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Abstract

Temporal knowledge graph completion aims
to predict missing facts in a knowledge graph
by leveraging temporal information. Existing
methods often struggle to capture both the long-
term changes and short-term variability of re-
lations, which are crucial for accurate predic-
tion. In this paper, we propose a novel method
called TeRDy for temporal knowledge graph
completion. TeRDy captures temporal rela-
tional dynamics by utilizing time-invariant em-
beddings, along with long-term temporally dy-
namic embeddings (e.g., enduring political al-
liances) and short-term temporally dynamic
embeddings (e.g., transient political events).
These two types of embeddings are derived
from low- and high-frequency components via
frequency decomposition. Also, we design tem-
poral smoothing and temporal gradient to seam-
lessly incorporate timestamp embeddings into
relation embeddings. Extensive experiments on
benchmark datasets demonstrate that TeRDy
outperforms state-of-the-art temporal knowl-
edge graph embedding methods.

1 Introduction

Temporal knowledge graphs represent dynamic re-
lationships between entities over time, capturing
the evolution of facts and events (Liang et al., 2023;
Ying et al., 2024; Wang et al., 2025). These graphs
are crucial for applications such as event predic-
tion (Tang et al., 2024; Chen et al., 2024), recom-
mender systems (Zhao et al., 2022; Hu et al., 2024),
and decision support (Liu et al., 2022; Wang et al.,
2024), where understanding the temporal evolu-
tion of relationships is essential. The challenge in
the temporal knowledge graph completion (TKGC)
lies in predicting missing facts by leveraging the
temporal information contained in the graph (Cai
et al., 2023; Bai et al., 2023). Given the evolving
nature of real-world data, accurately modeling the
dynamic relationships between entities is critical
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Figure 1: Three types of relations in the temporal knowl-
edge graph. The NBA player Stephen Curry has: (i)
Time-invariant relations, which remain constant over
time, such as his connections to family and being an
NBA player; (ii) Long-term temporally dynamic rela-
tions, which stay temporal stability over short periods
but can change, like his teammates after trade deadlines;
(iii) Short-term temporally dynamic relations, which
vary over short periods, such as his opponents in each
game.

for improving prediction accuracy. Despite sub-
stantial progress, existing methods (Chen et al.,
2022; Ying et al., 2024) still struggle to capture
both the long-term changes and short-term vari-
ability of relations, which are crucial for making
accurate prediction in such dynamic environments.

Recent advancements in the TKGC have largely
focused on embedding-based methods (Lacroix
et al., 2020; Ying et al., 2024), where entities,
relations, and timestamps are mapped to vector
representations, i.e., embeddings. These embed-
dings aim to capture both the structural and tem-
poral aspects of the knowledge graph. While ex-
isting methods achieve promising results, they fail
to distinguish between the long-term changes and
short-term variations in time-dependent relations.
For instance, consider the case of the NBA player
Stephen Curry, as shown in Fig. 1. His relations can
be categorized into three types: (i) Time-invariant
relations, which remain constant over time, such
as his connection to his family and his status as an
NBA player; (ii) Long-term temporally dynamic
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(LTTD) relations, which remain temporal stabil-
ity over short periods but may change over long
periods, e.g., his teammates may vary after trade
deadlines; (iii) Short-term temporally dynamic
(STTD) relations, which exhibit significant fluc-
tuations over short periods, such as his opponents
in each game. These different types of relations
require distinct treatment to effectively model their
temporal dynamics, but existing methods fail to
capture them adequately.

To address this gap, we propose a novel method
called TeRDy (Temporal Relation Dynamics
through frequency decomposition), for TKGC. By
applying low-pass and high-pass filtering, TeRDy
decomposes the relation embedding in the fre-
quency domain into low- and high-frequency com-
ponents, where the low-frequency component cap-
tures LTTD relations and the high-frequency com-
ponent captures STTD relations. To incorporate
timestamp embeddings into relation embeddings,
we designs temporal smoothing for LTTD relation
embeddings and temporal gradient for LTTD re-
lation embeddings, respectively. The frequency
decomposition enables the more comprehensive
modeling of temporal relational dynamics in the
knowledge graph, leading to accurate prediction
of missing facts. For example, TeRDy improves
the mean reciprocal rank by 3.4% compared to the
strong baseline on the dataset of GDELT.

Our contributions are as follows:
• We investigate the temporal relation dynamics in

the temporal knowledge graph and propose three
types of relation embeddings: time-invariant,
LTTD, and STTD (Section 4.1).

• We design a new method called TeRDy based on
fast Fourier transform and its inverse to convert
relation embeddings between the temporal and
frequency domains (Section 4.2). We design tem-
poral smoothing and gradient to deal with LTTD
and STTD relations, respectively (Section 4.3).

• We validate TeRDy through extensive experi-
ments, demonstrating that it significantly outper-
forms state-of-the-art methods in the TKGC task
(Section 5).

2 Related Work

2.1 Transformation Functions-based Methods
Transformation functions-based TKGC methods
encode temporal information through transforma-
tions applied to entity and relation embeddings.

BoxTE (Messner et al., 2022) extends the BoxE
model (Abboud et al., 2020) by incorporating a
relation-specific transfer matrix to capture tem-
poral evolution, associating timestamps with re-
lations and enabling richer inference patterns. Dai
et al. (Dai et al., 2024) further enhance BoxTE
by introducing generative adversarial networks to
generate plausible quadruplets. The discriminator
distinguishes between real and generated quadru-
plets, improving the quality of temporal embed-
dings. To address the vanishing gradient problem
in discrete data, they employ Wasserstein distance
and GumbelSoftmax relaxation. Special transfor-
mation functions, like diachronic embedding func-
tions, efficiently encode timestamps by associating
them with entities and relations. Goel et al. (Goel
et al., 2020) propose a general diachronic embed-
ding function (e.g., DE-SimplE and DE-DistMult),
which is model-agnostic and can generate entity
representations at any timestamp, improving the
accuracy of TKGC.

2.2 Complex Embedding Functions-based
Methods

Complex embedding functions-based TKGC meth-
ods embed knowledge graphs into complex spaces
to capture relational patterns like symmetry, anti-
symmetry, and inversion, while also integrating the
time dimension to model the evolution of entities
and relations. ChronoR(Sadeghian et al., 2021)
extends RotatE(Sun et al., 2019) by incorporating
timestamps into relations, modeling each relation-
timestamp pair as a rotation in complex space to
capture temporal evolution. TComplEx and TNT-
ComplEx (Lacroix et al., 2020) extend ComplEx
to the temporal domain by representing TKGs as
higher-order tensors. TNTComplEx further sepa-
rates temporal and static components, allowing it
to model both dynamic and static relations. Ro-
tateQVS (Chen et al., 2022) uses quaternion space,
where temporal information serves as the rotation
axis to model entity evolution through quaternion
embeddings. TCompoundE (Ying et al., 2024)
models temporal dynamics via relation- and time-
specific translation and scaling transformations.

2.3 Neural Modeling Methods

RESCAL (Nickel et al., 2011) is a tensor-based
approach to relational learning with fast and effi-
cient inference. ConT (Ma et al., 2019) extends
RESCAL by introducing high-dimensional time
embeddings. DyERNIE (Han et al., 2020) models
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temporal evolution on Riemannian manifolds using
velocity vectors. ATiSE (Xu et al., 2019) captures
temporal patterns via additive frequency compo-
nents, but at higher computational cost. The dual
memory models proposed in (Tresp et al., 2017)
integrate episodic and semantic memory to dis-
tinguish between time-aware and static represen-
tations. The work in (Han et al., 2021b) offers
a unified evaluation framework for TKGC, high-
lighting the importance of fair comparison across
methods. TANGO (Han et al., 2021a) employs
neural ordinary differential equations to model
continuous-time evolution in temporal knowledge
graphs. Graph neural network (GNN) models such
as TARGCN (Ding et al., 2023a) use neighbor-
hood aggregation but are computationally inten-
sive. Hybrid models (Jin et al., 2020a; Li et al.,
2021a; Liang et al., 2023; Feng et al., 2025) com-
bine GNNs with scoring functions to balance effi-
ciency and expressiveness.

3 Preliminaries

3.1 Problem Formulation

Given a temporal knowledge graph G, we denote
the set of entities as E , the set of relations as R, and
the set of timestamps as T . A fact in the tempo-
ral knowledge graph is represented as a quadruple
(s, r, o, τ), where subject s and object o are entities
from E , r is a relation from R, and τ is a timestamp
from T . During training, we utilize a score func-
tion ϕ(s, r, o, τ) to model the relationships among
entities, relations, and timestamps. The objective
of TKGC is to predict missing facts in the graph by
leveraging the known facts (Gao et al., 2023; Niu
and Li, 2023). Specifically, we aim to predict the
missing element in a quadruple, either (s, r, ?, τ)
or (?, r, o, τ), by feeding the incomplete quadru-
ple and candidate entities into the score function.
The entity that achieves the highest score is then
selected as the predicted entity to complete the
quadruple.

3.2 Compound Geometric Operations

The geometric operations of translation, rotation,
and scaling form the foundation for complex trans-
formations, which are used in models like TCom-
plEx (Lacroix et al., 2020) and TCompoundE (Ying
et al., 2024). Translation shifts an object by a fixed
amount along the coordinate axes. In 2D space, it

is represented by the following matrix:

T =



1 0 tx
0 1 ty
0 0 1


 , (1)

where tx and ty represent the translation offsets
along the x and y axes, respectively. Applying
this matrix to a vector moves it by these amounts.
Rotation in 2D space turns an object around a fixed
point by angle θ, using the rotation matrix:

R =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 . (2)

This operation alters the orientation of the vector
without changing its shape or size. Scaling enlarges
or shrinks an object proportionally along the axes.
In 2D space, the scaling matrix is defined as:

S =



sx 0 0
0 sy 0
0 0 1


 , (3)

where sx and sy are the scaling factors along the x
and y axes, respectively.

TCompoundE (Ying et al., 2024) models tem-
poral knowledge graphs via compound geometric
operations that capture the interaction between rela-
tions and timestamps. It introduces two operations:
a time-specific and a relation-specific transforma-
tion. The time-specific operation combines relation
and timestamp embeddings using translation and
scaling:

Sr,τ = (Sr +Tτ )⊙ Sτ , (4)

where Sr is the relation embedding, Tτ is the times-
tamp embedding (for translation), and Sτ is the
timestamp embedding (for scaling).

The relation-specific operation applies transfor-
mation to the subject embedding using:

er,τs = (es +Tr,τ )⊙ Sr,τ , (5)

where es is the subject embedding and Tr,τ =
Tr. This combined translation-scaling mechanism
allows TCompoundE to capture temporal evolution
in subject–relation interactions effectively.

4 Methodology

4.1 Overview
TeRDy captures the temporal relation dynamics
in G by using time-invariant, LTTD, and STTD
relation embeddings. As shown in Fig. 2, on the
whole, TeRDy translates the subject embedding
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Figure 2: Illustration of TeRDy. It uses time-invariant relation embedding Tr, long-term temporally dynamic
(LTTD) relation embedding Slt,τ , and short-term temporally dynamic (STTD) relation embedding Sst,τ to capture
the temporal relation dynamics.

es into the predicted object embedding eo′ using
the time-invariant relation embedding Tr, and then
scales it with the time-dependent relation embed-
ding Sr,τ (Eq. (5)). The raw relation embedding
Sr is transformed into the frequency domain em-
bedding Fraw via fast Fourier transform (Eq. (6)).
Fraw is then decomposed into low-frequency com-
ponent Flow and high-frequency component Fhigh

(Eq. (9)). Afterward, both components are con-
verted back into the time domain through inverse
fast Fourier transform and obtain the initial LTTD
relation embedding Slt and initial STTD relation
embedding Sst (Eq. (10)). Slt undergoes tempo-
ral smoothing operations to form Slt,τ (Eq. (13)),
while Sst undergoes temporal gradient operations
to form Sst,τ (Eq. (14)). Finally, Slt,τ and Sst,τ

are integrated to produce the final time-dependent
relation embedding Sr,τ (Eq. (16)).

4.2 Frequency-based Relation Decomposition

The relation embedding Sr of time domain is trans-
formed into the one Fraw of frequency domain
using fast Fourier transform (FFT) (Cooley et al.,
1969; Liu et al., 1998):

Fraw = F(Sr), (6)

where F(·) represents the fast Fourier transforma-
tion. Next, a frequency mask is created based on
the absolute values of the frequencies. The low-
frequency mask Mlow is designed to emphasize

the low-frequency components:

Mlow = exp(−|f | · α), (7)

where |f | represents the frequencies, and α is a pre-
defined factor controlling how much of the low fre-
quencies are preserved. The high-frequency mask
Mhigh is the complement of Mlow:

Mhigh = 1 −Mlow , (8)

where 1 is an all-one matrix with the same dimen-
sion as Mlow. Using the frequency masks, the fre-
quency domain embedding Fraw is split into low-
frequency component Flow and high-frequency
component Fhigh:

Flow=Fraw·Mlow, Fhigh=Fraw·Mhigh . (9)

The low- and high-frequency components are con-
verted back to the time domain using inverse FFT,
and obtain the initial LTTD relation embedding Slt

and initial STTD relation embedding Sst:

Slt = F−1(Flow), Sst = F−1(Fhigh), (10)

where F−1(·) denotes inverse FFT.
Based on Eqs. (6)-(10), the LTTD embed-

ding and STTD embedding are derived from a
frequency-domain decomposition. After frequency-
domain decomposition, the low-frequency compo-
nent (corresponding to the LTTD embedding) rep-
resents the relatively stable dynamics between con-
secutive time steps and captures long-term trends;
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the high-frequency component (corresponding to
the STTD embedding) represents the relatively un-
stable or rapid fluctuations and captures short-term
variations in the data. In essence, the LTTD embed-
ding focuses on capturing the long-term stability
over time, and the STTD embedding captures the
short-term instability between time points.

4.3 Integration of LTTD & STTD embeddings

Here we describe how the low- and high-frequency
components of the time-dependent relation em-
bedding are integrated to capture the temporal dy-
namics of the knowledge graph. We first define
the initial timestamp embedding for translation as
Tτ =

[
T

(1)
τ T

(2)
τ · · · T

(D)
τ

]
where T

(i)
τ rep-

resents the timestamp embedding at the i-th em-
bedding dimension (D is embedding size). The
smoothed timestamp embedding, which aggregates
information across all embedding dimension, is
computed as:

Tsmooth
τ =

1

D

∑D

i=1
T(i)

τ . (11)

Next, we calculate the temporal gradient for each
entity by computing the difference between adja-
cent embedding dimensions within the same time
step. This gradient embedding captures the internal
variation across dimensions at a specific point in
time, and is expressed as:

Tgrad
τ =

[
T

(1)
τ T

(2)
τ −T

(1)
τ · · · T(D)

τ −T
(D−1)
τ

]
.

(12)
Given the initial timestamp embedding for scal-

ing, Sτ , the time-dependent relation embeddings
are generated by integrating LTTD ones with STTD
ones. The LTTD relation embedding Slt,τ is ob-
tained by adding the smoothed timestamp embed-
ding Tsmooth

τ to Slt, and scaling it by Sτ :

Slt,τ = (Slt +Tsmooth
τ )⊙ Sτ . (13)

Similarly, the STTD relation embedding Sst,τ is
obtained by adding the temporal gradient Tgrad

τ to
Sst, and scaling it by Sτ :

Sst,τ = (Sst +Tgrad
τ )⊙ Sτ . (14)

The final time-dependent relation embedding
Sr,τ is then obtained by integrating Slt,τ with Sst,τ :

Sr,τ = Slt,τ + Sst,τ . (15)

Finally, the predicted object embedding eo′ is com-
puted by translating subject embedding es with Tr,
and scaling it with Sr,τ :

eo′ = (es +Tr)⊙ Sr,τ . (16)

4.4 Loss Function

The total loss function L of TeRDy is the combina-
tion of three parts:

L = Lu + λτLτ + λfLf , (17)

where Lu is the loss associated with reciprocal
learning, Lτ is the temporal regularizer, and Lf is
the frequency-domain regularizer. Also, λτ and λf

are the weighting factors that control the relative
importance of the temporal and frequency-domain
regularizers in L.

Based on the principles from TNTCom-
plEx (Lacroix et al., 2020) and TCompoundE (Ying
et al., 2024), we use the reciprocal learning loss Lu

to ensure that both forward and inverse relations
are consistent. It is defined as:

Lu =− log(
exp(ϕ(s, r, o, τ))∑

o′∈ε exp(ϕ(s, r, o
′, τ))

)

− log(
exp(ϕ(o, r−1, s, τ))∑

s′∈ε exp(ϕ(o, r
−1, s′, τ))

)

+λu

k∑

i=1

(
∥es∥33+∥Tr+Sr,τ∥33+∥eo∥33

)
,

(18)
where r−1 represents the inverse relation and λu

is the regularization parameter that controls the
strength of the regularization term for the embed-
dings of the subject, relation, and object. The
first two terms are standard negative log-likelihood
terms for both the subject-object and object-subject
prediction tasks, enforcing the model to make ac-
curate prediction. The third term is a regularization
term applied to the embeddings of the subject, rela-
tion, and object, encouraging the embeddings to be
well-behaved.

The temporal regularizer loss Lτ enforces that
neighboring timestamps should have similar em-
beddings, which is important for capturing tempo-
ral dynamics. It is defined as:

Lτ =
1

Nτ−1

∑Nτ−1

i=1
∥Tτ(i+1)−Tτ(i)∥33, (19)

where Nτ is the total number of timestamps and
Tτ(i) represents the embeddings at timestamp i,
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Table 1: Statistics of the experimental datasets.

Dataset GDELT ICEWS14 ICEWS05-15
#Entities 500 7,128 10,488
#Relations 20 230 251
#Timestamps 366 365 4,017
#Train 2,735,685 72,826 386,962
#Dev 31,961 8,963 46,092
#Test 31,961 8,941 46,275

and the norm encourages the embeddings of con-
secutive timestamps to be close in the embedding
space, ensuring temporal continuity.

Also, we define the novel frequency-domain reg-
ularizer loss Lf as follows:

Lf = −∥Flow − Fhigh∥2 + ∥Fhigh∥2 , (20)

where the first term encourages the low- and high-
frequency components to be distinct, while the sec-
ond term penalizes excessive intensity in the high-
frequency components. Lf helps TeRDy avoid the
overlap of low- and high-frequency components
and minimize the impact of noisy, high-frequency
variations. (See the results in Section 6.2 for de-
tails).

5 Experiments

5.1 Datasets
We evaluate TeRDy and baselines on three bench-
mark datasets: GDELT, ICEWS14, and ICEWS05-
15 (Table 1). GDELT (Leetaru and Schrodt, 2013)
is a subset of the Global Database of Events, Lan-
guage, and Tone, covering daily political and social
events between April 1, 2015, and March 31, 2016.
GDELT focuses on the 500 most frequent entities
and 20 common relations, making it a more con-
cise dataset for event extraction. ICEWS14 and
ICEWS05-15 (Garcia-Duran et al., 2018) are de-
rived from the Integrated Crisis Early Warning Sys-
tem (Lautenschlager et al., 2015), which records
significant political events. ICEWS14 includes
data from the year 2014, while ICEWS05-15 spans
events from 2005 to 2015. Both datasets capture
a wide range of global political events, offering
a comprehensive view of temporal dynamics in
international relations.

5.2 Baselines
We compare TeRDy with state-of-the-art tempo-
ral knowledge graph embedding methods, includ-
ing TTransE (Leblay and Chekol, 2018), DE-
SimplE (Goel et al., 2020), TA-DisMult (García-
Durán et al., 2018), ChronoR (Sadeghian et al.,

2021), TComplEx (Lacroix et al., 2020), TNTCom-
plEx (Lacroix et al., 2020), BoxTE (Messner et al.,
2022), RotateQVS (Chen et al., 2022), TeAST (Li
et al., 2023), and TCompoundE (Ying et al., 2024).
Among these, TCompoundE demonstrates the high-
est performance on ICEWS14, ICEWS05-15, and
GDELT. As a result, we use TCompoundE as the
primary baseline for our evaluation.

5.3 Metrics

We evaluate our model’s performance using stan-
dard metrics: Mean Reciprocal Rank (MRR) and
Hits@k (H@k). For each test quadruple, we cal-
culate the scores for all possible entity substitu-
tions and rank them. For the missing quadruple
(s, r, ?, τ) or (?, r, o, τ), we predict the missing en-
tity by ranking all candidates. H@k measures the
proportion of correct entities within the top-k pre-
diction, where k = 1, 3, 10. Higher MRR and
H@k values reflect better model performance.

5.4 Experimental Setup

The Adagrad optimizer is used for all datasets, with
the following settings - GDELT: The learning rate
is set to 0.05, the embedding dimension D = 6000,
the batch size is 2000, and training runs for 50
epochs. ICEWS14: The learning rate is set to
0.02, the embedding dimension D = 6000, the
batch size is 4000, and the training runs for 100
epochs. ICEWS05-15: The learning rate is set to
0.008, the embedding dimension D = 8000, the
batch size is 6000, and the training runs for 100
epochs. The parameter group (λu, λτ , λf , α) is set
as follows: (1e-4, 1e-2, 1, 10) for GDELT, (5e-3,
5e-3, 5e-4, 10) for ICEWS14, and (2e-3, 1e-1, 5e-4,
10) for ICEWS05-15. We implement TeRDy us-
ing PyTorch, leveraging the training frameworks
of TeAST. All experiments are conducted on a
single NVIDIA GeForce RTX 3090 with 24GB
of memory. We report the average results on the
test set across five runs and the total training time
of TeRDy in one run on GDELT, ICEWS14, and
ICEWS05-15 is 85.8 minutes, 6.7 minutes, and
56.7 minutes, respectively. Our code and data are
available at https://github.com/Young0222/TeRDy.

6 Results and Analysis

6.1 Main Results

We evaluate TeRDy on GDELT, ICEWS14, and
ICEWS05-15, comparing it with state-of-the-art
methods such as TeAST, and TCompoundE. Our
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Table 2: Performance comparison for knowledge graph completion. All results are reported from their respective
original papers. The best results are highlighted in bold.

Methods GDELT ICEWS14 ICEWS05-15
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TTransE 0.115 0.000 0.160 0.318 0.255 0.074 - 0.601 0.271 0.084 - 0.616
DE-SimplE 0.230 0.141 0.248 0.403 0.526 0.418 0.592 0.725 0.513 0.392 0.578 0.748
TA-DisMult 0.206 0.124 0.219 0.365 0.477 0.363 - 0.686 0.474 0.346 - 0.728
ATiSE - - - - 0.550 0.436 0.629 0.750 0.519 0.378 0.606 0.794
ChronoR - - - - 0.625 0.547 0.669 0.773 0.675 0.596 0.723 0.820
TComplEx 0.340 0.294 0.361 0.498 0.610 0.530 0.660 0.770 0.660 0.590 0.710 0.800
TNTComplEx 0.349 0.258 0.373 0.502 0.620 0.520 0.660 0.760 0.670 0.590 0.710 0.810
BoxTE 0.352 0.269 0.377 0.511 0.613 0.528 0.664 0.763 0.667 0.582 0.719 0.820
RotateQVS 0.270 0.175 0.293 0.458 0.591 0.507 0.642 0.754 0.633 0.529 0.709 0.813
TeAST 0.371 0.283 0.401 0.544 0.637 0.560 0.682 0.782 0.683 0.604 0.732 0.829
TCompoundE 0.433 0.347 0.469 0.595 0.644 0.561 0.694 0.795 0.692 0.612 0.743 0.837

TeRDy 0.467 0.390 0.501 0.605 0.648 0.566 0.697 0.799 0.697 0.614 0.749 0.847

Table 3: Results of different variants of TeRDy. The worst results are highlighted in underline.

Methods GDELT ICEWS14 ICEWS05-15
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TeRDy (full model) 0.467 0.390 0.501 0.605 0.648 0.566 0.697 0.799 0.697 0.614 0.749 0.847

Full model w/o Slt,τ 0.456 0.375 0.491 0.605 0.648 0.566 0.698 0.797 0.692 0.608 0.745 0.844
Full model w/o Sst,τ 0.451 0.370 0.486 0.600 0.640 0.558 0.691 0.793 0.681 0.597 0.733 0.832
Full model w/ Tsmooth

τ =Tτ 0.458 0.377 0.493 0.606 0.646 0.563 0.697 0.797 0.695 0.614 0.746 0.845
Full model w/ Tgrad

τ =Tτ 0.455 0.375 0.491 0.603 0.642 0.556 0.695 0.798 0.691 0.610 0.743 0.845
Full model w/o the 1st term of Lf 0.451 0.372 0.485 0.596 0.649 0.568 0.696 0.799 0.693 0.610 0.742 0.843
Full model w/o the 2nd term of Lf 0.450 0.370 0.484 0.595 0.646 0.565 0.695 0.799 0.692 0.611 0.742 0.842
Full model w/o Lf 0.448 0.368 0.483 0.591 0.647 0.565 0.695 0.799 0.690 0.610 0.739 0.840
Full model w/o Lf and w/ Sr,τ=Sτ 0.435 0.362 0.475 0.572 0.638 0.558 0.689 0.790 0.688 0.595 0.730 0.829

results show that TeRDy outperforms all base-
lines in MRR and H@k metrics. In GDELT,
TeRDy achieves MRR = 0.467, surpassing TCom-
poundE (0.433). The same trend is observed in
ICEWS14 and ICEWS05-15, with TeRDy achiev-
ing MRR = 0.648 and MRR = 0.697, respec-
tively, outperforming TCompoundE at 0.644 and
0.692. For H@k, TeRDy also leads with scores of
(e.g., GDELT H@1: 0.390), outperforming TCom-
poundE (e.g., GDELT H@1: 0.347). The key ad-
vantage of TeRDy lies in its ability to capture both
long-term and short-term temporal relation dynam-
ics effectively, which other models like TeAST
and TCompoundE struggle to model accurately.
Also, TeRDy uses frequency-domain decomposi-
tion along with temporal smoothing and gradient
operations, enabling it to effectively generate and
utilize low- and high-frequency components. In
addition, frequency-based decomposition ensures
that TeRDy captures both long-term and short-term
temporal dynamics in the data, regardless of the
time granularity of the dataset. The frequency com-
ponents are inherent in the data, whether the dataset
has daily granularity (like GDELT) or monthly
granularity (like ICEWS). These frequency compo-
nents are not directly affected by the time granu-

larity but are rather determined by the underlying
temporal patterns in the data. These results demon-
strate that TeRDy effectively handles datasets with
varying time resolutions.

6.2 Results of Ablation Studies

Table 3 presents the results of various TeRDy vari-
ants. Modifications to the temporal components
(such as removing Slt,τ or Sst,τ ) result in perfor-
mance drops. It indicates that both LTTD and
STTD relation embeddings are essential for im-
proving top-k prediction accuracy and overall rank-
ing quality. Similarly, we observe that remov-
ing Tgrad

τ has a greater impact than removing
Tsmooth

τ , highlighting the importance of incorpo-
rating timestamp embeddings into the STTD re-
lation embeddings in TeRDy. Also, removing or
altering Lf significantly reduces performance, es-
pecially in H@1, underscoring the importance of
the frequency-domain loss function in the model
optimization. In addition, removing frequency
decomposition (last row in Table 3) shows a de-
crease in MRR of 3.2%, 1.0%, and 0.9% across
GDELT, ICEWS14, and ICEWS05-15, respec-
tively. It demonstrates that without frequency de-
composition, TeRDy struggles to distinguish be-
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(a) GDELT (b) ICEWS14 (c) ICEWS05-15

Figure 3: Effects of parameters λu, λτ , λf , and α to model performance on GDELT, ICEWS14, and ICEWS05-15.

(a) Initial state (b) Applying LTTD 

relation embeddings 

(c) Applying STTD 

relation embeddings 

(d) Applying LTTD and 

STTD relation embeddings 

Figure 4: Visualization of entity embeddings on ICEWS14. The circle and triangle represent the subject entity and
object entity, respectively. Circles and triangles of the same color indicate that they belong to the same quadruple.

tween LTTD relations and STTD relations, which
leads to less accurate TKGC.

6.3 Results of Sensitivity Experiments

The results of sensitivity experiments are shown in
Fig. 3. We can see that across the three datasets,
when λu⩾0.01, the performance of TeRDy de-
clines significantly. It indicates that an excessively
large λu restricts the model’s ability to fit the pre-
diction for missing entities in the quadruples. On
GDELT, when λτ⩾1 or λf⩾1, the performance
of TeRDy significantly decreases. It suggests that
the coefficients for the temporal regularizer and
frequency-domain regularizer need to be carefully
set for this dataset. In all other cases, the MRR
results of TeRDy remain stable with changes in λτ ,
λf , and α, demonstrating the model’s robustness
to these three parameters.

6.4 Results of Embedding Visualization

We applied t-SNE (Van der Maaten and Hinton,
2008) to reduce the dimensionality of entity em-
beddings for visualization, as shown in Fig. 4. We
analyzed entity embeddings under four conditions:
(a) initial state, (b) embeddings obtained using
LTTD relation embeddings, (c) embeddings ob-
tained using STTD relation embeddings, and (d)
embeddings obtained using both LTTD and STTD

relation embeddings (i.e., TeRDy). In the figure,
nodes that are closer together represent higher sim-
ilarity in their embeddings. In the analysis, we
focus on how often same-color circles and trian-
gles (i.e., subject and object entities in the same
temporal quadruple) appear close together in the
embedding space. A higher frequency indicates
better temporal coherence. In Fig. 4(d), which
uses both LTTD and STTD, same-color entities
exhibit strong clustering, particularly at points like
(0, 22.5), (-4, 20), (-22, -9), (-1, -21), and (10, -13).
In contrast, Figs. 4(b) and 4(c), using only LTTD
or STTD, show weaker clustering. Fig. 4(a), the
initial state, displays no clear structure. These re-
sults show that combining LTTD and STTD (i.e.,
TeRDy) yields more coherent embeddings, with
subject–object pairs from the same temporal re-
lation positioned closer together, leading to more
accurate modeling of temporal knowledge graph
structures.

6.5 Efficiency Analysis

The results of training time and MRR on ICEWS14
are shown in Fig. 5. TeRDy achieves the high-
est MRR (64.8%) with the shortest training time
(400 seconds). On the one hand, although TeAST
achieves a relatively high MRR, its training time
cost is clearly higher than that of TeRDy. On the
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Type Subject Relation Object Timestamp range L-only S-only TeRDy

LTTD Citizen (Nigeria) Make an appeal or request Government (Nigeria) Feb–Dec 2014
√

(MRR: 0.25) × (MRR: 0.24)
√

(MRR:0.27)
LTTD South Africa Charge with legal action Men (South Africa) Jan–Dec 2014

√
(MRR:0.32) × (MRR:0.32)

√
(MRR:0.33)

LTTD Boko Haram Use conventional military force Citizen (Nigeria) Jan–Dec 2014
√

(MRR:0.35) × (MRR:0.31)
√

(MRR:0.37)
STTD Abdullah Abdullah Express intent to cooperate Ashraf Ghani Ahmadzai Jul–Aug 2014 × (MRR:0.27)

√
(MRR:0.40)

√
(MRR:0.41)

STTD Citizen (India) Reject Separatist (India) Nov–Dec 2014 × (MRR:0.23)
√

(MRR:0.29)
√

(MRR:0.31)
STTD Islam Karimov Make a visit China Aug-Aug 2014 × (MRR:0.25)

√
(MRR:0.45)

√
(MRR:0.46)

Table 4: Case Study Results. L-only uses only low-frequency components to model long-term dynamics; S-only
uses only high-frequency components for short-term dynamics.

√
and × denote correct and incorrect predictions,

respectively. MRR indicates the score for each relation.

Figure 5: Comparison of training time and MRR on
ICEWS14.

other hand, GNN-based methods (RE-GCN (Li
et al., 2021b), RE-NET (Jin et al., 2020b), and
TARGCN (Ding et al., 2023b)) require significantly
longer training times (3,000s, 10,800s, and 40,500s,
respectively), mainly due to the inherent ineffi-
ciency of GNNs, which rely on message-passing
mechanisms to aggregate information from neigh-
boring nodes. These operations are computation-
ally intensive and do not scale well to large knowl-
edge graphs or time-sensitive scenarios.

6.6 Case Study

We perform a case study based on the test data
in ICEWS14. We compare our full model TeRDy
against two simplified variants: L-only using only
the low-frequency component and S-only using
only the high-frequency component. We present
six real-world cases in Table 4 where STTD cases
are defined as relation triples that occur at least
three times within a short time span (⩽ 30 days)
and LTTD cases are defined as relation triples that
occur at least three times over a long time span
(⩾ 180 days). We have the following analysis:
The LTTD relation occurs repeatedly over several
months, reflecting a stable and strategic partnership.
The L-only variant can capture this long-term trend
reasonably well, while the S-only variant often fails
to retain this persistent pattern due to its focus on

short-term fluctuations. The STTD relation occurs
intensively within a short period, i.e., less than one
month, likely triggered by a regional conflict or
crisis. The S-only variant is able to capture this
short-term burst effectively, whereas the L-only
variant tends to smooth out such rapid shifts and
overlooks their temporal specificity. By integrating
both low- and high-frequency components, TeRDy
generalizes well across different dynamics, leading
to correct predictions in all cases and outperform-
ing both variants in MRR.

7 Conclusion

In this paper, we present TeRDy, a novel method
for temporal knowledge graph completion. By ap-
plying low-pass and high-pass filtering, TeRDy de-
composes the relation embedding in the frequency
domain into LTTD and STTD relation embeddings.
Then we design temporal smoothing and gradient
operations to incorporate timestamp embeddings
into both embeddings. Extensive experiments show
that TeRDy achieves state-of-the-art performance
on benchmark temporal knowledge graph datasets.

Limitations

Like many temporal knowledge graph embedding
models, TeRDy cannot generalize to unseen enti-
ties or timestamps. Therefore, TeRDy is not well-
suited for temporal knowledge graph extrapolation
tasks. Also, TeRDy decomposes frequency-domain
embeddings into low- and high-frequency compo-
nents, which may not be suitable for knowledge
graphs with simpler or less dynamic relationships.
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