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Abstract

Efficient data selection is crucial to accelerate
the pretraining of language model (LMs).
While various methods have been proposed to
enhance data efficiency, limited research has
addressed the inherent conflicts between these
approaches to achieve optimal data selection
for LM pretraining. To tackle this problem,
we propose a multi-actor collaborative data
selection mechanism: each data selection
method independently prioritizes data based
on its criterion and updates its prioritization
rules using the current state of the model,
functioning as an independent actor for data
selection; and a console is designed to adjust
the impacts of different actors at various
stages and dynamically integrate information
from all actors throughout the LM pretraining
process. We conduct extensive empirical
studies to evaluate our multi-actor framework.
The experimental results demonstrate that
our approach significantly improves data
efficiency, accelerates convergence in LM
pretraining, and achieves an average relative
performance gain up to 10.5% across multiple
language model benchmarks compared to
the state-of-the-art methods. Code and
checkpoints are publicly released at https:
//github.com/Relaxed-System-Lab/
multi-actor-data-selection.

1 Introduction

Efficient data selection is crucial for the pretrain-
ing of language model (LMs), as the quality of
training data significantly impacts the statistical ef-
ficiency of the training procedure and the model
performance (Brown et al., 2020; Du et al., 2022;
Chowdhery et al., 2023). Recently, we have wit-
nessed numerous approaches, such as filtering high-
quality data (Xie et al., 2023b; Wettig et al., 2024),
mixing data from multiple domains (Xie et al.,
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Figure 1: This figure shows the 627B token distribution
by quality, domain, topic diversity, and model impact
at step 1500. Each bar represents a subset, highlighting
trade-offs between diversity, quality, and influence.

2023a; Liu et al., 2024), and selecting data that
optimally boosts downstream task performance dy-
namically (Engstrom et al., 2024; Yu et al., 2024),
which aim to improve data efficiency by prioritiz-
ing more informative training samples. However,
these methods often operate independently or in
isolated settings, limiting their potential when inte-
grated into a collaborative framework. In this work,
we want to explore how to effectively, flexibly, and
robustly combine these advanced data selection
techniques through the dynamic pretraining pro-
cess, addressing the challenges of optimizing data
efficiency for LM pretraining at scale.

Nowadays, various heuristic methods have been
proposed to provide measurements for the data sam-
ples used during LM pre-training, aiming to opti-
mize data efficiency by selecting or weighting the
most informative training examples. However, we
observe that integrating multiple data selection and
mixing strategies presents significant challenges
due to their inherent conflicts. For example, high-
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quality data identified by scoring functions may
not align with data that strongly impact model per-
formance as measured by influence functions (En-
gstrom et al., 2024); similar conflicts also exists
between other methods — further details are enu-
merated in §2. These observations actually moti-
vate us to launch a systematic discussion about how
to effectively integrate these methods during the
dynamic pretraining process that provides superior
data efficiency for LM pretraining.

Effectively integrating multiple data selection
methods into a unified framework presents signif-
icant challenges. While each method may indi-
vidually offer benefits, combining them requires
navigating an exponential search space of possi-
ble configurations, which quickly becomes infea-
sible at scale. This challenge is further exacer-
bated in online data selection settings, where deci-
sions must be made dynamically during training.
Unlike offline approaches that rely on static, pre-
computed heuristics—such as classifier-based scor-
ing, domain weighting, or topic sampling (Brown
et al., 2020; Team, 2024; Xie et al., 2023a)—online
methods aim to adaptively select data based on
the model’s evolving learning state. For example,
MATES (Yu et al., 2024) continuously probes the
pretraining model to estimate the influence of in-
dividual data points and trains a lightweight data
influence model to predict which samples will be
most beneficial at each stage of training. Similarly,
DSDM (Engstrom et al., 2024) formulates data se-
lection as an optimization problem, selecting data
subsets that maximize performance on downstream
tasks without relying on predefined quality met-
rics. Despite their effectiveness, these methods
incur substantial computational overhead, as they
require labeling or evaluating the entire dataset at
each stage of training—an approach that is imprac-
tical for large-scale pretraining. Consequently, the
core challenge is to develop an online integration
framework that preserves the adaptivity and perfor-
mance benefits of these techniques while remaining
computationally efficient and scalable.

To address these challenges, we conduct a case
study to identify the inherent conflicts for existing
data selection methods and provide a multi-actor
collaborative data selection framework to resolve
this issue. Our multi-actor framework is inspired
by the classical definition of intelligence outlined
by (Russell and Norvig, 2016), where an actor is
defined as an entity that perceives a state and maps
the observed state to actions. In our approach, data

selection is achieved by the collaboration of these
actors. Our contributions can be summarized as:
Contribution 1: Our case study on the SlimPa-
jama reveals conflicts among four data selection
metrics in LM pretraining. Despite these conflicts,
prior studies (Wettig et al., 2024; Xie et al., 2023a;
Yu et al., 2024) show that even a single metric can
effectively guide training, highlighting the need for
better integration of these approaches.
Contribution 2: We propose a novel multi-actor
collaborative data selection framework (§3), where
each method acts as an independent scorer for train-
ing data. An actor console integrates these scores
to optimize selection, and a dynamic collaboration
mechanism adjusts actor contributions throughout
training, enhancing flexibility and data efficiency.
Contribution 3: Extensive experiments demon-
strate that: (1) our method significantly improves
data efficiency, accelerating LM convergence and
achieving up to a 10.5% performance boost over
baselines (§4.1); and (2) ablation studies confirm
that key components of our framework are essential
for these gains (§4.2).

2 Case Study - Inherent Conflicts in Data
Selection

In this section, we present several observations
derived from the SlimPajama datasets (Soboleva
et al., 2023), which reveal some inherent conflicts
for different data selection measurements. To con-
duct this case study, we first label all data from
the SlimPajama datasets using the quality scorer
FineWeb-Edu (Lozhkov et al., 2024). We then di-
vide the data into subsets based on domain and qual-
ity ranges. From each subset, we uniformly sample
data to assess topic diversity, i.e., the topic classifi-
cation of the sampled data according to our meth-
ods. We analyze this diversity by examining the
topic distribution within each subset. Additionally,
we compute the normalized influence of the data
on a pretrained 1.3B model at the 1500th step using
influence functions to evaluate the data’s impact on
the model (Engstrom et al., 2024). Figure 1 illus-
trates the results, which presents a bar chart rep-
resenting four dimensions: quality, domain, topic
diversity, and influence on the pretrained model.
The x-axis shows data quality, with higher inter-
vals reflecting better scores from the FineWeb-Edu
quality scorer. The y-axis indicates the dataset’s do-
main, while the z-axis shows topic diversity within
each subset, with taller bars indicating more diver-
sity. The color gradient represents influence on
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the model, with darker shades showing greater im-
pact. From this analysis, we highlight the following
interesting observations:

• High-quality data identified by the quality scorer
may not have a significant impact on model per-
formance. For example, ArXiv documents rated
between 4 and 5 by the scorer are considered
high-quality. However, at the 1500th training
step, they exert minimal impact on the model
according to the influence functions, revealing
a discrepancy between data quality and model
impact. This observation is consistent with the
previous discussion in (Engstrom et al., 2024).

• High-quality data may exhibit low topic diversity.
Documents in the Book domain with a quality
score of 4 to 5 are classified as high-quality by the
scorer. Nevertheless, 85% of these documents
belong to the same topic, indicating a lack of
diversity.

• Data with high topic diversity may not strongly
influence model performance. Documents from
the C4 domain display considerable topic diver-
sity. However, at the 1500th training step, they
have limited impact on the model as measured
by the influence functions, suggesting a conflict
between diversity and model influence.

• Data with high topic diversity can be low qual-
ity. Wikipedia documents show substantial topic
diversity, which benefits the topic classifier. How-
ever, some of these documents are rated as low-
quality by the quality classifier, revealing a trade-
off between diversity and quality.

We believe this inherent conflict illustrates that
a naive ensemble of these mechanisms may lead
to poor performance in terms of data efficiency for
LM pretraining, which motivates the design and
implementation of our multi-actor collaborative
framework in §3.

3 Collaborative Data Selection

In this section, we present the formalization of the
data selection problem in §3.1, outline the overall
framework of our methods in §3.2, and detail the
actor initialization and update in §3.3, along with
the collaborative mechanism in §3.4.

3.1 Problem Formulation

We follow the definition of the data selection prob-
lem in (Engstrom et al., 2024) and (Yu et al., 2024)
with slight modification. The objective for data
selection is to choose a subset of size k from the
entire pretraining dataset in such a way that the

trained model’s loss on downstream tasks is mini-
mized. Let O represent an optimization algorithm
that maps a training dataset to a trained model. The
optimal subset D∗

k of the pretraining dataset D can
be expressed as:

D∗
k := argmin

Dk⊂D,|Dk|=k

L(Dk | M, Teval), (1)

where

L(Dk | M, Teval) := Ex∼Teval [ℓ(x;O(M,Dk))]

denotes the expected loss (e.g., cross-entropy loss)
for modelM on downstream task Teval. Minimiz-
ing this objective directly is computationally chal-
lenging. Given that the real downstream tasks are
unknown during model training, prior works have
approximately optimized this problem by minimiz-
ing the loss on selected reference tasks Dref (e.g.
LAMBADA (Paperno et al., 2016), SQuAD (Ra-
jpurkar, 2016) and Jeopardy (Tunguz, 2019) in (En-
gstrom et al., 2024)). Specifically, they train proxy
models to compute one-step training loss (Yu et al.,
2024) or influence functions (Engstrom et al., 2024)
on the reference tasks to approximate the true loss.
However, this approach heavily depends on the
selection of the reference tasks, while the chosen
reference tasks may not be fully representative of
all potential downstream tasks.

To avoid this obstacle, we do not directly min-
imize the loss on the reference tasks. Instead,
we view this loss as a reward signal that guides
the update of predefined data selection methods.
Concretely, we define a reward function R(Dk |
M, Tref), where the reward is based on the perfor-
mance gain of current model M trained on the
subset Dk and evaluated on the reference tasks Tref.
Then our optimization goal becomes maximizing
this reward over time, as:

D∗
k = argmax

Dk⊂D,|Dk|=k

E [R(Dk | M, Tref)] (2)

where

R(Dk|M, Tref) := Ex∼Tref [−ℓ(x;O(M,Dk))] .

We will rewrite R(Dk | M, Tref) as R(Dk) if
there is no ambiguity. In practice, R(Dk) can be
approximated by the weighted average of influence
functions (Engstrom et al., 2024; Yu et al., 2024),
which is defined by

r(xi) = −∇ML(Tref | M)⊤H−1
M∇ML(xi | M), (3)

where HM = 1
n

∑n
i=1∇2

MLM(xi | M) is the
Hessian and its positive definite. Details of calcu-
lating influence functions for pretraining data point
can be found in §A.9.
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Figure 2: Illustration of multi-actor collaborative framework. Multi-actor collaborative framework for pretraining
data selection that integrates multiple perspectives by combining offline priors and online model-derived preferences.

3.2 Multi-Actor Data Selection Framework
In order to solve the optimization problem in Equa-
tion 2, we develop a framework illustrated in Fig-
ure 2. This framework consists of two primary
stages: the offline labeling stage and the online up-
date stage. Before the training process, some initial
information (i.e., the initialized measurements in
some heuristic) is computed for the entire pretrain-
ing corpus, and this information is stored separately
in each actor’s memory (formally defined below).
During the training process, the current model (i.e.,
LM to be trained) is used to update the actors’ mem-
ory and their collaboration mechanism based on
rewards computed on the current model. An actor
console is responsible for aggregating the opinions
of each actor and making the final data selection de-
cision. Formally, we define the actor in Definition
1 and the actor console in Definition 2. Detailed
formulation is in Appendix A.4.
Definition 1 (Actor). An actorA is a data selection
method defined by a specific attribute (e.g., quality,
domain, or topic) with memoryHA that stores la-
bels for each data point and their associated scores.
During training, the actor takes several actions: (1)
Sample data DA according to predefined sampling
distribution, (2) Call the current model to compute
the rewardR(DA), (3) Get feedbacks from current
model state, and (4) Update the internal weights
wA in its memory. Then it assigns a score SA to
each data point based on its updated memory, pri-
oritizing the good data according to the updated
weights. One actor’s objective is to maximize its

reward by updating this actor’s internal weights and
increasing the score of higher-reward data points.

Definition 2 (Actor Console). The actor console
is in charge of coordinate opinions from different
actor to make final decision of selecting dataset
for next training stage. Specifically, it consolidates
scores SA(xi) from multiple actors {A1, . . . ,An}
to calculate a final score S(xi) for each data point
xi, and select the final dataset. The console adjusts
the collaborative weights θA for each actor based
on their respective aggregate rewardsR(DA), bal-
ancing their contributions during training. In cases
where there are conflicts in the decisions made
by actors, the console resolves these by adjusting
the weights θA to prioritize the actors that have a
greater positive impact on the model’s performance,
ensuring an effective data selection process.

Now the reward signal is actually came from
multiple actors, the optimization goal in Equation
2 becomes maximizing the expectation of collab-
orative actors. In our current implementation, we
include three actors, which are topic actors, quality
actors and domain actors. They are aiming to max-
imize the rewards from topic, quality and domain
perspective respectively. In the following sections,
we will detail how we initialize and update a single
actor (§3.3), and how we update the actor console
for multi-actor collaboration (§3.4).

3.3 Single Actor Initialization and Update

Actor initialization. As defined in Definition 1,
for a particular actor, we have to maintain its mem-
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ory HA throughout the training process. Before
training process begin, we label the whole training
dataset D offline and store the labeled information
to the memory of corresponding actors. Specif-
ically, for each data point xi ∈ D, i.e., a single
document in our settings, we first get the quality,
topic and domain label using scorer and classifier.

We initialize the weight of the topic actor and
domain actor following the RegMix (Liu et al.,
2024) framework. Unlike the original RegMix,
which only considers mixing data based on domain
labels, we examine data mixing weights based on
domain as well as the topic labels. We initialize our
quality actor similar to the data selection decision
of QuRating (Wettig et al., 2024) and FineWeb-
Edu (Lozhkov et al., 2024). Further details can be
found in §A.7.3. The initial weights for each actor
are stored in their respective memory.

During the training phase, we leverage the cur-
rent model to adjust the weight of each actor. As
depicted in Figure 2, at the data selection stage,
each actor performs several actions to update its
memory and inform decision-making. Take do-
main actor as an example, it takes three-step action
during data selection stage: (1) Sample pretraining
data points from the pretraining data pool, distribut-
ing them uniformly across each domain; (2) Call
the current model to assess the reward of each data
point and gather feedback; (3) Update the memory
of domain weights based on gathered feedback and
adjusts the score for each data point by incorpo-
rating prior knowledge from the offline labeling
process. This process is similarly followed by the
quality actor and the topic actor.

Actor update. After sampling data uniformly
from actor search space, each actor updates its in-
ternal weights using local information based on the
sampled data. For example, for domain actor, it
calculates the average influence of each domain.
For actor A ∈ {AQuality,ADomain,ATopic}, it up-
dates its internal weights by calculating the overall
rewards sampled from each interval as:

R(Dj
A) =

1

|Dj
A|

∑

xi∈Dj
A

r(xi) := R
j
A, (4)

where Dj
A represents the sample set of the j-th sub-

category under actor A, e.g. Wikipedia for domain
actor. And xi is a sample within this sample set.
The sliding averaging is used to update the weight
for each subcategory wj

A with current rewards:

wj
A ← (1− ηA) · wj

A + ηA ·Rj
A, (5)

where ηA is the sliding average factor to trades-
off bias-variance. The overall updated weight of
actor A is an vector in nA dimension, wA =
[w1

A, ..., w
nA
A ], where nA is the number of total sub-

category within the space of actor A. Utilizing the
prior memory stored by each actor, it can give out
a final score for each data point as SA(xi) = wj

A,
where j is the subcategory that xi belongs to.

3.4 Multi-Actor Collaboration

Ultimately, the actor console defined in Definition
2 aggregates all actors’ feedback to compute a final
score for each data point, determining the final data
selection decision.

Multi-actor collaboration. In the context of
multi-actor collaboration, the weighted score for
each actor must be calculated to evaluate their re-
spective contributions effectively. This calculation
takes into account various factors specific to each
actor. For every data sample xi, the overall score
S(xi) is determined by the following formula:

S(xi) = (θQuality · SQuality(xi)+

θDomain · SDomain(xi) + θTopic · STopic(xi)),
(6)

where SQuality(xi), SDomain(xi), and STopic(xi) are
scores calculated by quality, domain, and topic ac-
tors for sample xi. θA ∈ {θQuality, θDomain, θTopic}
is the collaborative weight for each actor, which is
updated during training process.

Collaborative weight update. To dynamically
adjust the importance of each actor during various
training phases, we modify the actor’s collaborative
weight based on its overall rewards. We compute
the reward of each actor and the average reward
across all actors:

RA =
1

|n|
n∑

j=1

wj
A ·R

j
A, R =

1

3

∑

A
RA, (7)

This information is then used to update each actor’s
collaborative weight, which is stored in the actor
console’s memory for future decision-making:

θA ← θA + ηA · (RA −R). (8)

By continuously refining these weights, the collab-
oration strategy adapts to optimize overall perfor-
mance and appropriately adjust the role of each
actor throughout different stages of training. Com-
plete training pipeline is outlined in Algorithm 2.
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Table 1: Our approach boosts model performance across tasks. To fit demonstrations within 1024 tokens, we provide
full results for 0, 3, and 5 shots in Appendix A.8. The table covers Problem Solving, Commonsense Reasoning, and
Reading Comprehension, with best QuRating and DSIR variants: QuRating-Edu and DSIR-Wiki.

Selection Method
Problem Solving Commonsense

Reasoning
Reading

Comprehension Average

(4 tasks) (4 tasks) (2 tasks) (10 tasks)

Random sampling - 30B tokens 31.1 32.9 43.1 34.2

Random sampling - 60B tokens 33.6↑2.5 33.7↑0.8 46.1↑3.0 36.1↑1.9

Perplexity PPL (Ankner et al., 2024) 29.9↓1.2 30.5↓2.4 42.4↓0.7 32.7↓1.5

Classifier-based data selection
QuRating (Wettig et al., 2024) 34.1↑3.0 34.1↑1.2 41.4↓1.7 35.6↑1.4

FineWeb-Edu (Penedo et al., 2024) 32.6↑1.5 33.0↑0.1 45.3↑2.2 35.3↑1.1

DSIR (Xie et al., 2023b) 30.9↓0.2 32.0↓0.8 41.5↓1.6 33.5↓0.7

Domain mixing methods
DOGE (Fan et al., 2024) 30.9↓0.2 32.2↓0.7 45.1↑2.0 34.3↑0.1

DoReMi (Xie et al., 2023a) 30.4↓0.7 32.6↓0.3 44.8↑1.7 34.1↓0.1

DMLaw (Ye et al., 2024) 30.2↓0.9 32.1↓0.9 45.1↑2.0 33.9↓0.3

RegMix (Liu et al., 2024) 30.7↓0.4 32.5↓0.4 44.6↑1.5 34.2↑0.0

Influence MATES (Yu et al., 2024) 30.9↓0.2 34.0↑1.1 46.5↑3.4 35.3↑1.1

Multi-actor collaboration (ours) 36.7↑5.6 34.8↑1.9 45.9↑2.8 37.8↑3.6

4 Experiments

We conduct a series of experiments to evaluate
the effectiveness of our multi-actor collaborative
data selection method. Comprehensively, we find
that: (1) In the end-to-end experiments, our ap-
proach introduces significant improvement in terms
of data efficiency leading to faster convergence for
LM training, and achieves up to 10.5% improve-
ments on average across various language model
benchmarks when compared with other baseline
approaches (§4.1); (2) We also verify that the de-
sign and implementation of the core components
in our multi-actor framework design are necessary
to reach this advanced performance through a set
of carefully designed ablation studies (§4.2).

4.1 End-to-end Experiments
We evaluate our multi-actor framework against
a wide category of state-of-the-art approaches to
compare the data efficiency for LM pretraining. We
train a 1.3 billion parameter LLAMA-2 architecture
model with 30 billion selected tokens. We also
report our results of generalizing our methods to
3.6B and 8B models in Appendix A.1.
Experimental setup. We first enumerate the ex-
perimental setup as below:

• Pretraining datasets. We utilize the popular
SlimPajama (Soboleva et al., 2023) dataset in-
cluding 627 billion tokens, which is derived from

the RedPajama (Computer, 2023) dataset. The
SlimPajama (Soboleva et al., 2023) provide the
meta-data about the domain information for each
sample. Before the training process, we annotate
the entire dataset using the FineWeb-Edu qual-
ity scorer (Penedo et al., 2024) along with our
custom-trained BERT-based topic classifier. The
training details for the topic classifier is provided
in Appendix §A.2.

• Training details. We adopt the model architec-
ture from LLAMA-2 (Touvron et al., 2023b) at
the scale of 1.3 billion parameters (see the de-
tailed configuration in Appendix §A.7-Table 9).
Following the principles of the scaling law (Hoff-
mann et al., 2022) and the DCLM framework (Li
et al., 2024), we decide to use a total of 30 billion
tokens. All training tokens are sampled from the
670 billion-token SlimPajama (Soboleva et al.,
2023) dataset using various sampling strategies.
Further details regarding the training process can
be found in §A.7.

• Evaluation benchmarks. To evaluate the pre-
trained models thoroughly, we conduct exten-
sive assessments across various downstream
tasks, categorized into three areas: (1) prob-
lem solving: MMLU (Hendrycks et al., 2021),
ARC-Easy/Challenge (Clark et al., 2018), and
MathQA (Welbl et al., 2017); (2) common-
sense reasoning: SIQA (Sap et al., 2019),
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WinoGrande (Sakaguchi et al., 2020), Open-
bookQA (Mihaylov et al., 2018), and Com-
monsenseQA (Talmor et al., 2019); (3) read-
ing comprehension: RACE (Lai et al., 2017)
and BoolQ (Clark et al., 2019). Evaluations are
conducted using the lm-evaluation-harness
framework (Gao et al., 2023) in an in-context
learning setting, and average accuracy is reported
for easy comparison.

• Baselines. We select a wide range of base-
lines to conduct extensive the data efficiency
comparison, where these methods can be clas-
sified to five main categories: (1) random sam-
pling, we test this policy with both the stan-
dard data volume of 30B tokens and a supple-
mented version with 60B tokens; (2) perplex-
ity-based data selection (Ankner et al., 2024);
(3) classifier-based data selection, where we
select the following methods: QuRating (Wet-
tig et al., 2024), FineWeb-Edu (Penedo et al.,
2024), DSIR-Book (Xie et al., 2023b) and DSIR-
Wiki (Xie et al., 2023b); (4) domain mixing-
based methods, where we select the following
methods: DOGE (Fan et al., 2024), DoReMi (Xie
et al., 2023a), DMLaw (Ye et al., 2024) and Reg-
Mix (Liu et al., 2024); and (5) influence func-
tion based methods for online data selection, i.e.,
MATES (Yu et al., 2024). Implementation details
of these baselines can be found in §A.7.2.

Results. We present the results of three types
of downstream tasks in Table 1, with the com-
plete 0-shot (Table 11), 3-shot (Table 12), and 5-
shot (Table 13) results for all tasks enumerated
in §A.8. We highlight that our methods show
a substantial improvement in the average perfor-
mance across all downstream tasks when compared
with all the baselines. Concretely, we observe that
when compared with the random sampling based
approach, our method not only significantly out-
performs the standard 30 billion token setup but
also surpasses the model trained on 60 billion to-
kens with a performance gain of 4.7%. Similarly,
we also show an improvement of 15.6% compared
with perplexity-based data selection (Ankner et al.,
2024), an improvement of up to 6.2% compared
with classifier-based data selection, an improve-
ment of up to 10.2% compared with domain mix-
ing-based methods, and an improvement of 7.1%
compared with influence function based approach,
i.e., MATES (Yu et al., 2024).
Discussion. We highlight that our proposed multi-

actor collaborative data selection mechanism intro-
duces statistical efficiency in terms of LM train-
ing convergence and also provides some computa-
tional efficiency in terms of data processing over-
heads. In terms of statistical efficiency, our method
consistently outperforms others at every bench-
marked training step, as shown in Figure 3. While
MATES (Yu et al., 2024) performs comparably
to our methods during the early training phase
(steps 1500 to 3000), its performance drops in later
stages. This aligns with its original paper, which
notes that relying solely on influence functions
for specific reference tasks (e.g., LAMBADA (Pa-
perno et al., 2016)) can degrade performance in
mid-to-late pretraining. Despite this, MATES still
outperforms other methods without dynamic ad-
justments shown in Figure 3. In contrast, our
multi-actor collaborative data selection mechanism
can dynamically adjust the corresponding weights
from different actors and select data based on
the most up-to-date model preferences, effectively
mitigating biases and surpassing other domain-
mixing and data-selection techniques. In terms
of computational efficiency, we also achieve higher
computational efficiency than previous methods.
For example, QuRating (Wettig et al., 2024) re-
quires around 7.13× 1020 FLOPs to label the en-
tire SlimPajama dataset, while our offline label-
ing takes just 9.91 × 1019 FLOPs. MATES (Yu
et al., 2024), which recalculates influence scores
and trains a BERT model for each labeling cycle,
incurs 1.98× 1020 FLOPs for a four-stage update.
Additionally, MATES’ labels are only usable in
the next training stage, making it time-consuming
and difficult to scale. In contrast, our method can
improve the computational efficiency from two as-
pects: (1) we find that a group of light-weight
actors collaboratively enables superior data selec-
tion, which is more computational efficiency than
any method that requires a heavy data processing
or label procedure; (2) the collaborative, dynamic
learning procedure introduced in our multi-actor
framework is computational efficient; by using a
sampled holdout set and CPU-based calculations
for updating actor parameters, our computational
overhead is ignorable compared with heavy LM
training computation.

4.2 Ablation Study

We introduce a set of carefully designed ablation
studies to justify the design and implementation of
our multi-actor collaborative data selection frame-
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Table 2: This ablation study examines the performance of various combinations of actor collaboration and update
mechanisms. All models are in 1.3B LLaMA2 architecture. Three-shot accuracy is reported for all tasks, with the
highest value in each column shown in bold.

Problem Solving Commonsense Reasoning Reading Compreh.

Selection Method ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

Quality&Domain&Topic actor 65.8 31.5 23.0 26.6 24.6 39.9 54.1 20.1 60.4 30.5 37.7
without collaboration update 59.4 26.3 21.3 25.1 20.5 38.9 52.9 19.8 58.1 28.3 35.1

Domain&Quality actor 63.3 29.7 22.6 25.1 21.8 40.5 53.1 20.3 59.5 28.8 36.5

Topic&Quality actor 62.9 28.1 22.3 26.5 22.6 39.6 51.8 21.7 56.7 30.7 36.3

Domain&Topic actor 55.6 25.2 21.8 26.5 23.1 39.1 53.7 20.9 57.5 29.0 35.2

Quality actor 59.1 29.7 22.4 25.3 21.1 38.5 51.2 19.1 57.2 28.3 35.2

Domain actor 54.1 25.6 21.4 25.9 22.3 38.1 53.6 20.0 58.1 27.9 34.7

Topic actor 55.3 25.3 21.9 27.1 22.1 39.4 51.5 19.8 56.3 28.9 34.8

No actor 54.6 23.0 22.1 24.9 18.8 40.3 52.9 21.5 53.0 29.8 34.1

Figure 3: Downstream three-shot performance of the
1.3B model in relation to pretraining steps, using 7500
steps for 30B tokens. Our methods outperform baselines
from all categories.

work. Concretely, (1) we test the combination of
different actors to show the advance introduced by
collaboration, and (2) we verify the necessity of
the dynamic adjustment of the actor’s weight for
data selection.

Results and discussion. The results of the ablation
study are shown in Table 2. We want to highlight
the result from two aspects: First, the ablation study
underscores the importance of each actor in achiev-
ing optimal performance across the training tasks.
When the quality, domain, and topic actors are
used together, the model performs best, highlight-
ing the benefits of their combined use, as shown in
Table 2. In terms of evaluating each actors’ con-
tributions, we find that the quality actor excels in
problem-solving tasks like ARC-E and MathQA
by leveraging educational knowledge but is less ef-
fective for domain-specific or context-heavy tasks
like BoolQ and RACE. The domain actor enhances
commonsense reasoning (e.g., CommonsenseQA)
and reading comprehension (e.g., BoolQ) by in-
corporating domain-specific knowledge. The topic

actor is most effective for multi-topic tasks like
MMLU and contributes significantly to common-
sense reasoning tasks like SocialIQA. Second, the
ablation study verifies the design and implementa-
tion of the collaborative dynamic adjustment of the
actors’ weights (introduced §3.4) for efficient data
selection. When actors were initialized with equal,
fixed weights instead of using dynamic weight-
ing, overall performance dropped significantly, as
shown in Table 2.

5 Related Work

Data selection in LM pretraining. Selecting high-
quality pretraining data from large corpora is cru-
cial for effective LM training. Recent approaches
leverage various methodologies for efficient data se-
lection. Concretely, classifiers (Brown et al., 2020;
Chowdhery et al., 2023; Du et al., 2022; Xie et al.,
2023b) and language modeling perplexity (Wen-
zek et al., 2020; Thrush et al., 2024) have been
applied to identify data resembling high-quality
samples; recently, more advanced quality scores
based on classifier have shown the effectiveness in
data selection, e.g., QuRating (Wettig et al., 2024),
FineWeb-Edu (Lozhkov et al., 2024), etc. Data
mixture is another effective way to improve data
diversity, at both token level (Touvron et al., 2023a;
Gao et al., 2020; Soboleva et al., 2023) and sample
level, e.g., DoReMi (Xie et al., 2023a), DOGE (Fan
et al., 2024), DMLaw (Ye et al., 2024), and Reg-
Mix (Liu et al., 2024); very recently, topic distri-
butions has also been considered as an effective
data mixing method, e.g., the downsampling over-
represented topics in Llama 3.1 (Team, 2024). In-
fluence functions have been studied to understand
for data efficiency (Koh and Liang, 2017), and
some recent attempts based on efficient approxima-
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tion have been proposed to improve data efficiency
in LM pretraining (Schioppa et al., 2022; Grosse
et al., 2023; Isonuma and Titov, 2024); For exam-
ple, MATES (Yu et al., 2024) uses a staged BERT
model to assess data influence, QUAD (Zhang et al.,
2024) leverages cluster information to reduce the
computational cost of calculating individual data
influence.

Multi-agent and multi-actor collaborative
frameworks. Collaboration across multiple au-
tonomous or semi-autonomous entities has been
studied extensively under the paradigms of multi-
agent and multi-actor systems. Traditional
multi-agent systems (Russell and Norvig, 2016;
Wooldridge, 2009) involve autonomous agents that
make independent decisions and learn through in-
teraction, often coordinated via mechanisms such
as reward signals, negotiation, or centralized plan-
ning. These systems have been effective in appli-
cations such as neural architecture search (Bello
et al., 2017), collaborative large language model
programming (Hong et al., 2024), and distributed
control (Olfati-Saber, 2006). In contrast, our work
adopts a multi-actor perspective, where actors are
not general-purpose intelligent agents, but special-
ized components—specifically, independently op-
erating data selection methods. Each actor follows
a distinct heuristic to prioritize pretraining data,
adapting dynamically to the model’s evolving state.
A central coordination mechanism integrates these
priorities over time, resolving conflicts and guiding
collective behavior. This aligns with formaliza-
tions of multiactor systems, where the term "actor"
serves as a generic abstraction that encompasses
agents, bodies, or effectors (Russell and Norvig,
2016). Unlike multi-agent systems, which may
involve deliberative autonomy and decentralized
goal negotiation, multiactor systems often assume a
shared objective and focus on concurrent action, co-
ordination, and conflict resolution. Our framework
draws from both traditions: it retains the modular-
ity and adaptability of multi-agent systems, while
leveraging the structured concurrency and coordi-
nation principles emphasized in multiactor plan-
ning (Ligtenberg et al., 2001, 2004; Wang et al.,
2020). This hybrid approach enables us to tackle a
largely underexplored challenge: resolving compe-
tition among heterogeneous data selection heuris-
tics to improve the efficiency and effectiveness of
language model pretraining.

6 Conclusions

In this paper, we introduce a multi-actor collabora-
tive data selection framework to enhance efficiency
in LM pretraining. Our framework allows multiple
data selection methods to operate as independent
actors, with an actor console designed to dynam-
ically integrate their outputs throughout the LM
training process. Empirical studies show it im-
proves data efficiency, speeds up convergence, and
achieves up to 10.5% average performance gains
over state-of-the-art methods. These results demon-
strate the effectiveness of dynamically combining
data selection strategies to resolve conflicts and
optimize LM pretraining.

Limitations

While our method greatly improves data selection
for language model pre-training, our study has
some limitations. Due to computational constraints,
our experiments were limited to relatively small-
scale models (up to 8B parameters) with restricted
token budgets. Additionally, while our quality met-
rics are comprehensive, they may not fully capture
all dimensions of pre-training data. In future work,
we plan to refine or expand these metrics to bridge
these gaps.
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A Appendix

A.1 Generalization to 3.6B and 8B Models

To evaluate the scalability of our approach, we con-
ducted additional experiments training a 3.6 billion
parameter model based on the LLaMA 3.2 archi-
tecture, which further demonstrates the scalability
of our method. So far we have trained on 36 bil-
lion tokens and achieved strong performance, with
plans to continue training with additional tokens
according to scaling laws. As Table 3 shows, when
compared to random selection, our method shows
consistent performance improvements across all
downstream tasks, achieving a 13.7% increase in
average accuracy—significantly higher than the
10.5% improvement observed with the 1.3B mod-
els. Our results in Table 4 show that our methods
outperform random selection approaches by 10.2%
for 8B LLaMA 3.2 architecture models. Based on
trends across three different model sizes (373M,
1.3B, 3.6B and 8B), our approach consistently out-
performs random selection by over 10% on average.
This consistent advantage makes us believe that it
suggests our method has strong potential for train-
ing even larger models, including those with 10B+
parameters.

A.2 Details of Training Topic Classifier

As shown in Figure 4, we first cluster 1.4 billion
documents obtained from Common Crawl (Project,
2007) into 10,000 clusters using KNN. And we use
GPT-4o (OpenAI, 2024) to generate a summary
for the content in each cluster. Additionally, we
implement two parallel steps: unsupervised and
supervised. In the unsupervised step, we perform
secondary clustering of the 10,000 clusters into 100
clusters, from which we extract 20 summaries for
each cluster. We utilize GPT-4o to extract category
labels, refining these into a coherent hierarchical
labeling system for the classification of 42 distinct
topics.

In the supervised data processing step, leverag-
ing Gopher cleaning ruls (Rae et al., 2021) and
Min-Hash (Broder, 1997) deduplication, we clean
the whole datasets and cluster the datasets into
10,000 clusters. We then extract 50 equidistant
samples from each cluster. This process yields
approximately 500,000 data points, which we cate-
gorize into the aforementioned 42 topics by calling
GPT-4o (OpenAI, 2024) using the prompt shown
below:

Since GPT-4o is not specialized for classification

tasks, we obtain actual topic data with slightly more
than 42 topics, as shown in Figure 6. We then man-
ually summarize the topics provided by GPT-4 into
13 categories, ensuring that the subtopics within
each category shared similarities. The detailed cat-
egory distributions appear in Figure 6, along with
specific clustering information. Ultimately, we em-
ploy the annotated data to fine-tune a BERT-like
regression model (Devlin et al., 2018). Following
model classification, we conduct human proofread-
ing to ensure accuracy, and we present the final
results below.

A.3 Guidelines for Generalizing a New
Criteria as an actor

This section provides a detailed guidelines for in-
corporating a new criterion into our multi-actor
system. The process is designed to ensure seam-
less integration and effective collaboration between
existing and new actors.

Our framework offers several significant benefits
when integrating a new actor. First, it offers flexibil-
ity, as the addition of new criteria can be performed
independently of the core framework. This de-
coupling ensures that introducing new components
does not require significant structural changes, al-
lowing for smooth integration with minimal disrup-
tion to existing processes. Second, the approach is
highly scalable. By enabling the training of new
classifiers offline, the system can be easily adapted
to handle a wide variety of data selection goals,
which can evolve over time as new criteria emerge.
Finally, the framework ensures extensibility, mean-
ing it can seamlessly accommodate new objectives,
whether simple or complex. This extensibility is
key to maintaining efficient and effective collabo-
ration across multiple actors, regardless of the size
or complexity of the task at hand.

As demonstrated in Algorithm 2, our framework
seamlessly integrates a new actor through a series
of straightforward steps. This approach ensures
that the multi-actor framework remains flexible and
effective in addressing diverse data selection objec-
tives while preserving its collaborative efficiency.

A.4 Connection of Multi-actor Collaborative
Selection Method to Multi-agent RL

The proposed multi-actor collaborative selection
method is fundamentally inspired by the intelli-
gent actor defined in (Russell and Norvig, 2016),
where the actor generally refers to an entity that
perceives some status and map the observed sta-
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Table 3: This study compares the performance of training 3B model from scratch on 60B tokens selected using
random sampling versus multi-actor collaboration. Accuracy is reported for all tasks, with the highest value in each
column shown in bold.

Problem Solving Commonsense Reasoning Reading Compreh.

Selection Method ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

Random Sampling 34.8 17.7 21.3 23.0 12.0 32.9 50.2 19.6 37.8 20.9 27.0

Multi-actor collaboration (Ours) 42.9 21.3 21.9 24.0 15.8 33.9 51.0 20.4 54.8 21.2 30.7

Table 4: This study compares the performance of training 8B model from scratch on 25B tokens selected using
random sampling versus multi-actor collaboration. Accuracy is reported for all tasks, with the highest value in each
column shown in bold.

Problem Solving Commonsense Reasoning Reading Compreh.

Selection Method ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

Random Sampling 22.2 53.3 21.5 23.3 19.4 36.1 51.0 18.2 48.0 21.3 31.4

Multi-actor collaboration (Ours) 25.5 58.0 23.2 24.1 21.6 38.8 53.1 20.8 57.8 22.9 34.6

tus into actions. However, our framework also
has many similarity compare with traditional multi-
agent framework in reinforcement learning, where
multiple actors work together to optimize a shared
objective. In this section, we formally demonstrate
the relationship between our framework and tradi-
tional multi-agent RL.

A.4.1 Overall Definition in Reinforcement
Learning Formulation

We first clearly formulate each component of frame-
work compare with components in general MARL
framework for understanding the mechanism of
our framework. As our goal is to select the opt
the global action at each step involves selecting a
subset of data, Dk, from the entire dataset, D. This
subset is used to update the model, where batches
are drawn from Dk for training. The global state
is represented by the current model parameters,
M , which evolve as the model is trained. The
state transition is formalized as M ′ = O(M,Dk),
where M ′ denotes the updated model after training
on Dk.

The reward function measures the improve-
ment in model performance on a reference task,
Tref, which serves as a proxy for the true down-
stream task Teval. The reward is defined as:

R(M ′|M, Tref) = Ex∼Tref [−l(x;M ′)],

where l(x;M ′) is the loss on Tref. For individual
data points, the reward is estimated using influence
functions:

r(xi) = Influence(xi,M, Tref).

This formulation links data selection directly to its
impact on improving the model’s performance on
Tref.

A.4.2 Actor Design
The estimation of value is as follows: The actor
stores a reward estimation vector for each subset.
The update rule is given by

wj
A(t+ 1) = (1− ηA) · wj

A(t) + ηA · R̄j
A.

The sliding average is used here because if all data
in a subset were fully processed to compute R̄j

A,
there would be no need for a sliding average. How-
ever, since only a portion of the data is sampled,
the estimate has higher variance, which is not favor-
able for training. At the same time, the influence
score itself is dynamic (even if the data remains
constant, the model evolves). Averaging with out-
dated scores introduces bias. Therefore, the sliding
average factor ηA strikes a ’bias-variance tradeoff’.
We assume the score estimate for each data point
xi in Dj

A with respect to the dimension of inter-
est for the actor, is given by SA(xi) = wj

A where
xi ∈ Dj

A.

A.4.3 Multi-actor Collaboration
Assume that the score of a single data point in the
reference task is obtained as a weighted sum of
multiple components. The total score for each data
point is given by Equation 7 as:

S(xi) =
∑

A
θA · SA(xi),
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Figure 4: Illustration of training process for topic classifier. This diagram shows the process of training a
BERT-based topic classifier using CommonCrawl data. 1.44 billion documents are clustered to generate topics.
GPT-4o handles topic summarization and annotation, while a BERT model is trained to classify 13 topics, with
humans doing final proofreading.

Figure 5: We illustrate the prompt construction process for GPT-4 to reorganize the topic of 500k data points.

where θA are collaborative weights. A central co-
ordinator adjusts these weights over time based on
the actors’ contributions to the overall reward:

θA(t+ 1) = θA(t) + ηA(R̄A − R̄),

where R̄A is the actor’s average reward, and R̄ is
the global average reward:

R̄A =
1

n

n∑

j=1

wj
A · R̄

j
A, R̄ =

1

3

∑

A
R̄A.

We consider three possible cases for our frame-
work, comparing its relationship with traditional
optimization problem.

• Single-actor case: If only one actor is involved,
θ becomes irrelevant, reducing the problem to a
classical optimization scenario where the actor
greedily selects the optimal data based on one
criteria.

• Multi-actor competitive mechanism: When
multiple actors are present, θ reflects each ac-
tor’s capability. Selecting the best-performing
actor for decision-making introduces a heuris-
tic competitive mechanism, building upon the
classical optimization framework.

• Multi-actor collaborative mechanism: Alter-
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Algorithm 1 Integrating a New Criterion into Multi-Actor Collaboration
Require: Sampled dataset Dsample, pretraining dataset Dtrain, reference dataset Dref, existing Actors {Ai}3i=1, scoring weights
{θi}|D|

i=1, memoryHA for each Actor.
1: Annotating Data for the New Criteria
2: Sample data from the whole datasets, and annotate sampled dataset Dsample according to new criterion.
3: Training a Classifier for the New Criteria
4: Train a supervised classifier on Dsample.
5: Defining the New Actor

• Action Space: Sample and assess data points across subcategories of the new Criteria.
• Memory: Store prior scores and update based on model feedbacks.

6: Labeling the Pretraining Dataset
7: Use trained classifier to label the whole training dataset Dtrain and store these labels in memoryHAnew .
8: Defining Actor Weights and Collaboration Strategy

1. Define the subcategory weights updating mechanism for Anew using Eq. 5:

wj
new ← (1− ηnew) · wj

new + ηnew ·Rj
new.

2. Integrate Anew into the scoring function using Eq. 6:

S(xi) = θQualitySQuality(xi) + θDomainSDomain(xi) + θTopicSTopic(xi) + θnewSnew(xi).

9: Actor Initialization with Regression Techniques
10: Initialize the Actor weights wnew using regression techniques (e.g., RegMix).

Algorithm 2 Multi-actor collaborative data selection for LM pretraining
Require: Training data D, reference task Dref, main modelM, optimizer O, total training steps T , selected size k, update step

U , Memory for each actorHA
1: Initialize model parameters for main modelM
2: Initialize Dk as a size-k randomly sampled subset from D
3: for t = 1 to T do
4: if t mod U = 0 then
5: for each actor A do
6: Sample data points according to actor’s predefined sampling distribution
7: Compute rewardsRM(xi;Dref) for each sampled data point xi

8: Update actor weight wA ← wA + ηA ·RA
9: end for

10: Compute actor score RA and average score R according to Eq. 7
11: Update collaborative weight θA ← θA + ηA · (RA −R).
12: Calculate coordinator score S(xi) for xi ∈ D according to Eq. 6
13: Select dataset for next training stage Dk ← Top-k(S(xi)) for xi ∈ D
14: end if
15: Sample a batch of data B from Dk

16: Update Main ModelM←O(M, B)
17: end for

natively, when multiple actors are involved, θ
can be used to weigh each actor’s contributions
for decision-making. This introduces a smoother
heuristic cooperative mechanism, extending the
classical optimization framework by leveraging
weighted collaboration. This heuristic cooper-
ative mechanism dynamically adjusts the influ-
ence of each actor based on the model’s current
preferences, enabling more effective data filter-
ing decisions.

In practice, we choose to use the multi-actor col-
laborative mechanism for data selection. We have
added comparisons with single-actor and competi-
tive mechanisms in Table 5 to further elaborate the

effectiveness of collaboration.

A.5 Detailed Analysis of Computational
Overhead

In this subsection, we compare the computational
overhead of our multi-actor collaboration frame-
work with baseline approaches. The analysis fo-
cuses on three aspects: offline computation effi-
ciency, online computation efficiency, and over-
all FLOPs requirements. Table 6 summarizes
these comparisons.

A.5.1 Offline Computation Efficiency
Our method achieves superior offline efficiency by
requiring only 9.91× 1019 FLOPs for a one-time
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Table 5: This ablation study examines the performance of various combinations of actor collaboration (Actor) and
dynamic collaborative weight update (Dynamic). Accuracy is reported for all tasks, with the highest value in each
column shown in bold.

Problem Solving Commonsense Reasoning Reading Compreh.

actor Dynamic ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

with with 65.8 31.5 23.0 26.6 24.6 39.9 54.1 20.1 60.4 30.5 37.7
with without 59.4 26.3 21.3 25.1 20.5 38.9 52.9 19.8 58.1 28.3 35.1

without - 59.2 26.1 20.3 25.4 21.3 39.1 52.6 20.1 56.5 29.1 35.0

Table 6: Comparison of Computational Overhead Across Methods

Selection Method Offline Computation Online Computation Overall
Cost (FLOPs) Cost (FLOPs) (FLOPs)

Qu-Rating (Wettig et al., 2024) 7.13× 1020 N.A. 7.13× 1020

MATES (Yu et al., 2024) N.A. 1.99× 1020 1.99× 1020

Multi-actor collaboration (ours) 9.91× 1019 1.19× 1018 1.00× 1020

dataset labeling process using a 109M BERT-based
model for inference. This is nearly an order of
magnitude more efficient than Qu-Rating, which
consumes 7.13 × 1020 FLOPs due to its reliance
on a larger 1.3B Sheared-LLaMA model. MATES
does not utilize offline computation, relying solely
on online updates, which avoids this cost but lim-
its its flexibility and scalability. The offline label-
ing in our method ensures robust initial scores for
large-scale datasets while laying the groundwork
for efficient online updates.

A.5.2 Online Computation Efficiency

For adaptive online updates, both our approach and
MATES compute influence scores with 1.19×1018

FLOPs. However, MATES involves labeling the en-
tire dataset with a 109M BERT-based model in ev-
ery round, amounting to 1.98×1020 FLOPs across
four data selection stages. In contrast, our method
avoids re-labeling the entire dataset, significantly
reducing the computational cost by focusing on
labeling the large pretraining datasets only once.

Overall, our approach cuts the computational
cost in half compared to MATES and requires only
about 1/7 of the computational resources used by
Qu-Rating.

A.6 Analysis of Ablation Study

A.6.1 Analysis of actor Roles on Different
Type of Tasks

We show the actor ablation study conducted on
373M LLaMA2 models Table 7 as well as 1.3B
LLaMA2 models Table 2.

First, the ablation study underscores the impor-
tance of each actor in achieving optimal perfor-
mance across the training tasks. When the quality,
domain, and topic actors are used together, the
model performs best, highlighting the benefits of
their combined use, as shown in Table 2. In terms
of evaluating the performance of each actor, we
find that the quality actor outperforms other single-
actor configurations, excelling in problem solving
tasks. However, its performance drops on tasks
requiring domain knowledge or contextual under-
standing. Here, the domain and topic actors play
a crucial role, as they excel in these areas. De-
spite this, neither performs well on problem solv-
ing tasks, except for the topic actor, which signifi-
cantly improves MMLU performance, indicating
that topic diversity may benefit such tasks. In terms
of evaluating the combination of the actors, we find
that removing any actor noticeably reduces over-
all accuracy, though the impact varies. Excluding
the quality actor leads to the largest drop, signif-
icantly affecting performance in problem solving
tasks, and commonsense reasoning tasks like Open-
bookQA. This highlights the quality actor’s vital
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Table 7: This ablation study examines the performance of various combinations of actor collaboration and update
mechanisms. All models are in 373M LLaMA2 architecture. Accuracy is reported for all tasks, with the highest
value in each column shown in bold.

Problem Solving Commonsense Reasoning Reading Compreh.

Selection Method ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

Quality&Domain&Topic actor 57.9 24.7 21.9 25.4 20.2 37.9 52.6 20.4 59.6 29.4 35.0
without collaboration update 47.9 20.4 21.0 25.1 17.2 37.3 51.3 20.0 56.5 28.3 32.5

Domain&Quality actor 55.1 18.6 21.7 24.4 17.4 37.1 51.2 19.8 61.7 28.2 33.5

Topic&Quality actor 56.2 24.4 21.8 25.2 19.4 36.3 49.0 19.7 56.1 28.5 33.6

Domain&Topic actor 44.6 18.3 21.7 25.7 16.2 36.6 51.9 19.9 61.6 27.8 32.4

Quality actor 53.0 24.7 21.8 25.5 18.0 36.3 49.5 18.1 57.0 28.0 32.9

Domain actor 44.1 19.1 20.8 25.6 16.6 36.8 52.0 19.7 56.7 28.2 32.0

Topic actor 42.7 19.2 21.0 27.0 17.4 37.1 50.7 19.7 54.6 28.5 31.8

No actor 42.5 20.0 21.1 23.8 14.6 35.9 50.1 18.8 56.1 27.9 31.1

role in reasoning and problem-solving. Similarly,
excluding the topic actor causes a performance
drop in ARC-Challenge and a significant reduction
in MMLU, emphasizing its importance in tasks
covering diverse subjects; removing the domain ac-
tor results in a performance drop in commonsense
reasoning tasks, underscoring its key contribution
to these areas. Second, the ablation study verifies
the design and implementation of the collaborative
dynamic adjustment of the actors’ weights (intro-
duced §3.4) for efficient data selection. Concretely,
in this variant, all actors were initialized with equal
weights, which remained fixed throughout training
without adjusting for individual actor performance.
Surprisingly, this fixed-weight approach (equal to
random sampling) resulted in a significant drop
in overall performance compared to the dynamic
weighting used in the collaborative update frame-
work, as shown in Table 2. We believe this result
from the ablation study is a strong indicator that the
dynamic adjustment of the celebration mechanism
is essential for efficient data selection.

A.6.2 Ablation Study on Reference Tasks
Selection

In our experiments of selecting reference tasks in
Table 8, we observe that while the choice of ref-
erence tasks can influence performance, the im-
pact on average performance is marginal (within
0.5 points). Using different reference tasks consis-
tently leads to a significant improvement in average
performance compared to random data selection,
demonstrating that our method is not sensitive to
the choice of reference tasks.

A.7 Details of Pretraining

A.7.1 Details of Pretraining Models
Architecture

The specific architecture of pretraining model is
shown in Table 9. Each model was trained on
32x NVIDIA A800, employing a global batch size
of 4 × 220 tokens and completing 7,500 steps in
about 14 hours. The average token processing
rate per GPU was about 20,000 tokens per sec-
ond. The learning rate was set to 5× 10−5, and the
Adam optimizer was employed with hyperparame-
ters (β1 = 0.9, β2 = 0.95, ϵ = 10−8).

A.7.2 Details of Baseline Method
Implementation

Regarding the classifier methods, QuRating (Wet-
tig et al., 2024) and DSIR (Xie et al., 2023b), we
implement QuRating by downloading the open-
source checkpoint from Hugging Face. Notably,
the released model has a context length of 4096,
whereas ours is 1024. However, this discrepancy
does not impact our testing tasks, as our maximum
of 5-shot examples remains within the 1024 limit.
Despite this, we have totally similar model con-
figuration as well as the total number of training
tokens with all the checkpoints we downloaded.
Similarly, the replication of PPL is based on the
publicly available checkpoint from the original pa-
per. For FineWeb-Edu (Lozhkov et al., 2024), we
download the quality scorer to label all the train-
ing data from SlimPajama datasets, and adopt the
methodology described in the corresponding publi-
cation and train all the model from scratch.

Domain mixing refers to the technique of com-
bining data from different sources or domains to
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Table 8: This ablation study examines the performance of various combinations of reference task. Accuracy is
reported for all tasks, with the highest value in each column shown in bold.

Problem Solving Commonsense Reasoning Reading Compreh.

Reference Tasks ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

LAMBADA&SQuAD&Jeopardy 65.8 31.5 23.0 26.6 24.6 39.9 54.1 20.1 60.4 30.5 37.7
LAMBADA 64.3 31.2 22.3 26.8 23.5 39.6 54.6 20.4 59.6 30.1 37.2

SQuAD 65.1 30.9 23.4 25.9 24.9 40.1 53.8 21.2 59.1 29.3 37.4

Jeopardy 63.9 30.3 23.6 26.3 24.1 40.7 54.5 21.8 59.1 30.2 37.5

Random selection 54.6 23.0 22.1 24.9 18.8 40.3 52.9 21.5 53.0 29.8 34.1

Table 9: Architecture of pre-trained decoder-only models.

Hyperparameter 370M Model Value 1.3B Model Value 3.6B Model Value 8B Model

Vocabulary Size 32,000 32,000 128,256 128,256
MLP Ratio 8/3 8/3 8/3 3.5
Hidden Dimension Size 2048 1024 3072 4096
Number of Layers 24 24 28 32
Number of Attention Heads 16 8 24 32
Number of KV Attention Heads 16 8 8 8
RoPE Base 10,000 10,000 500,000 500,000
Maximum Context Window Length 1024 1024 1024 1024
Number of Parameters 373,867,520 (370M) 1,345,423,360 (1.3B) 3,606,752,256 (3.6B) 8,030,261,248 (8B)

enhance the diversity and robustness of a model’s
training dataset. In our implementation, we ap-
ply various mixing methods: DoReMi (Xie et al.,
2023a), DOGE (Fan et al., 2024), DMLaw (Ye
et al., 2024), and RegMix (Liu et al., 2024). Each
method contributes distinct proportions of data
from specific domains, as reflected in the domain
weights presented in Table 10. Notably, the weights
indicate the percentage of contributions from each
domain.

For the reproduction of MATES (Yu et al., 2024),
we start by utilizing Random-Slimpajama at the
1500th training step as our primary pretraining
model and fine-tune the BERT-base from the origi-
nal thesis as our data influence model. During the
training of the data influence model, we uniformly
sample 1/13 of the data as hold-out data from each
area of our dataset and employ LAMBADA (Pa-
perno et al., 2016) as a reference task, following
the MATES methodology. Ultimately, we use the
trained BERT-base data influence model to predict
the entire training dataset, selecting the top 1/20
as our pretraining data. This selection process is
executed using the Gumbel-Top-k algorithm (Kim
et al., 2016), consistent with MATES. We leverage
a four-step updates similar to the original paper,
and conduct the above implementation at 1500th,
3000th, 4500th and 6000th model training steps
using the current models.

A.7.3 Details actor Weight Initialization
For the domain actor, we use the document’s meta-
information, label the data with domain informa-
tion and save this into the domain actor’s memory,
where the domain Domain(xi) belongs to one of
ArXiv, Book, Wikipedia, CommonCrawl, GitHub,
StackExchange, C4.

For quality actor, we adopt the FineWeb-Edu
quality scorer (Lozhkov et al., 2024), which is fine-
tuned as a BERT-like regression model (Merrick
et al., 2024) using Llama3-70B-Instruct annotated
500k examples. This will give out a successive
quality score Quality(xi) ∈ R[0,5] with higher
score represent higher quality. We then map this
score into five quality intervals {Ij}5j=1, as

Quality(xi) 7→ Ij =





[j − 1, j), if Quality(xi) ∈ [j − 1, j),

j = 1, 2, 3, 4

[4, 5], if Quality(xi) ∈ [4, 5],

j = 5

We store the quality interval corresponding to
each data point in the quality actor’s memory.

For the topic actor, due to the absence of a suit-
able pretrained model for topic classification and
labeling, we designed a classification schema us-
ing 1.44 billion documents collected by the Com-
mon Crawl project (Project, 2007) and fine-tuned a
BERT-like regression model on 500k GPT-4o an-
notated samples, the overall pipeline is depicted in

9483



Figure 6: We illustrate the distribution of manually annotated and clustered data, which includes 13 topics:
Infrastructure, Law and Government, Networking, Activity, Business and Industry, Nature, Literature and Art,
Education, Finance, Technology, Entertainment, Health, and Others.

Figure 4. Further details on the topic classification
approach and BERT model training are provided
in §A.2. Using this topic classifier, we categorize
each document into one of 13 topics: Activity, Ed-
ucation, Entertainment, Finance, Health, Business

and Industrial, Infrastructure, Literature and Art,
Nature, Others, Law and Government, Networking,
Technology, and store the topic information in the
topic actor’s memory.

We employ an actor weight initialization tech-
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Table 10: Exact domain weights (%) on SlimPajama obtained by data mixing methods. Abbreviations: C.C. =
CommonCrawl, Wiki = Wikipedia, StackEx. = StackExchange

Mixing Method C.C. C4 GitHub Books ArXiv Wiki StackEx.

SlimPajama 52.20 26.70 5.20 4.20 4.60 3.80 3.30
DoReMi 38.11 11.41 6.54 8.19 4.24 23.07 8.47
DOGE 21.35 26.93 7.03 4.50 8.80 14.82 16.58
DMLaw 12.50 25.00 14.06 9.38 25.00 1.56 12.50
RegMix 17.37 51.03 0.23 0.23 0.08 29.77 1.27

nique within the RegMix (Liu et al., 2024) frame-
work, which is crucial for the effective training of
proxy models. Our dataset is organized into three
distinct categories: domain, quality, and topic. For
each category, we initialize the data weights based
on the original proportions across 512 configura-
tions and subsequently train a TinyLlama-1M with
1 billion tokens as a proxy model for each con-
figuration. We evaluate this model on previously
unseen data mixtures, specifically using validation
set loss, following RegMix, for assessment. We
then fit a regression model based on the perfor-
mance results of the 512 proxy models to predict
the optimal data mixture for training large-scale
LMs. The results of the LightGBM regression anal-
ysis and Spearman correlation of the loss prediction
performance are presented in 7.

Upon training the regression model, we system-
atically investigate the entire spectrum of potential
data mixtures by utilizing the trained model to pre-
dict the target values for each candidate mixture.
This process allows us to identify the input that
produces the optimal target value. Following the
simulation and identification of the most effective
data mixture, we then generalize this top-ranked
configuration for large-scale model training, incor-
porating a significantly larger volume of tokens.

A.8 Full Experimental Results

We show the full results of all tasks in Table 11,
Table 12 and Table 13. In analyzing the full exper-
iment results, it is evident that our model consis-
tently outperforms other methods across various
tasks. Overall, for the zero-shot scenario, the clas-
sifier method outperforms the influence function in
terms of average performance, while domain mix-
ing yields the poorest results. Our method achieves
an impressive average accuracy of 36.5, signifi-
cantly surpassing the next best classifier, QuRat-
ing’s series, which scores 35.5. This underscores

the robustness of our approach, particularly in chal-
lenging problem-solving domains such as ARC-C,
ARC-E, and MMLU, where we exceed competing
models by considerable margins.

Our model demonstrates superior performance
in the three-shot scenario, achieving an impressive
average accuracy of 37.7, thereby maintaining its
lead. Notably, we excel in the ARC-E and ARC-C
benchmarks, attaining scores of 65.8 and 31.5, re-
spectively, which highlights our model’s effective
utilization of few-shot learning. In contrast, the
leading alternative methods underperform, partic-
ularly in more complex tasks such as MMLU and
BoolQ.

In the five-shots evaluation, our model contin-
ues to demonstrate competitive performance, with
scores reflecting a consistent trend of superiority
across various domains, while other non-leading
methods also maintain high levels. These results
underscore our model’s robust capacity to general-
ize across diverse question-answering tasks, affirm-
ing its advantages over conventional classifiers and
highlighting its potential for practical applications
in real-world scenarios.

A.9 Implementation Details of our Methods

To further refine the model’s performance, we cal-
culate rewards for each sampled data point by ap-
proximating the rewards using influence functions,
as shown in Equation 3. Following (Engstrom
et al., 2024), we choose LAMBADA (Paperno
et al., 2016), SQuAD (Rajpurkar, 2016) and Jeop-
ardy (Tunguz, 2019) as reference tasks. We fol-
lowed methods provided in (Engstrom et al., 2024),
(Xia et al.) and (Park et al., 2023) to calculate the
Hessian and the gradients in the influence func-
tions. In our implementation, we project gradi-
ents into an 8,192-dimensional space for both the
validation and training datasets. To optimize the
gradient computation process, we divide each data
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(a) Topic

(b) Quality Interval

(c) Domain

Figure 7: We present the results of the LightGBM regression analysis and Spearman correlation regarding the loss
prediction performance and the weights of each candidate data-(a) Topic, (b) Quality Interval and (c) Domain after
mixture across all categories.

category into eight slices, thereby enabling parallel
computation across eight GPUs. Each slice con-
tains 1,250 data points. After calculating gradients
for each slice, the results are concatenated in their
original sequence to ensure data integrity. This slic-
ing strategy not only accelerates the processing by
utilizing GPU parallelism but also maintains con-
sistency in gradient calculation. Additionally, for
the validation datasets, we uniformly sample 500
data points to ensure a balanced evaluation proce-
dure. All prompts across the datasets are carefully
aligned to maintain task coherence, a crucial fac-
tor in multi-task learning scenarios. Furthermore,
we implement a sliding window of 1,024 tokens
with a 256-token overlap to ensure consistent to-
kenization across the entire dataset. This sliding
window technique efficiently extracts a maximum
of 1,024 tokens from each data point, ensuring uni-

form encoding across different datasets and tasks,
thus improving the overall consistency and reliabil-
ity of the data processing pipeline.

A.10 Details of Influence Changes During
Different Pretraining Stages

We present the details of influence change during
the pretraining process for domain (Figure 8), qual-
ity intervals (Figure 9) and topic (Figure 10).

A.11 Data Distribution Analysis of the
SlimPajama Dataset

We finally present the data distribution analysis
of the SlimPajama dataset from three dimensions:
topic, domain and quality intervals, as Figure 11 to
Figure 13 shows.
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Table 11: Table Showing Various Selection Methods and Their Scores with Changes. We report accuracy for all
tasks, and bold the best result in each column. Abbreviations: O.B.QA = OpenbookQA W.G. = WinoGrande,
C.S.QA = CommonSenseQA, Compreh. = Comprehensions

Problem Solving Commonsense Reasoning Reading Compreh.

Selection Method ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

Random sample
Uniform-30B 54.3 23.4 22.3 23.9 18.6 39.8 52.8 19.2 55.4 30.0 34.0

Uniform-60B 55.2 24.6 22.5 23.4 21.0 39.7 51.9 19.5 59.8 33.1 35.1

Perplexity-based data selection
PPL 49.3 20.1 22.4 23.6 16.2 36.0 48.1 18.8 61.4 29.3 32.5

Classifier-based data selection
QuRating-Facts 56.1 23.3 22.4 24.8 21.6 39.2 54.1 19.9 61.5 31.6 35.5

QuRating-Req 54.9 24.4 23.2 25.2 21.4 38.1 54.5 20.6 61.6 31.3 35.5

QuRating-Writing 53.6 23.2 23.4 23.2 21.0 38.1 52.8 19.7 59.4 31.6 34.6

QuRating-Edu 57.0 24.4 22.0 25.0 20.4 40.3 53.7 20.2 60.1 32.2 35.5

FineWeb-Edu 53.8 23.4 21.8 23.9 19.8 39.2 51.7 20.8 59.7 32.0 34.6

DSIR-Book 45.4 20.8 22.0 23.0 18.8 39.9 54.6 19.7 58.3 30.8 33.3

DSIR-Wiki 50.6 21.1 21.6 23.0 19.2 36.6 53.0 19.8 60.5 29.2 33.5

Domain mixing methods
DOGE 49.4 21.8 22.5 23.0 18.0 38.0 52.7 19.9 60.0 30.0 33.5

DoReMi 50.1 20.2 22.5 23.7 17.8 38.7 52.8 19.7 58.6 30.8 33.5

DMLaw 49.6 21.9 23.2 23.6 17.8 38.6 51.8 20.1 60.4 29.0 33.6

RegMix 50.0 22.3 22.1 22.9 18.8 38.0 52.8 19.9 58.9 31.2 33.7

Influence functions
MATES 50.0 21.4 22.7 25.3 19.0 39.8 53.6 21.3 59.9 32.1 34.5

Multi-actor Collaboration (Ours) 61.1 28.2 22.6 26.0 24.4 38.2 54.2 19.5 61.0 29.8 36.5

Table 12: Table showing various selection methods and their three-shots performance. We report accuracy for
all tasks, and bold the best result in each column. Abbreviations: O.B.QA = OpenbookQA W.G. = WinoGrande,
C.S.QA = CommonSenseQA, Compreh. = Comprehensions

Problem Solving Commonsense Reasoning Reading Compreh.

Selection Method ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

Random sample
Uniform-30B 54.6 23.0 22.1 24.9 18.8 40.3 52.9 21.5 53.0 29.8 34.1

Uniform-60B 58.8 25.5 23.0 27.2 20.0 41.8 53.6 19.6 56.9 32.7 35.9

Perplexity-based data selection
PPL 50.6 21.3 22.7 25.2 15.6 37.7 48.9 20.1 61.5 22.3 32.6

Classifier-based data selection
QuRating-Facts 59.5 25.7 22.6 25.9 19.8 40.2 54.6 19.2 60.8 24.8 35.3

QuRating-Req 59.3 25.9 22.7 26.1 19.6 39.7 53.7 20.5 58.5 22.7 34.9

QuRating-Writing 56.9 25.7 23.1 26.0 20.4 41.1 53.6 20.2 51.4 22.6 34.1

QuRating-Edu 60.8 26.5 22.5 26.7 20.2 41.4 54.6 20.6 55.5 22.7 35.1

FineWeb-Edu 56.2 25.7 22.3 26.2 20.6 40.1 50.5 19.7 56.6 31.4 34.9

DSIR-Book 48.7 21.0 22.6 25.6 18.6 42.5 53.7 19.5 57.9 22.9 33.3

DSIR-Wiki 53.2 22.4 22.6 25.3 17.6 37.1 52.7 21.4 61.6 24.2 33.8

Domain mixing methods
DOGE 52.4 21.9 22.4 27.0 17.4 39.9 52.0 18.2 57.8 29.8 33.9

DoReMi 53.2 21.4 22.2 24.7 18.2 38.4 50.9 20.6 59.7 31.1 34.0

DMLaw 51.5 21.4 22.4 25.2 18.2 39.0 50.7 19.4 52.6 29.8 33.0

RegMix 53.1 22.1 22.2 25.4 19.0 39.1 53.5 18.4 60.7 30.0 34.4

Influence functions
MATES 52.6 21.8 22.6 26.7 20.4 40.9 53.7 19.7 57.6 31.8 34.8

Multi-actor Collaboration (Ours) 65.8 31.5 23.0 26.6 24.6 39.9 54.1 20.1 60.4 30.5 37.7
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Table 13: Table showing various selection methods and their five-shots performance. We report accuracy for all
tasks, and bold the best result in each column. Abbreviations: O.B.QA = OpenbookQA W.G. = WinoGrande,
C.S.QA = CommonSenseQA, Compreh. = Comprehensions

Problem Solving Commonsense Reasoning Reading Compreh.

Selection Method ARC-E ARC-C MathQA MMLU O.B.QA SIQA W.G. C.S.QA BoolQ RACE Average

Random sample
Uniform-30B 54.5 21.9 22.4 25.6 19.2 39.7 54.2 19.7 53.2 30.8 34.1

Uniform-60B 59.1 26.0 22.4 26.9 21.6 42.1 54.3 21.0 55.7 32.4 36.2

Perplexity-based data selection
PPL 49.2 21.2 22.5 24.9 14.6 36.7 49.8 20.6 60.6 23.3 32.4

Classifier-based data selection
QuRating-Facts 60.5 25.4 23.4 26.4 20.2 40.3 51.9 19.0 58.0 23.3 34.8

QuRating-Req 59.9 26.4 22.8 25.6 21.8 40.1 53.7 19.6 56.9 22.3 34.9

QuRating-Writing 57.3 25.3 22.6 25.0 21.4 41.6 53.5 19.6 49.5 22.1 33.8

QuRating-Edu 60.8 26.5 22.5 26.5 20.2 41.4 54.6 21.1 55.5 22.7 35.2

FineWeb-Edu 56.6 24.9 22.6 25.8 19.8 39.4 51.2 19.7 55.9 30.9 34.7

DSIR-Book 49.7 21.1 22.1 25.6 19.8 41.7 54.1 18.3 55.6 22.9 33.1

DSIR-Wiki 53.6 22.3 23.0 25.3 17.6 36.7 52.2 20.4 60.2 22.6 33.4

Domain mixing methods
DOGE 53.0 21.8 22.0 26.3 17.2 40.1 51.7 18.8 58.5 30.1 33.9

DoReMi 52.7 22.2 22.4 25.5 16.2 39.3 51.9 20.9 60.0 31.0 34.2

DMLaw 52.4 21.4 23.0 25.7 17.2 39.2 50.6 19.2 51.4 29.9 33.0

RegMix 53.5 24.0 21.2 25.0 19.6 41.0 53.2 19.0 61.3 30.2 34.8

Influence functions
MATES 53.6 21.6 22.6 26.1 20.4 41.7 53.1 20.4 60.1 32.0 35.2

Multi-actor Collaboration (Ours) 64.9 31.1 22.4 26.3 23.6 39.0 53.1 20.4 60.4 30.7 37.2

Figure 8: We present the normalized influence for each domain across various training steps.
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Figure 9: We present the normalized influence for each quality interval across various training steps.

Figure 10: We present the normalized influence for each topic across various training steps.
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Figure 11: The illustration of the joint distribution of topics and domains.
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Figure 12: The illustration of the joint distribution of quality intervals and domains.

Figure 13: The illustration of the joint distribution of quality intervals and topics.
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