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Abstract

Recent work in computational psycholinguis-
tics has revealed intriguing parallels between
attention mechanisms and human memory re-
trieval, focusing primarily on vanilla Trans-
formers that operate on token-level representa-
tions. However, computational psycholinguis-
tic research has also established that syntactic
structures provide compelling explanations for
human sentence processing that token-level fac-
tors cannot fully account for. In this paper, we
investigate whether the attention mechanism of
Transformer Grammar (TG), which uniquely
operates on syntactic structures as representa-
tional units, can serve as a cognitive model
of human memory retrieval, using Normalized
Attention Entropy (NAE) as a linking hypoth-
esis between models and humans. Our experi-
ments demonstrate that TG’s attention achieves
superior predictive power for self-paced read-
ing times compared to vanilla Transformer’s,
with further analyses revealing independent
contributions from both models. These find-
ings suggest that human sentence processing
involves dual memory representations—one
based on syntactic structures and another on
token sequences—with attention serving as the
general memory retrieval algorithm, while high-
lighting the importance of incorporating syn-
tactic structures as representational units.

1 Introduction

Whether language models (LMs) developed in nat-
ural language processing (NLP) are plausible as
cognitive models of human sentence processing
is a central question in computational psycholin-
guistics. Over the past two decades, this ques-
tion has been primarily addressed from the per-
spective of expectation-based theories—one of the
two major classes of human sentence processing
theory—examining whether LMs’ next-token pre-
diction can serve as a model of human predictive
processing (Hale, 2001; Levy, 2008; Wilcox et al.,
2020; Merkx and Frank, 2021; inter alia).

The recent success of Transformers (Vaswani
et al., 2017) in NLP has unexpectedly opened a
new avenue of investigation from the perspective
of memory-based theories, the other major class
of sentence processing theory. Researchers have
proposed that the attention mechanism, despite
its engineering origins, can implement a human
memory retrieval theory known as cue-based re-
trieval (Van Dyke and Lewis, 2003). Recent stud-
ies have revealed intriguing parallels between the
weighted reference patterns exhibited by the at-
tention mechanism and the elements that humans
may retrieve during online sentence comprehen-
sion (Ryu and Lewis, 2021; Oh and Schuler, 2022;
Timkey and Linzen, 2023).

Computational psycholinguistics has also estab-
lished that human sentence processing cannot be
fully explained by token-level factors; rather, syn-
tactic structures have provided compelling expla-
nations for it. For instance, next-token predic-
tion from LMs that explicitly incorporate syntac-
tic structure building demonstrates superior per-
formance in accounting for human brain activity
compared to vanilla RNNs and Transformers (Hale
et al., 2018; Wolfman et al., 2024); the number
of syntactic nodes hypothesized to be constructed
per word correlates significantly with both reading
times and neural activity patterns (Kajikawa et al.,
2024; Brennan et al., 2012).

Given these findings, if attention can serve as
a general algorithm for memory retrieval in hu-
man sentence processing, human memory retrieval
should be captured by the attention mechanism
operating on syntactic structures as well as that op-
erating on token sequences. In this paper, we inves-
tigate whether the attention mechanism of Trans-
former Grammar (TG; Sartran et al., 2022), which
uniquely operates on syntactic structures as repre-
sentational units, can serve as a cognitive model of
human memory retrieval, using Normalized Atten-
tion Entropy (NAE; Oh and Schuler, 2022) as the
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linking hypothesis between models and humans.
Our experiments demonstrate that TG’s attention
achieves superior predictive power for self-paced
reading times compared to vanilla Transformer’s,
with further analyses revealing independent con-
tributions from both models. These findings sug-
gest that human sentence processing involves dual
memory representations—one based on syntactic
structures and another on token sequences—with
attention serving as the general memory retrieval
algorithm, while highlighting the importance of in-
corporating syntactic structures as representational
units.!

2 Background

2.1 Cue-based retrieval

Many psycholinguistic studies assume that human
sentence processing involves memory retrieval,
where based on the various cues provided by the
current input word (e.g., verbs), elements (e.g.,
their arguments) are retrieved from working mem-
ory. In Example 1, taken from Van Dyke (2002),
when the verb was complaining is input, its sub-
ject the resident must be retrieved from working
memory.

(1) a. The worker was surprised that the resi-
dent[s,p; anim) [Who was living near the dan-
gerous warehouse] was complaining about
the investigation.

b. The worker was surprised that the
resident|,pj anim) [Who said that the
warehousesupj) Was dangerous] was com-
plaining about the investigation.

According to the cue-based retrieval the-
ory (Van Dyke and Lewis, 2003), such retrieval
becomes more difficult when similar elements exist
in the sentence because the cues are overloaded;
for example, only in Example 1b, warehouse
may interfere with resident since they both have
the feature [subj] as a retrieval cue. Van Dyke
(2002) showed that humans read was complaining
more slowly in Example 1b than in Example 1a,
providing empirical support for the cue-based
retrieval theory. Such interference effects have
been observed across various syntactic and
semantic features (Van Dyke and Lewis, 2003;
Van Dyke and McElree, 2011; Nicenboim et al.,
2018).

!Code for reproducing our results is available at https:
//github.com/osekilab/TG-NAE.

2.2 Normalized Attention Entropy (NAE)

In recent computational psycholinguistics, at-
tempts have been made to interpret the attention
mechanism—a weighted reference of preceding
tokens based on Query and Key vectors—as a com-
putational implementation of cue-based retrieval.
Notably, Ryu and Lewis (2021) proposed Attention
Entropy (AE) as a linking hypothesis, where the
diffuseness of attention weights is assumed to quan-
tify the degree of retrieval interference. While AE
was initially proposed for modeling interference
effects in specific constructions, Oh and Schuler
(2022) extended it to naturally occurring text by
introducing two normalizations: (i) division by the
maximum entropy achievable given the number
of preceding tokens, and (ii) sum-to-1 renormal-
ization of attention weights over preceding tokens

(Normalized AE, NAE).?
1
NAE . = — P -] p ..
1hi log, |T| JZGT Ql,hi,5 1082 QL b,
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where T is the set of preceding token positions,’

~ a, i.q . . .
Atpig = 5 Lhij __ is the renormalized attention
b keT Ohik

weight, and a; , ; ; represents the attention weight
from the ¢-th token (Query) to the j-th preceding
token (Key) in the h-th head of layer [.* In this
paper, we employ this NAE as a linking hypothesis
between attention mechanisms and human memory
retrieval.’

2.3 Transformer Grammar (TG)

Transformer Grammar (TG; Sartran et al., 2022)
is a type of syntactic LM, a generative model that
jointly generates token sequences x and their cor-
responding syntactic structures y. TG formulates
the generation of (x,y) as modeling a sequence of
actions, a (e.g., (S (NP The blue bird NP) (VP
sings VP) S)), constructing both token sequences

20h and Schuler (2022) showed that regression models for
predicting reading times fail to converge with vanilla AE.

*For vanilla Transformers, T = {1,2,...,i — 1}.

*Oh and Schuler (2022) explored NAE calculation us-
ing various attention weight formulations, but in this pa-
per, we adopt the norm-based attention weight formulation
(Kobayashi et al., 2020), which achieved the highest predictive
power on the self-paced reading time corpus.

SWhile Oh and Schuler (2022) also proposed other metrics
based on distances between attention weights at consecutive
time steps, we exclusively adopt NAE because (i) in TG, the
number of preceding elements varies with time, making dis-
tance definition non-trivial, and (ii) Oh and Schuler (2022)
demonstrated that NAE’s predictive power subsumes that of
distance-based metrics in the self-paced reading time corpus.
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Figure 1: TG’s attention mask with /STACK at-
tention mechanisms, adapted from Sartran et al. (2022).

generates a vector representation of the closed
phrase, while subsequent STACK operations reference
this vector as the phrase representation for next-action
prediction. Red boxes indicate the attention weights
used to calculate NAE for each word.

and their syntactic structures in a top-down, left-
to-right manner. The action sequence a comprises
three types of operations:

* (X: Generate a non-terminal symbol (X, where
X represents a phrasal tag such as NP;

* w: Generate a terminal symbol w, where w
represents a token such as bird;

¢ X): Generate X) to close the most re-
cent opened non-terminal symbol, where X
matches the phrasal tag of the targeted non-
terminal symbol.

The probability of action sequence a =
(a1,az,...,a,) is decomposed using the chain
rule. Formally, TG is defined as:

n

p(x,y) =pla) = [[placlas). (@

t=1

TG’s key innovation lies in its handling of closed
phrases: immediately after generating X), it com-
putes a vector representation of the closed phrase,
which subsequent next-action predictions use as
the representation for that phrase. Technically, this
operation is realized via two components: X) ac-
tion duplication and a specialized attention mask.
The duplication process transforms a into a’ by
duplicating all X) actions (e.g., (S (NP The blue
bird NP) NP) (VP sings VP) VP) S) S)), while
preserving the modeling space p(a) by preventing

predictions for duplicated positions. The atten-
tion mask implements two distinct attention mech-
anisms: and STACK (Figure 1).

operates exclusively at the first occurrence of each
X) to generate the phrasal representation by attend-
ing only to vectors between the corresponding (X
and X) (without making predictions). STACK op-
erates at all other positions to compute represen-
tations for next-action prediction, with attention
restricted to positions on the stack (comprising un-
closed non-terminals, not-composed terminals, and
closed phrases).

Previous research has demonstrated that TG’s
probability estimates align more closely with hu-
man offline grammaticality judgments (Sartran
et al., 2022) and online brain activity (Wolfman
et al., 2024) than vanilla Transformers. This paper
investigates whether the attention mechanism of
TG, which uniquely operates on syntactic struc-
tures as representational units, can serve as a cog-
nitive model of human memory retrieval.

3 Methods

3.1 NAE calculation with TG

The calculation of NAE with TG requires assump-
tions regarding two key perspectives:

1. What syntactic structures should be assumed
for a given token sequence?

2. How should the cognitive load of attention
from non-lexical symbols (i.e., (X and X)) be
attributed to lexical tokens?

In response to these considerations, we make the
following assumptions:

1-A. We assume only the globally correct syntac-
tic structure (i.e., “perfect oracle”’; Brennan,
2016).

2-A. We consider only attention from lexical to-
kens, excluding attention from non-lexical

symbols.

The adoption of 1-A. is motivated by two factors.
First, the self-paced reading time corpus we utilized
here provides gold-standard syntactic structures for
each sentence, and previous studies have developed
predictors based on these annotations (Shain et al.,
2020; Isono, 2024). Using the same structural as-
sumptions enables fair comparison with these es-
tablished predictors, considering the possibility of

9797



parsing errors. Second, TG’s current implemen-
tation lacks beam search procedure (Stern et al.,
2017; Crabbé et al., 2019), an inference technique
commonly used in cognitive modeling to handle
local ambiguities through parallel parsing (Hale
et al., 2018; Sugimoto et al., 2024).6

Regarding 2-A., given the multiple possible ap-
proaches to attributing processing load from non-
lexical symbols to lexical tokens, we adopt the
most straightforward and theoretically neutral ap-
proach. Figure 1 denotes the attention weights used
to calculate NAE for each word, with red boxes.

3.2 Settings

Language models We used 16-layer, 8-head TG
and Transformer (252M parameters).” All hyperpa-
rameters followed the default settings described in
Sartran et al. (2022) (see Appendix A). Following
Oh and Schuler (2022), we computed NAE sepa-
rately for each attention head at the top layer and
then summed the values across heads.

Training data We used BLLIP-LG, a dataset
containing 42M tokens (1.8M sentences) from
the Brown Laboratory for Linguistic Information
Processing (BLLIP) 1987-89 WSJ Corpus Re-
lease 1 (Charniak et al., 2000).® The corpus
was re-parsed using a state-of-the-art constituency
parser (Kitaev and Klein, 2018) and split into train-
val-test sets by Hu et al. (2020). BLLIP-LG has
been widely used for training syntactic LMs, in-
cluding TG. Following Sartran et al. (2022), we
trained a 32K SentencePiece tokenizer (Kudo and
Richardson, 2018) on the training set and seg-
mented each sentence into subword units.

Both TG and Transformer were trained at the
sentence level: TG maximized the joint probability
p(x,y) on action sequences, while Transformer
maximized the probability p(x) on terminal sub-
word sequences. For training hyperparameters, we
largely followed the default settings in Sartran et al.
(2022) but adjusted the batch size to fit within
the memory constraints of our hardware (NVIDIA
A100, 40GB). Accordingly, we tuned other hyper-
parameters (e.g., learning rate) to maintain training

®As a proof of concept, we also conducted experi-
ments using multiple syntactic structures generated by word-
synchronous beam search with Recurrent Neural Network
Grammar (Dyer et al., 2016; Kuncoro et al., 2017; Noji and
Oseki, 2021), obtaining similar results (Appendix D).

7https://github.com/google—deepmind/
transformer_grammars

8https://catalog.ldc.upenn.edu/LDC2000T43

stability.” We trained three models with different
random initialization seeds and selected the check-
point with the lowest validation loss for each run.

Reading time data We used the Natural Sto-
ries corpus (Futrell et al., 2018),'° “a series of
English narrative texts designed to contain many
low-frequency and psycholinguistically interesting
syntactic constructions while still sounding fluent
and coherent.” We selected this corpus for these
“interesting” syntactic constructions, which pro-
vide an ideal testbed for investigating memory re-
trieval effects that might be less pronounced in sim-
pler, more naturalistic texts. The corpus has also
been used in several studies investigating memory-
related processing mechanisms (Shain et al., 2016;
Dotlacil, 2021; Isono, 2024).

The Natural Stories corpus consists of 10 sto-
ries (485 sentences, 10,245 words) with self-paced
reading times collected from 181 anonymized na-
tive English speakers. Following Futrell et al.’s
preprocessing, data points were removed if (i) a
participant scored less than 5/6 on comprehen-
sion questions for a story or (ii) individual read-
ing times were less than 100 ms or greater than
3,000 ms. Following Oh and Schuler (2022), we
also excluded sentence-initial and sentence-final
data points. We further removed sentence-second
data points, as they lack the log trigram frequency
of the previous token required for our baseline re-
gression model. After preprocessing, 725,875 data
points from 180 participants remained for statistical
analysis, out of the original 848,875 data points.

Statistical analysis We evaluated each LM’s
NAE contribution to reading time prediction by
measuring improvements in regression model fit
when adding NAE as predictors. For each model
(TG/Transformer), we included both the current
word’s NAE (tg_nae/tf_nae) and the previous
word’s NAE (tg_nae_so/tf_nae_so) to account
for spillover effects (Mitchell, 1984).'112 Model
improvement was quantified as the increase in log-
likelihood (ALogLik). This evaluation was con-
ducted for each random seed, and we report the
mean ALogLik with standard deviation.

°For the detailed hyperparameters, see Appendix A.

Ohttps://github.com/languageMIT/
naturalstories. We used the corrected version that
addresses the data misalignment issue identified in May 2025.

"_so indicates spillover.

2Following Oh and Schuler (2022), we summed the sub-
word NAE values for each word.
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Model ALogLik (1) Predictor Effect size [ms] p-value range Significant seeds
tg_nae 1.42 (£ 0.2) <0.001 3/3

TG 76.6 (+3.1) tg_nae_so  2.26(+0.1) <0.001 3/3
tf_nae 1.32(£0.2) <0.001 3/3

Transformer 428 (£9-3) £ oo so 146 (+0.2) <0.001 33

Table 1: TG’s and Transformer’s NAE contribution to reading time prediction (ALogLik). The effect size per
standard deviation is shown for each model-derived predictor, along with the p-value range across random seeds and
the number of seeds showing significant contributions. Standard deviations across seeds for ALogLik and effect
sizes are shown in parentheses. The mean reading time in the analysis is 334 ms.

Following previous studies such as Dotlacil
(2021), Shain et al. (2016), and Isono (2024),
the baseline regression model controlled for non-
structural, basic aspects of text known to affect
reading times:

* zone and position (integer): word position
in the story and sentence;

* wordlen (integer): number of characters in
the word;

e unigram, bigram, and trigram (continuous):
log-transformed n-gram frequencies.

We additionally included the following predictors:

* tg_surpand tf_surp (continuous): surprisal
from TG and Transformer;

* stack_count (integer): number of ele-
ments in the stack (comprising unclosed
non-terminals, not-composed terminals, and
closed phrases).

Following Oh and Schuler (2022), we included
surprisal to test NAE’s significance in the pres-
ence of surprisal predictors from the same LMs. 3
Stack count was included to isolate the cost of
holding elements (Joshi, 1990; Abney and John-
son, 1991; Resnik, 1992) from their interference
effects, which TG’s NAE was designed to capture.
For the correlations between the predictors, see
Appendix B.

All predictors were z-transformed, and we also
included the previous word’s values as predictors
to model spillover, except for the positional in-
formation. The baseline regression model was a
linear mixed-effects model (Baayen et al., 2008)

BFor an experiment on the predictive power of surprisal
itself, see Appendix E.

with these fixed effects and by-subject and by-story
random intercepts:

log(RT) ~ zone + position + wordlen +
unigram + bigram + trigram +
tg_surp + tf_surp +
stack_count + wordlen_so +
unigram_so + bigram_so +
trigram_so + tg_surp_so +
tf_surp_so + stack_count_so +
(1|participant) 4 (1|story) (3)

To assess each LM’s independent contribution
to reading time prediction, we also conducted like-
lihood ratio tests (Wurm and Fisicaro, 2014) by
extending Equation 3 in two ways: adding both
LMs’ NAE versus adding only one LM’s NAE.
Note that a larger ALogLik from one LM does not
necessarily indicate that it contributes above and
beyond the other LM, nor does a smaller ALogLik
indicate no unique contribution. Following Au-
rnhammer and Frank (2019), we used NAE and
surprisal values averaged across random seeds for
these nested model comparisons.

4 Results

4.1 Does TG’s NAE have predictive power for
reading times?

Table 1 presents the contributions of TG’s and
Transformer’s NAE to reading time prediction.
First, Transformer’s NAE exhibited significant pre-
dictive power for reading times, independent of
baseline predictors such as surprisal. The effect
size was in the expected positive direction (higher
NAE values corresponding to longer reading times),
showing both immediate and spillover effects. This
corroborates the arguments of Ryu and Lewis
(2021) and Oh and Schuler (2022) that the attention
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Figure 2: Likelihood ratio test results examining the
independence of NAE’s predictive power

mechanism—the weighted reference of preceding
tokens—functions as a cognitive model of human
memory retrieval, despite its engineering-oriented
origins.

Second, TG’s NAE exhibited robust predictive
power, demonstrating significant positive effects
in both immediate and spillover conditions. This
finding not only provides additional evidence for
incremental construction of syntactic structures in
human sentence processing (e.g., Fossum and Levy,
2012), but also suggests that TG’s attention mech-
anism effectively models memory retrieval from
these constructed syntactic representations.

Finally, TG’s NAE made a substantially
stronger contribution to reading time prediction
(ALogLik=76.6) compared to Transformer’s NAE
(ALogLik=42.8). This finding suggests that
retrieval from syntactic memory representations
plays a more dominant role in human sentence
processing than retrieval from lexical memory rep-
resentations. This underscores the importance of
incorporating syntactic structures as a unit of mem-
ory representation, which we implemented through
the integration of TG and NAE here.

4.2 Do TG’s and Transformer’s NAE have
independent contributions?

Figure 2 presents the results of likelihood ratio tests
examining the independence of TG’s and Trans-
former’s NAE contributions. The regression model
incorporating NAE from both LMs (‘TG & Trans-
former’) demonstrated significantly higher predic-
tive power than the models containing NAE from
either LM alone (‘TG’ or ‘Transformer’). This re-
veals that TG’s NAE certainly captures variance in
reading times that Transformer’s NAE cannot ex-
plain, while Transformer’s NAE, despite its lower

overall predictive power, accounts for unique vari-
ance not captured by TG’s NAE. This finding
aligns with psycholinguistic literature, where cog-
nitive models of memory retrieval encompass both
syntax-based approaches (e.g., verb-argument rela-
tionships; Lewis and Vasishth, 2005) and semantic-
based approaches (e.g., bag-of-words-like similar-
ity; Brouwer et al., 2012), suggesting that the atten-
tion mechanisms of TG and Transformer serve as
complementary cognitive models, each capturing
distinct aspects of human memory retrieval.

4.3 What aspects of memory retrieval do TG’s
and Transformer’s NAE capture?

To investigate the aspects of human memory re-
trieval captured by TG’s and Transformer’s NAE,
we analyzed differences in prediction improve-
ment across part-of-speech (POS) tags annotated
in the Natural Stories corpus.'* Our analysis fol-
lowed three steps: (i) selecting POS tags with
more than 1,000 occurrences, (ii) for each POS
tag, testing the significance of improvement from
the baseline regression model (measured in A
Root Mean Squared Error, ARMSE) when adding
NAE of the current and previous word as fixed ef-
fects,'> and (iii) examining the significance of dif-
ferences in ARMSE between TG and Transformer
for POS tags where either model showed signifi-
cant improvement. We assessed significance using
Wilcoxon signed-rank tests with Bonferroni correc-
tion (p < 0.05).

Figure 3 presents the differences in prediction
improvement across POS tags. Consistent with the
larger ALogLik value, TG’s NAE demonstrated ad-
vantages over Transformer’s NAE across a broader
range of POS tags. Notably, TG’s NAE exhib-
ited superior improvement across verbs (VB, VBG,
VBN, and VBP), while Transformer’s NAE excelled
for nouns (NN and NNP). This pattern aligns with
our earlier argument regarding the complementary
nature of these models (Section 4.2), indicating
that different types of retrieval operations—verb-
triggered retrieval, which often relies on syntac-
tic features (e.g., argument structure), and noun-
triggered retrieval, which often relies on semantic
features (e.g., referential associations)—are better
captured by distinct attention mechanisms: atten-
tion with syntactic and token memory representa-

“For a complete list of POS tags in the Natural Stories
corpus, see Appendix C.

SWe used the same regression models as in Section 4.2,
where surprisal and NAE values were averaged across seeds.
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Figure 3: Differences in reading time prediction improvement (ARMSE) between TG and Transformer across POS
tags (TG - Transformer). The y-axis shows the mean differences per word, with the error bars representing standard
errors. Only POS tags showing significant improvement in either model and significant differences between models
are displayed. Statistical significance after Bonferroni correction: ** p < 0.01, *** p < 0.001.

Model ALogLik Predictor  p-value
TG 46.1 *_nae = (213)
(£9.1) *_nae_so *** (3/3)

TG 18.1 *_nae = (1/3)
TeomP o (£9.3) *_nae_so *** (3/3)

@ TG>TG[-comp]

Table 2: TG’s and TG_comp s contribution to reading
time prediction. The rightmost column shows the p-
value range across random seeds that achieved signif-
icance (*** p < 0.001 and ** p < 0.01), along with
the number of seeds showing significant contributions.
Due to the potential multicollinearity between the Trans-
former’s NAE and TG/TG_¢omp’s NAE, the column of
the effect size is omitted.

tions, respectively.

5 Follow-up analysis

5.1 Do TG’s advantages stem from the
COMPOSE attention?

As described in Section 2.3, TG’s key feature is
the COMPOSE attention, which explicitly gen-
erates single vector representations for closed
phrases. Here, we investigate whether TG’s pre-
dictive power derives from merely considering syn-
tactic structures or from explicitly treating closed
phrases as single representations (see Hale et al.,
2018; Brennan et al., 2020). To address this ques-
tion, we developed TG_comp, a TG variant that
processes each action in the action sequence a as
an individual token without the COMPOSE atten-

0.00030 HF
% = 0.00025 I
2 =
T £ oxx
< Q
s @ 0.00020 E E
g2
g '
gg 0.00015 1
o

0.00010 I

® N\ & &
POS

Figure 4: Differences in ARMSE between TG and
TG_comp across POS tags (TG - TG_comp). Statistical
significance after Bonferroni correction: *** p < 0.001.

tion (i.e., Choe and Charniak’s Parsing as Lan-
guage Modeling approach). We trained TG _comp
with identical hyperparameters as TG. The base-
line regression model (Equation 3) was augmented
with (i) TG_comp’s surprisal and (ii) Transformer’s
NAE to (i) ensure a fair comparison between TG
and TG_comp and (ii) distinguish between the ef-
fects of direct terminal token access and syntactic
structure consideration in TG_Comp.16

Table 2 presents the ALogLik values obtained
when incorporating either TG’s or TG_comp’s NAE
as fixed effects into the baseline regression model.
Note that due to the potential multicollinearity

!8For direct comparison between TG and TG _ com;, under
the baseline regression model without Transformer’s NAE,
see Appendix F.
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between Transformer’s NAE and TG/TG_comp’s
NAE, we focus on the ALogLik values and sig-
nificance of the contribution rather than individual
effect sizes.

Our analysis reveals two key findings. First,
TG_comp’s NAE demonstrates significant predic-
tive power for reading times, even in the presence
of Transformer’s NAE, implying that considera-
tion of syntactic structures alone captures certain
memory retrievals that the token-level attention
mechanism cannot capture. Second, TG’s NAE
outperforms TG_comp’s, suggesting that the at-
tention mechanism that treats closed phrases as
single representations more effectively captures
variance in syntax-based memory retrieval. The
likelihood ratio tests further revealed that TG’s
NAE captured reading time patterns unexplain-
able by TG _comp (‘TG & TG_comp™ > TG _comp s
p < 0.001), while TG_¢omp did not explain unique
variance beyond what TG already accounts for
(‘TG & TG_comp >‘TG’, p = 0.478).

We analyzed the ARMSE differences across
POS tags to investigate which aspects of human
memory retrieval are better captured by the COM-
POSE attention. Figure 4 showed that TG’s
NAE was consistently superior to TG_¢omp’s NAE
across verbs (VB, VBG, and VBN), highlighting the
critical role of the COMPOSE attention in captur-
ing verb-triggered retrieval, a type of retrieval that
was identified as distinctively better captured by
TG compared to vanilla Transformers (Section 4.3).

5.2 Does TG’s NAE capture interference
effects?

Psycholinguistic research has considered two pri-
mary types of memory retrieval costs: interference
effects, which NAE aims to capture, and decay
effects—the cognitive load associated with access-
ing elements at greater linear distances (e.g., Gib-
son, 1998, 2000). Here, we examine whether
TG’s NAE genuinely captures interference effects
by testing its independence from variables that
model memory decay effects. For modeling decay
effects, we employed Category Locality Theory
(CLT; Isono, 2024),17 which treats phrases in syn-

17 Although Dependency Locality Theory (DLT; Gibson,
1998, 2000) is widely recognized as one of the most prominent
models for capturing decay effects, we opted for CLT here,
following Isono’s finding that DLT-based predictors fail to
achieve statistical significance in explaining reading times in
the Natural Stories corpus.

Model Predictor Effect size [ms]
tg_nae 1.18%**
kkk
TG & CLT tg_nae_so 2.38
clt 0.06
clt_so 1.30%**

Table 3: Effect sizes per standard deviation are shown
for TG’s NAE and CLT predictors. Significance levels:
** p < 0.001.

tactic structure'® as representational units of mem-

ory and quantifies decay effects using the distance
(measured in content words) between an input and
the phrases to be composed with it.

To assess independence, we tested whether TG’s
NAE and CLT maintain their contributions when
simultaneously included in the baseline regression
model (Equation 3), and examined their indepen-
dence through likelihood ratio tests.!” The results
(Table 3) show that TG’s NAE exhibited significant
effects in both immediate and spillover conditions,
and CLT demonstrated a significant spillover ef-
fect. The likelihood ratio tests confirmed that these
effects were independent (‘TG & CLT’>‘CLT"’,
p < 0.001; ‘TG & CLT’>“TG’, p < 0.001).

These results provide empirical evidence that
NAE quantifies interference rather than decay
in memory retrieval—extending beyond previous
studies on NAE (Ryu and Lewis, 2021; Oh and
Schuler, 2022). This finding is significant because,
as far as we are aware, while psycholinguistics has
developed various implementations of memory de-
cay effects, it has lacked broad-coverage implemen-
tations of interference effects applicable to natu-
rally occurring texts. Our results suggest that NAE
represents a promising approach for quantifying
interference effects in a broad-coverage manner.

6 Level of description

In cognitive modeling studies based on surprisal
theory, explanations typically follow the form “if
these LMs were models of human prediction, the
difficulty of next-word disambiguation that humans
solve would be approximated as follows.” Such ex-
planations typically operate at the most abstract of
Marr’s three levels of description—the computa-
tional level. Recently, Futrell et al. (2020) proposed

BCLT assumes syntactic structure based on Combinatory
Categorial Grammar (Steedman, 2000).

19 As in other likelihood ratio tests, we used surprisal and
NAE values averaged across random seeds.

9802



lossy-context surprisal to integrate memory repre-
sentation perspectives into surprisal theory. How-
ever, as they explicitly stated, this theory remains
at the computational level, relaxing assumptions
about memory representations in human predictive
processing. In contrast, cognitive models of human
memory, such as cue-based retrieval, generally pro-
vide explanations about mechanisms that deal with
specific mental representations. These explanations
typically move down one level to the algorithmic
level of description.

While not explicitly stated by the authors, we ar-
gue that the work of Ryu and Lewis (2021) and
Oh and Schuler (2022)—conceptualizing atten-
tion mechanisms as implementations of cue-based
retrieval—represents movement toward the algo-
rithmic level, approaching cue-based retrieval itself.
Our research advances this direction by investigat-
ing a fundamental question at this level: the nature
of memory representations (see Hale, 2014). Fu-
ture work could fully operate at the algorithmic
level by incorporating more realistic elements such
as parallel parsing, left-corner parsing strategies,
and memory decay mechanisms.

7 Conclusion

In this paper, we have demonstrated that attention
can serve as the general algorithm for modeling
human memory retrieval from two representational
systems. Furthermore, we have shown that among
the LMs examined in this paper (TG, TG_comp,
and Transformer), TG—whose attention mecha-
nism uniquely operates on syntactic structures as
representational units—best captures dominant fac-
tors in human sentence processing. Our results sug-
gest that the integration of attention mechanisms
(developed in NLP) with syntactic structures (the-
orized in linguistics) constitutes a broad-coverage
candidate implementation for human memory re-
trieval. We hope these findings will foster greater
collaboration between these two fields.

Limitations

Our NAE calculation comprised three steps: (i)
computing NAE for each attention head in the
top layer, (ii) adding the values across heads, and
(iii) summing subword-level values into word level.
While this procedure strictly adhered to Oh and
Schuler (2022), alternative approaches to handling
layers, attention heads (Ryu and Lewis, 2021), and
subword tokens (Oh and Schuler, 2024; Giulianelli

et al., 2024) warrant investigation.

While our study provides an in-depth investiga-
tion using the Natural Stories corpus—an English
self-paced reading time corpus containing many
interesting syntactic constructions—the breadth of
our analysis has certain limitations. The generaliz-
ability of our findings to different languages (e.g.,
Japanese self-paced reading time corpus from Asa-
hara, 2022) and other cognitive load (e.g., gaze
duration from Kennedy et al., 2003 or EEG and
fMRI from Bhattasali et al., 2020) remains to be
investigated.

As discussed in Section 3.1, we employed “per-
fect oracles” as syntactic structures behind token
sequences. While this assumption has been widely
adopted in previous studies on human syntactic pro-
cessing (Brennan, 2016; Shain et al., 2016; Stano-
jevic et al., 2021; Isono, 2024), this idealization
leaves the resolution of local ambiguities, which
humans encounter during actual sentence process-
ing, outside the scope of our study (for a conceptual
case study, see Appendix D).

Although we adopted the default TG implemen-
tation of a top-down parsing strategy, psycholin-
guistic literature has suggested that a left-corner
parsing strategy might be more plausible for hu-
man sentence processing from a perspective of
memory capacity (cf. stack_count) (Abney and
Johnson, 1991; Resnik, 1992). However, when
contrasting memory representations based on syn-
tactic structures versus token sequences, the atten-
tion mechanism of the top-down TG can serve
as a reasonable approximation of retrieval from
structure-based memory—this aligns with previous
work contrasting predictions based on syntactic
structures versus token sequences, which used top-
down TG or RNNG to represent structure-based
prediction (Wolfman et al., 2024; Hale et al., 2018;
Brennan et al., 2020).

Finally, while this paper focused on inves-
tigating the attention mechanism through the
lens of memory-based theory, exploring TG
and Transformer as integrated implementations
for expectation-based theory (via surprisal) and
memory-based theory (via NAE) represents a
promising future direction (Michaelov et al., 2021;
Ryu and Lewis, 2022). Specifically, future work
could investigate the attention mechanism as the
underlying driver of surprisal’s predictive power
(Appendix E), analyzing the relationship between
surprisal and NAE.

9803



Ethical considerations

We employed Al-based tools (Claude, ChatGPT,
GitHub Copilot, and Grammarly) for writing and
coding assistance. These tools were used in compli-
ance with the ACL Policy on the Use of Al Writing
Assistance.

Acknowledgments

We sincerely thank Michael Wolfman and John
Hale for providing detailed information on Wolf-
man et al. (2024). We also appreciate the insightful
reviews provided by anonymous ARR 2025 Febru-
ary reviewers. This work was supported by JSPS
KAKENHI Grant Number 24H00087, Grant-in-
Aid for JSPS Fellows JP24KJ0800, JST PRESTO
Grant Number JPMJPR21C2, and JST SPRING
Grant Number JPMJSP2108.

References

Steven P. Abney and Mark Johnson. 1991. Mem-
ory requirements and local ambiguities of parsing
strategies. Journal of Psycholinguistic Research,
20(3):233-250.

Masayuki Asahara. 2022. Reading Time and Vo-
cabulary Rating in the Japanese Language: Large-
Scale Japanese Reading Time Data Collection Us-
ing Crowdsourcing. In Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 5178-5187, Marseille, France. European
Language Resources Association.

Christoph Aurnhammer and Stefan L. Frank. 2019.
Comparing Gated and Simple Recurrent Neural Net-
work Architectures as Modelsof Human Sentence
Processing. Proceedings of the Annual Meeting of
the Cognitive Science Society, 41(0).

R. H. Baayen, D. J. Davidson, and D. M. Bates. 2008.
Mixed-effects modeling with crossed random effects
for subjects and items. Journal of Memory and Lan-
guage, 59(4):390-412.

Douglas Bates, Martin Michler, Ben Bolker, and Steve
Walker. 2015. Fitting linear mixed-effects models
using Ime4. Journal of Statistical Software, 67(1):1—
48.

Shohini Bhattasali, Jonathan Brennan, Wen-Ming Luh,
Berta Franzluebbers, and John Hale. 2020. The Al-
ice Datasets: fMRI & EEG Observations of Natural
Language Comprehension. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 120-125, Marseille, France. European
Language Resources Association.

Jonathan Brennan. 2016. Naturalistic Sentence Com-
prehension in the Brain. Language and Linguistics
Compass, 10(7):299-313.

Jonathan Brennan, Yuval Nir, Uri Hasson, Rafael
Malach, David J. Heeger, and Liina Pylkkénen. 2012.
Syntactic structure building in the anterior tempo-
ral lobe during natural story listening. Brain and
Language, 120(2):163—-173.

Jonathan R. Brennan, Chris Dyer, Adhiguna Kuncoro,
and John T. Hale. 2020. Localizing syntactic pre-
dictions using recurrent neural network grammars.
Neuropsychologia, 146:107479.

Harm Brouwer, Hartmut Fitz, and John Hoeks. 2012.
Getting real about Semantic Illusions: Rethinking the
functional role of the P600 in language comprehen-
sion. Brain Research, 1446:127—-143.

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall,
John Hale, and Mark Johnson. 2000. BLLIP 1987-89
WSJ Corpus Release 1.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as Language Modeling. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2331-2336, Austin, Texas.
Association for Computational Linguistics.

Benoit Crabbé, Murielle Fabre, and Christophe Pallier.
2019. Variable beam search for generative neural
parsing and its relevance for the analysis of neuro-
imaging signal. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1150-1160, Hong Kong, China. Association
for Computational Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive Language Models beyond
a Fixed-Length Context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978-2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jakub Dotlacil. 2021. Parsing as a Cue-Based Retrieval
Model. Cognitive Science, 45(8):e13020.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and
Noah A. Smith. 2016. Recurrent Neural Network
Grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199-209, San Diego, California.
Association for Computational Linguistics.

Victoria Fossum and Roger Levy. 2012. Sequential vs.
Hierarchical Syntactic Models of Human Incremen-
tal Sentence Processing. In Proceedings of the 3rd
Workshop on Cognitive Modeling and Computational
Linguistics (CMCL 2012), pages 61-69, Montréal,
Canada. Association for Computational Linguistics.

Richard Futrell, Edward Gibson, and Roger P. Levy.
2020. Lossy-Context Surprisal: An Information-
Theoretic Model of Memory Effects in Sentence Pro-
cessing. Cognitive Science, 44(3):e12814.

9804


https://doi.org/10.1007/BF01067217
https://doi.org/10.1007/BF01067217
https://doi.org/10.1007/BF01067217
https://aclanthology.org/2022.lrec-1.555/
https://aclanthology.org/2022.lrec-1.555/
https://aclanthology.org/2022.lrec-1.555/
https://aclanthology.org/2022.lrec-1.555/
https://escholarship.org/uc/item/0br7f339
https://escholarship.org/uc/item/0br7f339
https://escholarship.org/uc/item/0br7f339
https://doi.org/10.1016/j.jml.2007.12.005
https://doi.org/10.1016/j.jml.2007.12.005
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://aclanthology.org/2020.lrec-1.15/
https://aclanthology.org/2020.lrec-1.15/
https://aclanthology.org/2020.lrec-1.15/
https://doi.org/10.1111/lnc3.12198
https://doi.org/10.1111/lnc3.12198
https://doi.org/10.1016/j.bandl.2010.04.002
https://doi.org/10.1016/j.bandl.2010.04.002
https://doi.org/10.1016/j.neuropsychologia.2020.107479
https://doi.org/10.1016/j.neuropsychologia.2020.107479
https://doi.org/10.1016/j.brainres.2012.01.055
https://doi.org/10.1016/j.brainres.2012.01.055
https://doi.org/10.1016/j.brainres.2012.01.055
https://doi.org/10.35111/FWEW-DA58
https://doi.org/10.35111/FWEW-DA58
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D19-1106
https://doi.org/10.18653/v1/D19-1106
https://doi.org/10.18653/v1/D19-1106
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.1111/cogs.13020
https://doi.org/10.1111/cogs.13020
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://aclanthology.org/W12-1706
https://aclanthology.org/W12-1706
https://aclanthology.org/W12-1706
https://doi.org/10.1111/cogs.12814
https://doi.org/10.1111/cogs.12814
https://doi.org/10.1111/cogs.12814

Richard Futrell, Edward Gibson, Harry J. Tily, Idan
Blank, Anastasia Vishnevetsky, Steven Piantadosi,
and Evelina Fedorenko. 2018. The Natural Stories
Corpus. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Edward Gibson. 1998. Linguistic complexity: Locality
of syntactic dependencies. Cognition, 68(1):1-76.

Edward Gibson. 2000. The dependency locality theory:
A distance-based theory of linguistic complexity. In
Image, Language, Brain: Papers from the First Mind
Articulation Project Symposium, pages 94—126. The
MIT Press, Cambridge, MA, US.

Mario Giulianelli, Luca Malagutti, Juan Luis Gastaldi,
Brian DuSell, Tim Vieira, and Ryan Cotterell. 2024.
On the Proper Treatment of Tokenization in Psy-
cholinguistics. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 18556—18572, Miami, Florida, USA.
Association for Computational Linguistics.

John Hale. 2001. A Probabilistic Earley Parser as a
Psycholinguistic Model. In Second Meeting of the
North American Chapter of the Association for Com-
putational Linguistics.

John Hale, Chris Dyer, Adhiguna Kuncoro, and
Jonathan Brennan. 2018. Finding syntax in human
encephalography with beam search. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2727-2736, Melbourne, Australia. Association
for Computational Linguistics.

John T. Hale. 2014. Automaton Theories of Human
Sentence Comprehension. CSLI Studies in Computa-
tional Linguistics. CSLI Publications, Stanford, CA.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A Systematic Assessment of
Syntactic Generalization in Neural Language Mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1725-1744, Online. Association for Computational
Linguistics.

Shinnosuke Isono. 2024. Category Locality Theory: A
unified account of locality effects in sentence com-
prehension. Cognition, 247:105766.

Aravind K. Joshi. 1990. Processing crossed and nested
dependencies: An automation perspective on the psy-
cholinguistic results. Language and Cognitive Pro-
cesses, 5(1):1-27.

Kohei Kajikawa, Ryo Yoshida, and Yohei Oseki. 2024.
Dissociating Syntactic Operations via Composition
Count. Proceedings of the Annual Meeting of the
Cognitive Science Society, 46(0).

Alan Kennedy, Robin Hill, and Joél Pynte. 2003. The
dundee corpus. In Proceedings of the 12th European
Conference on Eye Movement.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Nikita Kitaev and Dan Klein. 2018. Constituency Pars-
ing with a Self-Attentive Encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676-2686, Melbourne, Australia. Association
for Computational Linguistics.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2020. Attention is Not Only a Weight:
Analyzing Transformers with Vector Norms. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7057-7075, Online. Association for Computa-
tional Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2017. What Do Recurrent Neural Network
Grammars Learn About Syntax? In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1249-1258, Valencia, Spain.
Association for Computational Linguistics.

Alexandra Kuznetsova, Per B. Brockhoff, and Rune
H. B. Christensen. 2017. ImerTest package: Tests in
linear mixed effects models. Journal of Statistical
Software, 82(13):1-26.

Roger Levy. 2008. Expectation-based syntactic compre-
hension. Cognition, 106(3):1126-1177.

Richard L. Lewis and Shravan Vasishth. 2005. An
activation-based model of sentence processing as
skilled memory retrieval. Cognitive Science,
29(3):375-419.

David Marr. 1982. Vision: A Computational Investiga-
tion into the Human Representation and Processing
of Visual Information. W. H. Freeman and Company,
San Francisco.

Danny Merkx and Stefan L. Frank. 2021. Human Sen-
tence Processing: Recurrence or Attention? In Pro-
ceedings of the Workshop on Cognitive Modeling
and Computational Linguistics, pages 12-22, Online.
Association for Computational Linguistics.

James A. Michaelov, Megan D. Bardolph, Seana Coul-
son, and Benjamin Bergen. 2021. Different kinds of
cognitive plausibility: Why are transformers better

9805


https://aclanthology.org/L18-1012
https://aclanthology.org/L18-1012
https://doi.org/10.1016/S0010-0277(98)00034-1
https://doi.org/10.1016/S0010-0277(98)00034-1
https://aclanthology.org/2024.emnlp-main.1032
https://aclanthology.org/2024.emnlp-main.1032
https://aclanthology.org/N01-1021
https://aclanthology.org/N01-1021
https://doi.org/10.18653/v1/P18-1254
https://doi.org/10.18653/v1/P18-1254
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.1016/j.cognition.2024.105766
https://doi.org/10.1016/j.cognition.2024.105766
https://doi.org/10.1016/j.cognition.2024.105766
https://doi.org/10.1080/01690969008402095
https://doi.org/10.1080/01690969008402095
https://doi.org/10.1080/01690969008402095
https://escholarship.org/uc/item/2bp2m26p
https://escholarship.org/uc/item/2bp2m26p
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://aclanthology.org/E17-1117
https://aclanthology.org/E17-1117
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.1207/s15516709cog0000_25
https://doi.org/10.1207/s15516709cog0000_25
https://doi.org/10.1207/s15516709cog0000_25
https://doi.org/10.18653/v1/2021.cmcl-1.2
https://doi.org/10.18653/v1/2021.cmcl-1.2
https://escholarship.org/uc/item/9z06m20f
https://escholarship.org/uc/item/9z06m20f

than RNNSs at predicting N400 amplitude? Proceed-
ings of the Annual Meeting of the Cognitive Science
Society, 43(43).

D. C. Mitchell. 1984. An Evaluation of Subject-Paced
Reading Tasks and Other Methods for Investigating
Immediate Processes in Reading 1. In New Methods
in Reading Comprehension Research. Routledge.

Bruno Nicenboim, Shravan Vasishth, Felix Engelmann,
and Katja Suckow. 2018. Exploratory and Confir-
matory Analyses in Sentence Processing: A Case
Study of Number Interference in German. Cognitive
Science, 42(S4):1075-1100.

Hiroshi Noji and Yohei Oseki. 2021. Effective Batching
for Recurrent Neural Network Grammars. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 4340-4352, Online.
Association for Computational Linguistics.

Byung-Doh Oh and William Schuler. 2022. Entropy-
and Distance-Based Predictors From GPT-2 Atten-
tion Patterns Predict Reading Times Over and Above
GPT-2 Surprisal. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9324-9334, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Byung-Doh Oh and William Schuler. 2024. Leading
Whitespaces of Language Models’ Subword Vocab-
ulary Pose a Confound for Calculating Word Proba-
bilities. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 34643472, Miami, Florida, USA. Association
for Computational Linguistics.

R Core Team. 2024. R: A Language and Environment
for Statistical Computing. Vienna, Austria.

Philip Resnik. 1992. Left-Corner Parsing and Psycho-
logical Plausibility. In COLING 1992 Volume 1: The
14th International Conference on Computational Lin-
guistics.

Soo Hyun Ryu and Richard Lewis. 2021. Accounting
for Agreement Phenomena in Sentence Comprehen-
sion with Transformer Language Models: Effects of
Similarity-based Interference on Surprisal and Atten-
tion. In Proceedings of the Workshop on Cognitive
Modeling and Computational Linguistics, pages 61—
71, Online. Association for Computational Linguis-
tics.

Soo Hyun Ryu and Richard L. Lewis. 2022. Using
Transformer language model to integrate surprisal,
entropy, and working memory retrieval accounts of
sentence processing. In Proceedings of the 35th

Annual Conference on Human Sentence Processing,
Santa Cruz, CA, USA.

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro,
Milos Stanojevi¢, Phil Blunsom, and Chris Dyer.
2022. Transformer Grammars: Augmenting Trans-
former Language Models with Syntactic Inductive

Biases at Scale. Transactions of the Association for
Computational Linguistics, 10:1423-1439.

Cory Shain, Idan Asher Blank, Marten van Schijn-
del, William Schuler, and Evelina Fedorenko. 2020.
fMRI reveals language-specific predictive coding dur-
ing naturalistic sentence comprehension. Neuropsy-
chologia, 138:107307.

Cory Shain, Marten van Schijndel, Richard Futrell, Ed-
ward Gibson, and William Schuler. 2016. Memory
access during incremental sentence processing causes
reading time latency. In Proceedings of the Work-
shop on Computational Linguistics for Linguistic
Complexity (CL4LC), pages 49-58, Osaka, Japan.
The COLING 2016 Organizing Committee.

Milo$ Stanojevié, Shohini Bhattasali, Donald Dunagan,
Luca Campanelli, Mark Steedman, Jonathan Bren-
nan, and John Hale. 2021. Modeling Incremental
Language Comprehension in the Brain with Combi-
natory Categorial Grammar. In Proceedings of the
Workshop on Cognitive Modeling and Computational
Linguistics, pages 23-38, Online. Association for
Computational Linguistics.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA, USA.

Mitchell Stern, Daniel Fried, and Dan Klein. 2017.
Effective Inference for Generative Neural Parsing.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1695-1700, Copenhagen, Denmark. Association for
Computational Linguistics.

Yushi Sugimoto, Ryo Yoshida, Hyeonjeong Jeong,
Masatoshi Koizumi, Jonathan R. Brennan, and Yohei
Oseki. 2024. Localizing Syntactic Composition with
Left-Corner Recurrent Neural Network Grammars.
Neurobiology of Language, 5(1):201-224.

William Timkey and Tal Linzen. 2023. A Language
Model with Limited Memory Capacity Captures In-
terference in Human Sentence Processing. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 8705-8720, Singapore.
Association for Computational Linguistics.

Julie A Van Dyke and Richard L Lewis. 2003. Distin-
guishing effects of structure and decay on attachment
and repair: A cue-based parsing account of recovery
from misanalyzed ambiguities. Journal of Memory
and Language, 49(3):285-316.

Julie A. Van Dyke and Brian McElree. 2011. Cue-
dependent interference in comprehension. Journal of
Memory and Language, 65(3):247-263.

Julie Ann Van Dyke. 2002. Retrieval Effects in Sentence
Parsing and Interpretation. University of Pittsburgh
ETD, University of Pittsburgh.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All

9806


https://escholarship.org/uc/item/9z06m20f
https://doi.org/10.1111/cogs.12589
https://doi.org/10.1111/cogs.12589
https://doi.org/10.1111/cogs.12589
https://doi.org/10.18653/v1/2021.findings-acl.380
https://doi.org/10.18653/v1/2021.findings-acl.380
https://doi.org/10.18653/v1/2022.emnlp-main.632
https://doi.org/10.18653/v1/2022.emnlp-main.632
https://doi.org/10.18653/v1/2022.emnlp-main.632
https://doi.org/10.18653/v1/2022.emnlp-main.632
https://doi.org/10.18653/v1/2024.emnlp-main.202
https://doi.org/10.18653/v1/2024.emnlp-main.202
https://doi.org/10.18653/v1/2024.emnlp-main.202
https://doi.org/10.18653/v1/2024.emnlp-main.202
https://www.R-project.org/
https://www.R-project.org/
https://aclanthology.org/C92-1032
https://aclanthology.org/C92-1032
https://doi.org/10.18653/v1/2021.cmcl-1.6
https://doi.org/10.18653/v1/2021.cmcl-1.6
https://doi.org/10.18653/v1/2021.cmcl-1.6
https://doi.org/10.18653/v1/2021.cmcl-1.6
https://doi.org/10.18653/v1/2021.cmcl-1.6
https://d3ijlhudpq9yjw.cloudfront.net/117c7f31-eab0-4c2e-991d-01528984515d.pdf
https://d3ijlhudpq9yjw.cloudfront.net/117c7f31-eab0-4c2e-991d-01528984515d.pdf
https://d3ijlhudpq9yjw.cloudfront.net/117c7f31-eab0-4c2e-991d-01528984515d.pdf
https://d3ijlhudpq9yjw.cloudfront.net/117c7f31-eab0-4c2e-991d-01528984515d.pdf
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1016/j.neuropsychologia.2019.107307
https://doi.org/10.1016/j.neuropsychologia.2019.107307
https://aclanthology.org/W16-4106/
https://aclanthology.org/W16-4106/
https://aclanthology.org/W16-4106/
https://doi.org/10.18653/v1/2021.cmcl-1.3
https://doi.org/10.18653/v1/2021.cmcl-1.3
https://doi.org/10.18653/v1/2021.cmcl-1.3
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.1162/nol_a_00118
https://doi.org/10.1162/nol_a_00118
https://doi.org/10.18653/v1/2023.findings-emnlp.582
https://doi.org/10.18653/v1/2023.findings-emnlp.582
https://doi.org/10.18653/v1/2023.findings-emnlp.582
https://doi.org/10.1016/S0749-596X(03)00081-0
https://doi.org/10.1016/S0749-596X(03)00081-0
https://doi.org/10.1016/S0749-596X(03)00081-0
https://doi.org/10.1016/S0749-596X(03)00081-0
https://doi.org/10.1016/j.jml.2011.05.002
https://doi.org/10.1016/j.jml.2011.05.002
https://d-scholarship.pitt.edu/8981/
https://d-scholarship.pitt.edu/8981/
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

you Need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Ethan G. Wilcox, Jon Gauthier, Jennifer Hu, Peng
Qian, and Roger P. Levy. 2020. On the Predictive
Power of Neural Language Models for Human Real-
TimeComprehension Behavior. In Proceedings of
the Annual Meeting of the Cognitive Science Society,
volume 42.

Michael Wolfman, Donald Dunagan, Jonathan Brennan,
and John Hale. 2024. Hierarchical syntactic structure
in human-like language models. In Proceedings of
the Workshop on Cognitive Modeling and Computa-
tional Linguistics, pages 72—80, Bangkok, Thailand.
Association for Computational Linguistics.

Lee H. Wurm and Sebastiano A. Fisicaro. 2014. What
residualizing predictors in regression analyses does
(and what it does not do). Journal of Memory and
Language, 72:37-48.

9807


https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://escholarship.org/uc/item/738338tm
https://escholarship.org/uc/item/738338tm
https://escholarship.org/uc/item/738338tm
https://doi.org/10.18653/v1/2024.cmcl-1.6
https://doi.org/10.18653/v1/2024.cmcl-1.6
https://doi.org/10.1016/j.jml.2013.12.003
https://doi.org/10.1016/j.jml.2013.12.003
https://doi.org/10.1016/j.jml.2013.12.003

A Hyperparameters

The hyperparameters are shown in Table 4. All
model hyperparameters follow Sartran et al. (2022);
Wolfman et al. (2024), while training hyperparam-
eters were adjusted to accommodate the batch size
suitable for our computational resources (NVIDIA
A100, 40GB). The total computational cost re-
quired for all experiments was approximately 225
GPU hours.

B Correlations between the predictors

The correlations between the predictors in our sta-
tistical analysis are shown in Table 5. While the
NAE from different LMs shows very high correla-
tions with each other, TG and Transformer provide
independent predictive power for the self-paced
reading times; TG subsumes the predictive power
of TG _comp (see Section 4.2 and 5.1).2°

C Part-of-speech tags

Table 5 presents the complete list of part-of-speech
(POS) and symbol tags in the Natural Stories cor-
pus. As reading times are annotated for each
whitespace-delimited region, for data points con-
taining symbol tags (e.g., NNP.), we used the
stripped version (e.g., NNP) in our analysis. Ad-
ditionally, we excluded from our analysis any data
points containing multiple POS tags (e.g., NNP
POS).

D Parallel parsing experiment

As a conceptual case study for the local ambi-
guity resolution in syntactic structures behind to-
ken sequences, we implemented TG’s NAE cal-
culation using 10 syntactic structures obtained
through word-synchronous beam search (Stern
et al., 2017) with Recurrent Neural Network Gram-
mar (RNNG; Dyer et al., 2016; Kuncoro et al.,
2017; Noji and Oseki, 2021).2!*> NAE was com-
puted individually for each syntactic structure and
then aggregated as a weighted average:

o p(t) - NAEL,

NAE_BSL}Z?w — ZtGBea w ( ) L,h, (w,t)’
ZtEBeamw p(t)

4)

_mcomp indicates —comp.

https://github.com/aistairc/rnng-pytorch

2ZRNNG was trained on BLLIP-LG using default hyperpa-
rameters. For inference, action beam size and fast track were
set to 100 and 1, respectively.

where Beam,, represents the set of syntactic struc-
tures synchronized at the w-th word (|Beam,,|=
10), and 7(w, t) denotes the token position corre-
sponding to the w-th word in structure ¢.23

The analysis revealed patterns consistent with
those observed when considering only the globally
correct syntactic structure: both LMs’ NAE demon-
strated significant predictive power for reading
times, with TG’s NAE showing stronger contribu-
tions compared to Transformer’s (Table 6).2* The
likelihood ratio tests further confirmed independent
contributions from both LMs (p < 0.001 for both
comparisons: ‘TG & Transformer’ > ‘Transformer’
and ‘TG & Transformer’ > ‘TG”).

E Surprisal experiment

We analyzed each LM’s surprisal contribution to
reading time prediction using a baseline regres-
sion model that excluded both LMs’ surprisal
from Equation 3 but included their NAE (Table 7).
While both LMs’ surprisal demonstrated signif-
icant predictive power for reading times, Trans-
former’s surprisal exhibited a stronger contribu-
tion compared to TG’s. Additionally, our likeli-
hood ratio tests using the averaged surprisal re-
vealed that the regression model incorporating
both LMs’ surprisal showed significantly higher
predictive power compared to models with either
LM’s surprisal alone (p < 0.001 for both com-
parisons: ‘TG & Transformer’ > ‘Transformer’ and
‘TG & Transformer’>‘TG’). These findings sug-
gest that (i) unlike attention mechanisms, next-
token prediction based solely on token sequences
more effectively captures dominant factors of hu-
man predictive processing, but (ii) similar to at-
tention mechanisms, both types of next-token
prediction—those based on token sequences alone
and those leveraging both syntactic structures and
token sequences—may coexist as models that cap-
ture distinct aspects of human predictive process-
ing.

F Direct comparison of TG and TG_ .,

In Section 5.1, we explored the advantage of treat-
ing closed phrases as single representations beyond
syntactic structure consideration. Our analysis in-
corporated Transformer’s NAE in the baseline re-
gression model to distinguish between two effects

Bstack_count was similarly calculated as the weighted
average across syntactic structures in Beam,,.
% _ps indicates beam search.
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Model architecture Transformer-XL (Dai et al., 2019)

Vocabulary size 32,768

Model dimension 1,024

Feed-forward dimension 4,096

Number of layers 16

Number of heads 8

Segment length 256

Memory length 256

Optimizer Adam (61 = 0.9, 52 = 0.999) (Kingma and Ba, 2015)
Batch size 16

Number of training steps 400,000

Learning rate scheduler Linear warm-up & cosine annealing
Number of warm-up steps 32,000

Initial learning rate 2.5 x 1078

Maximum learning rate 3.75 x 107°

Final learning rate 7.5 x 1078

Dropout rate 0.1

Table 4: Model and training hyperparameters

zone
position
wordlen
unigram
&
bigram -0.02-0.01-0.48 O K
N N
RN

trigram

—0.02—0.050.37.
. | — R
tg_mcomp_surp | 0.02- 004...0 46.. &/ o°
N-/
w s coochuies oI < .
<
stack_count -0.01 0.17-0.25-0.15-0.13 0.14 0.16 0.16 4
&
tf_nae 0.03 0.06 0.35 Y
,sz
e B R
.m0 o0x 07 ofilbodrocs 36 08 0t o« N>

clt -0.01 0.11 0.17-0.22-0.16-0.10 0.12 0.14 0.14 0.25 0.19 0.19 0.18.

-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 5: Correlations between the predictors in our statistical analysis
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cC Coordinating conjunction PRP$ Possessive pronoun
CD Cardinal number RB Adverb
DT Determiner RBR  Adverb, comparative
EX Existential there RBS  Adverb, superlative
FW Foreign word RP Particle
IN Preposition or subordinating conjunction T0 to
JJ Adjective UH Interjection
JIR Adjective, comparative VB Verb, base form
JJs Adjective, superlative VBD  Verb, past tense
MD Modal VBG  Verb, gerund or present participle
NN Noun, singular or mass VBN  Verb, past participle
NNS Noun, plural VBP  Verb, non-3rd person singular present
NNP Proper noun, singuler VBZ  Verb, 3rd person singular present
NNPS  Proper noun, plural WDT  Wh-determiner
PDT Predeterminer WP Wh-pronoun
POS Possessive ending WP$  Possessive wh-pronoun
PRP Personal pronoun WRB  Wh-adverb
-LRB-  Left round bracket , Comma
-RRB-  Right round bracket Period
“ Open double quotes Colon
” Closing double quotes
Table 5: POS and symbol tags in the Natural Stories corpus
Model ALogLik (1) Predictor Effect size [ms] p-value range Significant seeds
tg_bs_nae 1.08 (£0.1) <0.001 3/3
TG 56.0 (+3.5) tg_bs_nae_so  2.01(+0.1) <0.001 3/3
tf_nae 0.95 (£0.1) <0.001 3/3
Transformer  26.1 GE8.1) ¢™ 2 so 125 (+0.2) <0.001 313

Table 6: TG’s and Transformer’s NAE contribution to reading time prediction, where TG’s NAE was calculated
with multiple syntactic structures generated by word-synchronous beam search with RNNG

Model ALogLik (1) Predictor Effect size [ms] p-value range Significant seeds
6 sewss NP meon  <oo s
Tanstomer 199 41 700 0 Sy oo s

Table 7: TG’s and Transformer’s surprisal contribution to reading time prediction
Model ALogLik (1) Predictor Effect size [ms] p-value range Significant seeds
6 B2ee S0 noy  <oon s
Toowmy 941D (FOTE L on oo "

Table 8: TG’s and TG_comp’s NAE contribution to reading time prediction with Transformer’s NAE excluded from
the regression baseline model
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in TG_¢omp: Syntactic structure consideration and
direct terminal token access.

To evaluate which model—TG or TG_comp—
better captures more dominant factors in hu-
man sentence processing as a single model, we
assessed their predictive power without Trans-
former’s NAE in the baseline regression model
(Table 8). The analysis revealed TG’s superior
predictive power (ALogLik=78.2) compared to
TG_comp (ALogLik=59.4). These results high-
light that TG, which explicitly treats closed phrases
as single representations, outperforms TG_comp,
even when considering TG_¢omp’s advantage in
direct terminal token access. The likelihood ratio
tests confirmed TG’s independent predictive power
from TG_comp (‘TG & TG_comp > TG _comp’s
p < 0.001), while in contrast to Section 5.1,
TG_comp also accounted for unique variance
(‘TG & TG_comp >TG’, p < 0.01). This
bidirectional relationship likely emerges because
TG_comp’s direct terminal token access explains
unique variance in the absence of Transformer’s
NAE.

G License

Table 9 summarizes the licenses of the data and
tools employed in this paper. All data and tools
were used under their respective license terms.
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Dataset/Tool License

BLLIP (Charniak et al., 2000) BLLIP 1987-89 WSJ Corpus Release 1
Natural Stories corpus (Futrell et al., 2018) CCBY-NC-SA 4.0
transformer_grammar (Sartran et al., 2022) Apache 2.0

rnng-pytorch (Noji and Oseki, 2021) MIT License

SentencePiece (Kudo and Richardson, 2018) Apache 2.0

R (version 4.4.2) (R Core Team, 2024) GNU GPL > 2

1me4 (version 1.1.34) (Bates et al., 2015) GNU GPL > 2

ImerTest (version 3.1.3) (Kuznetsova et al., 2017) GNU GPL > 2

Table 9: Licenses of datasets and tools
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