AdaDHP: Fine-Grained Fine-Tuning via Dual Hadamard Product and
Adaptive Parameter Selection

Han Liu', Changya Li', Xiaotong Zhang'*, Feng Zhang’,
Fenglong Ma®, Wei Wang*, Hong Yu'
!Dalian University of Technology, Dalian, China, ?Peking University, Beijing, China
3The Pennsylvania State University, Pennsylvania, USA
4Shenzhen MSU-BIT University, Shenzhen, China
{liu.han.dut, lichangya.dut, zfeng.maria} @gmail.com, zxt.dut@hotmail.com,
fenglong @psu.edu, ehomewang @ieee.org, hongyu@dlut.edu.cn

Abstract

With the continuously expanding parameters,
efficiently adapting large language models to
downstream tasks is crucial in resource-limited
conditions. Many parameter-efficient fine-
tuning methods have emerged to address this
challenge. However, they lack flexibility, like
LoRA requires manually selecting trainable pa-
rameters and rank size, (IA)? can only scale the
activations along columns, yielding inferior re-
sults due to less precise fine-tuning. To address
these issues, we propose a novel method named
AdaDHP with fewer parameters and finer gran-
ularity, which can adaptively select important
parameters for each task. Specifically, we intro-
duce two trainable vectors for each parameter
and fine-tune the parameters through Hadamard
product along both rows and columns. This
significantly reduces the number of trainable
parameters, with our parameter count capped
at the lower limit of LoRA. Moreover, we de-
sign an adaptive parameter selection strategy
to select important parameters for downstream
tasks dynamically. This allows our method
to flexibly remove unimportant parameters for
downstream tasks. Finally, we demonstrate the
superiority of our method on the T5-base model
across 17 NLU tasks and on complex mathe-
matical tasks with the Llama series models.

1 Introduction

With the advent of large language models (LLMs)
(Brown et al., 2020; Touvron et al., 2023a,b), there
has been a migration of various natural language
processing tasks towards the pre-training and fine-
tuning paradigm. The straightforward approach in-
volves appending task-specific modules and subse-
quently fine-tuning all parameters for downstream
tasks. However, fine-tuning LLMs with escalat-
ing number of parameters poses a challenge un-
der resource-constrained environments. Moreover,

*Corresponding author.

fine-tuning each downstream task requires the re-
tention of all weights, leading to significant re-
source wastage. Consequently, parameter-efficient
fine-tuning (PEFT) methods have emerged as a req-
uisite solution to address the constraints of GPU
and storage resources.

The PEFT methods achieve high efficiency by
fine-tuning a small subset of parameters or intro-
ducing additional trainable parameters. Adapter
(Houlsby et al., 2019) is an early-stage method
that appends a bottleneck layer following multi-
head attention and feed-forward blocks, updating
only these added parameters and keeping the orig-
inal backbone fixed. While yielding promising
results, it is afflicted by inference latency. An-
other paradigm, prompt tuning (Liu et al., 2021;
Li and Liang, 2021; Lester et al., 2021), employs
trainable prompts to each task and only fine-tunes
these prompts. The placement of these prompts
varies, resulting in diverse approaches. However,
the additional prompts extend the context length,
requiring the storage of larger intermediate activa-
tions during training. Consequently, these methods
may demand larger GPU resources compared to
full fine-tuning.

Currently, LoRA series methods (Hu et al., 2022;
Zhang et al., 2023b) have become prevalent for fine-
tuning LL.Ms. These techniques introduce trainable
low-rank decomposed matrices, denoted as A and
B, for the parameters W, as shown in Figure 1(a).
Due to the low rank of A and B, the number of
trainable parameters can be significantly decreased.
Moreover, LoRA allows merging the incremental
matrix AW with W after training, addressing the
issue of inference latency. However, the original
LoRA method requires the manual selection of
trainable parameters and rank size, thereby limit-
ing its flexibility. Another noteworthy approach,
(IA)? (Liu et al., 2022), as shown in Figure 1(b),
updates activations directly through element-wise
multiplication with a vector 1 during the forward

9492

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9492-9504

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Pretrained S
Weights _ _ 3 Pretrained
W e Rdxd : ' ® 2 Weights
W e RXt
[d
: i d
(a) LoRA (b) IA) (c) AdaDHP

Figure 1: Illustration of LoRA, (IA)?, and our method AdaDHP. Blue for pretrained weights, yellow for inputs or
activations, and red for additional trainable parameters. LoORA adds trainable low-rank matrices to weights, (TIA)3
applies trainable scaling to activations, while AdaDHP introduces two trainable vectors for each parameter, enabling

row and column dot products.

propagation process. (IA)® with minimal trainable
parameters achieves remarkable results. Nonethe-
less, it applies the same coefficient to each column
of the activations and is equivalent to scale the
weight matrices along column, significantly con-
straining the granularity of fine-tuning. Addition-
ally, it offers lower flexibility as it fine-tunes the
same activations for all tasks.

To handle the aforementioned issues simultane-
ously, we introduce a novel PEFT method named
AdaDHP, which achieves fine-grained and flexible
tuning by Dual Hadamard Product and Adaptive
parameter selection. As shown in Figure 1(c), we
introduce two trainable vectors for each param-
eter, enabling row and column dot products, re-
spectively. Unlike (IA)? that only applies weight
transformation on the row, we allow for different
transformations on both the row and column of
weight matrices. Additionally, we maintain the pa-
rameter size with the LoRA rank of 1. Secondly,
we introduce a parameter importance metric and a
budget allocation mechanism to adaptively select
crucial parameters for downstream tasks. By prun-
ing unimportant or redundant parameters based on
their importance scores, we can enhance parameter
efficiency and the flexibility of parameter selec-
tion. Finally, we validate our method on 17 NLP
tasks and complex mathematical tasks, affirming
its current state-of-the-art performance.

2 Related Work

The current PEFT methods can be primarily catego-
rized into three types: partial fine-tuning, additive
fine-tuning and hybrid fine-tuning methods.

2.1 Partial Fine-Tuning

Partial fine-tuning methods only update those crit-
ical parameters in pre-trained model for down-
stream task. For instance, the BitFit (Zaken et al.,
2022) method only updates the biases and the
task-specific layer, keeping major parameters un-
changed. Additionally, pretrained weight mask-
ing methods (Zhao et al., 2020) use criteria such
as thresholds and Fisher information (Sung et al.,
2021) to evaluate the importance of parameters,
which allow for only updating important weights.

2.2 Additive Fine-Tuning

Additive fine-tuning methods integrate trainable
modules into pre-trained model while keeping the
backbone frozen. Adapter-based approaches are
early attempts. HAdapter (Houlsby et al., 2019) in-
tegrates trainable adapter modules into each block
of the Transformer, and solely fine-tunes these addi-
tive modules for downstream tasks. Other adapter-
based methods (He et al., 2022; Riicklé et al., 2021)
optimize the integration and efficiency in distinct
ways. Prompt-based approaches add specific train-
able prompt tokens for each task, which are added
at different locations in different methods. For
instance, Prompt-tuning (Lester et al., 2021) in-
serts learnable prompt tokens into the model input,
while Prefix-tuning (Li and Liang, 2021) adds soft
prompts before the hidden states of the multi-head
attention layer. However, the adapter-based meth-
ods incur inference latency, while prompt-based
methods are memory-intensive.

Another widely recognized approach, LoRA (Hu
et al., 2022), reduces trainable parameters by de-
composing W into two low-rank matrices. But

9493

Stepl. Add Trainable Parameters

Pianinin el Train and Backpropagate P
| [Add&Norm] \I L
| = |
FFN Block PSR FC SRS R N
' ! DHP Block y !
10 T i
) . O
: - | ® 1 l\
| Add&Norm nl "
1 N ! . |
| MHSABlock |1 Pretrained |
! Bl v @] Weights :
|
: : 1 W e R%*xd W
| Y | 1
\ l\ _________ B J __

> f Calculate Importance Score\I

1
Pruning Um’mpot@t Parameters 1

Select Top-b Parameters 1

W ={W|Sy € Topb(SW&DO E> I:l

Step2. Adaptive Parameter Selection

N

[Add&Norm |
| [FFN Block

| A

. O\ J
I 1

Add&Norm

OQO'

(" MHSABlock)

e e e e e e e = e = = ==

Figure 2: The framework of the AdaDHP method. MHSA indicates the mult-head self-attention block and FFN

indicates the feed-forward block.

parameter allocation is not flexible becasue of the
same rank of all paramters, some methods such as
AdalLoRA (Zhang et al., 2023b) and IncreLoRA
(Zhang et al., 2023a) are proposed. These meth-
ods not only optimize parameter efficiency but also
enhance the flexibility and effectiveness. There
are other additive fine-tuning methods, like ladder
side-tuning (LST) (Sung et al., 2022) adds a side
network to the model, which receives intermediate
activations from the pretrained network via short-
cut connections. And it only updates the parame-
ters in the side network, so that backpropagation
only passes through the side network without the
backbone network, which greatly reduces the re-
quired GPU memory for training. And (IA)® (Liu
et al., 2022) introduces three learned vectors, 1, 1,,,
and 17 to rescale the key, value and feedforward
intermediate activations, significantly boosting pa-
rameter efficiency.

2.3 Hybrid Fine-Tuning

Hybrid fine-tuning approaches aim to combine var-
ious PEFT techniques leveraging the strengths of
each to compensate for their weaknesses. These
works can be classified into Manual Combination
and Automatic Combination. An example of Man-
ual Combination methods is the MAM Adapter
(He et al., 2022), which combines scaled paral-
lel adapter and prefix-tuning. Automatic combi-
nations, such as AutoPEFT (Zhou et al., 2023),
integrate various PEFT methods like sequential
adapter, parallel adapter and prefix-tuning auto-
matically through structure search. This approach
usually requires more time and cost due to opti-

mization searches in the model or structure.

3 The Proposed Method

3.1 Preliminary

Two particular PEFT strategies currently exist: one
involves modifying the weights W mentioned ear-
lier, while the other involves modifying intermedi-
ate activations. The most representative methods
are LoRA and (IA)°.

LoRA. LoRA assumes delta weight is low-rank,
then decomposes it into the product of two low-
rank matrices, which is expressed as:

W =W+ AW =W + BA, (1)

where W, W/, AW ¢ R4 B ¢ R¥>*" A €
R™*4. And the rank r < d. Thus, the quantity
of parameters required for fine-tuning W reduces
from d? to 2dr, achieving efficient fine-tuning.
(IA)3. To achieve mixed-task batches, (IA)? di-
rectly modifies activations. For the multi-head self-
attention (MHSA) block, it performs element-wise
multiplication on K and V with vectors 1; and 1,,,
respectively, which can be represented as:

QI oK)"
Vd

where 15,1, € R? For the feed-forward (FFN)
block, it only performs on intermediate activations,
which can be denoted as:

(17; ©® ReLU(XW1 + b1))Wa + by, (3)

softmax (1T oV), ()

where 17 ¢ € R%n_ The total number of trainable
parameters in each transformer layer is only 2d +
din, and (IA)? also is highly parameter-efficient.

9494

3.2 Dual Hadamard Product

Considering that LoRA requires to manually select
rank size, whereas (IA)? can only scale the weight
matrices along column, these limit the flexibility
of fine-tuning. Hence, we propose a vector dot
production strategy to fine-tune the model parame-
ters in a more fine-grained and flexible way. The
framework of our method is illustrated in Figure
2. In particular, we fine-tune W by performing the
element-wise dot product with both a row vector
and a column vector, which can also be understood
as scaling W along both row and column:

W=L1oWoll, 4)

where 1;,1, € R9.

Compared to LoRA, our method can achieve
better results even with rank of 1. This implies
a more efficient approach in terms of parameter
usage while still maintaining effectiveness in fine-
tuning. It can be observed that (IA)? scales the
weight values of each column equally, whereas
our method allows for different transformations on
both rows and columns of the weight matrices, thus
obtaining more precise fine-tuning and achieving
better outcomes.

To enhance the capacity of our approach for
training complex tasks, we introduce a scaling
mode of DHP during the experiments. We intro-
duce multiple pair of 1; and 1. vectors for perform-
ing Hadamard product with W respectively in Eq.
(4), followed by averaging or summing the output.
Specifically, the trainable parameters can be for-
mally defined as 1 = {1}, 1%,12,12, ..., 1F 1%}, with
k being adjustable based on the specific task. For
each pair of parameters, we perform the same op-
eration W' = 1! © W ® I'T. The final W’ is
determined by the average or the sum of W°.

3.3 Adaptive Parameter Selection

By observing the empirical results, LORA proposes
that only fine-tuning W, and W, can achieve rel-
atively satisfied results, while (IA)? only operates
on K, V and the intermediate activations in FFN.
However, these parameters are manually selected
for specific tasks and may not fit all tasks. We aim
to adaptively select which parameters to be fine-
tuned for downstream tasks. Currently, there are
methods like AdalLoRA (Zhang et al., 2023b) that
utilize importance scores to allocate different ranks
to various parameters, thereby facilitating adap-
tive distribution. Our method, however, focuses

on identifying which specific parameters should be
fine-tuned. Aiming at this issue, the adaptive pa-
rameter selection strategy is divided into two main
modules: Importance Score Calculation and Dy-
namic Allocation.

Importance Score Calculation. Since we need
to remove some parameters that do not require fine-
tuning, we first calculate the importance of parame-
ters. There are many importance calculation strate-
gies in pruning methods. Parameter magnitude
(Han et al., 2015; Paganini and Forde, 2020) de-
fines the importance of a weight based on its magni-
tude, but this alone cannot accurately represent the
impact of a weight to the loss. Sensitivity of param-
eters (Ding et al., 2019; Molchanov et al., 2019;
Sanh et al., 2020) is another importance metric
which considers both the weight magnitude and the
change rate of the loss with respect to this weight:

1(0) = 10 - VoL,)

where £ and 6 represent the loss function and the
trainable parameters respectively.

According to Zhang et al. (2022), Eq. (5) ex-
hibits significant variations because of the use of
mini-batch processing and the complex training
process, such as dropout. To address this issue,
Zhang et al. (2022) propose to smooth /() using
an exponential moving average as follows:

t=0,

— 10
' = +(t—1)

BTV + (1= p)IY te1,T),
(6)
where 81 € (0, 1), t and T denote the ¢-th step and

the total trainable steps. [® represents the sensitiv-
ity in the ¢-th steps. Besides sensitivity smoothing,
they also directly consider the uncertainty of im-
portance estimation to reduce variability,

v =1 -1,)

and they further introduce exponential weighted
averaging.

09 = 50"+ (1=, @®

where /33 € (0,1). o represents the uncertainty
of sensitivity values at t step.

In summary, the importance score for a parame-
ter is defined as follows:

9495

Algorithm 1 AdaDHP

1: Input: dataset D; total steps 1'; start steps t;;
final steps ¢ y; hyperparameters (31, (.
2: Add trainable parameters 1;, 1, for each {W};
3:fort=1,...,T do
4: Sample a mini-batch from D;
5: Compute the gradient VL(1;,1,.);
6: Compute the sensitivity [(t)j(t) by Egs.
(5), (6) for every parameter {1;, 1, };
7. Compute the uncertainty U (t),U(t)
(7), (8) for every parameter {1;, 1, };
8: Compute the importance score .S () by Eq.
(9) for every parameter {1;,1,};
9: Average the importance score of 1; and 1, as
final importance score of W
10. Compute the budget b*) by Eq. (10);
11: Retain the top b®) important parameters;
12: end for
13: Output: Fine-tuned parameters {ll(T),l

by Egs.

Y.

where © is Hadamard product. This takes into ac-
count the sensitivity and uncertainty of the parame-
ter, resulting in a more stable importance score.

Dynamic Allocation. Using the above impor-
tance score calculation strategy, we can obtain the
importance of each parameter at each step. For
our approach, we only introduce two additional
parameters 1; and 1. for each W, so we treat 1; and
1, as a combined entity, using the average of all
values from these two parameters to represent their
importance. This measurement guides whether to
remove or keep these two parameters, thus deter-
mining whether to fine-tune W.

One intuitive observation is that during the initial
training phase when stability is low, the importance
of parameters is also less stable. Therefore, it is
necessary to have a warm-up period at the begin-
ning. Moreover, in the early stages, more parame-
ters should be pruned, and as training progresses
and stability increases, fewer parameters should
be pruned to maintain stable training. Following
Zhang et al. (2023b), the quantity of parameters
required to retain in the ¢-th step is formulated as:

() te0,t;)
b0 = $6D +a(Z=) teftity), (10)
(1) tety,T]

where b(?) and b(*) are initial and final parameter
quantity, the removed trainable parameter quantity

isa = b0 — ™) t; and ty are start and end dy-
namic allocation steps, respectively, and T is the
total number of steps to update the model param-
eters. Any monotonic exponential function can
achieve this functionality.

3.4 The Overall Algorithm

We summarize our method AdaDHP in Algorithm
1. First, we add a pair of trainable parameters
I;, 1, for each parameter. In each step, we first
perform backpropagation to compute the gradient
of every trainable parameter. Then, we calculate
the sensitivity and uncertainty of each parameter
according to Egs. (5), (6), (7), and (8). Next, we
calculate the importance of each parameter based
on Eq. (9). We treat the 1; and 1, for each parameter
W as a whole and compute the average importance
score. Finally, after using Eq. (10) to calculate the
budget b*) in the t-th step, we retain the top b(*)
important parameters and set the values in other
parameters to 1. After T steps, we obtain the fine-
tuned models.

4 Experiments

4.1 Datasets

For T5-base model, following previous work (Asai
et al., 2022), we perform experiments on 17 NLP
tasks: (1) GLUE benchmark (Wang et al., 2018) in-
cludes CoLA, SST-2, MRPC, QQP, STS-B, MNLI,
QNLI and RTE. (2) SuperGLUE benchmark (Wang
et al., 2019) includes MultiRC, BoolQ, WiC, WSC
and CB. (3) Other datasets include WinoGrande
(Sakaguchi et al., 2020), Yelp-2 (Zhang et al.,
2015), SciTail (Khot et al., 2018) and PAWS-Wiki
(Zhang et al., 2019). Detailed dataset statistics can
be found in Table 6 of Appendix.

For all the datasets, we follow (Sung et al., 2022)
and (Asai et al., 2022) to split them into training,
validation and test sets. Specifically, for MNLI, we
use mismatched validation set as validation set and
matched validation set as test set. For the datasets
with relatively small amounts of samples (RTE,
MPRC, STS-B, CoLA, SciTail, PAWS-Wiki and all
the datasets of SuperGLUE benchmark), we split
the validation set into two equal-sized subsets as
validation and test sets. For the remaining datasets
(QQP, QNLI, SST-2, WinoGrande and Yelp-2), we
split 1k samples from the training set as the new
validation set and use the original validation set as
test set. We limit the maximum size of training set
to 100k for Yelp-2.

9496

CoLA STS-B MRPC RTE QNLI SST-2 QQP MNLI All

Method # Params
Mc Pc Acc Acc Acc Acc Acc Acc Avg.
Full Fine-tuning 220M 61.8 89.7 90.2 71.9 93.0 94.6 91.6 86.8 84.9
Adapter 1.9M 64.0 90.7 85.3 71.9 93.2 93.8 90.2 86.5 84.5
AdapterDrop 1.IM 62.7 914 86.3 71.2 93.2 93.6 90.2 86.3 84.4
BitFit 280K 58.2 90.9 86.8 67.6 93.0 94.2 90.1 85.3 83.3
LoRA 3.8M 63.3 91.0 88.2 75.5 93.2 94.3 90.4 86.3 85.3
LST 3.8M 58.1 90.5 87.9 71.9 93.3 94.1 90.4 85.6 84.0
PT 76.8K 10.6 89.5 68.1 54.7 92.8 90.9 89.7 81.3 72.2
(IA)? 129K 60.3+07 91.2+02 91.0+02 73.6+09 93.2+01 94.0+02 90.2+02 85.8+00 84.9
AdalLLoRA 811K 62.9+05 91.3+00 88.6+02 75.3+09 93.4+01 942402 90.2+00 86.0+0.0 85.2
AsymmetryLoRA 442K 53.4+25 90.2+03 89.5+0.6 712431 92.7+01 93.5+t02 89.9+00 84.4+01 83.1
FourierFT 72K 58.6+1.7 90.5+04 86.9+14 719+12 92.9+01 944102 90.3+01 85.6+00 83.9
qGOFT 810K 56.1+21 91.3+02 88.7+10 71.2+10 93.3x01 94.5+02 90.5+t01 86.1+00 84.0
DoRA 1.8M 61.6+21 89.9+02 87.4+16 7T4.1+12 929101 942402 91.1+01 84.5+00 84.5
AdaDHP 203K 64.3+26 91.4+01 90.5+08 77.7+10 93.4+00 94.5+02 90.6+00 86.5+00 86.1

Table 1: Test results on GLUE benchmark, with the corresponding size of trainable parameters. All the results are
based on the T5-base model. We use Matthew’s Correlation and Pearson Correlation as the metrics for CoLA and

STS-B, respectively, and accuracy for other tasks.

To verify the scalability of our model on larger
models and complex tasks, we train Llama-7B
and Llama2-7B models on Math10K dataset (Hu
et al., 2023) and test on six different math reason-
ing datasets: MultiArith (Roy and Roth, 2016),
GSMS8K (Cobbe et al., 2021), AddSub (Hosseini
et al., 2014), AQuA (Ling et al., 2017), SingleEq
(Koncel-Kedziorski et al., 2015) and SVAMP (Patel
et al., 2021).

4.2 Baselines

We compare our method with the following strong
baselines: (1) Full Fine-tuning fine-tunes all pa-
rameters of the backbone for downstream tasks. (2)
Adapter (Houlsby et al., 2019) inserts bottleneck
architecture after the attention and FFN modules.
(3) AdapterDrop (Riicklé et al., 2021) removes
adapters from lower transformer layers, enabling
more efficiency during training and inference. (4)
BitFit (Zaken et al., 2022) merely fine-tunes the bi-
ases in the pre-trained model. (5) LoRA (Hu et al.,
2022) decomposes the parameters into two low-
rank matrices and only fine-tunes them. (6) Ladder
Side-Tuning (LST) (Sung et al., 2022) employs a
side network that receives intermediate activations
through shortcut connections, and only fine-tunes
the side network. (7) Prompt Tuning (PT) (Lester
etal., 2021) inserts learnable prompt tokens into the
model input. (8) (IA)? (Liu et al., 2022) fine-tunes
intermediate activations, which introduces rescal-
ing vectors for the keys and values in the attention

architecture and for the intermediate activation in
the FFN architecture. (9) AdaLoRA (Zhang et al.,
2023b) dynamically assigns different ranks to each
parameter based on the importance metrics. (10)
AsymmetryLoRA (Zhu et al., 2024) explores the
different role of A and B in LoRA, and proposes
many initialization ways to get considerable results.
(11) FourierFT (Gao et al., 2024) treat AW as ma-
trix in the spatial domain, learns only its spectral
coefficients, and use IDFT to recover AW. (12)
qGOFT (Ma et al., 2024) designs given-based or-
thogonal finetuning method with fewer parameters.
(13) DoRA (Liu et al., 2024) divides the pretrained
weights to magnitude and direction components,
and use LoRA for directional updates.

4.3 Implementation Details

We conduct experiment on the T5-base (Raffel
et al., 2020), Llama-7B (Touvron et al., 2023a)
and Llama2-7B (Touvron et al., 2023b) models to
evaluate the effectiveness of our method. We select
hyperparameters based on the validation set for our
method, (IA)? and AdaLoRA, and report averaged
results over 3 different runs. All the results of other
baselines are sourced from (Asai et al., 2022) and
(Sung et al., 2022). For the T5-base model on the
GLUE benchmark, we set batch size as 100 and
maximum sequence length as 128, while setting
batch size as 16 and maximum sequence length as
256 for the other datasets. The other hyperparame-
ters are provided in Table 5 of Appendix.

9497

Method ‘ # Params ‘ SuperGLUE ‘ Other Datasets

| | BoolQ WiC WSC CB MultiRC Avg. | WG Yelp SciTail PAWS Avg.
Full Fine-tuning | 220M | 811 702 596 857 728 739|619 967 958 941 87.1
Adapter 1.9M 825 67.1 673 857 759 757|592 969 945 943 862
BitFit 280K 79.6 700 59.6 786 745 725 (572 947 947 920 847
LoRA 3.8M 813 683 673 893 726 758|582 97.1 947 940 86.0
PT 768K | 61.7 489 519 679 587 578|496 951 879 558 721
IA) 129K 822 69.1 667 905 732 763|577 971 952 939 86.0
AdaLoRA 811K 821 687 667 893 733 760|585 972 960 943 865
AsymmetryLoRA | 442K 800 657 667 81.0 724 732|583 966 922 910 845
FourierFT 72K 80.1 662 635 833 722 731|571 968 933 924 849
qGOFT 810K 818 66.1 673 869 732 751|585 967 943 941 859
DoRA 1.8M 816 695 673 881 733 760|590 969 958 942 865
AdaDHP 203K 826 702 679 917 734 771|591 973 962 946 868

Table 2: Test results on SuperGLUE benchmark and other datasets. All the results are based on the T5-base model.
We use F1 for MultiRC, and accuracy for other tasks as evaluation metrics.

Model Method Variable MultiArith GSM8K AddSub AQuA SingleEq SVAMP Avg.
r=4 95.2 34.7 78.5 16.1 77.8 454 57.9
r=8 96.2 35.6 80.5 15.7 82.3 49.6 60.0
LoRA
r =16 95.5 36.2 82.8 13.8 84.4 50.9 60.6
Llama-7B r=32 95.0 375 83.3 18.9 84.4 52.1 61.9
k=1 94.3 304 79.5 19.1 772 41.1 56.9
AdaDHP k= 97.5 36.2 83.5 16.9 81.5 46.1 60.3
k=38 94.0 37.5 84.1 16.1 84.3 494 60.9
k=16 95.0 36.9 84.1 18.1 86.2 50.9 61.9
r=4 95.1 39.3 83.0 19.7 82.1 47.6 61.1
r=38 94.3 39.7 82.5 20.9 85.0 474 61.6
LoRA
r=16 94.5 41.5 84.1 19.3 85.8 50.9 62.7
Llama2-7B r=32 94.5 39.3 83.5 19.3 86.2 47.5 61.7
k=1 96.2 37.1 83.8 18.1 83.5 44.0 60.5
AdaDHP k=4 94.7 35.6 83.5 18.9 84.3 47.1 60.7
k=38 92.0 42.0 84.6 19.7 86.0 52.5 62.8
k=16 94.2 39.7 85.1 20.1 83.7 49.7 62.1

Table 3: Test results of six math datasets on Llama-7B and Llama2-7B models. We use accuracy for all tasks as

evaluation metrics.

4.4 Experimental Results
4.4.1 Results on the T5-base Model

Table 1 presents our results on the GLUE bench-
mark using the T5-base model. Compared with
other PEFT methods, our method AdaDHP outper-
forms other PEFT methods on 6 out of 8 datasets
and surpasses Full Fine-tuning on 5 datasets. Addi-
tionally, the average performance of AdaDHP ex-
ceeds that of both Full Fine-tuning and other base-
lines. Despite fine-tuning only 0.05% of the param-
eters compared to our strong baseline LoRA, our
method delivers superior results across all datasets.

These findings demonstrate that AdaDHP achieves
superior performance while maintaining higher pa-
rameter efficiency compared to other methods.

Table 2 shows our results on the SuperGLUE
benchmark and other datasets based on the T5-
base model. On the SuperGLUE benchmark, our
method yields the best performance across 4 out of
5 datasets compared to all other baselines. Addi-
tionally, our method outperforms Full Fine-tuning
across all the datasets. Regarding the other four
datasets, our method outperforms Full Fine-tuning
and the other baselines on three datasets. These

9498

Method ‘ CoLA STS-B MRPC RTE QNLI SST-2 QQpP MNLI
AdaDHP ‘ 643126 91.4+01 90.5+08 77.7+1.0 93.44+00 94.5+02 90.6+00 86.5+0.0
-Adaptive 62.3+04 91.4+02 88.2+18 73.6+03 933+01 94.2+03 90.4+02 86.2+0.1
-Adaptive opumn 619+13 90.9+01 87.9+10 72.2+03 93.3+00 94.0+01 90.3+00 85.7+0.1
-Adaptive,.oy 60.6+1.9 91.1+00 88.7+1.1 75.3+09 93.3+01 92.4+05 90.4+02 86.2+0.2
AdaDHP,,qgnitude | 61.6+05 91.0x01 89.4+10 73.9+18 93.2+00 91.2+02 90.3x0.0 86.0+0.1
AdaDHPcpsitivity | 61.6+21 91.3x01 89.5+20 74.6x09 93.2+01 90.5x05 90.5:01 86.5x0.1

Table 4: Ablation study on the GLUE benchmark using the TS5-base model. -Adaptive indicates the removal of the
adaptive parameter selection module. -Adaptive ojumy and -Adaptive,,,, refer to removing the adaptive module
while scaling only the column parameters or the row parameters. AdaDHP,,q gnitude and AdaDHPy ey, i150ity replace
the importance selection strategy with magnitude and sensitivity methods, respectively.

1.0
MHSA.Wg

MHSA. Wy

0.6 0.8

VYU 0.7 0.6 0.7 0.7 0.7 0.7 08 0.7/0.8 1.0 0.8 0 06

MHSA.W, SRR b b b X .710.7/0.7 1 0.7

-04
FFN.W; - 0. K ’ . b L .310.3 0. .2 (0.1

FFN.W>10.30.2/0.2/0.2|/02/0.2{0.2|0.1|0.1 0.1 0.1|0.1

001 2 3 4 5 6 7 8 9 101
Layers

(a) Encoder Layers of Full Fine-tuning

10
MHSA.Wg-0.1{0.2/0.2|0.2/0.3 /0.3 /0.3

0.8
MHSA.Wi+0.1]0.2/0.2/0.2]03 /0.3 0.4

MHSA.W,40.2/0.2/0.2/0.2/0.3/0.3 0.3 06

MHSA.W,-0.2/0.2|02(0.2/03/0.3{0.3 04

FFN.W140.1/0.1|0.1|0.1{0.1/0.2{0.1/0.2{0.2/0.2/0.1 0.1

FFN.W240.1/0.1/0.1/0.1{0.1/0.1{0.0/0.1|0.1/0.1{0.0/0.0

-0.0
o 1 2 3 4 5 6 7 8 9 10 11

Layers

(c) Encoder Layers of AdaDHP

MHSA.Wg- 0.0 | 0.0 0.0 0.0 0.0 0.0/0.0]/0.00.00.0{0.0|0.0
MHSA.W- 0.0/ 0.0 0.0 [0.0|0.0{0.0|0.0{0.0|0.0/0.0|0.0/0.0
MHSA.W, - 0.0/ 0.0 0.0 [0.0 0.0 0.0 | 0.0
MHSA.W,-0.0|0.0 0.0 /0.0{0.00.00.0
MHCA.Wg- 0.0 0.0 0.0 [0.0| 0.0 | 0.0 | 0.0
MHCA.W- 0.0 0.0 [0.0 0.0 0.0 |0.0|0.1
MHCA.W, - 0.0 0.0 [0.0 | 0.0 0.0 | 0.1 | 0.1
MHCA.W,- 0.0 0.0 0.0 |0.0|0.0 | 0.1 fO:1
FFN.W;-0.0{0.0/0.0/0.0/ 0.0 0.0 |0.0
FFN.W>-0.0{0.0/0.0/0.0/0.0/0.00.0|0.0|0.0|0.0
01 2 3 4 5 6 7 8 9
Layers

0.20

(b) Decoder Layers of Full Fine-tuning

MHSA.Wg+0.0{0.00.0/0.00.0[0.0/0.0|0.0/0.0/0.00.0{0.0
MHSA.Wg+0.0{0.00.0/0.00.0[0.0/0.0|0.0/0.0/0.00.0{0.0
MHSA.W,{0.0{0.00.0|0.00.0/0.0/0.0|0.00.0|0.0
MHSA.W,-0.0{0.0/0.0{0.0/0.0/0.0/0.0 0.0
MHCA.Wg-0.0{0.0{0.00.00.00.0|0.00.0
MHCA.W1 0.0 [0.0{0.0 0.0 0.00.0|0.00.0
MHCA.W, 1 0.0 0.0{0.00.00.0/0.0]0.0|0.1
MHCA.W;,+0.0|0.0{0.0|0.0|0.0|0.0/0.0 0.1
FFN.W1-0.0 0.0/ 0.0 /0.0 [0.0|0.0 0.0 |0.0
FFN.W>-0.0 /0.0 0.0 /0.0 [0.0 | 0.0 0.0 | 0.0
01 2 3 4 5 6 7 8 9
Layers

(d) Decoder Layers of AdaDHP

0.200

0.175

0.150

0.125

-0.100

-0.075

-0.050

0.0] 0.0 [EIEH
0.0‘0.0 0.10.1
10 11

-0.025

-0.000

Figure 3: The importance scores of T5-base model parameters. MHSA, MHCA, and FFN represent multi-head
self-attention, multi-head cross-attention, and the feed-forward module.

observations once again demonstrate the high pa-
rameter efficiency of our method.

4.4.2 Results on Llama Series Models

Table 3 presents our results using the Llama-7B
and Llama2-7B models. Among them, k¥ = 1 is the
basic mode of our method AdaDHP, and we also
explore the impact of scaling with larger values
of k. From the results, we can observe that our
method at £ = 1 shows comparable performance
to LoRA at r = 4 on both two models. And when
k increases, our results consistently improve and
are also superior to the results of all baselines under
the same parameter settings (r = k). This trend

highlights the scalability and adaptability of our
method, and demonstrates the effectiveness of our
method on complex tasks and large models.

4.4.3 Ablation Study

Table 4 shows the results of our method when the
adaptive parameter selection module is abandoned,
denoted as “-Adaptive”. It can be observed that
the results of “-Adaptive” are much worse than
AdaDHP, especially there is a significant decrease
in performance for CoLA, MRPC, RTE, WiC,
WSC, and CB. The reason is that these datasets
are relatively small, and using a larger number
of parameters can lead to overfitting. Therefore,

9499

the performance is improved when removing the
unimportant or redundant parameters by this mod-
ule. Compared with -Adaptive, -Adaptive opumn
and Adaptive,,,, which scale the parameters along
either rows or columns generally performs much
worse. It can be seen that scaling only the rows or
only the columns leads to a significant performance
decrease in both cases, demonstrating the impor-
tance of fine-grained fine-tuning via dual hadamard
product.

Additionally, we conduct experiments using
commonly applied importance scoring methods,
such as the magnitude and the sensitivity. The re-
sults are shown in Table 4. The results indicate
that our method outperforms these two variants.
Our importance calculation method employs an ex-
ponential moving average, which provides a more
stable and reliable importance score. Therefore, the
retained parameters are more impactful, leading to
better overall performance.

4.4.4 Visualization

To validate that the trainable parameters selected
by LoRA and (IA)? are not flexible due to manual
selection, we take the RTE dataset as an example,
and use the importance score calculation module to
compute the importance for each parameter of the
T5-base model. Figure 3 shows the normalized pa-
rameter importance scores of Full Fine-tuning and
AdaDHP, the parameters with the scores larger than
0 are the important parameters required to be fine-
tuned. It can be seen that the selected parameters
of AdaDHP are generally consistent with Full Fine-
tuning, i.e., all the parameters in the encoder and
the cross-attention parameters of the last few layers
in the decoder are important. Whereas LoRA pro-
poses to only fine-tune W, and W, while (IA)3 is
equivalent to fine-tuning Wy, W, and Wy, leav-
ing many important parameters unfine-tuned. This
observation demonstrates that AdaDHP can pre-
cisely select and fine-tune important parameters.

5 Conclusion

In this paper, we propose an innovative parameter-
efficient fine-tuning method called AdaDHP for
fine-tuning large language models. To increase the
granularity of fine-tuning parameters and signifi-
cantly reduce the number of training parameters,
we perform Hadamard Product on each parameter
along both rows and columns. To adaptively select
parameters for downstream tasks, we use an im-
portance score calculation strategy and an dynamic

allocation mechanism to select important parame-
ters. We conduct extensive experiments on 17 NLP
datasets with T5-base model and complex mathe-
matical tasks with Llama series models, validating
the superiority of our method.

Limitations

Our approach currently prioritizes achieving a good
balance between parameter count and performance,
but it does not yet address excessive memory usage.
Additionally, some hyperparameters still require
fine-tuning. The limitations of this study are as
follows: (1) In future work, we plan to explore
quantization techniques for the base model, sim-
ilar to the approach in QLoRA (Dettmers et al.,
2023), to reduce memory usage and enable more
parameter-efficient fine-tuning. (2) We will also
focus on developing additional strategies to opti-
mize budget allocation in the Adaptive Parameter
Selection module, while reducing the number of hy-
perparameters in this module to simplify the tuning
process and improve efficiency.

Acknowledgments

This work was supported by National Natural
Science Foundation of China (No. 62206038,
62106035), Liaoning Binhai Laboratory Project
(No. LBLF-2023-01), Chunhui Project Founda-
tion of the Education Department of China (No.
HZKY?20220419), and Xiaomi Young Talents Pro-
gram.

References

Akari Asai, Mohammadreza Salehi, Matthew E. Pe-
ters, and Hannaneh Hajishirzi. 2022. ATTEMPT:
parameter-efficient multi-task tuning via attentional
mixtures of soft prompts. In Conference on Em-

pirical Methods in Natural Language Processing
(EMNLP), pages 6655-6672.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Conference on Neural Information Processing Sys-
tems (NeurlPS).

9500

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv, abs/2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. In Conference on Neural Informa-
tion Processing Systems (NeurlPS).

Xiaohan Ding, Guiguang Ding, Xiangxin Zhou, Yuchen
Guo, Jungong Han, and Ji Liu. 2019. Global sparse
momentum SGD for pruning very deep neural net-
works. In Conference on Neural Information Pro-
cessing Systems (NeurIPS), pages 6379-6391.

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing
Liu, Bingzhe Wu, Liang Chen, and Jia Li. 2024.
Parameter-efficient fine-tuning with discrete fourier
transform. In International Conference on Machine
Learning (ICML).

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015. Learning both weights and connections for
efficient neural network. In Conference on Neural

Information Processing Systems (NeurIPS), pages
1135-1143.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions (ICLR).

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 523-533.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In International Conference on Machine Learning
(ICML), pages 2790-2799.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In International Conference
on Learning Representations (ICLR).

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters: An
adapter family for parameter-efficient fine-tuning of
large language models. In Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5254-5276.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In AAAI Conference on Artificial
Intelligence (AAAI), pages 5189-5197.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 3045—
3059.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 4582—4597.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Annual Meeting of the Association for
Computational Linguistics (ACL), pages 158—167.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning. In Con-
ference on Neural Information Processing Systems
(NeurlPS).

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. In International
Conference on Machine Learning (ICML).

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. GPT
understands, too. arXiv, abs/2103.10385.

Xinyu Ma, Xu Chu, Zhibang Yang, Yang Lin, Xin Gao,
and Junfeng Zhao. 2024. Parameter efficient quasi-
orthogonal fine-tuning via givens rotation. In Inter-
national Conference on Machine Learning (ICML).

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri
Frosio, and Jan Kautz. 2019. Importance estimation
for neural network pruning. In Computer Vision and
Pattern Recognition (CVPR), pages 11264-11272.

Michela Paganini and Jessica Zosa Forde. 2020. On
iterative neural network pruning, reinitialization, and
the similarity of masks. arXiv, abs/2001.05050.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In North American Chap-
ter of the Association for Computational Linguistics
(NAACL), pages 2080-2094.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of machine learning research, 21.

9501

Subhro Roy and Dan Roth. 2016. Solving general arith-
metic word problems. arXiv, abs/1608.01413.

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. Adapterdrop: On the efficiency of
adapters in transformers. In Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7930-7946.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In AAAT
Conference on Artificial Intelligence (AAAI), pages
8732-8740.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. In Conference on Neural Information Pro-
cessing Systems (NeurlPS).

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.
LST: ladder side-tuning for parameter and memory
efficient transfer learning. In Conference on Neural
Information Processing Systems (NeurlPS).

Yi-Lin Sung, Varun Nair, and Colin Raffel. 2021. Train-
ing neural networks with fixed sparse masks. In Con-
ference on Neural Information Processing Systems
(NeurIPS), pages 24193-24205.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. arXiv,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. arXiv, abs/2307.09288.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,

and Samuel R. Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Conference on Neural Information
Processing Systems (NeurlPS), pages 3261-3275.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 353-355.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 1-9.

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang
Jiang, Bowen Wang, and Yiming Qian. 2023a.
Increlora: Incremental parameter allocation
method for parameter-efficient fine-tuning. arXiv,
abs/2308.12043.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023b. Adaptive budget allocation for
parameter-efficient fine-tuning. In International Con-
ference on Learning Representations (ICLR).

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander
Bukharin, Pengcheng He, Weizhu Chen, and Tuo
Zhao. 2022. PLATON: pruning large transformer
models with upper confidence bound of weight im-
portance. In International Conference on Machine
Learning (ICML), pages 26809-26823.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Conference on Neural Information Pro-
cessing Systems (NeurlPS), pages 649-657.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: paraphrase adversaries from word scrambling.
In North American Chapter of the Association for
Computational Linguistics (NAACL), pages 1298-
1308. Association for Computational Linguistics.

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-
rich Schiitze. 2020. Masking as an efficient alterna-
tive to finetuning for pretrained language models. In
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 2226-2241.

Han Zhou, Xingchen Wan, Ivan Vulic, and Anna Ko-
rhonen. 2023. Autopeft: Automatic configuration
search for parameter-efficient fine-tuning. arXiv,
abs/2301.12132.

Jiacheng Zhu, Kristjan H. Greenewald, Kimia Nadjahi,
Haitz Séez de Ocariz Borde, Rickard Briiel Gabriels-
son, Leshem Choshen, Marzyeh Ghassemi, Mikhail
Yurochkin, and Justin Solomon. 2024. Asymmetry
in low-rank adapters of foundation models. In Inter-
national Conference on Machine Learning (ICML).

9502

A Datasets

Table 6 summarizes the relevant information of the
training, validation and test sets for the 17 NLP
tasks we used. As mentioned in the main paper,
for datasets with relatively small samples, such as
RTE, MPRC, STS-B, CoLA, SciTail, PAWS-Wiki,
and all the datasets from the SuperGLUE bench-
mark, we divide the validation set into two equal-
sized subsets, one serving as the new validation set
and the other as the test set. Conversely, for the
remaining datasets including QQP, QNLI, SST-2,
WinoGrande, and Yelp-2, we extract 1,000 samples
from the original training set to constitute a new
validation set, while retaining the original valida-
tion set as the test set. Additionally, for Yelp-2, we
cap the training set at 100,000 samples.

B Hyperparameter Investigation

—a— AdaDHP
=== LoRA
1Ay

16 32 48 64 80 96 112 128 144 160 176
The Total Number of Remain Weights

Figure 4: Results on RTE while retaining different pa-
rameter quantities.

Besides the number of epochs and learning rate
selected based on the validation set, the hyperpa-
rameters of our method include 1, B2, b, b(T),
t; and ty. We follow (Zhang et al., 2022) to set
By and 2. b is the number of all the trainable
parameters. Hence, we only need to investigate
the remaining three hyperparameters. For b(*), the
accuracy of validation set for our method on the
RTE dataset under different budget scenarios is
shown in Figure 4. It can be seen that our method
outperforms the strong baselines LoRA and (IA)?
when b(T) reaches 64, and achieves the best perfor-
mance when b(¥) = 96. And the number of all the
trainable parameters is only 135K when b(7) = 64,
which is equivalent to (IA)3, indicating that our
method can select the most important parameters
and achieve better results. According to the results
in Figure 4, we set b(T) = 96 when fine-tuning the
T5-base model. After manual tuning on the CoLA
dataset, we obtain the values for ¢; and ¢ ;. For other

Dataset Epochs T t; iy LR
GLUE Benchmark
CoLA 20 1,720 100 800 7e —3
RTE 20 500 50 250 2e —2
MRPC 20 740 80 400 2e — 3
STS-B 20 1,160 150 600 9¢ — 4
SST-2 10 6,640 400 3,600 2¢ — 2
QNLI 10 10,380 600 5,500 le —2
QQpP 10 36,290 2,000 19,000 9¢ — 4
MNLI 10 39,280 2,000 21,000 4e — 2
SuperGLUE Benchmark
CB 30 480 30 280 8¢ —4
WSC 30 1,050 50 550 4e—3
WiC 20 6,800 400 3,600 le —3
BoolQ 20 11,800 800 6,300 3e —3
MultiRC 10 17,030 1,000 9,000 le —3
Other Datasets
SciTail 10 14,750 800 8,000 3e —3
WinoGrande (WG) 10 24,630 1,400 13,000 le — 3
PAWS 10 30,880 1,800 16,500 3e — 3

YelpPolarity (Yelp) 10 62,500 3,600 33,500 9e — 4

Table 5: The hyperparameters of all datasets.

datasets, we scale these values based on the ratio
with the total number of updates 7, selecting corre-
sponding values for ¢; and ¢y accordingly. Detailed
statistics of the hyperparameters are presented in
Table 5. Depending on the size of dataset, the repli-
cation time ranges from 8 minutes (for RTE) to 5
hours (for MNLI).

C Additional Experimental Results
C.1 Results on the Llama2 Model

We evaluate our method on Llama2-7B, and due to
resource constraints, we just perform it on the RTE
and SST-2 dataset. We load the original model
parameters with 16 bit, set the batch size to 16,
the maximum sequence length to 128, and the to-
tal training steps to 4000. The comparison of our
method with (IA)? and AdaLoRA is shown in Ta-
ble 7. It can be observed that our method can also
achieve good results with larger models.

C.2 The Runtime of Different Methods

We conduct experiments on T5-base model, and
the table below displays the number of training
steps per second and the number of samples per
second for several methods. LoRA, AdalLoRA
and AdaDHP train all the weights, while (IA)3
only trains the key, value, and the intermediate
activations of FFN, as stated in their original pa-
pers. As shown in Table 8, the results show that

9503

Dataset Train Valid Test Task Metric
GLUE Benchmark
CoLA 8,551 521 522 Acceptability Matthew’s Correlation
SST-2 66,349 1,000 872 Sentiment Accuracy
MRPC 3,668 204 204 Paraphrase Accuracy
QQP 362,846 1,000 40,431 Paraphrase Accuracy
STS-B 5,749 750 750 Sentence Similarity Pearson Correlation
RTE 2,490 138 139 Natural Language Inference Accuracy
MNLI 392,702 9,832 9,815 Natural Language Inference ~ Accuracy
QNLI 362,846 1,000 40,431 Natural Language Inference Accuracy
SuperGLUE Benchmark
MultiRC 27,243 2,424 2,424 Question Answering F1
BoolQ 9,427 1,635 1,635 Question Answering Accuracy
WSC 554 52 52 Common Sense Reasoning ~ Accuracy
WiC 5,428 319 319 Word Sense Disambiguation ~Accuracy
CB 250 28 28 Natural Language Inference ~ Accuracy
Other Datasets
WinoGrande (WG) 39,398 1,000 1,267 Common Sense Reasoning Accuracy
YelpPolarity (Yelp) 100,000 1,000 38,000 Sentiment Accuracy
SciTail 23,596 652 652 Natural Language Inference Accuracy
PAWS 4,9401 8,000 8,000 Sentence Similarity Accuracy
Table 6: Stastics of all datasets.
Model ‘ Params Train Memory RTE SST-2
(TA)? 0.009% 30G 643 +12 952 +o0.2
AdaLLoRA | 0.074% 33G 68.9 7.1 96.7 +o0.2
AdaDHP 0.018% 32G 70.0 £12 97.0 +0.4
Table 7: Test results of RTE and SST-2 on Llama2-7B model.
Method ‘ LoRA (r=1) LoRA(r=32) (A AdaLoRA AdaDHP
Train steps per second 1.562 1.446 1.775 1.225 1.471
Train samples per second 155.544 144.07 176.766 122.026 146.488

Table 8: Runtime comparison among LoRA, AdaLoRA, (IA)? and AdaDHP.

Method ‘ CoLA STS-B MRPC RTE QNLI SST-2 QQp MNLI
LoRA (r =1) | 55.6+11 88.6+04 86.9+02 67.4+34 93.1x01 93.6+02 90.0+0.2 85.9+0.1
DHP 62.3+04 91.4+02 88.2+1.8 73.6+03 93.310.1 94.2+03 90.4+02 86.2+0.1

Table 9: Comparison of LoRA with rank = 1 and our method DHP.

although AdaDHP includes adaptive parameter se-
lection module. it trians faster than both LoRA
(r = 32) and AdaLLoRA.

D The Difference of DHP with LoRA

Our method can be formulted as W ® (1;1), but
it is not identical to LoRA (i.e. W + BA) with
rank = 1. Mathematically, Hadamard product and
addition are distinct operations, and their computa-

tions during backpropagation are different, so it is
hard to make W ® (;17) equal to W + BA dur-
ing optimization, especially in the case where the
global optimal solution is difficult to be obtained.
Empirically, we conduct experiments fot LoRA
with rank = 1 and our method that only includes
Dual Hadamard Product (DHP) by removing Adap-
tive Parameter Selection module. As shown in Ta-
ble 9, our methods shows a clear advantage, which
confirms the differences between the two methods.

9504

