are
accepted: pj =

∏j
i=1 ai, where ai represents the

probability of each token being accepted indepen-
dently. Furthermore, the results of the above anal-
ysis experiment show that the confidence output
by the draft model is well-calibrated with the inde-
pendent acceptance rate, so pj ≈ ∏j

i=1 ci, where
ci represents the confidence score of each draft to-
ken. Therefore, we can estimate the acceptance
probability of each node and effectively prune the
candidate tree.

1Tokens after the first rejection are not included to ensure
independence.
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Figure 4: An example of PCT implementation, where
sd/st = 0.1, and leaf nodes with an overall acceptance
confidence less than 0.05 are removed.

Implementation Details. Figure 4 shows an ex-
ample of the PCT construction process. First, the
draft model predicts the top-k child nodes based
on the expandable nodes from the previous layer
to form the current layer. Then, PCT calculates the
acceptance confidence of each node in the current
layer and marks the nodes with an overall accep-
tance confidence less than sd/st to prevent them
from being used in the next layer’s node genera-
tion. Finally, the construction process terminates
if there are no expandable leaf nodes or the tree
depth reaches the maximum depth. Additionally,
we remove leaf nodes whose overall acceptance
confidence is below a given threshold, further re-
ducing the number of nodes. Finally, we flatten the
candidate tree into a one-dimensional sequence and
construct a specific tree attention mask (Cai et al.,
2024) for the LLM to verify the entire candidate
tree in parallel. The recently proposed EAGLE-2
(Li et al., 2024a) is similar to our approach, but
the depth used in its candidate tree construction
process is fixed. In contrast, our PCT algorithm
can adaptively determine the depth of the candi-
date tree based on the expected time gain at each
step in the drafting process, effectively reducing
unnecessary computational overhead.

4 Experiments

In this section, we verify the effectiveness of our
proposed method on different datasets and LLMs.
We first introduce our experimental setup in Section
4.1, then report the main results in Section 4.2.
Analysis experiments are presented in Section 4.3.

4.1 Experimental Setup
Models and Datasets. We selected two widely
used LLMs, LLaMA2-Chat (7B, 13B) (Touvron
et al., 2023) and Vicuna1.5 (7B, 13B) (Zheng et al.,
2023), as the target models for our experiments.

Our EDD uses the exact same architecture as the
target models but contains only one Transformer
layer. Similar to previous methods (Du et al., 2024;
Cai et al., 2024; Li et al., 2024b), we train the
draft models on the ShareGPT (ShareGPT, 2023)
dataset. To comprehensively evaluate our method,
we selected four datasets from different tasks: MT-
Bench (Zheng et al., 2023) for multi-turn dialogue,
GSM8k (Cobbe et al., 2021) for mathematical rea-
soning, CNN/DM (See et al., 2017) for abstractive
summarization, and HumanEval (Chen et al., 2021)
for code generation. For CNN/DM, we randomly
selected 1,000 samples from its test set for our ex-
periments.

Baselines To verify the effectiveness of our
method, we selected various baselines for com-
parison. The baselines for our EDD model include:

1. Vanilla Draft Model (VDM) (Leviathan et al.,
2022): Trains an autoregressive draft model
independently without utilizing the encoding
information of LLMs.

2. MEDUSA-1 (Cai et al., 2024): Adds ad-
ditional decoding heads to LLM for non-
autoregressive decoding. During training, the
parameters of the LLMs are frozen, and only
the decoding heads are fine-tuned.

3. EAGLE (Li et al., 2024b): The draft model
performs autoregressive decoding at the fea-
ture level of LLMs.

Because previous works (Leviathan et al., 2022;
Cai et al., 2024; Li et al., 2024b) have found that
setting the draft sequence length to 5 can achieve
good performance in their methods. Therefore, for
a fair comparison, we set the sequence length gen-
erated by each iteration of all draft models to 5.
Additionally, we selected three different candidate
tree construction methods as baselines for compari-
son with PCT:

1. Vanilla Candidate Tree (VCT): Uses fixed
width and depth to construct candidate trees.
We set the node expansion width to 3 and the
tree depth to 5.

2. CAPE (Du et al., 2024): Selects different pre-
set expansion sizes based on the draft model’s
confidence scores to construct candidate trees.
Following the original paper, we fix the candi-
date tree depth to 5, with the expansion width
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of each layer set to 7, 5, 3, and 1 for confi-
dence score levels in the ranges of (0, 0.3],
(0.3, 0.6], (0.6, 0.8], and (0.8, 1], respectively.

3. EAGLE-2 (Li et al., 2024a): Re-ranks the
nodes of the candidate tree by confidence and
retains the top-k nodes. Following the original
paper, we set the total number of draft tokens
to 50, with a draft tree depth of 6, and select
10 nodes during the expansion phase.

For a fair comparison, all baselines were re-
implemented in our experimental environment.

Implementation Details We conducted experi-
ments on NVIDIA RTX A6000 48GB GPUs. Dur-
ing training, we randomly sampled block lengths
ranging from 5 to 10 at each step to divide the
input text. The hidden states of the fourth-to-last
layer of LLMs were used as the encoding result
for EDD. We set the batch size to 8, the learning
rate to 1e-4, and used AdamW (Kingma and Ba,
2014) to optimize the model parameters. The draft
model was trained for only one epoch, and we kept
the final checkpoint. We set the temperature to 0
for greedy decoding in the inference phase. The
expansion width of each node in the PCT was set to
5, and the maximum depth was set to 10. Addition-
ally, we calculated the average time required for
one forward pass of both target models and draft
models for PCT construction (7B: 1.1ms/29.8ms,
13B: 1.4ms/50.1ms) and removed leaf nodes whose
overall acceptance confidence was less than 0.01.
Our evaluation focused on the scenario with a batch
size of 1, representing the use case where LLMs
are locally hosted for personal use.

Metrics. Since SD can achieve lossless acceler-
ation, we do not need to evaluate the quality of
the generated results. We use three metrics to as-
sess the acceleration effect of different methods:
(1) Walltime speedup: The actual speedup ratio
relative to autoregressive decoding, which may be
affected by different operating environments. (2)
Acceptance rate α: The average acceptance ratio
of draft tokens. When using draft candidate trees,
the acceptance rate is calculated by dividing the
final accepted sequence length by the maximum
depth of the candidate tree. A higher acceptance
rate indicates that the output of the draft model is
more consistent with the target model. (3) Average
acceptance length τ : The average number of new
tokens generated in each iteration. If the time con-
sumed by the drafting process is the same, a larger

τ indicates a better acceleration effect. Both α and
τ are not affected by hardware configuration and
provide a more objective evaluation.

4.2 Main Results
The main experimental results are shown in Table
1 and Table 2. More experimental results when
temperature=1 are shown in the Table 4 and Table
5. Our proposed EDD and PCT methods effectively
improve the acceleration effect of SD and achieve
better performance than the baselines.

First, compared to other draft models, EDD gen-
erates results closer to the target model. Specif-
ically, when compared with VDM, EDD signif-
icantly improves the average acceptance length,
indicating that EDD can make full use of the encod-
ing information from the LLM to enhance model
performance. MEDUSA-1 improves the generation
speed of draft tokens through non-autoregressive
decoding, but its average acceptance rate is low, so
its speedup ratio is similar to that of VDM. Further-
more, EDD even outperforms the strong baseline,
EAGLE. We believe this may be because EDD is
more consistent with the target model, and using
KL divergence during training helps align its output
better with the target model.

Second, PCT can efficiently construct candidate
trees and achieve faster inference speeds than base-
line methods. In particular, VDM can achieve a
high acceptance rate, but its large number of nodes
increases inference latency. Although CAPE can
automatically determine the number of nodes in
each layer of the candidate tree, it only expands
based on the top-1 node each time, resulting in
decreased candidate diversity. Moreover, while
EAGLE-2 re-ranks and filters nodes based on con-
fidence scores, the number of nodes and the tree
depth still remain fixed. In contrast, our method
adaptively determines the width and depth based
on the expected time gain at each node, effectively
reducing redundant calculations.

Finally, combining EDD with PCT can achieve
excellent acceleration effects. As shown in Table
2, our method can achieve a walltime speedup of
2.04x-3.62x across different datasets, with the best
performance on HumanEval and the worst perfor-
mance on CNN/DM. We believe this is because
the code generation task follows a fixed template,
which reduces the difficulty of draft token genera-
tion. In contrast, the texts in CNN/DM are more
diverse, making the generated drafts more different
from the target tokens. In addition, our method
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MT-bench GSM8K CNN/DM HumanEval

Model Method Speedup α τ Speedup α τ Speedup α τ Speedup α τ

LLaMA2-Chat 7B

VDM 1.49x 0.39 1.96 1.37x 0.36 1.80 1.11x 0.30 1.51 1.69x 0.40 2.15
MEDUSA-1 1.48x 0.34 1.71 1.40x 0.33 1.63 1.20x 0.28 1.41 1.78x 0.39 1.97
EAGLE 1.82x 0.50 2.50 1.75x 0.51 2.54 1.50x 0.38 1.92 2.01x 0.55 2.73
EDD 1.97x 0.55 2.73 1.83x 0.51 2.57 1.58x 0.41 2.06 2.09x 0.57 2.87

LLaMA2-Chat 13B

VDM 1.53x 0.39 1.95 1.44x 0.37 1.84 1.14x 0.30 1.52 1.68x 0.40 2.03
MEDUSA-1 1.59x 0.36 1.71 1.46x 0.32 1.58 1.26x 0.28 1.40 1.72x 0.38 1.91
EAGLE 1.95x 0.53 2.66 1.99x 0.51 2.54 1.48x 0.41 2.04 2.09x 0.55 2.75
EDD 2.03x 0.54 2.68 2.08x 0.54 2.68 1.61x 0.42 2.10 2.16x 0.57 2.86

Vicuna1.5 7B

VDM 1.53x 0.40 2.02 1.37x 0.37 1.83 1.11x 0.30 1.51 1.69x 0.41 2.06
MEDUSA-1 1.58x 0.36 1.81 1.37x 0.33 1.63 1.17x 0.28 1.41 1.81x 0.41 2.06
EAGLE 1.91x 0.54 2.70 1.73x 0.49 2.44 1.45x 0.36 1.81 1.89x 0.52 2.60
EDD 2.00x 0.55 2.77 1.81x 0.51 2.54 1.58x 0.41 2.05 2.00x 0.55 2.77

Vicuna1.5 13B

VDM 1.58x 0.40 2.01 1.43x 0.37 1.83 1.14x 0.30 1.49 1.72x 0.43 2.13
MEDUSA-1 1.66x 0.38 1.91 1.47x 0.33 1.63 1.24x 0.28 1.39 1.80x 0.39 1.95
EAGLE 2.01x 0.54 2.68 1.68x 0.47 2.34 1.36x 0.38 1.90 1.83x 0.51 2.55
EDD 2.08x 0.56 2.80 1.80x 0.49 2.46 1.60x 0.42 2.09 1.95x 0.53 2.63

Table 1: Performance comparison of our proposed EDD and the baseline draft model. In each draft stage, we allow
the draft model to generate a draft sequence of length 5 using greedy search. VDM denotes the vanilla draft model,
which has the same model structure as EDD but does not utilize encoding information from LLMs. For a fair
comparison, all baselines were re-implemented in our experimental environment.

achieves better speedup on larger LLMs because
the speed difference between the draft model and
the target model is greater. In the future, we will
verify our method on even larger models.

4.3 Analysis
4.3.1 Impact of Hyperparameters
We explore the impact of different hyperparame-
ter settings on our method by conducting experi-
ments on 1,000 samples randomly selected from
the GSM8k training set.

Impact of Hidden States. The hidden states at
different layers of LLMs contain varying types of
information (Men et al., 2024; Jin et al., 2024).
We use LLaMA2-Chat 7B as the target model and
explore the effects of its hidden states at different
layers on EDD. The experimental results are shown
in Figure 5. When using hidden states from the last
layer or shallow intermediate layers, the average
acceptance length is relatively low, as these lay-
ers tend to overemphasize either global or local
information. Moreover, the best performance is
achieved when using the hidden states from the
28th (fourth-to-last) layer, indicating that the infor-
mation encoded in this layer provides effective as-
sistance for the draft decoding process. Therefore,
we utilize the hidden states from the fourth-to-last
layer as the encoding results of the LLMs.

Impact of Node Expansion Width. The expan-
sion width of each node significantly affects the

Figure 5: The impact of hidden states at different layers
of LLMs on EDD performance.

construction of the candidate tree, so we conducted
experiments to explore the impact of different node
expansion widths on our PCT method. As shown
in Figure 6, when the node expansion width is
less than 5, both the average acceptance length
and the average number of nodes increase as the
width grows. However, when the node expansion
width exceeds 5, its effect on PCT becomes neg-
ligible. These experimental results demonstrate
that PCT can effectively prune candidate trees and
remove redundant nodes. More importantly, com-
pared to EAGLE-2, PCT contains only about half
the number of nodes while achieving a competitive
average acceptance length. This shows that PCT
accurately retains the truly valuable nodes through
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MT-bench GSM8K CNN/DM HumanEval

Model Method Speedup α τ Speedup α τ Speedup α τ Speedup α τ

LLaMA2-Chat 7B

VCT 2.49x 0.71 3.56 2.36x 0.69 3.44 1.76x 0.50 2.53 2.83x 0.78 3.91
CAPE 2.56x 0.67 3.35 2.38x 0.63 3.13 1.83x 0.49 2.47 2.93x 0.74 3.71
EAGLE-2 2.87x 0.67 3.99 2.68x 0.64 3.83 1.91x 0.46 2.77 3.13x 0.72 4.31
PCT 3.04x 0.74 3.99 2.87x 0.72 3.80 2.04x 0.69 2.74 3.35x 0.75 4.49

LLaMA2-Chat 13B

VCT 2.63x 0.74 3.71 2.97x 0.72 3.61 1.86x 0.51 2.53 3.13x 0.78 3.88
CAPE 2.68x 0.71 3.53 3.07x 0.70 3.52 1.81x 0.47 2.35 3.15x 0.73 3.66
EAGLE-2 3.08x 0.69 4.15 3.27x 0.71 4.24 2.27x 0.53 3.15 3.35x 0.71 4.26
PCT 3.27x 0.75 4.13 3.49x 0.75 4.24 2.39x 0.70 3.03 3.62x 0.74 4.39

Vicuna1.5 7B

VCT 2.51x 0.72 3.59 2.43x 0.71 3.54 1.78x 0.51 2.55 2.80x 0.78 3.90
CAPE 2.56x 0.67 3.37 2.36x 0.62 3.09 1.83x 0.50 2.49 2.90x 0.72 3.62
EAGLE-2 3.01x 0.70 4.20 2.70x 0.65 3.88 2.03x 0.47 2.80 3.05x 0.70 4.19
PCT 3.08x 0.74 4.09 2.95x 0.74 3.89 2.04x 0.70 2.70 3.30x 0.72 4.22

Vicuna1.5 13B

VCT 2.76x 0.75 3.77 2.51x 0.64 3.19 1.92x 0.51 2.53 2.93x 0.72 3.58
CAPE 2.78x 0.73 3.65 2.57x 0.58 2.92 1.97x 0.49 2.45 2.99x 0.71 3.56
EAGLE-2 3.17x 0.73 4.35 2.77x 0.64 3.82 2.17x 0.50 3.01 3.15x 0.69 4.12
PCT 3.38x 0.75 4.36 2.89x 0.70 3.72 2.33x 0.70 2.84 3.32x 0.72 4.07

Table 2: The performance of our proposed PCT and baseline candidate tree construction methods on the EDD. VCT
represents the vanilla candidate tree, where the node expansion width is fixed at 3, and the tree depth is fixed at
5. For CAPE (Du et al., 2024) and EAGLE-2 (Li et al., 2024a), we conduct experiments following the settings
described in their original papers.

Figure 6: The influence of node expansion width on the
average acceptance length and the average number of
nodes in the PCT method.

the expected time gain at each step.

4.3.2 Ablation Study
We conduct ablation experiments based on
LLaMA2-Chat 7B to verify the effectiveness of
each proposed module. Specifically, we compare
several variants of our method: (1) w/o encoding
result: the draft model does not use the encoding
results of the LLM; (2) w/o KL divergence: the
standard cross-entropy loss is used for training; (3)
w/o random division length: the block length is
fixed to 5 during training; (4) w/o expected time
gain: the expected time gain is not estimated, and
confidence score is directly used to prune the candi-
date tree; (5) w/o removing leaf nodes: leaf nodes

whose overall acceptance confidence is lower than
the threshold are not removed.

The experimental results are shown in Table 3.
As we can see, removing any module causes a
decline in the performance of our method. First,
not using encoding results leads to significant per-
formance degradation. This indicates that the en-
coding results from the LLM improve the perfor-
mance of EDD, enabling it to generate more accu-
rate draft tokens. Additionally, KL divergence and
random block division length further enhance the
EDD training process. Second, directly using confi-
dence to prune candidate trees significantly reduces
both the average acceptance rate and the average
acceptance length. This demonstrates that expected
time gain is a better node evaluation criterion, ef-
fectively retaining valuable nodes. Third, failing
to delete redundant leaf nodes leads to a decreased
speedup ratio. Although this variant does not affect
the average acceptance length, it introduces more
nodes during the verification phase and increases
latency. Due to space constraints, more analysis is
presented in Appendix A.

5 Related Work

Significant efforts have been made to improve the
efficiency of LLMs, including techniques such as
knowledge distillation (Yang et al., 2023; Chen
et al., 2023b), pruning (Sun et al., 2023; Yin et al.),
quantization (Lin et al., 2024; Yao et al., 2024), and
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Method Speedup α τ

EDD+PCT 3.04x 0.74 3.99

w/o encoding result 2.58x 0.55 3.04
w/o KL divergence 2.86x 0.67 3.60
w/o random division length 2.95x 0.69 3.72
w/o expected time gain 2.73x 0.58 3.45
w/o remove leaf nodes 2.95x 0.74 3.99

Table 3: Ablation study of our method on MT-bench.

early exit (Chen et al., 2023c; Zeng et al., 2024).
However, these methods can only improve the for-
ward pass speed of LLMs and do not address the
speed bottleneck of autoregressive decoding.

To enable LLMs to generate multiple tokens in a
single forward pass, SD was proposed (Leviathan
et al., 2022). This approach uses a draft model to
quickly generate multiple tokens, which are then
verified in parallel using LLMs. The performance
of SD is primarily determined by the efficiency of
the draft model and the acceptance rate of the draft
tokens. Therefore, improving the acceptance rate
while maintaining the generation speed of the draft
model is key to optimizing the SD method.

The vanilla SD method trains a separate autore-
gressive model that is much smaller than LLMs
to generate draft tokens quickly. However, there
is a significant gap between the performance of
vanilla draft models and LLMs, resulting in a low
acceptance rate. Medusa (Cai et al., 2024) adds
additional decoding heads to LLMs to generate
multiple future tokens in parallel. However, this
non-autoregressive generation method suffers from
the multimodality problem (Gu et al., 2017), which
affects the acceptance rate. Another line of work
uses the substructure of LLMs as the draft model to
achieve self-speculative decoding (Elhoushi et al.,
2024; Liu et al., 2024; Xia et al., 2024). Although
these methods can achieve a high acceptance rate,
the inference speed of the draft model is slow, lead-
ing to an insignificant acceleration effect. Unlike
the above methods, EDD fully leverages the en-
coding ability of LLMs and uses KL divergence
to align with LLMs, enabling it to generate draft
tokens accurately with a tiny model size.

On the other hand, previous works have shown
that predicting multiple candidate sequences to con-
struct a draft candidate tree can significantly im-
prove the acceptance rate (Du et al., 2024; Cai et al.,
2024; Li et al., 2024a; Miao et al., 2023; Guan et al.,
2024). However, these methods typically generate
candidate trees based on fixed widths and depths,

resulting in many redundant nodes that increase
latency during the draft and verification phases. To
address this issue, we propose the PCT algorithm,
which effectively prunes candidate trees based on
expected time gain, reducing redundant time over-
head while maintaining a high acceptance rate.

6 Conclusion

This paper proposes two methods to improve the ac-
celeration effect of speculative decoding, focusing
on draft model design and candidate tree construc-
tion. First, we design the EDD, which treats the
LLM as an encoder and uses its encoding results as
soft prompts to help generate more accurate draft
tokens. Second, we propose the PCT algorithm,
which estimates the expected time gain of each
node based on confidence and effectively prunes
candidate trees. Experimental results verify the
effectiveness of our method, which significantly
improves the performance of speculative decoding.

7 Limitations

Although our method can significantly improve the
acceleration effect of speculative decoding, it also
has some limitations.

First, the proposed EDD needs to be trained. Ad-
ditionally, since EDD relies on the encoding results
of LLMs, this further increases the training time.
However, the required computational overhead for
training remains acceptable because EDD is very
small.

Second, similar to previous speculative decoding
methods, our approach is more suitable for scenar-
ios with a batch size of 1. We believe that LLMs
will be more widely deployed on personal devices
in the future, so our method still holds great poten-
tial for application.

Third, we have not yet verified the effectiveness
of our method on larger LLMs. In the future, we
will conduct experiments on a broader range of
LLMs to explore whether our method can achieve
better acceleration effects with larger models.
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A More Analysis

A.1 Number of Nodes on Different Tasks
Our PCT algorithm can adaptively prune candi-
date trees. Therefore, we conducted experiments
on LLaMA2-Chat 7B to explore whether the num-
ber of nodes in the candidate trees constructed by
PCT varies across different task categories in the
MT-bench. As shown in Figure 7, PCT constructs
candidate trees of appropriate sizes based on di-
verse inputs. Specifically, PCT can distinguish the
difficulty of tasks and reserve more nodes for tasks
where draft tokens are more likely to be accepted,
thereby improving the average acceptance length.
Furthermore, for different inputs within the same
task category, PCT still generates candidate trees
with significant variations in the number of nodes.
These experimental results demonstrate that our
PCT method can effectively screen each node by
estimating its expected time gain, overcoming the
limitation of previous methods that generate a fixed
number of nodes for any input.

A.2 Case Study
We display generation examples of Vanilla SD and
our approach in Table 6. It can be seen that Vanilla
SD generates only a few tokens per iteration, re-
sulting in a poor acceleration effect. This result
shows the significant gap between the performance
of the vanilla draft model and the LLM, making it
challenging to align its output with that of the LLM.
In contrast, EDD generates multiple tokens per it-
eration, demonstrating its ability to leverage the en-
coding information from the LLM to significantly
improve the quality of draft tokens. Furthermore,
combining PCT with EDD can further enhance per-
formance, enabling the LLM to generate nearly
100 tokens in just a dozen iterations.
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MT-bench GSM8K CNN/DM HumanEval

Model Method Speedup α τ Speedup α τ Speedup α τ Speedup α τ

LLaMA2-Chat 7B

VDM 1.30x 0.34 1.70 1.31x 0.32 1.60 1.05x 0.26 1.30 1.58x 0.34 1.70
MEDUSA-1 1.39x 0.32 1.60 1.35x 0.31 1.55 1.17x 0.27 1.35 1.71x 0.36 1.81
EAGLE 1.77x 0.46 2.30 1.66x 0.50 2.50 1.45x 0.35 1.75 1.91x 0.50 2.50
EDD 1.87x 0.51 2.55 1.75x 0.51 2.51 1.53x 0.39 1.95 2.02x 0.55 2.75

LLaMA2-Chat 13B

VDM 1.39x 0.36 1.78 1.40x 0.36 1.96 1.14x 0.31 1.56 1.63x 0.39 1.95
MEDUSA-1 1.46x 0.31 1.53 1.39x 0.30 1.50 1.24x 0.27 1.36 1.67x 0.36 1.78
EAGLE 1.85x 0.50 2.51 1.86x 0.48 2.41 1.45x 0.40 2.00 2.03x 0.53 2.65
EDD 1.93x 0.51 2.56 2.01x 0.52 2.60 1.53x 0.42 2.10 2.10x 0.55 2.75

Vicuna1.5 7B

VDM 1.50x 0.40 2.00 1.33x 0.36 1.80 1.12x 0.31 1.55 1.55x 0.42 2.10
MEDUSA-1 1.56x 0.35 1.75 1.37x 0.34 1.70 1.17x 0.28 1.48 1.78x 0.40 2.01
EAGLE 1.85x 0.52 2.60 1.69x 0.49 2.44 1.44x 0.35 1.75 1.80x 0.51 2.55
EDD 2.01x 0.55 2.75 1.78x 0.51 2.55 1.55x 0.40 2.01 1.99x 0.55 2.76

Vicuna1.5 13B

VDM 1.51x 0.38 1.91 1.40x 0.36 1.80 1.10x 0.29 1.45 1.64x 0.41 2.05
MEDUSA-1 1.64x 0.37 1.85 1.46x 0.33 1.65 1.22x 0.28 1.40 1.77x 0.39 1.95
EAGLE 1.95x 0.53 2.65 1.62x 0.46 2.30 1.33x 0.38 1.89 1.80x 0.50 2.49
EDD 2.03x 0.55 2.75 1.77x 0.50 2.48 1.53x 0.51 2.55 1.94x 0.52 2.62

Table 4: Performance comparison of our proposed EDD and the baseline draft model when temperature=1.

MT-bench GSM8K CNN/DM HumanEval

Model Method Speedup α τ Speedup α τ Speedup α τ Speedup α τ

LLaMA2-Chat 7B

VCT 2.30x 0.68 3.40 2.23x 0.65 3.25 1.66x 0.48 2.42 2.75x 0.77 3.86
CAPE 2.39x 0.65 3.24 2.30x 0.61 3.03 1.70x 0.46 2.32 2.88x 0.70 3.51
EAGLE-2 2.67x 0.65 3.90 2.53x 0.61 3.65 1.83x 0.43 2.58 3.00x 0.70 4.20
PCT 2.91x 0.72 3.87 2.76x 0.70 3.60 1.96x 0.67 2.58 3.15x 0.71 4.31

LLaMA2-Chat 13B

VCT 2.40x 0.68 3.39 2.89x 0.69 3.45 1.70x 0.49 2.46 3.01x 0.75 3.75
CAPE 2.51x 0.66 3.31 2.93x 0.68 3.40 1.71x 0.45 2.25 3.08x 0.70 3.51
EAGLE-2 2.89x 0.66 3.95 3.08x 0.68 4.08 2.11x 0.50 3.02 3.19x 0.69 4.16
PCT 3.10x 0.72 3.94 3.25x 0.73 4.04 2.24x 0.67 3.01 3.33x 0.71 4.18

Vicuna1.5 7B

VCT 2.34x 0.69 3.46 2.30x 0.68 3.40 1.68x 0.50 2.49 2.66x 0.75 3.75
CAPE 2.41x 0.64 3.22 2.30x 0.60 2.99 1.77x 0.49 2.45 2.73x 0.70 3.52
EAGLE-2 2.95x 0.67 4.02 2.61x 0.63 3.78 1.95x 0.45 2.70 3.01x 0.69 4.15
PCT 3.02x 0.72 4.02 2.83x 0.72 3.70 2.01x 0.70 2.63 3.11x 0.69 4.20

Vicuna1.5 13B

VCT 2.66x 0.73 3.66 2.45x 0.63 3.15 1.81x 0.49 2.45 2.85x 0.71 3.49
CAPE 2.73x 0.71 3.55 2.47x 0.57 2.83 1.89x 0.49 2.44 2.88x 0.69 3.47
EAGLE-2 3.13x 0.70 4.22 2.61x 0.61 3.68 2.11x 0.49 2.95 3.03x 0.66 3.97
PCT 3.30x 0.74 4.23 2.75x 0.67 3.72 2.27x 0.70 2.75 3.29x 0.70 4.06

Table 5: The performance of PCT and other candidate tree construction methods on the EDD when temperature=1.

Figure 7: Average acceptance length (left) and distribution of PCT node numbers (right) on different task categories
of MT-bench. For simplicity, we do not plot the outliers in the box plots.
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Input Please describe the concept of machine learning. Could you elaborate on the differences between
supervised, unsupervised, and reinforcement learning? Provide real-world examples of each.

Vanilla SD Machine learning / is a / subfield / of artificial / intelligence ( / AI) / that involves / the use of algorithms
/ and statistical / models to enable / machines / to learn from data / , make decisions / , and improve /
their / performance on / a / specific / task over time / . Machine learning algorithms / are designed to
recognize / patterns / and relationships in data /, and use / this information / to make predictions / or /
decisions without / being explicitly / programmed / to do so. / There are three main types / of machine
learning: / super/ vised learning, un / supervised learning, / and rein / forcement learning. · · ·

EDD Machine learning is a / subfield of artificial / intelligence ( / AI) that involves the / use / of algorithms
and / statistical models to enable / machines to learn from / data, make / decisions, and improve / their
performance on a / specific task over / time. Machine / learning algorithms / are designed to / recognize
/ patterns and relationships / in data, / and use this / information to / make predictions / or decisions /
without being explicitly / programmed to do so. / There are three / main types of machine learn / ing:
super / vised learning, un / supervised learning, / and rein / forcement learning. · · ·

EDD + PCT Machine learning is a subfield of artificial intelligence / (AI) that involves the use / of algorithms and
statistical / models to enable / machines to learn from data / , make decisions / , and improve their
performance on a / specific task over time. / Machine learning algorithms are designed to / recognize
patterns and relationships / in data, and use / this information to make predictions or / decisions without /
being explicitly programmed to do so. / There are three main types / of machine learning: super / vised
learning, unsupervised learning, / and reinforcement learning. · · ·

Input The city of Vega intends to build a bridge that will span the Vegona River, covering a distance of 1.8
kilometers. The proposed location falls within a seismically active area that has experienced several
high-magnitude earthquakes. Given these circumstances, what would be the best approach to constructing
the bridge?

Vanilla SD Building / a struct / ural engineer / , I would / recommend / the following / approach to / construct / the
bridge / in / a seismically / active area: / 1. Site / -specific / seismic / ha / zard assessment: / Conduct a /
thorough analysis of / the / seismic hazard / at the / proposed bridge / location, / including / an assessment
of / the maximum / expected / earthquake magnitude / , peak / ground acceleration, / and response spectra
/ . This will / help determine the / appropriate / design and / construction / methods / to ensure the /
bridge can / withstand / seismic / forces. · · ·

EDD Building / a struc / tural engineer, / I would / recommend the following / approach / to construct the
bridge in a / seismically / active / area: / 1. Site / -specific seismic ha / zard assessment: / Conduct a
thorough analysis / of the / seismic hazard / at the proposed / bridge location, / including an assessment /
of the maximum / expected earthquake / magnitude, / peak ground / acceleration, / and response spectra.
/ This will help determine / the appropriate design and / construction / methods to ensure / the bridge can
withstand / seismic forces. · · ·

EDD + PCT Building a struct / ural engineer, I would recommend / the following approach to construct / the bridge in
/ a seismically active area: / 1. Site-specific seismic ha / zard assessment: Conduct a thorough / analysis
of the seismic hazard at / the proposed bridge location, / including an assessment of the maximum /
expected / earthquake magnitude / , peak ground / acceleration, and response spect/ ra. / This will help
determine / the appropriate design and / construction methods to ensure / the bridge can / withstand
seismic forces. · · ·

Input Imagine you are participating in a race with a group of people. If you have just overtaken the second
person, what’s your current position? Where is the person you just overtook?

Vanilla SD Great, / an exciting race / ! / Let / ’m see / ... / just / as I overto / ok the / second / person, / the race, / my
/ position has / now become / 2nd / place. / The / person / I / just / overto / ok is / now in / 3rd place.

EDD Great, / an exciting race / ! / Let’m see / ... / just / as I overto / ok the second person / , the race / , my
position has / now become / 2nd place. The / person / I just overto / ok is now in 3rd / place.

EDD + PCT Great, an exciting / race! Let’m see... / just as I over / took the second person, the race / , my / position
has now become / 2nd place. The person / I just overtook is / now in 3rd place.

Table 6: Examples from MT-bench for our method and Vanilla SD. The target model is LLaMA2-Chat 7B. We
employ / to divide the content generated by each iteration.
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