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Abstract

Large language models possess general linguis-
tic abilities but acquire language less efficiently
than humans. This study proposes a method
for integrating the developmental characteris-
tics of working memory during the critical pe-
riod, a stage when human language acquisi-
tion is particularly efficient, into the training
process of language models. The proposed
method introduces a mechanism that initially
constrains working memory during the early
stages of training and gradually relaxes this con-
straint in an exponential manner as learning pro-
gresses. Targeted syntactic evaluation shows
that the proposed method outperforms conven-
tional methods without memory constraints or
with static memory constraints. These findings
not only provide new directions for designing
data-efficient language models but also offer
indirect evidence supporting the role of the de-
velopmental characteristics of working mem-
ory as the underlying mechanism of the critical
period in language acquisition.

� https://github.com/osekilab/CPLM

1 Introduction

Large language models (LLMs) exhibit general lin-
guistic abilities comparable to those of humans;
however, their efficiency in language acquisition
remains far inferior. It has been noted that LLMs
require data quantities that are three to four orders
of magnitude larger than those needed for humans
to achieve comparable performance across many
evaluation metrics (Warstadt et al., 2023). This dis-
parity in data efficiency reflects the current reliance
of LLMs on scaling and suggests not only a sig-
nificant potential for improving learning efficiency
but also the possibility of drawing insights from
human language processing and acquisition.

An important theoretical framework for un-
derstanding the efficiency of human language
acquisition is the Critical Period Hypothesis
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Figure 1: Developmental trajectory of human working
memory

(CPH) (Lenneberg, 1967). The CPH posits that
there is a specific period during which language can
be acquired efficiently and that this ability dimin-
ishes thereafter. Various studies, including cases
of limited exposure to first language (L1) during
childhood and age-related effects on second lan-
guage (L2) acquisition, support the existence of a
critical period (CP) (Fromkin et al., 1974; Curtiss,
1977; Johnson and Newport, 1989). However, the
reasons why children acquire language more effi-
ciently than adults remain partially unresolved. A
compelling explanation is the Less-is-More Hy-
pothesis (Newport, 1990), which attributes the su-
perior learning of children to limited cognitive re-
sources such as working memory. According to
this hypothesis, children’s limited processing ca-
pacities enable them to efficiently extract funda-
mental patterns and structures (e.g., grammatical
rules) from linguistic input, whereas adults, with
their greater cognitive capacities, are more likely
to be distracted by complex information, thereby
hindering rule acquisition.

This hypothesis not only offers a compelling ac-
count of human learning but also has implications
for how we design artificial systems. Language is
not an arbitrary object of learning but a cultural arti-
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fact shaped under cognitive constraints. A growing
body of work suggests that its structural proper-
ties reflect pressures for efficient communication
—that is, to maximize informational content while
minimizing cognitive effort in production and com-
prehension under human limitations (Zipf, 1949;
Jaeger and Tily, 2011; Christiansen and Chater,
2016; Kemp et al., 2018; Fedorenko et al., 2024).
Over generations, language has likely evolved to be
learnable by agents with limited memory and pro-
cessing capacity. From this perspective, incorporat-
ing such constraints into language models (LMs) is
not merely an act of mimicking human limitations,
but a theoretically grounded way to introduce an
inductive bias that aligns with the nature of the
target: language shaped by cognitively bounded
agents. Learning under such constraints may help
LMs acquire representations better suited to natural
language.1

Inspired by the Less-is-More hypothesis, we use
LMs to study the CP for language acquisition, fo-
cusing on L1 acquisition and investigating whether
integrating human cognitive developmental char-
acteristics, particularly the developmental proper-
ties of working memory (Figure 1), into LMs can
facilitate efficient language acquisition. Specifi-
cally, we propose a method for incorporating the
exponential increase in working memory capac-
ity that corresponds to the CP into LMs and an-
alyze its impact on learning efficiency. Using a
GPT-2 model (Radford et al., 2019) trained on
a Child-Directed Speech (CDS) dataset (Huebner
and Willits, 2021), we conduct evaluation exper-
iments with Zorro (Huebner et al., 2021), a tar-
geted syntactic evaluation benchmark specialized
for CDS. The results demonstrate that a cognitively
plausible model, which initially restricts working
memory and gradually relaxes this constraint expo-
nentially as training progresses, outperforms mod-
els without memory constraints or with static mem-
ory constraints. These findings provide new in-
sights into designing data-efficient LMs, contribut-
ing to the field of natural language processing,
while also offering indirect evidence supporting the
role of the developmental characteristics of work-
ing memory as the underlying mechanism of the
CPH in human language acquisition, contributing
to the field of cognitive science.

1Futrell and Mahowald (2025) for an alternative view sug-
gesting that, given the empirical success of machine learning,
effective learning may not require cognitively inspired con-
straints or inductive biases.

2 Related Work

2.1 Critical Period for Language Acquisition

The CPH posits that language acquisition is most
efficient within a specific developmental window,
after which it declines. CP effects are observed in
both L1 and L2 acquisition, suggesting a shared
underlying mechanism.

Critical Period for L1 Acquisition Research in
neurolinguistics and cognitive science suggests that
there is a biologically determined CP for acquiring
an L1, beyond which full native-like proficiency
is unattainable if exposure to language is delayed.
Studies on late L1 learners, such as deaf individ-
uals who acquire sign language after early child-
hood, indicate severe deficits in grammatical pro-
ficiency compared to those exposed to language
from birth (Mayberry and Fischer, 1989; Newport,
1990). These findings suggest that neural plasticity,
essential for L1 acquisition, diminishes with age,
limiting the ability to develop full linguistic compe-
tence. From a theoretical perspective, the existence
of the CP for L1 acquisition is often attributed to bi-
ological constraints. Nativist theories propose that
L1 acquisition relies on an innate language faculty
that operates most effectively during the CP (Pen-
field, 1965; Chomsky, 1965; Pinker, 1994). On
the other hand, empiricist perspectives argue that
the decline in L1 learning ability may result from
environmental factors, such as a reduced need for
language learning mechanisms once fundamental
linguistic structures have been internalized (Elman
et al., 1996; Seidenberg and Zevin, 2006). Despite
extensive research, the precise boundary and mech-
anisms of the CP for L1 remain a subject of debate.

Critical Period for L2 Acquisition CP effects
are also observed in L2 acquisition, where late
learners struggle with pronunciation, morphol-
ogy, and syntax (Johnson and Newport, 1989;
Hartshorne et al., 2018). While biological con-
straints play a role, entrenchment—where prior
exposure to L1 limits flexibility in learning new
linguistic structures— is also a factor (Ellis and
Lambon Ralph, 2000; Seidenberg and Zevin, 2006).
Although the CP for L2 acquisition is an important
topic, this study focuses on the CP for L1 acquisi-
tion, since our goal is to design data-efficient LMs
by exploring the mechanisms of CP in L1 acquisi-
tion.
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2.2 The Role of Language Models in
Acquisition Theories

In recent years, computational models have played
a crucial role in elucidating the mechanisms of lan-
guage acquisition. These models enable controlled
investigations of learning mechanisms and environ-
ments, which are difficult to achieve with human
participants, and they are used to test theoretical
claims such as the “poverty of the stimulus” (Clark
and Lappin, 2011). For instance, McCoy et al.
(2020), Wilcox et al. (2024), and Warstadt et al.
(2023) have employed LMs to directly test hy-
potheses about language acquisition, demonstrat-
ing that such models can provide proof-of-concept
evidence for learnability. These studies have at-
tracted attention as efforts to deepen theoretical
discussions on language acquisition through com-
putational modeling.

While Transformer-based LMs are not cognitive
models in a strict sense, they are widely adopted
in acquisition research as abstract “model learn-
ers” (Warstadt and Bowman, 2022). Rather than
replicating the full complexity of human cogni-
tion, these models are used to investigate the role
of specific biases by selectively adding or remov-
ing them. This approach allows researchers to
assess whether certain linguistic phenomena can
be acquired purely through statistical learning or
require inductive constraints, thereby testing the
necessity of such biases. When a model fails to
acquire a phenomenon in the absence of a particu-
lar bias, but succeeds once the bias is introduced,
it offers at least weak evidence for the bias’s rele-
vance in human language acquisition (McCoy et al.,
2020). Our study follows this reverse-engineering
paradigm (Dupoux, 2018), using LMs not as literal
simulations of human learners, but as controlled
testbeds for cognitive hypotheses.

Constantinescu et al. (2025) investigated CP phe-
nomena in L2 acquisition and L1 attrition,2 assum-
ing a shared underlying mechanism for CP effects
across L1 and L2. They simulated L2 exposure at
varying ages to examine how LMs differ from hu-
man learners, finding that LMs do not naturally ex-
hibit CP effects. To artificially induce such effects,
they employed Elastic Weight Consolidation (Kirk-
patrick et al., 2017), a regularization method for
mitigating catastrophic forgetting, thereby mimick-
ing a maturational decline in plasticity. Their find-

2The phenomenon in which earlier cessation of L1 expo-
sure increases the likelihood of L1 forgetting.

ings suggest that CP effects are not an inevitable
outcome of statistical learning but may instead in-
volve innate mechanisms. While this study shares
the broader objective of enhancing the cognitive
plausibility of LMs as models of human language
acquisition, it differs from Constantinescu et al.
(2025) in both focus and methodology. Rather than
modeling CP effects through dataset manipulation
or post-CP plasticity constraints, this study explic-
itly addresses the developmental processes un-
folding during the CP itself. Specifically, we
integrate a mechanism to simulate the progressive
growth of working memory capacity throughout the
CP, a factor considered crucial for L1 acquisition
but previously unmodeled in LM-based research.
By incorporating developmental constraints, this
study aims to provide a more fine-grained compu-
tational model of early L1 acquisition and its cog-
nitive underpinnings, advancing the developmental
plausibility of LMs.

3 Critical Period-inspired Language
Model

3.1 Modeling Developmental Trajectory of
Human Working Memory

Human working memory undergoes substantial de-
velopmental changes, progressing through three
distinct stages: early childhood to early school
age (2–7 years), middle childhood to early ado-
lescence (8–14 years), and post-adolescence (15
years and older). During early childhood, both
information retention capacity and processing abil-
ity improve rapidly, reflecting a significant expan-
sion of cognitive resources (Cowan et al., 1999;
Gathercole et al., 2004). This rapid growth be-
gins to decelerate during middle childhood and
early adolescence as the brain approaches matu-
ration (Luna et al., 2004; Gathercole et al., 2004).
By post-adolescence, working memory capacity
plateaus, reaching adult-level performance (Sowell
et al., 2002; Luna et al., 2004).

Based on these observations, we characterized
the growth trajectory of working memory, as illus-
trated in Figure 1, using an exponential model of
the form y = b− ax (0 < a < 1). In this model, b
represents the asymptotic upper limit of working
memory capacity, corresponding to adult-level per-
formance, while a determines the rate of growth.
Specifically, smaller values of a result in steeper
early growth, reflecting the rapid cognitive devel-
opment observed during early childhood, whereas
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larger values of a indicate a slower rate of change.
This modeling approach is justified for several

reasons. First, the horizontal asymptote inherent
in the exponential function accurately represents
the biological ceiling of adult working memory ca-
pacity. Second, the rapid initial increase observed
during early childhood is consistent with the steep
growth predicted by this exponential form. Finally,
alternative models, such as logarithmic or linear
growth, fail to account for both the early rapid de-
velopment and the eventual plateau: logarithmic
models imply unbounded growth, while linear mod-
els oversimplify the deceleration phase. Thus, the
exponential model y = b − ax offers a concise
and biologically plausible representation of the de-
velopmental trajectory of human working memory,
aligning well with observed patterns and theoretical
considerations.3

3.2 Integrating Human Working Memory
into Language Models

In this study, Attention with Linear Biases (AL-
iBi) (Press et al., 2022) is employed to model the
constraints of human working memory. ALiBi is
a method for Transformer (Vaswani et al., 2017)
models that does not use positional embeddings but
instead applies a distance-dependent linear penalty
to attention scores. Specifically, the attention score
for an input sequence of length L is calculated as
follows:

Attention Score = softmax
(
qiK

⊤ +m ·B
)
,

B =
[
−(i− 1) −(i− 2) · · · 0

]
.

(1)
Here, qi ∈ R1×d, K ∈ RL×d, m ∈ R[0,1], and

B ∈ R1×L represent the query, the key, a scalar
slope specific to each attention head, and a bias ma-
trix encoding the relative distances between queries
and keys, respectively, where Bi is defined as the
negative absolute difference between the query po-
sition i and each key position. The values of m
are set geometrically for each head. For example,
in an 8-head model, the values of m are assigned
as follows: m = 1, 12 ,

1
4 , . . . ,

1
128 . The slope m

takes values in the range [0, 1], ensuring a con-
sistent interpretation of its influence on attention

3ACT-R (Anderson and Milson, 1989) suggests that work-
ing memory decays exponentially in language processing,
while we propose that working memory grows exponentially
in language acquisition, but whether the shared exponential
function between language processing and acquisition is a
coincidence remains to be investigated in future.

scores. By penalizing attention scores for query-
key pairs with greater distances, ALiBi introduces
a recency bias to the model. Originally, ALiBi was
proposed to enhance the extrapolation capability
of Transformer models. More recently, Clark et al.
(2025) has shown that incorporating it into atten-
tion score computation during training allows for
the estimation of surprisal patterns resembling hu-
man reading times. This suggests its potential for
modeling human-like memory decay and cognitive
limitations.

However, since the slope m in ALiBi is fixed for
each attention head, the approach does not inher-
ently reflect the developmental increase in working
memory capacity (i.e., reduced decay) over time
(Figure 1). Therefore, this study proposes a method,
DYNAMICLIMIT-EXP, which replicates the devel-
opmental characteristics of working memory dur-
ing the CP, specifically its exponential growth. This
is achieved by exponentially decreasing the slope
m in ALiBi as training epochs progress. In this
method, the slope m in the ALiBi mechanism is
updated at each epoch t as follows:

mt = m0 · rt, (2)

where m0 represents the initial slope, r ∈ (0, 1) is
the decay rate, and t denotes the current epoch. In
this study, the model’s working memory capacity
wt is formulated as follows:

wt := 1−mt. (3)

This definition links the dynamically decaying
slope mt to the model’s working memory capacity
wt: as mt decreases exponentially, wt grows, en-
abling broader contextual retention over time. By
simulating this developmental trajectory, the model
initially focuses on short-range dependencies and
gradually attends to longer ones.

4 Experiments

This study explores whether LMs trained from
scratch can achieve more efficient L1 acquisition
by incorporating the developmental characteristics
of human working memory. Specifically, we aim
to determine whether this approach can replicate
the increased efficiency of L1 acquisition observed
during the CP in L1 acquisition, focusing on the
developmental advantages before the end of this
period.
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Model OVERALL
∗

D-N AGR

S-V AGR

ANA. AGR

ARG. STR
∗

BINDING
†

CASE
∗

ELLIPSIS
†

FILLER. GAP
∗

IRREGULAR

ISLAND
†

LOCAL. ATR
∗

QUANTIFIERS
∗

NPI∗

NOLIMIT 56.5 49.8 49.7 49.9 44.8 61.8 70.8 73.3 72.1 51.7 61.7 47.1 47.9 53.9
STATICLIMIT 56.8 50.2 49.9 49.8 44.4 60.5 70.3 71.4 74.7 52.2 62.9 45.3 52.3 54.4
DYNAMICLIMIT-LINEAR 61.6 51.0 49.6 49.5 64.3 60.3 88.6 47.6 90.8 53.0 57.0 47.9 56.8 84.3
DYNAMICLIMIT-EXP 62.2 50.8 50.0 49.6 67.7 58.7 95.2 43.1 93.6 52.2 53.6 51.3 57.6 85.0

Table 1: Accuracy (%) of models trained on AO-CHILDES dataset. ∗ and † indicate items where DYNAMICLIMIT-
EXP performed significantly better or worse than NOLIMIT, respectively (z-test for proportions, p < 0.05).

Model OVERALL
∗

D-N AGR

S-V AGR

ANA. AGR

ARG. STR
∗

BINDING
†

CASE
∗

ELLIPSIS
†

FILLER. GAP
∗

IRREGULAR

ISLAND
∗

LOCAL. ATR
∗

QUANTIFIERS

NPI∗

NOLIMIT 54.7 50.3 50.0 47.2 68.4 62.6 73.4 60.8 42.9 53.4 51.1 42.7 41.2 42.6
STATICLIMIT 54.7 50.4 50.0 47.1 73.7 61.2 87.4 57.3 56.1 52.3 53.0 40.8 42.0 38.9
DYNAMICLIMIT-LINEAR 58.6 50.0 50.5 48.4 71.9 58.8 96.9 38.7 82.7 51.6 57.9 59.6 41.5 53.4
DYNAMICLIMIT-EXP 59.1 49.8 50.4 46.0 71.5 59.3 97.7 37.4 86.5 51.1 58.0 60.5 42.2 53.9

Table 2: Accuracy (%) of models trained on Wikipedia dataset. ∗ and † indicate items where DYNAMICLIMIT-EXP
performed significantly better or worse than NOLIMIT, respectively (z-test for proportions, p < 0.05).
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Figure 2: Trajectory of working memory capacity for
each model (num. of epochs = 10)

4.1 Configurations

Models We used the transformers (Wolf et al.,
2020) implementation of the GPT-2 (Radford et al.,
2019) as the base LM. While some studies utilize
RoBERTa (Liu et al., 2019) as a base model (Hueb-
ner et al., 2021; Warstadt et al., 2023), we se-
lected GPT-2 for two primary reasons: (1) its uni-
directional (left-to-right) predictions more effec-
tively capture human working memory constraints,
and (2) GPT-based architectures dominate modern
LLMs (OpenAI, 2023; Touvron et al., 2023b).

Dataset We used AO-CHILDES (Huebner and
Willits, 2021)4 as the training dataset, which is de-
rived from the CHILDES dataset (Macwhinney,
2000) and records CDS from conversations be-
tween children and adults. AO-CHILDES con-

4https://github.com/UIUCLearningLanguageLab/
AOCHILDES

tains 5 million words of speech directed at English-
speaking children aged 1–6 years and controls for
external factors such as age group, speaker varia-
tion, and situational context. As a preprocessing
step, following Haga et al. (2024), all sentences
were converted to lowercase, and sentences shorter
than three words were excluded. Since the AO-
CHILDES dataset contains only about 5 million
words, training a standard GPT-2 model would
likely result in overfitting. To mitigate this, we
followed existing studies on small language mod-
els (SLMs) trained with CDS datasets (Huebner
et al., 2021; Haga et al., 2024) and constructed an
SLM with 4 layers, 4 attention heads, and 256 em-
bedding dimensions for the base model. Details of
the training configuration for the base model are
provided in Appendix A.

Furthermore, to determine whether the CP ef-
fect stems from exposure to specific linguistic
stimuli, such as CDS, or from the model’s cog-
nitive developmental properties independent of in-
put, we conducted a complementary experiment
using Wikipedia (written language, adult-oriented)
as training data. Following Huebner et al. (2021),
500,000 sentences were randomly sampled from
the English Wikipedia corpus. We used the latest
version of Wikipedia, as of January 2025,5 and
preprocessed it using WikiExtractor.6 We pro-
vide the sentence length distribution for the AO-
CHILDES and Wikipedia datasets used in this ex-

5https://dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages-articles.xml.bz2

6https://github.com/attardi/wikiextractor
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periment in Appendix B.

Evaluation We evaluate the grammatical abili-
ties of these models using a developmentally in-
spired targeted syntactic evaluation benchmark,
Zorro (Huebner et al., 2021). Zorro is designed for
assessing the syntactic and grammatical knowledge
of LMs in child-directed language and consists of
13 mid-level categories and 23 subcategories. Each
subcategory contains 2,000 sentence pairs, with
one grammatically acceptable and one unaccept-
able sentence per pair.7 Below is an example of
a minimal pair from the “Subject-verb agreement
(S-V AGR)” category:8

(1) a. The lie on the foot is flat.

b. *The lies on the foot is flat.

By inputting both the acceptable and unaccept-
able sentence into the model and calculating the
proportion of pairs where the model assigns a
higher probability to the acceptable sentence, we
obtain the grammaticality judgment score (Accu-
racy). In this study, we report scores for each mid-
level category (henceforth, grammatical items) as
well as their macro-average.

4.2 Baselines
We prepared the following three baseline models to
precisely analyze the learning effects of different
working memory limitation strategies:

• NOLIMIT: A model with no memory con-
straints. Working memory remains constant
from the early stages of training, simulating
the mature working memory observed post-
adolescence. This configuration is equivalent
to a vanilla GPT-2 (Radford et al., 2019).

• STATICLIMIT: A model applying standard
ALiBi (Press et al., 2022) during attention
score calculation, where memory constraints
remain fixed throughout training.

• DYNAMICLIMIT-LINEAR: A model in
which the ALiBi slope m decreases linearly
over the course of training.

To ensure a fair comparison between the linear
and exponential growth curves of working mem-
ory, we controlled the initial and final values of

7While Zorro lacks naturalness, this can aid in isolating
syntactic ability from lexical or semantic cues (Gulordava
et al., 2018).

8See Appendix C for the full list of grammatical categories.

working memory capacity wt in DYNAMICLIMIT-
LINEAR and DYNAMICLIMIT-EXP to be as similar
as possible. Specifically, we set the number of
training epochs to 10 and configured both models
with an initial slope of m = 1.0 and a final slope of
m = 0.0. Figure 2 illustrates the trajectory of work-
ing memory capacity for each model. All models
were trained using three different seeds, and we
report the average results across these runs.

4.3 Results

Developmentally-plausible working memory
shapes the CP for L1 acquisition Table 1
presents the accuracy of each model trained on the
AO-CHILDES. Compared to NOLIMIT and STAT-
ICLIMIT, which do not account for developmen-
tal changes in working memory, DYNAMICLIMIT-
LINEAR and DYNAMICLIMIT-EXP, which sim-
ulate its gradual growth, achieve significantly
higher overall performance. Among them,
DYNAMICLIMIT-EXP attains the highest overall
accuracy, supporting the effectiveness of a cogni-
tively plausible mechanism. The comparable per-
formance of STATICLIMIT to NOLIMIT suggests
that the gradual introduction of working memory
constraints throughout training is crucial, rather
than their static application. These results indicate
that DYNAMICLIMIT-EXP effectively replicates
the CP effect observed in human L1 acquisition.

The CP depends on the child’s learning algo-
rithm, not the input stimulus Table 2 presents
the accuracy of models trained on Wikipedia,
showing trends similar to those observed in Ta-
ble 1, where the models were trained on AO-
CHILDES. Specifically, DYNAMICLIMIT-LINEAR

and DYNAMICLIMIT-EXP outperform NOLIMIT

and STATICLIMIT in overall accuracy, with
DYNAMICLIMIT-EXP achieving the highest per-
formance, further supporting the efficacy of in-
corporating developmental working memory con-
straints. These findings suggest that the CP effect
does not depend solely on exposure to specific lin-
guistic stimuli (e.g., CDS) but rather on the learn-
ing algorithm itself, which mirrors human cognitive
development. This result aligns with existing re-
search (Feng et al., 2024; Padovani et al., 2025),
which have reported that CDS is not uniquely valu-
able for training LMs. This finding suggests that
our method is applicable to LLM pretraining, as
they typically use non-CDS datasets such as Com-
mon Crawl and Wikipedia (Touvron et al., 2023a).
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Model OVERALL

D-N AGR

S-V AGR

ANA. AGR

ARG. STR

BINDING

CASE
ELLIPSIS

FILLER. GAP

IRREGULAR

ISLAND

LOCAL. ATR

QUANTIFIERS

NPI

AO-CHILDES
DYNAMICLIMIT-EXP (↑) 62.2 50.8 50.0 49.6 67.7 58.7 95.2 43.1 93.6 52.2 53.6 51.3 57.6 85.0
DYNAMICLIMIT-EXP (↓) 56.5 49.9 49.7 50.1 44.7 61.9 70.6 73.3 72.0 51.8 61.9 47.0 48.1 54.1
∆ (↑, ↓) 5.7∗ 0.9 0.3 -0.5 23.0∗ -3.2† 24.6∗ -30.1† 21.6∗ 0.4 -8.3† 4.4∗ 9.5∗ 30.8∗

Wikipedia
DYNAMICLIMIT-EXP (↑) 59.1 49.8 50.4 46.0 71.5 59.3 97.7 37.4 86.5 51.1 58.0 60.5 42.2 53.9
DYNAMICLIMIT-EXP (↓) 52.9 50.4 50.1 47.4 68.7 62.3 74.4 60.2 44.2 53.2 51.7 42.7 40.6 42.2
∆ (↑, ↓) 6.1∗ -0.6 0.3 -1.4 2.9 -3.0 23.3∗ -22.8† 42.3∗ -2.2 6.3∗ 17.8∗ 1.7 11.7∗

Table 3: Performance difference when changing the direction of the cognitive constraints in DYNAMICLIMIT-EXP. ∗

and † indicate items where DYNAMICLIMIT-EXP (↓) performed significantly better or worse than DYNAMICLIMIT-
EXP (↑), respectively (z-test for proportions, p < 0.05).
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Figure 3: Accuracy trajectories over training epochs (1, 5, 10) for six grammatical categories that showed significant
final-stage improvements with developmental constraints.

5 Analysis

5.1 Testing the “Less-is-more” Hypothesis
with Reversed Cognitive Constraints

A key question arising from the results (§4) is
whether DYNAMICLIMIT-EXP’s superior perfor-
mance stems from the “Less-is-more” hypothe-
sis (Newport, 1990)—i.e., the gradual growth of
working memory—or from unintended side effects.
In other words, does the gradual change in working
memory enhance information capacity, dynami-
cally shifting the model’s focus across epochs and
ultimately aiding rule generalization? To test this,
we introduce a cognitively implausible language
model, referred to as “DYNAMICLIMIT-EXP (↓)”,
which shares the same slope trajectory as our pro-
posed DYNAMICLIMIT-EXP (↑) 9 but with its direc-
tion reversed, such that working memory capacity
decreases over time. Specifically, DynamicLimit-
Exp (↑) is set to m0 = 1.0, r = 0.6 (the same
setting as in §4), while DynamicLimit-Exp (↓) is

9This section adopts this notation for simplicity.

set to m0 = 0.01, r = 1.668 to achieve a nearly
symmetrical curve.10

Table 3 provides evidence supporting the Less-
is-more hypothesis, as DYNAMICLIMIT-EXP (↑)
consistently outperformed the cognitively implau-
sible DYNAMICLIMIT-EXP (↓). The observed per-
formance gap, particularly in grammatical items
requiring both local and non-local dependencies
(e.g., CASE, ARG. STR, and FILLER-GAP), sug-
gests that the gradual growth of working memory is
crucial for grammatical learning and generalization,
as it enables the early extraction of basic patterns
followed by the progressive acquisition of complex
rules. These findings indicate that the superior per-
formance of DYNAMICLIMIT-EXP (↑) is primarily
driven by the developmental trajectory of working
memory growth rather than unintended side effects
of dynamic shifts in memory focus.

Incidentally, from the series of experimental re-

10Since setting the initial slope m0 = 0.0 prevents wt

from being updated in Equation (2), we set it this way for
computational reasons.
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sults, along with those in §4 (Table 1 and 2), NO-
LIMIT and DYNAMICLIMIT-EXP (↓) consistently
outperform DYNAMICLIMIT-EXP (↑) in ELLIP-
SIS, as exemplified by the following cases:

(2) a. Mark fixed one worn canal, and Roger
fixed more.

b. *Mark fixed one canal, and Roger fixed
more worn.

Since resolving ELLIPSIS involves maintaining
long-range dependencies, DYNAMICLIMIT-EXP

(↑) may struggle due to its initial memory con-
straints. This suggests that grammatical items like
ELLIPSIS require substantial memory from the
early stages of training, and thus, our proposed
method may not be optimal for learning such struc-
tures. Alternative workarounds, such as dynam-
ically adjusting memory allocation or hybrid ap-
proaches, may be necessary to address this limita-
tion.

5.2 Tracking Developmental Gains Across
Training

To more directly support our claim that develop-
mentally guided learning simulates a CP, we exam-
ine how model performance unfolds over time—
not just at the endpoint but at intermediate stages
as well. This addresses the need for stage-by-stage
comparisons raised by prior evaluations.

Figure 3 tracks accuracy at Epochs 1, 5, and 10
for six grammatical categories selected based on
statistically significant improvements observed in
Table 1. At the early stage (Epoch 1), models with
larger or fixed memory (NOLIMIT, STATICLIMIT)
perform better. However, the developmentally
constrained model, DYNAMICLIMIT-EXP, shows
steady gains over time, ultimately surpassing these
baselines by Epoch 10 in multiple categories. The
improvement is especially pronounced in CASE
and FILLER.GAP, highlighting a pattern of late-
stage acceleration. These results suggest that incre-
mentally increasing memory capacity over training
acts as a beneficial inductive bias, enabling the
model to generalize more effectively from limited
early experience—consistent with the hypothesized
role of a CP in human language acquisition.

5.3 Learning to Represent: The Cognitive
Effect of Memory Expansion

We analyze representational change by tracking
embedding diversity within epochs and shifts be-

Entropy Mean Distance

Epoch 1 5 10 1-5 5-10 1-10

NoLimit 5.36 5.17 5.19 91.30 28.50 66.28
DynamicLimit-Exp 5.40 5.30 5.39 69.25 70.63 101.92

Table 4: Embedded space analysis of NOLIMIT and
DYNAMICLIMIT-EXP at each stage: distribution diver-
sity and distribution distance.

tween epochs. Specifically, we consider two com-
plementary aspects of representational change: (i)
the diversity or dispersion of embeddings within
each epoch, which reflects the isotropy and expres-
siveness of the representation space at a given time;
and (ii) the amount of shift in embeddings between
epochs, which captures the degree of representa-
tional update and learning progress over time.

Figure 4 visualizes t-SNE projected embed-
dings for the FILLER.GAP category, where
DYNAMICLIMIT-EXP showed clear gains over
baselines (§4.3, §5.1). In the NOLIMIT model
(Figure 4a), embedding clusters expand from
Epoch 1 to 5 but subsequently contract and
overlap by Epoch 10. This pattern reflects a
reduction in within-epoch diversity (i.e., lower
isotropy) and minimal between-epoch shift, indi-
cating that the representations stagnate and fail
to evolve structurally as training progresses. In
contrast, DYNAMICLIMIT-EXP (Figure 4b) pro-
duces more structured trajectories: clusters remain
well-separated within epochs and continue to shift
meaningfully across epochs. This suggests not
only sustained representational plasticity but also
a finer-grained encoding of syntactic distinctions
over time.

To quantify these trends, Table 4 reports entropy
(capturing embedding dispersion) and mean Eu-
clidean distance between clusters (capturing sep-
aration).11 The NOLIMIT model shows a drop
in entropy and a plateau in inter-cluster distance
after Epoch 5, consistent with representational col-
lapse. Meanwhile, DYNAMICLIMIT-EXP main-
tains higher entropy and exhibits a steady increase
in distance, consistent with ongoing structural re-
finement. These findings indicate that develop-
mentally guided memory expansion helps preserve
expressive, isotropic, and well-separated embed-
ding spaces—properties that support better general-
ization in language models (Diehl Martinez et al.,

11The Appendix D shows how to calculate each measure.
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(a) NOLIMIT (b) DYNAMICLIMIT-EXP

Figure 4: Embedded space at each learning stage for NOLIMIT and DYNAMICLIMIT-EXP (FILLER. GAP)

Dataset NOLIMIT DYNAMICLIMIT-EXP

[5,10] 47.2 46.8
[11,50] 47.0 58.7∗

[51,100] 40.6 42.5∗

[101, 150] 37.3 40.8∗

Table 5: Accuracy in Zorro when the length of the
sentence is changed. ∗ indicates a statistically significant
differences (p < 0.05).

2024).12

5.4 Influence of Input Stimulus Length

We analyze how sentence length affects the perfor-
mance of NOLIMIT and DYNAMICLIMIT-EXP. To
assess their adaptability, we created four Wikipedia-
based datasets, each with 500,000 sentences in
length ranges: [5,10], [11,50], [51,100], and
[101,150].

The results in Table 5 reveal notable differences
in model performance. For shorter sentences in
the [5,10] range, NOLIMIT achieves slightly higher
accuracy compared to DYNAMICLIMIT-EXP. How-
ever, in the [11,50] range, DYNAMICLIMIT-EXP

significantly outperforms NOLIMIT, achieving
58.7 compared to 47.0. This suggests that
DYNAMICLIMIT-EXP excels at handling moder-
ately long sentences, likely due to its ability to
dynamically adjust working memory. For longer
sentences in the [51,100] and [101,150] ranges,
DYNAMICLIMIT-EXP consistently outperforms
NOLIMIT. These findings highlight the benefits
of dynamic working memory expansion in facil-
itating rule generalization and contextual adapta-
tion across diverse sentence lengths. While NO-
LIMIT exhibits competitive performance on short

12Similar trends were found for CASE; see Appendix E.

sentences, its stagnation on longer sentences under-
scores its limited ability to generalize complex pat-
terns. Conversely, DYNAMICLIMIT-EXP’s consis-
tent performance across varying sentence lengths
supports its suitability for grammatical items requir-
ing the processing of both short and long contexts.

6 Conclusion

This study proposed a method for integrating
the developmental trajectory of human working
memory into the training process of LMs, in-
spired by the Less-is-More hypothesis. The pro-
posed method, DYNAMICLIMIT-EXP, initially re-
stricts working memory and gradually relaxes it
exponentially during training. Experiments on
both AO-CHILDES and Wikipedia showed that
DYNAMICLIMIT-EXP improves grammatical learn-
ing efficiency compared to conventional methods
without memory constraints or with static memory
constraints. These findings suggest a promising
direction for building more data-efficient LMs by
leveraging cognitively inspired inductive biases.

Beyond its engineering implications, this study
also offers insight into the cognitive mechanisms
underlying L1 acquisition. While our results do not
directly demonstrate that working memory develop-
ment is necessary for human learners, they serve as
a computational-level plausibility test (Marr, 1982),
showing that the hypothesized link between cog-
nitive constraints and rule learning, central to the
Less-is-More hypothesis, can be instantiated in arti-
ficial learners. Combining the observed learning ef-
ficiency gains and the cognitive plausibility of our
approach, we support the hypothesis-generating
idea that such developmental constraints may plau-
sibly aid human language acquisition as well.
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Limitations

Scalability. One limitation of this study is the
constrained scale of the experimental setup. The
primary goal of this study is to computationally
replicate the CP in L1 acquisition, as discussed in
cognitive science (Lenneberg, 1967; Fromkin et al.,
1974; Curtiss, 1977; Johnson and Newport, 1989).
Following previous studies (Huebner et al., 2021;
Haga et al., 2024), we designed the experiment
to be as ecologically valid as possible by training
an SLM using CDS. While this controlled setting
allows for a more precise analysis and simulation
of the Less-is-More hypothesis, it remains unclear
how our findings contribute to the data efficiency
of LLMs. The experimental results with Wikipedia
(Table 2, 3, 5) provide a promising outlook in this
direction, but further investigation with larger mod-
els and datasets is necessary to determine the effec-
tiveness and limitations of the proposed approach.

Language. In this experiment, we investigated
the replication of the CP effect in L1 acquisition
using English. However, since the CP effect is ob-
served across various languages (Patkowski, 1980;
Johnson and Newport, 1989), it remains to be tested
whether the proposed approach is effective in mul-
tilingual environments. To our knowledge, there is
currently no targeted syntactic evaluation specifi-
cally designed for CDS across different languages,
such as Zorro. Zorro was developed based on
BLiMP (Warstadt et al., 2020), an adult-oriented
targeted syntactic evaluation for English, and re-
cent studies have proposed multilingual versions of
BLiMP (e.g., JBLiMP (Someya and Oseki, 2023)
for Japanese and CLiMP (Xiang et al., 2021) for
Chinese). Therefore, developing CDS-specific ver-
sions based on these multilingual BLiMPs could
help address this limitation.
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A Details of the Training Configuration
for the Base Models

Table 6 shows the training settings of the base
model. For the experiment, a single NVIDIA RTX
A5000 (24GB) GPU was used, and the training
time for each run was approximately one hour.

Hyperparameter Value
Model Architecture GPT-2
Number of Layers 4
Number of Attention Heads 4
Embedding Dimension 256
Dropout Rate 0.1
Learning Rate (η) 5× 10−6

Weight Decay 0.01
Batch Size 512
Gradient Accumulation Steps 2
Total Epochs 20
Maximum Sequence Length 32
Learning Rate Scheduler Cosine with Restarts
Warm-up Steps 10% of Total Steps
Optimizer AdamW
Optimizer Parameters β = (0.9, 0.999), ϵ = 1e`08
Tokenizer Trained on CHILDES
Early Stopping Tolerance 1 Epoch
Evaluation Metric Perplexity

Table 6: Training Configuration (Hyperparameters) for
the GPT-2 Model.

B Distribution of the Datasets

Figure 5 shows the sentence length distribution for
the AO-CHILDES and Wikipedia datasets used in
this experiment. As can be seen from the figure,
AO-CHILDES, by its nature, contains more short
sentences than Wikipedia.

C Details of Grammatical Items in Zorro

Table 8 shows the full list of grammatical categories
in Zorro. Examples are taken from Table 5 in the
original paper (Huebner et al., 2021).

D Analysis of Distributional Changes in
t-SNE Space Across Training Epochs

This section explains in detail the analysis of the
entropy and average distance of embeddings pro-
jected into the t-SNE space for different learning
epochs.

D.1 Entropy Calculation
To quantify the distribution of embeddings, a 2D
histogram is constructed using a fixed grid (50×50
bins). The probability distribution P is obtained
by normalizing the histogram. The entropy is then
computed as:

Entropy Mean Distance

Epoch 1 5 10 1-5 5-10 1-10

NoLimit 5.30 5.23 5.30 75.47 12.26 87.62
DynamicLimit-Exp 5.29 5.30 5.34 59.91 37.68 97.59

Table 7: Embedded space analysis of NOLIMIT and
DYNAMICLIMIT-EXP at each stage: cluster expansion,
distribution diversity, and distribution distance.

H(P ) = −
∑

i

Pi logPi, (4)

where Pi is the probability of each bin. Higher
entropy suggests a more uniform distribution,
whereas lower entropy indicates clustering.

D.2 Mean Distance Between Epochs
To analyze shifts in embedding distributions across
epochs, we compute the Euclidean distance be-
tween the mean embedding vectors of different
epochs:

D(X,Y ) = ∥µX − µY ∥, (5)

where µX and µY are the mean vectors at different
epochs. Larger distances imply greater shifts in the
learned representation.

E Development of Feature Extraction
Capabilities in CASE

Figure 6 visualizes the clustering structure of fi-
nal layer embeddings using t-SNE for CASE. The
embedding space visualizations reveal distinct pat-
terns between NOLIMIT and DYNAMICLIMIT-EXP

across training epochs. In NOLIMIT, the embed-
ding clusters expand between Epoch 1 and Epoch
5 but contract significantly by Epoch 10, suggest-
ing stagnation in representation learning. In con-
trast, DYNAMICLIMIT-EXP maintains structured
evolution throughout training, with well-separated
clusters that reflect progressive refinement.

Table 7 shows the embedded space analysis.
Regarding entropy, NOLIMIT shows a slight de-
crease over time (Epoch 1 −→ Epoch 5), reflect-
ing reduced distribution diversity as training pro-
gresses. In contrast, DYNAMICLIMIT-EXP main-
tains or slightly increases entropy, suggesting a
balanced emphasis on both basic patterns and di-
verse features, even in later training stages. For
mean Euclidean distances between clusters, NO-
LIMIT exhibits large distances between Epoch 1
and Epoch 5 but demonstrates minimal evolution
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Figure 5: Word distribution of the AO-CHILDES and Wikipedia datasets used in the experiment

Category Subcategory Acceptable Sentence Unacceptable Sentence

noun-across_1_adjective look at this purple thing . look at this purple things .D-N AGR noun-between_neighbors this color must be white . this colors must be white .

verb-across_prepositional_phrase the lie on the foot is flat . the lies on the foot is flat .
verb-across_relative_clause the book that i like is poor . the books that i like is poor .
verb-in_question_with_aux where does the horse go ? where does the horses go ?S-V AGR

verb-in_simple_question where is the way ? where is the ways ?

ANA.AGR pronoun_gender will Mark want himself ? will Mark want herself ?

dropped_argument give me the poor boat . the poor boat gives me .
swapped_arguments he made the slave her label . the slave made her label he .ARG.STR
transitive Philip thinks . Philip affected .

BINDING principle_a Ben thinks about himself calling this fuel . Ben thinks about himself called this fuel .

CASE subjective_pronoun i brought the wolf my hill . the wolf brought i my hill .

ELLIPSIS n_bar Mark fixed one worn canal and Roger fixed more . Mark fixed one canal and Roger fixed more worn .

wh_question_object Laura married the dinner that the wolf could close . Laura married what the dinner could close the wolf .FILLER.GAP wh_question_subject Laura ended the finger that can make boats . Laura ended who the finger can make boats .

IRREGULAR verb Michael chose the good one some time ago . Michael chosen the good one some time ago .

adjunct_island who should William have without watching the baby ? who should William have the baby without watching ?ISLAND coordinate_structure_constraint who must Philip and the dinosaur turn ? who must Philip turn and the dinosaur ?

LOCAL.ATR in_question_with_aux is the whale getting the person ? is the whale gets the person ?

matrix_question does her boat ever play with the growth ? her boat does ever play with the growth ?NPI only_npi_licensor only Mark ever finds some suit . even Mark ever finds some suit .

existential_there there are many books about soft birds . there are most books about soft birds .QUANTIFIERS superlative no pig could stand on top of more than six days . no pig could stand on top of at least six days .

Table 8: Explanation of each grammatical category in Zorro.

(a) NOLIMIT (b) DYNAMICLIMIT-EXP

Figure 6: Embedded space at each learning stage for NOLIMIT and DYNAMICLIMIT-EXP (CASE)

between Epoch 5 and Epoch 10. This stagnation
may highlight the model’s failure to effectively gen-
eralize new rules. DYNAMICLIMIT-EXP, on the
other hand, maintains substantial distances across
epochs, indicating continuous embedding evolution
and refinement throughout training.
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