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Abstract

Large Language Models (LLMs) are cutting-
edge generative Al models built on transformer
architecture, which tend to be highly memory-
intensive when performing real-time inference.
Various strategies have been developed to en-
hance the end-to-end inference speed for LLMs,
one of which is speculative decoding. This tech-
nique involves running a smaller LLM (draft
model) for inference over a defined window
size, denoted as 7y, while simultaneously be-
ing validated by the larger LLM (target model).
Choosing the optimal + value and the draft
model is essential for unlocking the potential
of speculative decoding. But it is difficult to
do due to the complicated influence from var-
ious factors, including the nature of the task,
the hardware in use, and the combination of the
large and small models. This paper introduces
on-the-fly adaption of speculative decoding, a
solution that dynamically adapts the choices to
maximize the efficiency of speculative decod-
ing for LLM inferences. As a drop-in solution,
it needs no offline benchmarking or training.
Experiments show that the solution can lead
to 3.55-16.48% speed improvement over the
standard speculative decoding, and 1.2-3.4x
over the default LLMs.

1 Introduction

Large Language Models (LLMs) are state-of-the-
art generative Al models built on transformer-based
blocks (Brown et al., 2020; Ouyang et al., 2022).
LLMs have an enormous number of parameters,
and recent research not only focuses on training
them efficiently but also explores how to optimize
inference performance. In fact, there is evidence
indicating that even small improvement in LLM in-
ference speeds can result in significant cost savings.
For instance, Google’s infrastructure optimizations
have demonstrated that improving inference effi-
ciency can lead to substantial reductions in opera-
tional expenses. In large-scale deployments, a 1%

increase in speed can indeed translate into millions
of dollars saved (AI, 2023; Cloud, 2023).

Due to the autoregressive and memory-intensive
nature of LLMs, it is challenging to optimize its
inference throughput. Sampling for a new token
depends on the previously generated tokens. Re-
searchers are exploring mainly two approaches to
circumvent this sequential dependence for more
efficient parallel executions. One is to change the
model architecture thus sampling granularity to par-
allelize the decoding process. Medusa (Cai et al.,
2024), for example, introduces multiple decoding
heads to generate tokens in parallel; Lookahead
Decoding (Jacobi Decoding) (Fu et al., 2024) gen-
erates multiple tokens in parallel using nonlinear
systems. This approach changes the neural archi-
tecture and hence requires new training, the high
costs of which makes them difficult to adopt in
practice. The other approach is speculative decod-
ing (Leviathan et al., 2023; Chen et al., 2023). This
approach first runs inference with a smaller LLM
M, called the draft model, to generate the next ~y
tokens (7 is called speculation window size). After
generating one window of tokens (called a specula-
tion step), a verification step uses the Large LLM
M, called the target model, to validate those to-
kens in parallel. Upon finding the first incorrect
token, the execution throws away the rest of the to-
kens speculated by the draft model in that window
and corrects the first rejected token (or appends
a new token when all of the tokens are accepted).
From there, it continues the speculation-validation
process. This approach allows direct use of the
pretrained LLMs, making it easier for adoption.

What is crucial for unlocking the potential of
speculative decoding is to choose the best specu-
lation window length, , and the best draft model
to use. The best choices depend on the nature of
the inference task, target model, software stack,
hardware, and resource availability or workload
changes (if running in a cloud). Suboptimal choices
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may not only substantially throttle the benefits but
sometimes cause slowdowns to the inference (see
Section 6). The standard approach (Leviathan et al.,
2023; Chen et al., 2023) relies on offline trial-and-
error-based search, which not only takes long time,
but more importantly, cannot adapt to the changes
in the tasks, target models, software stacks, hard-
ware or other runtime changes. A recent study,
SpecDec++ (Huang et al., 2024), attempts to im-
prove it through a machine learning model. It trains
a ResNet with many samples in offline data collec-
tion, and uses it to predict, at each generated token
in actual inferences, whether the execution should
stop speculation, so as to adapt the speculation win-
dow. Although the work shows some improvement
in experiments, it requires hundreds or thousands of
GPU-hours (Section 6.2) to train the model for one
target-draft pair on one kind of task and one soft-
ware and hardware configuration. Modern LLM
servers often host many LL.Ms and their variants
(e.g., different quantizations, with Lora or other
fine-tuning models) and have various software and
hardware configurations and task types, making the
solution difficult to adopt in production systems.

This paper describes the first-known exploration
of on-the-fly adaptive speculation, a drop-in so-
lution that adapts speculative decoding at run-
time without ahead-of-time training. Our explo-
ration covers both speculation window size vy and
the choice of draft models. It experiments with
several agile online methods for the adaptation,
including a state machine-based mechanism, a
cache-enabled state machine-based method, a re-
inforcement learning-based approach, and a token
accuracy-based online window size optimization
method. It analyzes these methods and evaluates
them on four LLMs across three GPU models and
four types of inference tasks. The results show that
on-the-fly adaptive speculation, especially the on-
line window size optimization, can deliver similar
or even better improvements than the prior method
that uses extensive ahead-of-time trainings, lead-
ing to 3.55-16.48% speed improvement over the
standard speculative decoding, and 1.2-3.4x over
the default LLMs. As a drop-in solution, this new
approach needs no model changes, ahead-of-time
preparation, lengthy training, or extensive bench-
marking. It automatically adapts the optimal win-
dow size and directs the requests to the appropriate
draft models for speculation, especially suitable for
large LLM service providers.

It is worth mentioning that besides adapting the

speculation process, there are some other methods
explored in recent studies to improve speculative
decoding (Li et al., 2024; Yan et al., 2024; Spector
and Re, 2023; Hooper et al., 2023). Online Spec-
ulative Decoding (Liu et al., 2023), for instance,
uses knowledge distillation to continuously train
the smaller draft model during inference, enhanc-
ing performance. Speclnfer (Miao et al., 2023)
introduces a tree-based decoding algorithm that
uses the draft model to speculate multiple possi-
ble token sequences in parallel and then validates
each of these sequences by the target model to keep
the longest validated one. The on-the-fly adaptive
speculation proposed in this current paper is from a
different angle. It is hence complementary to those
studies in the sense that it can be integrated into
the speculation process in those solutions to further
improve their effectiveness.

2  Guess-and-Verify in LLMs

In LLM inference, the tokens generated later are
dependent on the tokens generated earlier. This
sequential dependency of autoregressive decoding
in LLMs has led to the development of new tech-
niques aimed at parallelizing the decoding process.
Given that text is tokenized, some tokens can be
easier or harder to predict by a lower-parameter
LLM. This has sparked a new area of research
known as “guess-and-verify" optimization (Li et al.,
2024; Yan et al., 2024; Spector and Re, 2023;
Hooper et al., 2023). In this approach, smaller
draft models efficiently guess a number of tokens,
which are then verified in parallel by a larger target
model. It is a lossless optimization, maintaining
the accuracy of the results.

Speculative decoding is one typical “guess-and-
verify” approach in LLM optimization. In this tech-
nique, when an LLM samples logits, it essentially
predicts the probabilities of the next token. Specu-
lative decoding takes advantage of this by allowing
a smaller model to guess the easier tokens based on
its own sampling of the distribution. These tokens
are then verified by a larger, more accurate model.

In speculative decoding, the process involves
guessing a set of tokens using the smaller model
M, within a fixed window size, v, and then ver-
ifying these ~y tokens using the larger model M,
by sampling v + 1 tokens in parallel. If all tokens
are accepted, the v + 1 tokens are appended to
the generated sequence, and the process continues.
If one token (say (¢ + 1)th) is rejected, the algo-
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rithm accepts the ¢ correct tokens, resample the
(¢ 4+ 1)th from an adjusted distribution in the val-
idation, and continues the next round of guessing.
The speculation and verification process is detailed
in Algorithm 1.

Algorithm 1 Speculative Decoding (Leviathan
et al., 2023)
1: function speculativeDecoding(M,, My, prefiz)

2 > Sample y guesses x1,... , from M, autoregressively.
3 for: =1toydo

4 qi(x) ~ Mg(prefiz + [x1,- -, @i-1])

5 zi ~ qi()

6: > Run M), in parallel.

7o (pi(®), Py ()

8 Mp(prefix),--- ,Mp(prefix+[x1,~~- 7xU])
9 > Determine the number of accepted guesses n.

10: r1~U(0,1), -+ ,ry ~U(0,1)

1 nemin({i— 11 <i<y,r > 2830 {y))
12: > Adjust the distribution from M, if needed.

13: p'(2) + pati(z)

14: if n < y then

15: P’ (2) + norm(max(0, pn+1(x) — gn+1()))
16: > Return one token from M), and n tokens from M,.
17: t~p'(z)

18: return prefix + [T1, - , Zn, t]

3 Overview

Our goal is to enable real-time adjustments in spec-
ulative decoding to achieve higher throughput with-
out requiring extensive pre-training, making it a
practical solution for large-scale LLM deployments.
Figure 1 gives an overview of our solution. The
workflow goes as follows. At the beginning, it
sets up the target model and different draft model
options. For each prompt, our solution as in Fig-
ure 1 involves two steps. First, it finds a proper
draft model for the given prompt. This is done by
extracting features of the prompt to estimate the
single token accuracy. From there, the method ap-
proximates the acceptance rate and ultimately the
throughput so it can choose a proper draft model.
Second, it runs speculations, where v is adapted
on the fly with the given model pairing. In the
following content, we will first introduce the adap-
tive window size selection (Section 4) followed by
adaptive draft model selection (Section 5). A de-
tailed workflow example is shown in the bottom of
Figure 1 and is explained in Appendix C.2.

4 Adaptive Window Size Selection

In this section, we focus on how to determine the
best window size for a given target-draft model pair.
We first introduce the analytic model for capturing

the relationship between the speculation setting and
speculation benefits. With that, we present an an-
alytical model-guided adaption (Section 4.1) and
three other agile algorithms for adaptively chang-
ing v during speculative decoding (Section 4.2).
The agility of these algorithms is essential for min-
imizing the runtime overhead.

4.1 Method 1: Analytical Model-Guided
Adaption

A speculation window size that is too large risks
high overhead if verification fails early, while a
size that is too small misses out on the full benefits.
The optimal size varies depending on the language
model, contexts, and speculation accuracy. We
translate this trade-off into an objective function
to adaptively determine the optimal window size
across various configurations. For each prompt, we
want to minimize the end-to-end latency in gen-
erating a response with a fixed number of tokens.
We define our objective function as the expected
number of tokens verified as correct per unit time,
aiming to maximize this function by optimizing the
window size ~:

Definition 1 (formulating objective). Let a, repre-
sent the latency of generating one token by the draft
model, and by () represent the latency of a verifi-
cation step with window size v. Fort =1,2,- -,
let Acc(x| X<t) be the accuracy of the specula-
tion of a single token given the current context
X<t = {x1, - ,x—1}. The window size ~y for
the current speculation step can be determined by
optimizing the objective

1-— ACC(l't|X<t)FY+1
G = max .
7 (1= Ace(w| X <)) (vag + bp(7))
ey

Given the single token accuracy [ =
Acc(z| X<t) € [0, 1], the expected accepted num-
ber of tokens in a y-long speculation window fol-
lows truncated geometric distribution, and is given
as 1_1[1 W,BH (see Appendix B.1). The total latency
of one speculation step and verification step is cal-
culated as ya, + b,(y). Therefore, the expected
number of tokens verified as correct per unit time
given a window size -y is given by WZEPW,
and thus objective (1).

Algorithm. To adaptively determine the opti-
mal vy, we need to figure out the unknown terms
agq, bp(y), Acc(x| X <¢) in Equation 1. Using esti-
mation for them, the algorithm goes as follows. At
the start of each speculation step, it conducts the
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Figure 1: Our on-the-fly adaptive speculation framework. When a prompt arrives, our scheduler directs it to the
draft model M. During speculation, our framework automatically adapts the right speculation window size -y. The

speculation is then validated by the target model M,,.

following two operations before it can solve the ob-
jective (1). First, it estimates a and b. These values
are derived by observing the most recent steps. Sec-
ond, it estimates Acc(x¢| X ) based on the recent
history. We use maximum likelihood estimation
over the last h speculations, ensuring the estimate
Ace reflects both locality and reduced variance (de-
tails in Appendix B.2). In our algorithm, we let
~(7) be the speculation window size during the j-
th most recent verification step, and V' (v(j), X<¢,)
the number of accepted tokens in this speculation
window. We estimate Acc(zy| X <) as

Z‘j V(W(J)7X<t])
25 V() Xe) + 525 LV (4(5), X<ty) < (7))

2

where 1(-) is the indicator function. To avoid
overly optimistic estimates and potential division-
by-zero error when Acc gets close to 1, we set a
fixed upper limit, Accpax (€.g., 0.98), and cap Ace
at this value.

Analysis. Theorem 1 gives a direct comparison
of the error bound of the analytical model-guided
adaption and that of the fixed window size specu-
lation, where the gamma value is determined from
offline profiling data before real deployment, show-
ing the superior theoretical results of our method
in estimating the single token accuracy. The proofs
are detailed in Section A.1.

Theorem 1. Let 3 be the true acceptance probabil-
ity of speculative decoding steps, and let Bguprive
and Eﬁxed be the estimators obtained from the an-
alytical model-guided adaption and fixed window
selection methods, respectively. Then the variance
of the adaptive estimator satisfies:

Var (Badaptive) < Var (B\ﬁxed) .

Moreover, the expected absolute estimation error
obeys:

E || Badapiive — 5\} <E [\B]ﬁxed - B!} ~

4.2 Other Drop-in Speculation Methods

Besides the analytic model-guided adaption, we
have explored three other methods for on-the-fly
adaption.

Method 2: Finite State Machine (FSM)-Based
Speculation. A finite state machine-based predic-
tor (Hennessy and Patterson, 2017) is similar to
an n-bit saturating counter used in branch predic-
tion. The mechanism works by decreasing ~ by
1 if a token from the draft model is rejected, and
increasing 7y by 1 if all tokens are accepted. During
benchmarking, we still select a value for -y, but it is
considered an upper limit, yp,a«. If the draft and tar-
get models’ distributions significantly differ, v will
remain low, potentially even at 0. Conversely, if the
models align closely, v should increase, approach-
ing Ymax- We consider this approach particularly
effective for natural language processing because
certain parts of a sentence—like common phrases
or syntactically predictable structures—are easier
for a smaller draft model to predict. In contrast,
more unique or complex sub-sequences generated
by the LLM might be harder to guess. We show
some examples in Appendix C.1. By adaptively
changing v based on the previous token validations,
we create a reward system that exploits patterns and
predictable structures in autoregressive generation.

Method 3: Cache-Enabled FSM-Based Spec-
ulation. We adjust  based on the context provided
by the prompt and the history of generated tokens.
In settings like question-answering, an LLM often
reiterates or directly responds based on the con-
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text given by the user. Therefore, the user’s input
can inform predictions about the type of response
the LLM will generate. Specifically, this approach
includes a token cache that updates after every sam-
pling step. Initially, the cache is populated with
tokens in the prompt, set up before the prefill stage.
As new tokens are sampled and validated during
speculation, the cache is updated with any previ-
ously unseen tokens. -~ is then adjusted dynam-
ically: It increases by one if a validated token is
already in the cache, and by an additional one when
all speculated tokens are accepted. Conversely, if
none of the accepted tokens are in the cache, it de-
creases by one. We see that this approach is partic-
ularly effective for structured tasks like QA chatbot
interactions or code completion, where context and
history play a significant role. However, it may be
less effective for short prompts expecting broad and
diverse content, such as tasks that require informa-
tive or creative responses. In such cases, the lack
of initial context or history means the cache is less
informative, making ~ adjustments less effective,
potentially leading to performance similar to the
more simplistic state-based adaptation.

Method 4: Reinforcement Learning-Based
Speculation. We in addition explored a rein-
forcement learning-based approach. We use a Q-
learning agent to choose . The modification to
the algorithm is detailed in Algorithm 2 in Ap-
pendix B.4. The agent takes the previous states of
~ as inputs and applies an action after each valida-
tion step.

5 Adaptive Draft Model Selection

Besides the speculation window size, the selec-
tion of the draft model also makes a difference:
A smaller draft model can make faster inferences
but at the risk of a low acceptance rate, while a
larger draft model renders a longer latency. To
dive deeper into the problem, we analyze the re-
lationship between the throughput of the adaptive
speculation and the acceptance rate in Theorem 2.
Proofs are detailed in Appendix A.2.

Theorem 2. Let L be the length of the answer
to a prompt and is fixed, n be the total number
of speculation steps. Let acceptance rate p, be
the number of accepted tokens divided by the total
number of tokens sampled by M. The throughput
(R) can be formulated as

L
- 3)

R=—~
bp(V)n + ag 5

As answer length L in Equation 3 is consid-
ered constant in our setting, the main influence
for choosing a draft model comes from draft model
latency a, target model latency b(~y), the acceptance
rate p, and the number of speculation steps n.

Influence of selecting a larger draft model.
Let c represent the inference latency ratio between
the draft model and the target model. Choosing a
larger draft model increases the single token accu-
racy, @ = E(Acc(z|X<¢)), and the draft latency
a. We estimate d = E(~) by finding the numeri-
cal integer solution in objective 1. With « and the
corresponding d, the acceptance rate p = Hﬁ‘;)ﬁ
can be determined, as shown by scattered dots in
Figure 2.

10.0 08 _
.o c=0.5 S
g 75 .. ¢=02 10.6 2
g c=0.1 -4
= 8o . I
E 50| aiiiliesssae 048
5 8
2 (=
s . 102
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Figure 2: Results for the acceptance rate and the denom-

inator in n = d# across different single-token accuracy

P
(o) and draft-to-target model size ratios (c).

We now analyze the influence on the number of
speculation steps n = d#' The lines in Figure 2
illustrate how the denominator of n changes as «
varies, reflecting the product of d and p.

Theorem 3. Let An represent the reduction in
speculation steps due to a larger draft model, Ac
the increase in latency ratio, and Ap the improve-
ment in acceptance rate. As long as the following
condition holds:

Ac
An > —1L, 4
n Ap 4)
the larger draft model would lead to a higher over-
all throughput than the smaller draft model.

A deeper look into formula 4 gives us that, when
comparing two draft models, Ac can be easily de-
termined using sample profiling results. If we are
able to approximate the increase in a, Ap and
An(a, d) can also be determined because their re-
lation to d, o, and c is deterministic. Therefore, to
select a suitable draft model when a new prompt
arrives, we need to approximate « and inspect
whether condition 4 holds in order to determine
whether to use a larger draft model.
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Typically a prompt can be represented as a vector.
We represent a prompt as a vector u € R” with
r > 0 being the vector length. We model our goal
ol of prompt u for a certain ratio c as

a =u'Z, + S

where Z. is the parameter vector to determine and
the random noise variable €} is independent of Z.
For each u € R”, the random variables {e!} are
identically distributed with E(e¥) = 0 for all u.
The vector embedding is constructed as a concate-
nation of the prompt length, prompt perplexity and
its TF-IDF score.

Algorithm. Based on the analysis, we devise
the following algorithm to select draft model. Sup-
pose there exist 7 linearly independent prompts
by,---,b, € R". In the beginning, for each ra-
tio ¢ and these r prompts, the algorithm runs the
speculative decoding and observes the single to-
ken accuracy a?p and computes the ordinary least
square estimate for Z., given by

-1
T s
Zo= > bb) | D byatr.
p=1 p=1

For each newly arrived prompt u, it computes the
estimated & for potential draft-target model pairs
and check Equation 4 to select the optimal draft
model. In an LLM server center setting that has
many machines hosting many LLMs, the selection
of draft models can be implemented by redirect-
ing requests to the appropriate nodes in the center
equipped with the desired draft model and target
model pair.

6 Evaluation

In this section, we present and analyze the experi-
mental results gathered from testing our proposed
algorithms and hypotheses.

6.1 Experimental Setups

This part outlines the configurations and setups
used to collect the performance data.

Datasets and Models. we used three datasets
to evaluate model performance and benchmark
various implementations. These datasets were
selected to reflect common tasks found in chat-
bot settings and other LLM applications. We
employed system prompts to guide the LLMs
for higher-quality outputs, particularly for tasks

like coding and text summarization. See Ap-
pendix D.1 for more details. The datasets include
OpenAl’s HumanEval (Chen et al., 2021a) (CC-
BY 4.0) for coding tasks, XSum for extreme text
summarization (Chen et al., 2021b) (Apache 2.0),
GSMSK (Cobbe et al., 2021) (MIT License) for
mathematical reasoning, and Alpaca (Taori et al.,
2023) (CC BY-NC 4.0) for complex advice queries.
We include llama-2-chat 70B (Meta’s Llama 2
Community License), Meta OPT 13B (MIT Li-
cense), BigScience BLOOM 7B (RAIL License),
and Dolly 12B (Databricks Open License) for tar-
get models. More details about the models we
benchmarked are in Appendix D.1. Each dataset
was sampled with 25 prompts in online predictive
model construction, and evaluated with all remain-
ing prompts across various settings. Note that when
using speculative decoding, the draft model and
the target model should have been trained on the
same datasets to achieve good prediction accura-
cies, which limits the possible combinations in our
experiments.

Platform. Table 4 in Appendix D.1 details the
GPUs used, including memory bandwidth, capac-
ity, and supported data types. For LLaMA 70B-7B
and 70B-13B pairs, we use two NVIDIA A100
GPUs with 80GB memory each, distributing the
70B model across both GPUs. For other model
pairs, we conduct our study using a single GPU,
loading both the target and draft models on the
same device.

6.2 Performance

We list in Table 1 the throughput results of adaptive
window size selection for different model pairs on
different hardware. The results of the online win-
dow optimization method are reported. We have the
following observations. First, our method achieves
a 2.07x speedup over autoregressive decoding and
a 7.69% improvement over speculative baselines.
Given that even a 1% speedup can save millions
in large-scale LLM deployments (Al, 2023; Cloud,
2023), this improvement underscores the substan-
tial impact of our approach. Second, our method
achieves different speedups when benchmarking
on different datasets. For the HumanEval dataset,
speculative decoding has the potential to signif-
icantly accelerate performance due to the struc-
tured nature of programming languages, which fol-
low stricter grammar and syntax compared to nat-
ural language. Repetitive patterns, such as for
loops or if-else statements, are easier for the
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draft model to predict accurately. With adaptive
speculation, the algorithm can adjust the parame-
ter v dynamically to suit different sub-sequences.
For instance, « can be increased for predictable
loops, whereas for more complex or less frequent
constructs like API calls or high-level program-
ming, v can be reduced to improve the alignment
between the draft and target models, minimizing
token waste. Notably, conventional speculative
decoding experiences a significant slowdown on
the XSum dataset, highlighting a key limitation
of speculative methods. In contrast, our approach
dynamically adjusts the window size—sometimes
reducing it to zero—effectively preventing slow-
downs. As a result, we achieve a 70% throughput
improvement on XSum, even though it provides no
speedup over default LLMs without speculative de-
coding. Third, the ratio of model size matters when
it comes to model pairing. Larger ratios generally
lead to higher speedups while smaller target-draft
parameter ratios such as BLOOM 7B-1B1 leave
less room for improvement.

Table 1: Evaluation of adaptive window size selection.
SPS denotes the throughput improvement our method
achieves over the original speculative decoding. ARS
denotes improvements over the default LLMs without
speculative decoding. (“-" for not-runnable cases due to
memory limit)

Model Pairing Dataset A100 V100 409
SPS ARS SPS ARS SPS ARS
LLaMA 70B/7B finance-alpaca  6.43%  2.11x

LLaMA 70B/13B finance-alpaca 4.89%  1.90x - - - -
BLOOM 7B/560M finance-alpaca 4.28% 1.05x  7.69% 1.15x 3.70% 1.22x

BLOOM 7B/1B1 finance-alpaca  4.36% 1.04x  320% 1.15x 3.29% 1.17x
OPT 13B/125M finance-alpaca  4.82% 2.32x  341%  3.4x - -
Dolly 12B/3B finance-alpaca  9.11%  1.03x - -

LLaMA 70B/7B humaneval 10.35% 2.41x

LLaMA 70B/13B  humaneval 8.53% 2.23x - - - -
BLOOM 7B/560M  humaneval 8.14% 1.04x 251% 1.09x 3.09% 125x
BLOOM 7B/1B1 humaneval 4.03% 11x  357% 1.16x 351% 13x
OPT 13B/125M humaneval 11.40% 2.29x  2.15% 3.34x - -
Dolly 12B/3B humaneval 15.20% 1.07x - -

LLaMA 70B/7B gsm8k 7.13% 2.28x

LLaMA 70B/13B gsm8k 9.66%  2.08x

BLOOM 7B/560M  gsm8k 1503%  1.x 2.52% 1.01x 4.84% 1.18x
BLOOM 7B/1B1 gsm8k 10.70%  1.x 0.77% 1.02x  1.97% 1.19x
OPT 13B/125M gsm8k 595% 2.24x - -

10.52% 3.36x
Dolly 12B/3B gsm8k 16.92% 1.06x - -
LLaMA 70B/7B xsum 294% 1.73x
LLaMA 70B/13B  xsum 0.14% 1.5% - - - -
BLOOM 7B/560M  xsum 77.50%  1.x  4930% 1.x 5463% 1.x
BLOOM 7B/1B1 xsum 7091%  1.x  4294% 1.x

54.17%  1.x

OPT 13B/125M xsum 10.64% 1.02x  791% 2.43x

Next, we show the results of the draft model
selection. This decision is made online for each
prompt. Table 2 compares the speedups over the
speculative decoding with and without draft model
selection. For LLaMA 70B, the draft model cur-
rently includes LLaMA 7B and LLama 13B. For
BLOOM 7B, the draft model includes BLOOM
560M, 1B1, and 1B7. The overall throughput
speedups range from 3.55% to 16.48% using adap-

tive draft model selection.

Table 2: Throughput performance improvement over
speculative decoding.

finance-alpaca humaneval gsmsk
AI00 VIO 4090  AI00  VIOO 4090 AI00 V100 4090
LLaMA 70B (/o draft selection) 643% - - 1035% - - 966%

LLaMA 70B (w/ draft selection) ~ 6.46% - - % - - 966% - -
BLOOM 7B (/o draft selection)  4.36% 7.69% 3.70% 8.14% 3.57% 351% 9.76% 2.52% 4.84%
BLOOM 7B (w draft selection) ~ 4.94% 16.48% 8.15% 857% 4.96% 4.17% 9.76% 3.55% 6.83%

Target Model

We compare our online adaptive window size
selection with SpecDec++ (Huang et al., 2024) in
Table 3. SpecDec++ uses a ResNet to determine
whether to stop speculation during speculative sam-
pling at the current word predicted from the draft
model. It employs this method based on its pre-
diction of whether the next draft token will be ac-
cepted. Training this ResNet model requires con-
ducting offline profiling runs and collecting data on
the hardware (for example, 500 hours on A100-
80G GPUs for training dataset generation, 400
hours for training, and 500 hours for evaluation
set). To ensure a fair comparison, we employ the
same setup from its original paper, using LLaMA-
2-chat models (Touvron et al., 2023b). Specifically,
we select the 7B version as the draft model and
the 70B version as the target model for the A100
platform and BigScience BLOOM 560m version
as the draft model and the 7B version as the target
model for GTX 4090. To optimize memory usage,
the models are implemented in the bfloat16 format.
The tok/s speedups comparison is as follows on
both the A100 and 4090 devices. We find that al-
though our method uses no ahead-of-time training
while SpecDec++ uses hundreds of GPU-hours to
do that, our method outperforms SpecDec++ con-
sistently, with an average of 5.7% improvement in
latency. Part of the time savings come from select-
ing the « value before each speculation instead of
running a neural network each time the draft model
produces a new token. Our approach further shows
advancement by adaptively choosing «y on the fly
without arduous data collecting and training.

Table 3: Comparison of Tok/s speedups (v.s. autoregres-
sive) and productivity of SpecDec++ and our method
(without draft model selection).

Dataset A100 (LLaMA 70B/7B) 4090 (BLOOM 7B/560m)
SpecDec++ Ours SpecDec++  Ours

Alpaca 2.04x 2.11x 1.21x 1.26x

HumanEval 2.23x 2.41x 1.22x 1.23x

GSM8K 2.26x 2.28x 1.17x 1.18x

Profile & Prepare 1000h 0 100h 0

Offline Training 400h 400h
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Figure 3: Detailed experimental results of different adaptive methods.

6.3 Detailed Analysis

We compare the throughput and acceptance rate for
different adaptive speculation methods in Figure 3.
~ denotes the speculation window size for the orig-
inal speculative decoding method and upper-bound
speculation (simply by skipping the validation pro-
cess); we set a maximum ymax value for adaptive
speculation methods, ensuring that y will not ex-
ceed this value. All experiments are conducted
on the A100 machine with OPT 13B-125M model
pair. From the figure, we find that (i) the analyti-
cal model-guided online window size optimization
method gives the best overall performance. (ii)
Even though RL-based speculation gives better ac-
ceptance rates than the other methods, it shows
lower throughput. This is because a higher accep-
tance rate is not directly linked to a higher through-
put as in Equation 3. In our case, RL-based specula-
tion remains at a low -y value to keep the acceptance
rate high while also losing the potential for more
speedups. (iii) cache-based and state-based specu-
lation perform better when prompts are longer (e.g.,
the humaneval dataset). This can be attributed to
a more stable ~ prediction as more information is
involved in the long prompt.

6.4 Results for Scalability

Comprehensive Chat Dataset. We include
evaluations for a comprehensive chat dataset
ShareGPT (Community, 2023) in Appendix D.3.
Results show that our method achieves an average
of 1.71x speedups compared to original autore-
gressive decoding, and an additional 4.9% improve-

ment over speculative decoding baselines.

Adaptive Speculation for Tree-based Decod-
ing Method. Current speculative decoding uses
tree-based methods (Cai et al., 2024; Li et al.). On-
the-fly adaptation of speculative decoding is com-
plementary to the tree-based decoding. By adap-
tively changing the draft tree depth, our drop-in
method optimizes the draft token sequence length
in real time, enhancing decoding performance. We
apply our method to the state-of-the-art EAGLE-
2 (Li et al., 2024) and report the results in Ap-
pendix D.5. On the MT-Bench (Zheng et al., 2023),
we achieve up to 3.56x speedups compared to
original autoregressive decoding, and an additional
4.2% improvement over SOTA.

7 Conclusion

In this paper, we propose on-the-fly adaptation for
speculative decoding to accelerate LLM inferences.
As a pure software approach, it introduces a two-
level adaptation for draft model adaptation and on-
line window size adaptation with no ahead-of-time
profiling or training, providing a drop-in optimiza-
tion for existing LLMs. We experimentally demon-
strate the effectiveness of this method and show
3.55% to 16.48% speedups compared to the specu-
lative decoding, and 1.2x to 3.4 over the default
LLMs without speculative decoding. Among the
several online adaptive methods, we found that the
token accuracy-based online window size optimiza-
tion method works the best, consistently outper-
forming other methods in terms of the overall LLM
throughput.
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8 Limitation

This section discusses the limitations of the current
work. The drop-in nature of our solution assumes
compatibility with existing inference pipelines, but
integration challenges may arise in specialized
LLM deployments, such as those using custom
hardware accelerators or distributed inference sys-
tems. Future work should explore more adaptive
and model-agnostic strategies to further enhance
the robustness and applicability of our approach.
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A Proof
A.1 Proof of Theorem 1.

Proof. Since speculative decoding terminates upon
the first failure in a verification window, the number
of accepted tokens V' (v, X~;) follows a truncated
geometric distribution:

P(V=Fk =1-pFp, ke{0,1,...,v—1}

Thus, for a fixed window size +, the failure proba-
bility at each step is:

g=1-(1-p)".

The number of failures F' in N verification steps
follows a binomial distribution:

F ~ Binomial (V, q) .
For small p, we approximate:
q=p.

By the Poisson limit theorem, for large N, the
failure count can be approximated by:

F ~ Poisson(N~p).

Now, both adaptive and fixed methods estimate
p using the maximum likelihood estimator:

F

P=SvF

Applying the delta method, we approximate the
variance of p:

p(1 —p)

Var(p) ~ Yk

In the fixed case, the total number of observed
tokens is:

Stixed + Flixed = N7

For the adaptive method, where 7(j) is adjusted
dynamically, we have:

Sadaptive + F, adaptive >N e
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Thus,
Var (ﬁadaptive ) < Var (]/Q\ﬁxed ) .

Using Hoeffding’s inequality,
P(l[p—p|l >€) <2exp (—252(5 + F)) ’

we conclude that the adaptive method has a tighter
error bound:

P (’ﬁadaptive _p‘ > 5) <P (‘ﬁﬁxed _p’ > f)-

Thus, the expected absolute error is also smaller:

E [|Z/7\adaptive - p” <E Hﬁﬁxed - pH .
This completes the proof. O

A.2 Proof of Theorem 2.

Proof. Let {7}, denote the history of the win-
dow sizes during the adaptive speculation and
dg = Ei:17...7n(yé) be the average window size
during speculation. In the following formulations,
we omit p and q as the formulations are about a
given p and q pair. The throughput R is computed
by dividing the length of the answer by the latency
t:

R=

L
7 (6)

The total latency of generating outputs for one
prompt is computed as

t=Y ay +b(y) =b(y)n+ad 7
i=1 i=1
=n(b(y) +a-E(HY). @)

Inspecting the relations among d,n,p and L
gives us

L=d-n-p. (8)

Solving for Equations 6, 7 and 8 gives us the
expression for throughput. O

B Method Details

B.1 Formulation of Objective 1

This section discusses details on formulating objec-
tive 1.

Expected Accepted Token Length. Given the
single token accuracy 8 = Acc(z|X<t) € [0,1],

the expected accepted number of tokens is com-
puted as:

E(# of accepted tokens| X ;)

v—1
=1+ if(1-B)+18
=1

Y

v—1
=14+ i =) (-1 +98 (g
=1

=2
’Y .
- Z B
i=0
1— BV-H
1-5

Formulation of objective. The expected num-

ber of verified tokens as correct in a y-long spec-
. . - +1
ulation window is =A@t X< The (otal la-
1—-Acc(we| X <) © .
tency of one speculation step and verification step
is calculated as ya, + b,. Therefore, the expected
number of tokens verified as correct per unit time

given a window size 7y is
1 — Acc(zy| X <)V
(1 = Acc(@i| X <)) (vag + bp)
B.2 Estimation of Acc(z:| X )

Let 8 = Acc(z¢|X<¢). Let Y be arandom variable
of the number of accepted tokens truncated at v+ 1.
The probability function of Y is

(1-p)pv!
1-— B'er

0, otherwise.

7y:172737”'77+1

fly) =

(10)
Maximum Likelihood Estimation. For a ran-
dom sample of size n, the likelihood function is

L= (1= (1 - gy prmi,

The following equation 11, a (y+2)th-degree poly-
nomial in 3, provides the maximum likelihood es-
timator for 3.

(Zyi —n(y+2) +n>3”2 + <n(v+ 2) - Zw)ﬁ”“
i=1 P
~(Su)aeun-o
=1 =1
an
Given values of v, n, and Y " ; y; = ny, one

can compute the value of B using an iterative tech-
nique such as the Newton-Rhapson method to solve
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equation 11. It can be shown that there is only one
root in the range 0 < B < 1.

To eliminate the need for an iterative solution to
equation 11, we maintain a table to provide approx-
imate solutions. From equation 11,

G={B" - (y+2)B T + 1}/ -5 - JF(B)

Further observation gives us that the rate of change
of ¥ concerning B appears to be sufficiently con-
stant, making linear interpolation feasible and en-
abling our approximation in equation 2.

B.3 Optimal Gamma

Given the single token accuracy and inference la-
tency ratio of the draft model to the target model c,
the optimal v value to optimize objective 1 can be
determined as in Figure 4.

— ¢=05
8 c=025
c=02
c=0.1

Best Gamma
(=)

—

FN

| [
JL

0.50 055 0.60 0.65 070 0.75 0.80 0.85 0.90
a Values

Figure 4: The optimal ~y for different o and ¢ values.

B.4 Psudo-code for Reinforcement
learning-based speculation

Algorithm 2 detailed the reinforcement learning-
based speculation.

C Additional Method Information
C.1 Examples for Easier and Harder

sequences fro Draft Models
Sub-sequences Easier for Smaller Draft
Models

These sequences typically involve high-frequency
n-grams or strong grammatical constraints.
Common Phrases & Collocations:

e Context: "Thank you very..." — Draft model:

"...much."

* Context: "Once upon a..." — Draft model:
"...time."

e Context: "The cat sat on the..." — Draft
model: "...mat."

Algorithm 2 Reinforcement Learning-Based Spec-
ulative

1: function reinforcementLearningSpeculation(M,, Mg,
prefix, Agent)

2: > Sample y guesses x1, - - - , x, from M, autoregres-
sively.
3 for:=1toydo
4 qi(x) ~ Mq(prefiz + [z1,- -, @i-1])
5 i ~ qi(x
6 > Run M, in parallel.
7o (pa(@), e pyta(T))
8 My (prefix), -+, Mp(prefiz + [x1,- -, y])
9 > Determine the number of accepted guesses n.
10 r1 ~U(0,1),--- ,ry ~U(0,1)
1 nemin({i — 11 <i <y,ry > 2830 {y})
12: > Adjust the distribution from M, if needed.
13: p'(z) < pota(x)
14 if n < y then
15 p'(z) + N(max(0, pri1(z) — gn1(2)))
16 action <— GetAction(Agent, )
17 y = action
18 Reward = the percentage of the accepted speculated
tokens
19: > Return one token from M,, and n tokens from M.
20: t~p'(x)
21: return prefiz + [z1,- - , Tn, t]

Syntactically Predictable Structures:

e Context: "She is going..." — Draft model:
"...to" (infinitive marker)

* Context: "The quick brown fox jumps over
the lazy..." — Draft model: "...dog." (common
idiom)

Sub-sequences Harder for Smaller Draft
Models (Better for LL.M)

These often involve specific entities, specialized
vocabulary, complex relationships, or novel infor-
mation.

Unique/Domain-Specific Terminology:

* Context: "The patient was diagnosed with
a rare form of..." — LLM: "...amyloidosis."
(Specific medical term)

* Context: "The research paper discussed impli-
cations of quantum..." — LLM: "...entangle-
ment for secure communication protocols."
(Complex and specific)

Complex Factual Information/Proper Nouns:

* Context: "The capital of Burkina Faso is..."
— LLM: "...Ouagadougou."
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Nuanced/Figurative Language:

e Context: "Her argument, while passionate,
was ultimately built on a foundation of..." —
LLM: "...shifting sand." (Figurative language)

Unexpected but Coherent Developments:

» Context: "Everyone expected the hero to save
the day, but instead, he..." — LLM: "...re-
vealed he had been the antagonist all along."
(Surprising turn)

These examples highlight how a draft model han-
dles predictable sequences for validation, reserv-
ing the LLM for generating more challenging,
information-rich, or novel text.

C.2 Workflow Example of Figure 1

The example provided at the bottom of Figure 1
illustrates this dynamic adaptation of . The text be-
low the main pipeline shows a sequence being gen-
erated, with the speculation window ~ changing at
each step: The generation process starts with an ini-
tial v (e.g., v = 6 for the tokens after "[START]").

1. The draft model M, generates y tokens.

2. These tokens are validated by M. Tokens
matching M),’s output are ‘Accepted’ (green),
like ‘japan ’s benchmark®.

e If a draft token mismatches M,’s out-
put, it’s ‘Rejected’ (red). For example,
‘bond’ is shown in red, signifying it was
the first point of disagreement in that par-
ticular draft batch after three preceding
tokens (‘japan ’s benchmark’) were ac-
cepted. The correct token from M, is
used.

¢ A token like ‘69,” shown in blue is 'Re-
sampled,” indicating it was provided or
corrected by the target model, possibly
based on a draft proposal that was nei-
ther a perfect match nor a complete mis-
match requiring immediate termination
of accepted tokens.

» Tokens like ‘in late morning trading .
[END]’ are shown in grey, indicating
they are ‘Pending validation’ in a sub-
sequent step.

3. Based on the outcome of this validation (e.g.,
3 tokens accepted before the rejection at
‘bond*‘ when ~y was 6), the *On-the-fly v Adap-
tation” module determines the next value for

(e.g., v = 5 for the tokens following ‘bond).
This cycle of speculation, validation, and ~-
adaptation repeats. As depicted by the values
above the generated text, v changes through-
out the generation of the sequence (6 —+ 5 —
4 —-3—4—9—3—5). This adaptive
behavior, for instance, increasing 7y to 9 (e.g.,
before ‘percent, to 10°) when acceptance rates
are high or decreasing it (e.g., to 3 before ‘98
5 9°) when mismatches are frequent, allows
the system to optimize the speculation length
according to the local characteristics and pre-
dictability of the sequence being generated.

D Additional Experiments

This section includes additional experimental re-
sults.

D.1 Additional Experimental setups

Software. We primarily use the HuggingFace
Transformers library with PyTorch implementa-
tions. The flexibility of Python and the availability
of pre-trained weights on HuggingFace allow us to
experiment with various methods and conduct de-
tailed analyses. The GPU implementations utilize
NVIDIA’s cuDNN library, which is optimized for
large language models (LLMs) and transformers.
To ensure the best performance and compatibil-
ity with the latest models, we use the most recent
versions of Transformers (v4.38.2) and PyTorch
(v2.2.1).

Hardware. LLMs demand significant GPU com-
puting power and memory, particularly during in-
ference, where memory bandwidth is critical in
achieving high throughput on GPUs. Table 4 lists
the GPUs we used, their memory bandwidth, ca-

pacity, and the datatypes employed.
Table 4: GPU Hardware

GPU HBM (GB) Mem Bandwidth (GB/s) Datatype
NVIDIA V100 32 900 FP16
NVIDIA A100 80 1555 BF16
NVIDIA RTX4090 24 1008 BF16

We use two NVIDIA A100 GPUs with 80G
memory for the LLaMA 70B-7B pair and 70B-
13B pair. We distribute the 70B model across two
GPUs, which leads to communication overhead
during inference with LLaMA 70B. However, for
speculative decoding, the 7B (13B) draft model is
only loaded on a single GPU, reducing this over-
head. For other model pairs, we limit our study to
one GPU, loading both the target and draft mod-
els on a single device. This approach serves two
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purposes. First, it allows us to explore the effects
of resource constraints on a single GPU, which is
relevant for future work on speculative decoding
for personal devices. Second, it maximizes effi-
ciency, as splitting a small LLM onto one GPU and
a large LLM onto another would underutilize the
resources; it is more effective to run both models
on a single GPU.

Prompt Dataset. Table 5 consolidates informa-
tion on the datasets, tasks, and additional details
we used to benchmark and compare performance.

Table 5: Prompt Dataset

Dataset Task System Prompt

You are an expert programmer that helps to complete
Python code. Given the code from the user, please
complete the rest of the code to the best of your ability.

OpenAl HumanEval ~ Code completion

You write two sentence summaries of new articles. Do

XSum Summarization . T .
not write any more. Keep it brief and to the point.

You are given a math question, and your task is to
Math Word Problem  answer it. Then provide a step-by-step walkthrough
on how you got the answer to the question.

GSMBK

You are a finance expert. Answer the following ques-
tions to the best of your knowledge, and explain as
much as possible.

Finance-Alpaca Finance QA

Models. When implementing speculative decod-
ing, selecting appropriate model pairs presents chal-
lenges. The parameter ratio is crucial, as a low ratio
can negate speed gains if the draft model isn’t sig-
nificantly faster than the target model. Additionally,
both models must share the same tokenizer to avoid
conversion overhead from differing tokenization
schemes (Schuster and Nakajima, 2012; Sennrich,
2015). Speculative decoding is more effective with
models trained on similar datasets, as seen with
Meta’s LLaMA models (Touvron et al., 2023b,a)
or DeepMind’s Chinchilla. Mixed precision (FP16
or BF16) is preferred, avoiding quantization due to
slowdowns, and using deterministic decoding with
a temperature of O for consistency (Hinton, 2015).
Dolly is an open-source model from Databricks
aimed at democratizing LLMs by offering open-
source weights and the datasets needed for instruc-
tion fine-tuning (Conover et al., 2023). The follow-
ing table 6 details the model pairs.

Table 6: Model Card

Target Model Draft Model Same Vendor? Ratio
Meta LLaMA 70B Meta LLaMA 13B Yes 5.4x
Meta LLaMA 70B Meta LLaMA 7B Yes 10x

BigScience BLOOM 7B BigScience BLOOM 560M Yes 12.5x
BigScience BLOOM 7B BigScience BLOOM 1.1B Yes 7x

Meta OPT 13B Meta OPT 125M Yes 96.3x

DataBricks Dolly 12B DataBricks Dolly 3B Yes 4.0x

Implementation Details. The FSM-based
method and cache-enabled FSM-based method are
inspired by branch prediction in computer architec-

ture (Lee et al., 1997; Smith, 1998; Jiménez and
Lin, 2001). The reinforcement learning-based spec-
ulation involves online learning, so we conducted
25 warmup trials before recording benchmarks. To
minimize overhead, the RL algorithm runs on the
CPU rather than the GPU, ensuring both inference
and training are completed in under 1 millisecond.
This makes the overhead negligible when consider-
ing the end-to-end latencies compared to standard
speculative decoding. Al assistants are used for
refining the writing.

D.2 Additional Experiment Results

We include more experiment results. Figure 5 and
Figure 6 compare the throughput and acceptance
rate for different adaptive speculation methods on
the A100 machine with the BLOOM BigScience
7B-560M model pair and LLaMA 70B-7B.

We also experimented for Qwen2.5 7B/0.5
model pair on the 4090 machine. They show signifi-
cant improvement over the baseline and speculative
decoding as below, consistent with the observations
on other models (see Figure 7).

Table 7: Performance of Qwen 7B/0.5B on different
datasets

Model Pairing Dataset SPS ARS
Qwen 7B/0.5B  Alpaca 3.67% 1.13x
Qwen 7B/0.5B  Humaneval 1.57% 1.57x
Qwen 7B/0.5B GSMSK 3.08% 1.41x

D.3 Comprehensive chat dataset

Table 8 shows the throughput results of adaptive
window size selection for different model pairs on
different hardware on the shareGPT dataset. The
results of the online window optimization methods
are reported. The experimental setups are the same
as in Section 6.1.

D.4 Non-greedy Decoding

We experimented for non-greedy scenarios where
the temperature is set to one. The results are shown
below in Table 9. Our method (ARS) still achieves
significant improvements.

D.5 Adaptive Speculation for Tree-based
Decoding

We implemented our on-the-fly adaption of specu-
lative decoding on top of EAGLE-2, dynamically
adjusting the draft tree depth () during decod-
ing. For different v, sequence lengths for different
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Figure 5: Detailed experimental results for BLOOM 7B-560M.
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Figure 6: Detailed experimental results for LLaMA 70B-7B.

branches of the draft tree are determined using the
same expansion and rerank decision process as in
the original EAGLE-2. Specifically, the tree depth
dynamically changes for each speculation step; For
a certain vy in one speculation step, the algorithm
first enters the expansion phase: At each layer of
the tree, we select the top k£ nodes with the highest
probabilities and expand draft sequences based on
these nodes. The longest draft sequence in the tree
corresponds to the dynamically determined depth
v. Once the expansion is complete up to the dy-
namically determined the ~-th layer, we apply a
rerank step to select the same number of tokens

from the draft tree as in EAGLE-2 and validate the
corresponding draft sequences.

Table 10 shows the results of adaptive tree depth
selection on EAGLE-2 for different model pairs
on different hardware for MT-Bench. The experi-
mental setups are the same as in Section 6.1. We
achieve up to 3.56 x speedups compared to original
autoregressive decoding, and an additional 4.2%
improvement over EAGLE-2. We also achieve
speedups of up to 4.25x, 3.75x, and 3.85x com-
pared to original autoregressive decoding on the
A100 machine for HumanEval, GSMS8K, and Al-
paca, respectively, with improvements of 4.27%,
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Table 8: Evaluation for the comprehensive chat dataset.
SPS denotes the throughput improvement our method
achieves over the original speculative decoding. ARS
denotes improvements over the default LLMs without
speculative decoding.

Hardware Model Pairing Dataset Throughput
SPS ARS
LLaMA 70B/7B  shareGPT 7.89% 2.20x
A100 LLaMA 70B/13B  shareGPT 3.69% 1.92x
OPT 13B/125M  shareGPT 4.81% 2.10x
4090 BLOOM 7B/560M  shareGPT 4.58% 1.18x
BLOOM 7B/1B1  shareGPT 3.50% 1.18x

Table 9: Comparison of platform and model pairing
performance across different datasets.

Platform  Model Pairing Dataset SPS ARS
4090 BLOOM 7B/560M  Alpaca 4.38% 1.20x
4090 BLOOM 7B/560M Humaneval 9.83% 1.27x
4090 BLOOM 7B/560M  GSMSK 7.76% 1.14x
A100 LLaMA-2 70B/7B  Alpaca 2.77% 2.09x
A100 LLaMA-2 70B/7B  Humaneval 4.31% 2.38x
A100 LLaMA-2 70B/7B  GSM8K 2.38% 2.30x

5.65%, and 3.83% over EAGLE-2. On the 4090
machine, for HumanEval, GSM8K, and Alpaca,
we achieve speedups of up to 2.72x, 3.27 %, and
2.52x compared to original autoregressive decod-
ing, respectively, with improvements of 6.23%,
2.55%, and 2.92% over EAGLE-2.

Specifically, Table 10 shows the size of the draft
model and the size ratio of the target-draft model.
While larger ratios can theoretically lead to in-
creased speedups, our experimental results reveal a
more nuanced interaction. Specifically, as the ratio
increases, having a fixed window size results in a
reduced acceptance rate—as initially evidenced in
the results for the original speculative EALGE-2
in Table 9 (0.62, 0.61, 0.51 for LLaMA2-Chat 7B,
13B, and 70B).

Our adaptive mechanism adjusts the window size
, decreasing its value as the ratio becomes larger
to maintain the acceptance rate. This adaptive re-
duction in window size (average value of 4.02 and
3.62 for 13B and 70B, respectively) explains why
the speedup improvements decrease when scaling
from 13B to 70B models. In summary, although
higher parameter ratios offer potential for larger
speedups, the necessary adjustments in gamma to
maintain robust acceptance rates introduce a mixed
effect.

Table 11 provides a detailed analysis of serving
latency, speculation latency, verification latency,

and speculation accuracy. Speculation latency is
measured as the number of tokens selected from
the draft tree per second. Our method shows lower
speculation latency compared to EAGLE-2. This is
because, while we dynamically adapt the tree depth,
we keep the number of tokens selected from the
draft tree the same as in EAGLE-2. However, with
a larger tree depth, more tokens might sampled due
to the increased number of layers. Verification la-
tency is similar for both EAGLE-2 and our method,
as they utilize the same target model. Notably, our
method improves the acceptance rate by dynam-
ically adjusting the tree depth, which effectively
changes the speculation window size.

D.6 Sensitivity Study

Effects of different history length. Table 12
shows a sensitivity study for the effects of different
history lengths when adjusting the window size.
The results are collected on the A100 machine for
the BLOOM 7B-560M pair.

Effects of vector length. Table shows the sensi-
tivity study for the effects of different vector dimen-
sions for model selection. The results are collected
on the 4090 machine for the BLOOM 7B-560M
pair.

9793



Table 10: Evaluation for adaptive speculation in improving EAGLE-2, a method for tree-based speculative decoding.
SPS denotes the throughput improvement our method achieves over EAGLE-2. ARS denotes improvements over

@ o,

the default LLMs without speculative decoding. (-": model is out of memory)

Target Model Draft Model Ratio Dataset A100 4090
SPS ARS SPS ARS
Vicuna-7B-v1.3 EAGLE-Vicuna-0.24B 29x MTBench 7.07% 3.21x 6.22% 2.28x

LLaMA2-Chat 7B EAGLE-LLaMA2-Chat-0.24B  29x MTBench 3.37% 3.29x 623% 2.72x%
LLaMA2-Chat 13B  EAGLE-LLaMA2-Chat-0.37B  35x MTBench 2.55% 4.01x - -
LLaMA2-Chat 70B  EAGLE-LLaMA2-Chat-0.99B 71x MTBench 1.46% 3.56x - -
LLaMA3-Inst 70B  EAGLE-LLaMA3-Inst-0.99B  71x MTBench 1.14% 2.68x - -

Table 11: Detailed analysis for adaptive speculation
in improving EAGLE-2. Data are collected on the MT-
Bench. “Speculation” and “Verification" denote specula-
tion throughput and verification throughput, respectively.
(Unit for throughput: Toks/sec)

Hardware Target Model Method Serving  Speculation  Verification ~Acceptance Rate
Viewma7Byis  EAGLE2 8244 47258 708.31 0.67
cund - Ours 8527 44671 666.01 0.72
EAGLE2 9781  569.05 4491.42 0.62
LLaMAZ-Chat 78 ¢ 10041 29985 4591.73 0.66
EAGLE2 79.74  558.02 453535 0.61
AI00 LLaMAZ-Chat I3B ¢, < 8151 49137 4530.73 0.62
EAGLE2 2750  389.38 4532.27 051
LLaMA2-Chat 708 ¢ 27.90 192.02 4491.19 065
EAGLE2 2433  266.33 3392.65 053
LLaMAS-Inst 708 ¢ 2461 13208 3300.60 0.65
Viewna7pyl3  FAGLE2 11795 66597 1041.83 056
109 teuna-iBvis Ours 12528 57934 1164.03 056
EAGLE2 14215 71272 827828 0.67
LLaMAZ-Chat 7B ) ¢ 15100 64391 8137.47 072

Table 12: Sensitivity study for different history length
values when adjusting window size. The best throughput
is highlighted for each v ax.

Dataset History Length Ymax
5 6 7 8
5 5228 5249 52.05 52.37
Alpaca 6 54.18 5346 5271 53.00
7 53.03 53.01 54.32 53.36
5 93.98 9448 94.21 94.21
Humaneval 6 94.84 95.18 9339 93.39
7 94.54 9430 93.41 9341
5 62.69 62.15 63.42 64.03
gsm8k 6 61.48 61.78 63.72 61.84
7 64.77 61.38 62.74 64.27

Table 13: Sensitivity study for different dimensions for
model selection.

Dimension 4 8 10 12 16
Throughput 74.29 75.23 74.00 75.46 75.55
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