Instance-Selection-Inspired Undersampling Strategies for Bias Reduction
in Small and Large Language Models for Binary Text Classification

Guilherme Fonseca!, Gabriel Prenassi?, Washington Cunha,
Marcos André Goncalves!, Leonardo Rocha®
I'Universidade Federal de Minas Gerais, 2Universidade Federal de Sao Jodo del Rei,
{guilhermefonseca, washingtoncunha, mgoncalv}@dcc.ufmg.br,
prenassigabriel@aluno.ufsj.edu.br, lcrocha@ufsj.edu.br

Abstract

Skewness in imbalanced datasets affects
Automatic Text Classification (ATC), leading
to classifier bias toward the majority classes.
This work examines undersampling methods
to mitigate such bias in Small and Large
Language Model (SLMs and LLMs) classifiers.
Based on the limitations found in existing so-
lutions, we propose two novel undersampling
methods inspired by state-of-the-art Instance
Selection techniques, relying on calibrated
confidences and semantic difficulty estimates.
We compare them against 19 baselines across
13 datasets, evaluating: (i) effectiveness, (ii)
class imbalance bias, (iii) efficiency, (iv)
scalability, and (v) consistency. Results
show our methods uniquely reduce classifier
bias (up to 56%) across all datasets without
effectiveness loss while improving efficiency
(1.6x speedup), scalability and reducing carbon
emissions (up to 50%).

1 Introduction

Automatic Text Classification (ATC) has experi-
enced a fast (r)evolution in recent years, led by
advances in deep learning based on Transform-
ers (Devlin et al., 2018; Liu et al., 2019; Touvron
et al., 2023). These strategies have benefited from
applications that constantly produce large volumes
of labeled data (e.g., social networks).

Despite high effectiveness promoted by data
abundance, Transformer-based classifiers, includ-
ing Small and Large Language Models (SLMs and
LLMs), can still be negatively impacted by issues
such as class imbalance and model bias towards the
majority class (in this paper, referred to as ’class
imbalanced bias’) (Cunha et al., 2020). In addition
to ethical issues related to bias (Ferrer et al., 2021),
there are several scenarios in which the minority
class is indeed the class of interest (e.g., health).

An ATC task very influenced by class imbalance
is sentiment analysis, our focus in this work. For

products (Luiz et al., 2018) and points of interest
(POI) (Werneck et al., 2021), users commonly
make their consumption decisions by analyzing
other users’ comments. Some users take positive
reviews more heavily (e.g., positive aspects of a
hotel), while others emphasize negative comments
(why not buying a particular product?). In both
cases, the class of interest may be the minority one,
and the classification results of a biased model
may negatively influence the user’s decision.

Experimental results (Appendix A and B) re-
veal that fine-tuned Transformer models — rang-
ing from smaller language models (SLMs) such
as RoBERTa (Liu et al., 2019), BART (Lewis
et al., 2020) and BERT (Devlin et al., 2018)), to
Large Language Models (LLMs) such as Llama3.1
(Dubey et al., 2024) — are still impacted by class im-
balance. Indeed, although they demonstrate greater
effectiveness and resilience to biases generated by
class imbalance! compared to traditional classifica-
tion algorithms (e.g., KNN, Random Forest, SVMs,
XGBoost, as detailed in Appendix A), in highly
imbalanced datasets - specifically when the ratio
between the total number of documents in the ma-
jority class and the minority class exceeds five, the
SLMs and LLMs model’s still exhibit high bias
values (detailed in Appendix B), with considerable
room for improvement.

Two main approaches are typically employed
to deal with data imbalance. Oversampling
generates new synthetic samples for the minority
class, aiming to balance it with the majority
class (Han et al., 2005). In the ATC task, synthetic
textual data generation presents specific challenges,
such as ensuring linguistic quality and preserving
semantic fidelity to the original data, making
its application less straightforward than in other

"Measured in terms of TPRGap, a metric that captures
the class imbalanced bias based on the absolute difference
between the TPR - True Positive Rate - of the classes
(Czarnowska et al., 2021).

9323

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9323-9340

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

domains (Douzas et al., 2022). This approach also
leads to a considerable increase in model training
time due to dataset expansion, posing relevant
issues for current language models.

Undersampling (US in short), in turn, reduces
instances of the majority class towards balancing.
To the best of our knowledge, no previous study
addresses how undersampling methods interact
with SLMs and LLMs applied to ATC tasks. Thus,
our first research questions, which we aim to
empirically answer, are (RQ1): Are undersampling
methods, applied to SLMs and LLMs for ATC,
capable of reducing classification bias caused
by class imbalance? What is the impact of this
combination on model effectiveness? Are the
results consistent between SLMs and LLMs?

To answer these questions, we carried out a sys-
tematic literature review of the main undersampling
methods. We identified and implemented 14 pop-
ular undersampling methods. For completeness’s
sake, we expanded this set with 5 recently proposed
methods. We investigated the performance of
these 19 undersampling techniques in conjunction
with RoBERTa, a SLM considered state-of-the-art
in sentiment analysis (Cunha et al., 2024), and
Llama3.1, an open-source LLM that has been
widely used in recent research (Reis et al., 2024).

In our experiments, we observed that of all tested
undersampling strategies, only 3 — Condensed
Nearest Neighbors (CNN) (Hart, 1968), Near Miss
1 (NM1) (Mani and Zhang, 2003) and Near Miss
2 (NM2) (Mani and Zhang, 2003) — were able to
reduce model bias without effectiveness losses.
But, even these methods were not able to scale
when applied to relatively moderate datasets.

Based on these findings, we propose two new un-
dersampling techniques that seek to achieve five si-
multaneous objectives: (i) to reduce classifier bias
towards the majority class; while (ii) maintaining
(or improving) effectiveness and being (iii) efficient;
(iv) scalable for large datasets; and (v) consistent
when applied to both SLMs and LLMs. None of the
previously identified US methods have been eval-
uated based on all five perspectives simultaneously
— most studies typically consider only one or two
of these aspects in their assessments. Motivated
by the identified gaps, our novel proposals take
inspiration from solutions from another NLP re-
search area — Instance Selection (IS) (Cunha et al.,
2023b, 2024), especially redundancy-oriented IS
methods (Cunha et al., 2023a). Despite having
different objectives, IS and US are related, as both

deal with techniques aimed at selecting a subset
of representative (training) data.

Our first proposed strategy, E2SC_US, is
based on a state-of-the-art IS approach (Cunha
et al.,, 2023a) and aims to remove redundant
(i.e., very similar to other) training instances
from the majority class. We assess redundancy
in the majority class according to the degree of
confidence associated with classifying training
instances, using a calibrated classifier (Rajaraman
et al., 2022). Our second strategy, called Un-
dersampling Based on Redundance (UBR), also
removes redundant instances from the majority
class. Different from E2SC_US, UBR explores the
semantic difficulty of an (training) instance being
correctly classified (Mujumdar et al., 2023).

Accordingly, our second main research question
is RQ2: How do the new proposed undersampling
methods — E2SC_US and UBR — when applied
to SLMs and LLMs for ATC — compare to the
literature methods, considering: (i) effectiveness;
(ii) class imbalance bias reduction; (iii) efficiency;
(iv) scalability; and (v) consistency?

Our experiments, encompassing 21 undersam-
pling methods, 13 datasets, and 5 evaluation crite-
ria, demonstrate that our methods are the only ones
able to achieve the five objectives simultaneously,
with a slight advantage for UBR in terms of bias
reduction and for E2SC_US in speedup, especially
when considering large datasets. Indeed, our meth-
ods were the only ones capable of executing on all
datasets, including large ones, reducing the total
execution time of LLM-based classification algo-
rithms without effectiveness losses and with a sig-
nificant bias reduction. Another positive side effect
of our solutions is the promotion of Green Comput-
ing by significantly reducing carbon emissions.

In sum, the main contributions of this work are:

* A systematic mapping of the literature on US
methods, identifying, implementing and evaluat-
ing 14 popular and 5 recent methods (19 in total);

* Two novel undersampling strategies inspired by
state-of-the-art Instance Selection techniques;

* A comprehensive evaluation of our new US
proposals applied to SLM and LLM-based
classifiers from five perspectives: (1) effective-
ness; (2) efficiency (time); (3) generalizability
(class imbalance bias); (4) scalability; and (5)
SLMs-LLMs consistency.

9324

2 Related Work

We turned to the Google Scholar search engine
to submit the query and generate our initial set
of articles. Google Scholar was chosen due to its
broad coverage, including major digital libraries
from publishers such as ACM, IEEE, and Elsevier,
as well as preprint repositories like ArXiv. The
search string used was “Undersampling”. To maxi-
mize the scope of the search, the search engine did
not apply any location or year filters. Based on this,
we initially collected a total of 500 unique articles
that, in some way, applied some undersampling
strategy. We manually analyzed the 500 articles
to identify the most relevant ones for our study.
An article was considered relevant if it used
undersampling techniques to reduce imbalance and
the specific undersampling method was explicitly
referenced (cited). We identified 139 relevant
articles and listed all the utilized undersampling
techniques, finding a total of 31 distinct techniques.
A comprehensive table with descriptions of all
identified strategies is available online?>. In our
evaluation, we chose to consider those methods
used in more than one of the relevant works, which
resulted in the 14 methods described below:

- Tomek Links (TL) (Tomek, 1976b): Given two
examples e; and e; of distinct classes, with d(e;, e;)
representing the distance between e; and e;, a pair
A(e;, e5) is called a Tomek link if there is no exam-
ple e; such that d(e;, e;) < d(e;, e;) ord(ej,e;) <
d(e;i, ej). If two examples form a Tomek link, ei-
ther one was manually misclassified or both belong
to class boundaries and can be removed.

- Condensed Nearest Neighbors (CNN) (Hart,
1968): Dataset S is initialized with one example
from the majority class and all examples from the
minority one, Set T’ is created with elements not
belonging to S. Each example of T is classified
by KNN using S as training set. If KNN gets the
example class right, it remains in 7"; otherwise, the
example is removed from 7" and placed in S. This
process repeats until no more changes to .S occurs.
In the end, elements of 7" are discarded.

- One-Sided Selection (OSS) (Kubat et al., 1997):
It combines TL and a CNN variation. As in CNN, a
set S is initialized with all minority class instances
and one of the majority class and a set T" with the
rest of the elements. Then, instances in 7" are clas-
sified with a KNN trained in S, and misclassified

2https://github.com/guilherme8426/ACL2025_
Undersampling

instances are placed in S. In the end, TL is used in
S to identify ambiguous pairs at class boundaries.
- Edited Nearest Neighbours (ENN) (Wilson,
1972): inserts all instances of the original set T’
into the solution set S, using KNN iteratively
to classify all instances x given that z € .S and
that x belongs to the majority class (considering
tset {S — {z}} as possible neighbors). Finally, it
removes the incorrectly classified instances.

- Repeated Edited Nearest Neigh-
bours(RENN) (Tomek, 1976a): ENN applied
successively until no more points can be removed.
- ALL k-NN (Tomek, 1976a): ENN applied
successively, but with each application, the number
of neighbors to be considered increases.

- Neighbourhood Cleaning Rule (NCR) (Lau-
rikkala, 2001): Uses KNN to classify all instances.
If the predicted class is different from the real
class and the instance belongs to the majority
class, it is eliminated. NCR also removes the
nearest neighbors of misclassified instances of the
minority class from the majority class.

- Near Miss (NM) (Mani and Zhang, 2003):
NearMiss-1 (NM1) removes majority class in-
stances with the smallest average distance to (k in-
stances of) the minority class. NearMiss-2 (NM2)
selects majority class elements whose average
distance to the k furthest points from the minority
class is the lowest. NearMiss-3 (NM3) keeps k ma-
jority class instances closest to the minority class.
- (SBC) (Yen and Lee, 2006): The training is di-
vided into N clusters. For each cluster, the number
of selected instances is calculated based on the
number of majority and minority classes samples
that exist in the cluster. Examples from the majority
class are randomly selected and the algorithm com-
bines the selected instances from each cluster with
those from the minority class to form a new set.

- (IHT) (Smith et al., 2014): It uses a classi-
fier ¢ to obtain the instance hardness (IH) of
each instance. The IH of an instance is given
by IH(< z,y; >) = 1 — p(yi|zi,c) where
p(yi|x;, ¢) denotes the classifier 's probability of
instance x; belonging to class ;. IHT removes
samples from the majority class with a low
probability of belonging to the majority class.

- (CC-NN) (Lin et al., 2017): Majority class
instances are divided into N clusters, with N being
the minority class size. The closest neighbor to the
centroid of each cluster belonging to the majority
class is chosen to compose with the instances of
the minority class, the final set.

9325

https://github.com/guilherme8426/ACL2025_Undersampling
https://github.com/guilherme8426/ACL2025_Undersampling

- (OBU) (Vuttipittayamongkol et al., 2018): Uses
Fuzzy c-means to divide data into 2 clusters. The
one with most instances of the minority class is
called C' M. The algorithm removes all instances
of the majority class whose degree of membership
in C'M is less than « (a hyperparameter).

Undersampling in ATC has been under-studied
in recent years, likely due to limited understanding
of its interaction with Transformer-based language
models, which typically benefit from more data.
Nonetheless, we included the recent methods dis-
cussed below in our analyses and experimentation.

AKCS (Zhou and Sun, 2024) clusters majority-
class instances using an adaptive k-means to
identify a dataset optimal k. Instances furthest from
the centroids are discarded. In (Kumar et al., 2024),
four algorithms — ENUB, ENUT, ENUC, and
ENUR — eliminate majority-class instances in
overlapping regions where different classes share
the same space, based on entropy. The methods
differ in how KNN identifies instances for removal.

Time complexity for all the above methods can
be found in Table 16 (Appendix I).

Differently from previous work, our novel pro-
posals aim at producing practical solutions for the
class imbalance bias problem that simultaneously
preserve classification effectiveness (as most of the
above methods do not), and can be run fast in large
datasets with reasonable computational resources.
None of the previous studies evaluate their methods
considering all the aforementioned criteria, focus-
ing on only one or two of them in their analyses.

3 Proposed Undersampling Methods

We present two novel approaches to under-
sampling inspired by solutions for the Instance
Selection (1S) problem (Cunha et al., 2023b, 2024,
Pasin et al., 2024). 1S and undersampling (US)
deal with techniques aimed at selecting a subset of
training data. They target, however, different goals
— IS focuses on improving efficiency without effec-
tiveness loss, while the US aims at reducing the
majority class bias while maintaining effectiveness.

Although the final objectives are different, we
depart from the hypothesis that there is an underly-
ing relationship between both tasks, especially for
IS methods based on redundancy reduction (Cunha
et al., 2023b), which can be adapted to remove

redundant majority class instances >.

3We focus on binary classification problems leaving exten-
sions to multi-label problems for future work.

3.1 E2SC_US

The E2SC (Cunha et al., 2023a) IS method works
in two steps. First, it calculates the probability of
each instance being removed from training. These
probabilities are obtained through the confidence of
a calibrated classifier (Rajaraman et al., 2022)*, in
case, KNN. Its main hypothesis is that high confi-
dence of a calibrated classifier positively correlates
with redundancy in the training data for the sake of
building a classification model. Accordingly, in the
next step, E2SC randomly samples the training set,
weighted by confidence, keeping mostly hard-to-
classify instances (probably located in the decision
borders), and partially removing the easiest ones.
To estimate the optimal reduction rate (second
step), training instances are randomly sampled and
weighted by the assigned probabilities.

Our first proposal consists basically of two mod-
ifications of E2SC, called E2SC_US (pseudocode
in Algorithm 1), following the principles of the
original approach, but using logistic regression
(LR) in place of KNN. LR, a more calibrated and
faster classifier (details in Appendix G), is used
to obtain the removal probability of each instance
(lines 6 and 7). In the second modification, in-
stead of removing a proportion ((3) of instances of
all classes, E2SC_US only removes majority class
instances at a pre-fixed removal rate defined as
MIN(0.5, (#maj — #min)/(#maj + #min)).
A maximum of 50% of removal or up to achiev-
ing the minority class size (lines 9 and 10) is the
defined limit. The 50% removal limit is based on
(Cunha et al., 2023a), which determined this as the
empirical reduction limit, after which it is not possi-
ble to avoid effectiveness losses. Experiments vary-
ing the maximum removal rate are in Appendix J.

Algorithm 1: E2SC_US Algorithm

Input: X
Output: selectedInstance

Xmaj < getInstances(X, class = majority);
Xumin < getInstances(X, class = minority);
classifier < logisticRegression(X);
trust < {};
for x; € X145 do
| trust < trust|] getTrust(z;, classifier) ;
end
a < normalize(trust) ;
N = min(|| Xna; || — | Xazinll, 0.5 | X]])
selected < randomSampler(Xraj, o, N) ;
selectedInstance <— Xin | selected ;

X N AR W N =

[
=5

*Classifier whose class probability predictions correlate
well with accuracy.

9326

3.2 UBR

UBR (Undersampling Based on Redundancy), our
second approach, is also based on redundancy. For
this proposal, instead of using a calibrated classifier
to estimate the removal probabilities of training
instances, we adapt the concept of semantic
difficulty (SD) of an instance being correctly
classified (Mujumdar et al., 2023) and use this to
estimate the likelihood of an instance also being
redundant. We hypothesize that instances with low
semantic difficulty are redundant and, thus, good
candidates for removal from the majority class.
Our method uses SD to estimate a distribution «(x)
that assigns a probability of x; being removed.

In (Mujumdar et al., 2023), difficult instances
are defined as: (i) samples with high semantic
similarity and different labels within their neigh-
borhood and (ii) samples with low (average)
semantic similarity with their neighborhood,
but with neighbors belonging to the same class.
Given a set of documents X = {x1,z9,....,xp}
and set of classes Y = {y1,vy2,...,yx}, the
semantic difficulty metric (SD) of z; is defined
as SD(xi) = 3 fr(cossim(xi, zj)). with
coSgim (i, ;) being the cosine similarity between
x; and x;. fp is a penalty function (Equation
1), responsible for penalizing difficult instances
according to the definitions (i) y; = y; and (i)
y; # yj. [p penalizes using a z-shaped sigmoid
if y; = y; and a s-shaped sigmoid otherwise.

-1
fpla) = {W*i’*w”)

1+e(6—102)

yYi = Yj

1
Vi F Y5 M

More formally, in UBR (pseudocode in Algo-
rithm 2), we receive as input a set X of training
instances, dividing it into two subsets, X /4; (line
1) and Xy, (line 2), where X4, consists of
X instances belonging to the majority class and
Xarin of X instances belonging to the minority
one. We create a vector D with the SD of each
instance of X /4, based on its K nearest neighbors.
For time optimization and memory usage issues,
we use an approximate KNN (Ponomarenko et al.,
2014) (lines 4-7). The distribution «(x) is obtained
by inverting and normalizing D so that elements
with a high value have a low probability in «(x)
and elements with a low value in D have a high re-
moval probability (line 8-9). In the end, we sample
N = MIN(|Xasos — | Xazinll,0.5]|X]) from
Xaj, weighted by the probability distribution
a(z) (line 10). The new training set is composed of
Xqj elements not selected for removal, together

with X4, elements (line 11). Time complexity
for our proposals is found in Appendix .

Algorithm 2: UBR Algorithm

Input: X
Output: selectedInstance

Xumaj + getInstances(X, class = majority);
Xwmin < getInstances(X, class = minority);
D« {};
for Xi€ X]waj do

nn < nearestNeighbors(z;, X) ;

D + D|JcalculateDS(zi,nn) ;
end
a < normalize(D) ;
N min(| Xaras |l — [Xasinl , 0.5 1 X])

selected < randomSampler(X ez, o, N) ;

selectedInstance < Xarin |J selected ;

NI R 7 T NI SR

—
=5

4 Experimental Setup

We consider 13 datasets® with varying imbalance
levels. Table 1 shows the datasets along with
the total number of documents belonging to the
majority and minority classes, dataset identifier,
and imbalance ratio (IR), defined as (Orriols-Puig
and Bernadé-Mansilla, 2009), TR = giesmelorty
- the higher the IR, the more imbalanced the dataset.
All adopted datasets have two classes, as this work

focuses on binary classification problems.

dataset Size # Majority # Minority IR Identifier
sentistrength_twitter 2,289 1,340 949 1.41 A
vader_amazon 3,610 2,128 1,482 1.44 B
english_dailabor 1,227 739 488 1.51 C
debate 1,979 1,249 730 1.71 D
sentistrength_youtube 2,432 1,665 767 2.17 E
vader_twitter 4,196 2,897 1,299 2.23 F
tweet_semevaltest 3,060 2,223 837 2.66 G
sentistrength_digg 782 572 210 2.72 H
sentistrength_myspace 834 702 132 532 I
sentistrength_bbc 752 653 99 6.60 J
luxury_beauty 30,394 27,803 2,591 10.73 K
cds_reviews 1,333,070 1,243,212 89,858 13.84 L
digital_music 162,989 158,985 4,004 39.71 M

Table 1: Datasets used in the experiments. Column “Identi-
fier” is the reference to be used for the dataset.

We use SLMs and LLMs classifiers. SLM
representative is RoOBERTa (Liu et al., 2019),
considered SOTA in sentiment analysis (Cunha
et al., 2025; Zanotto et al., 2021). We carried
out an experimental comparison with two other
SLMs, BART and BERT, with RoBERTa standing
out (see Appendix A). For LLMs, we employ
Llama3.1 (Llama-3.1-8B), an open-source LLM
that has been widely used in NLP research (Reis
et al., 2024). Effectiveness comparison between
Llama3.1 and RoBERTa is found in Appendix B.
We fine-tuned both SLMs and LLMs, adapting
the pre-trained models to each dataset domain
by utilizing the texts and training data labels.

SDatasets A-J in (Ribeiro et al., 2016) and datasets K-M
in https://cseweb.ucsd.edu/~jmcauley/datasets/

9327

https://cseweb.ucsd.edu/~jmcauley/datasets/

Fine-tuning involves learning an appended fully
connected head layer (Dense) that captures the
label distribution, connecting the “CLS” token
representations with labels to perform ATC.
Models hyperparameters are found in Appendix H.
Our assessment considers five perspectives: (1)
classification effectiveness; (2) model bias towards
the majority class; (3) efficiency (time and C'O2
emissions); (4) scalability; and (5) consistency
between SLMs and LLMs. Effectiveness is eval-
uated using Macro Average F1 (MacroF1), which
is more suitable for skewed tasks than MicroF1
(a.k.a. accuracy). Class imbalance bias is captured
by (Czarnowska et al.,, 2021): TPRGap =
dijer %NTPRO)' where TPR(7) is the true
positive rate of class ¢, 7' is the number of classes,
N is a normalization equal to the number of pairs
of compared classes (%). Efficiency is measured
based on the cost of each method in terms of the
total time required to build the model and perform
classification. Speedup is calculated as S = 7}“;",
where T, is the total time spent building the model
plus the classification time, using some undersam-
pling approach, and T}, is the total time spent
on execution (model and classification) without
the undersampling phase. Emission of C'Oy is the
estimated value of greenhouse gases, converted to
their equivalent amount of carbon dioxide, spent
for training a model and classification, calculated
based on (Lannelongue et al., 2021). Scalability
is related to the adequate use of computational
resources (i.e., memory, CPU, GPU) and the ability
to deal with large datasets. To assess consistency,
we compare the results between SLMs and LLMs,
considering the other four previous perspectives.
Hardware used in the experiments is detailed
in Appendix E. Datasets were divided using
cross-validation with 5 (K to M) or 10 partitions
(others). Larger datasets were divided into fewer
partitions due to the costs of the training process,
especially for LLMs. Statistical comparisons
were performed using a T-Test with Bonferroni
correction. Codes found at https://github.com/
guilherme8426/ACL2025_Undersampling.

S Experimental Results

We divided the analyses of results into five
perspectives: (1) effectiveness, (2) class imbalance
bias reduction, (3) efficiency, (4) scalability, and
(5) consistency of results between SLMs and
LLMs. We start by discussing the results of the
first three analyses, considering only the smaller

datasets (with less than 30,000 instances (A-J))
together with the SLM (RoBERT?3) classifier. We
consider our methods and all 19 baselines in these
analyses. Due to space limitations, we present
the detailed discussion of the results of AKCS,
ENUB, ENUT, ENUC, and ENUR in Appendix C
since they did not perform satisfactorily regarding
effectiveness and bias reduction.

For (4) and (5), we include the results of the
Llama3.1 classifier, considering also the three
largest datasets. Due to cost issues, we consider
only our proposals and the best baselines based on
the SLM results in these last analyses. In any case,
the LLM results for all 5 evaluation perspectives
are found in Tables 5 and 6, all discussed in Section
5.4 when compared with the SLM. The large
datasets results for RoOBERTa are in Appendix F.

5.1 Effectiveness
In Table 2, we present the effectiveness results
obtained by applying US methods together with
the RoBERTa classifier. The “NoUnder” column
presents the result without undersampling. For all
methods that allow hyperparameterization regard-
ing the number of instances to be removed (UBR,
E2SC_US, NM1, NM2, IHT and CC_NN), we
limit the removal to a maximum of 50%, as recent
IS work (Cunha et al., 2023a) points out that this
is the empirical limit of possible reduction without
loss of effectiveness. The other methods were not
modified, following their own removal policy.
Considering only the smaller datasets (A-J), we
observe that only half of the 16 tested methods
achieve a statistical tie with the classification
without undersampling (i.e., with the complete
imbalanced training) in all analyzed datasets. This
includes our two proposals — UBR and E2SC_US
— and methods CNN, NM1, NM2, CC_NN, TL
and OSS. These techniques balance the dataset
without losing effectiveness. Other methods did
not obtain good results, causing losses in 3 (IHT,
OBU), 2 (SBC, RENN and ALLKNN) and 1
(NM3, NCR, ENN) dataset(s), respectively. A
detailed F1 behavior analysis for each class after
applying the US methods is found in Appendix L.

5.2 Class imbalance Bias Reduction

In Table 3, we present the results for the TPRGap
metric, which measures models’ bias. The
“NoUnder” column presents the result without
undersampling, while the others present the
TPRGap of the models with undersampling. The
background colors of the cells represent how much

9328

https://github.com/guilherme8426/ACL2025_Undersampling
https://github.com/guilherme8426/ACL2025_Undersampling

dataset | NoUnder CNN NM1 NM2 CC_NN SBC NM3 OBU

NCR IHT TL 0SS ENN RENN ALLKNN UBR E2SC_US

88.6(0.7)
89.0(0.7)
93.3(1.1)
89.3(1.2)
89.7(1.9)
94.2(1.0)
90.1(1.5)
83.8(5.0)
83.2(3.4)
81.0(4.5)

88.2(1.5)
88.1(2.0)
93.7(1.1)
88.2(1.0)
89.6(1.5)
93.0(1.0)
89.8(1.8)
83.0(5.0)
81.5(3.6)
77.8(4.3)

88.9(0.8)
88.3(1.2)
94.2(1.5)
88.0(1.5)
88.4(1.8)
92.6(1.1)
89.7(2.1)
80.5(4.3)
81.0(4.7)
78.0(4.1)

89.0(0.8)
88.2(0.7)
94.1(1.1)
86.3(1.5)
89.3(1.9)
92.5(1.2)
89.2(1.8)
81.3(4.1)
80.8(5.5)
75.0(5.0)

88.7(1.4)
90.0(1.2)
94.5(1.4)
81.7(13.8)
89.3(1.6)
93.0(1.0)
88.8(1.5)
82.4(4.6)
79.99.5)
76.7(3.7)

87.6(1.5)
87.9(1.2)
89.3(3.3)
87.7(1.2)
79.2(4.2)
92.0(0.9)
88.1(0.9)
81.0(4.6)
60.2(2.9)
71.0(4.5)

88.5(1.0)
51.3(13.5)
93.9(1.4)
87.7(2.0)
89.0(1.7)
92.9(1.3)
88.9(1.6)
81.0(3.9)
79.4(5.3)
74.0(3.2)

85.1(1.4)
85.6(1.4)
92.3(1.6)
80.7(1.6)
88.2(2.3)
86.7(2.4)
88.3(1.7)
77.6(3.3)
81.8(6.0)
71.7(4.4)

“—=IQmmUOw»

87.2(2.0)
89.4(1.4)
92.4(1.4)
86.7(1.5)
68.7(7.2)
93.2(1.0)
90.1(1.5)
84.0(4.9)
84.5(4.6)
79.8(5.1)

87.7(1.2) 89.2(1.2)
87.8(1.5) 88.7(0.9)
92.0(1.2) 93.4(1.7)
84.3(3.2) 88.4(15)
82.3(1.4) | 89.9(1.6)
87.9(1.1) | 93.4(1.4)
83.0(2.0) | 903(1.1)
74.1(4.5) 87.2(4.7)
745(3.7) 83.2(4.8)
733(4.7) 78.7(4.6)

88.3(0.6)
88.7(0.9)
94.3(1.5)
89.1(1.4)
89.9(1.6)
93.8(1.1)
90.6(1.6)
85.4(3.7)
84.5(4.6)
77.2(5.0)

85.6(0.9)
83.4(9.0)
92.5(1.7)
834(2.1)
55.2(3.5)
92.9(0.8)
89.2(1.3)
81.2(5.3)
84.13.3)
77.8(5.9)

85.6(0.9)
83.1(8.9)
92.5(1.7)
83.4(2.1)
55.2(3.5)
91.5(1.0)
86.8(1.9)
75.8(4.4)
80.7(3.9)
79.4(5.0)

87.2(2.1)
70.2(5.1)
91.7(2.0)
83.6(3.4)
58.6(3.5)
93.1(0.9)
88.7(1.8)
77.3(5.5)
82.4(4.1)
77.4(6.1)

88.9(1.5)
88.4(1.0)
94.3(1.0)
88.8(1.2)
89.3(1.5)
93.1(1.3)
89.0(1.0)
82.2(3.6)
83.4(4.6)
77.9(4.6)

88.8(1.1)
89.1(1.1)
93.4(1.3)
88.7(1.7)
89.4(1.7)
93.1(1.2)
88.5(1.5)
80.6(4.7)
81.5(5.2)
78.7(4.2)

Table 2: RoBERTa MacroF1 using US.

Bold cells are the largest numeric values for a dataset. Green cells represent results
statistically equivalent to not using undersampling (NoUnder).

Numbers in parentheses represent 95% confidence intervals.

dataset | NoUnder | CNN NM1 NM2 CC_NN SBC NM3 OBU NCR [IHT TL OSS ENN RENN ALLKNN ' UBR E2SC_US
A 0.063 0.047 1 0.004 0.005 0.011 0.039 0.011 0.114 0.077 0.072 0.035 0.036 [0.141 0.141 0.098 0.015 0.002
B 0.065 0.027 0.026 0.013 0.023 0.012 0.692 0.100 0.048 0.075 0.060 0.060 0.166 0.188 0.445 0.028 0.034
C 0.041 0.002 0.003 0.018 0011 ~0.149 0.022 0.019 0.038 0.059 0.029 0.025 0.061 0.061 0.062 0.008 0.000
D 0.076 [0.006 0.043 0.019 0.070 0.013 0.020 0.097 0.032 0.107 0.052 0.042 0.143 0.143 0.108 0.002 0.019
E 0.096 |0.032 0.012 0.010 0.024 0.245 ' 0.026 0.023 0.403 0.197 0.093 0.090 | 0.634 0.634 0.593 0.002 0.001
F 0.160 [0.012 0.003 0.001 0.012 0.017 0.012 0.094 | 0.018 0.122 0.063 0.062 0.004 0.037 0.007 0.002 0.006
G 0.102 [0.016 0.000 0.021 0.024 0.035 ' 0.001 0.007 0.028 0.158 0.085 0.077 | 0.007 0.072 0.021 0.013 0.006
H 0.190 [0.006 0.027 0.036 0.037 0.029 0.063 0.066 0.018 0212 0.118 0.131 0.046 0.158 0.136 0.026 0.040
1 0333 [0.112 0.176 0.193 0.247 0352 0.111 0.264 0.256 ' 0.085 0.336 0.304 0.262 0.216 0.248 0.126 0.222
J 0350 | 0.199 0209 0210 0.329 [0.047 0.064 0.173 0.237 ' 0.059 0.361 [0400 0.324 0.287 0.324 0.184 0.215

Mean 0.148 0.046 0.050 0.053 0.079 0.094 0.102 0.096 0.116 0.114 0.123 0.123 0.179 0.194 0.204 0.041 0.054

Table 3: TPRGap of the models generated by the RoOBERTza classifier in conjunction with undersampling approaches. The
greener the cell, the greater the bias reduction. The redder it is, the greater the increase in bias.

the US methods were able to reduce the model bias
compared to “NoUnder”. The greener, the greater
the bias reduction; the redder, the greater the bias.

Focusing again on average bias in the smaller
datasets, the methods that achieved the highest bias
reduction in all ten datasets were UBR (average
bias of 0.041) with a reduction of approximately
3.6 times compared to NoUnder (0.148), followed
by CNN (0.046), NM1 (0.050), NM2 (0.053)
and E2SC_US (0.054). CC_NN (0.079), despite
having a smaller average bias than NoUnder,
presents a smaller reduction compared to the other
methods, in addition to presenting a bias practically
equal to NoUnder in 2 datasets (D and J). Despite
good effectiveness, TL and OSS demonstrate low
performance concerning bias, worsening the model
in 1 and 2 datasets, respectively, and having a total
average TPRGap close to NoUnder — 0.123 each.

Analyzing beyond average values, we observed
that E2SC_US presents the best result in 3 out of
10 datasets, while CNN, NM1, NM2, and UBR
stand out in only one. However, when comparing
the methods pairwisely, we found that UBR outper-
forms E2SC_US, CNN, NM1 in 6 of 10 datasets
and NM2 in 7. UBR stands out in bias reduction,
presenting the best average and individual results.

As a final remark, Table 11 (Appendix D) shows
the imbalance ratio obtained after applying our
methods. A perfect class balance is achieved in
8 out of 13 datasets. Datasets I to M do not reach a
perfect IR because we limited the reduction to 50%.

5.3 Efficiency

We analyze US methods concerning their efficiency,
verifying the impact of the new pre-processing
step on the total processing time (model training
+ classification). Table 4 presents the speedup
produced by the US methods, calculated as the
ratio of the total time using some undersampling
approach to the total time without the US phase.
We observe in Table 4 that UBR, CNN, NM1,
NM2, and E2SC_US, methods that in previous
analyses proved superior in effectiveness and class
imbalance bias reduction, also achieve good effi-
ciency. The speedups achieved were 1.434, 1.528,
1.479, 1.384, and 1.557, respectively, which were
very good. Together with SBC (1.865) and NM3
(1.670), these are the methods with the highest
speedup gains. We should remind, however, that
both — NM3 and SBC — generate losses in effective-
ness for some datasets (Table 2). Among the meth-
ods capable of reducing bias without effectiveness
losses, E2SC_US is the one that obtained the high-
est speedup, being the highlight from this perspec-
tive. Appendix K further discusses the performance
gains achieved by our US methods. Appendix M
presents Table 4 with 95% confidence intervals.

5.4 Consistency and Scalability

As seen, considering the SLM, from 16 methods,
only 5 were able to reduce class imbalance bias
without effectiveness losses and with efficiency
gains in the smaller datasets — our two new methods
(UBR and E2SC_US) and three from the literature
(CNN, NM1, and NM2). We will concentrate on
these five methods for the LLLM analyses. Table 5

9329

dataset | CNN NM1 NM2 CC_NN SBC NM3 OBU NCR IHT TL OSS ENN RENN ALLKNN ' UBR E2SC_US
A 1.243 1.076 1.135 1.193 1216 1.096 1374 1210 1.181 0929 0961 1415 1.376 1.230 1.149 1.094
B 1.005 1.163 1.114 1.186 1364 1.588 1.342 0988 1.230 0962 0.990 1476 1.513 1.452 1.192 1.273
C 1.361 1.237 1.096 1202 1.638 1.247 1214 1223 1.115 0873 0.885 1.070 1.039 1.120 1.048 1.400
D 1.519 1.469 1450 1500 1.637 1493 1282 1516 1402 1.185 1.150 1.966 1.854 1.447 1.557 1.712
E L.176 1312 1312 1467 1769 1400 1381 1.607 1.182 00937 00948 1.663 1.611 1.641 1.384 1.569
F 1.310 1.530 1374 1.521 1444 1414 1329 1.122 1298 0946 0.995 1.270 1.220 1.159 1.277 1.518
G 1.494 1.659 1.619 1.867 1.728 1.757 1.607 1319 1.668 1.055 1.067 1.395 1.771 1.587 1.806 1.950
H 1.510 1.923 1.601 1.612 1564 1519 1.331 1401 1.634 1.034 1.014 1.537 1.516 1.751 1.728 1.635
I 2283 1.730 1.523 1.608 2.861 2.128 1.302 0.877 1.535 1.003 [0.800 0.990 0.998 0.977 1.622 1.617
J 2377 1.691 1.621 1.442 | 3.433 3.054 1411 1487 1.602 1.107 0972 1.335 1.220 1.341 1.577 1.802

Mean | 1.528 1479 1384 1460 1.865 1.670 1.357 1275 1385 1.003 0978 1412 1412 1.370 1.434 1.557

Table 4: Speedup results in the total cost (time) for generating the models using the ROBERTa classifier in conjunction with
undersampling approaches. The greener the cell, the greater the reduction in total training time compared to the approach without

undersampling. The redder, the longer the time.

Size | dataset Macro-F1 TPR-Gap SpeedUp
NoUnder CNN NM1 NM2 UBR E2SC_US | NoUnder CNN NMI1 NM2 UBR E2SC_US | CNN NMI NM2 | UBR E2SC_US
A 91.9(1.0) 1 90.6(1.7) 91.1(1.3) 91.6(1.5) 91.8(1.2) 92.1(1.4) 0.038 0.034 [0.006 0.021 | 0.006 0.013 1390 1.198 1.198 1.190 1.196
B 93.2(0.8) 92.7(1.5) 90.9(5.1) 92.8(0.6) 93.5(0.7) 92.8(0.6) 0.028 [0.030 0.005 0.027 | 0.010 0.006 1214 1210 1210 1.208 1.208
C 97.6(1.1) 97.6(0.7) 97.4(1.2) 98.2(0.7) 97.9(1.1) 98.0(0.9) 0.017 0.007 0.005 0.008 | 0.000 0.006 1.502 1.241 1242 1242 1.240
D 91.2(1.0) | 91.0(1.0) 90.6(1.3) 87.8(1.7) | 91.0(1.6) 90.8(1.7) 0.076 0.028 0.019 0.044 0.022 0.028 1.306 1.333 1.335 1.332 1.334
Small E 93.9(1.4) 929(1.5) 91.4(1.8) 91.5(1.8) 92.0(1.7) 92.4(1.6) 0.065 [0.008 0.032 0.003 0.018 0.002 1.338 1.557 1.554 1.544 1.548
F 95.2(0.7) 94.5(1.3) 94.0(1.0) 94.1(0.8) 94.3(1.0) 94.9(1.0) 0.053 0.005 0.012 0.001 0.000 0.010 1.656 1.586 1.586 1.581 1.586
G 91.7(1.8) 90.6(1.6) 89.8(1.6) 90.2(1.7) 90.0(1.3) 90.3(1.4) 0.090 0.001 0.002 0.014 0.004 0.007 1.652 1.764 1.771 1.762 1.767
H 83.9(5.4) 81.9(2.7) 80.02.7) 78.9(3.5) 79.7(2.3) 80.2(3.4) 0.228 0.041 0.062 0.019 0.028 0.005 1.631 1.743 1.744 1.741 1.739
1 88.8(3.7) 81.7(4.8) 829(3.3) 85.9(3.3) 86.0(3.8) 84.9(2.8) 0.223 0.120 0.146 0.161 0.131 0.182 2.468 1.861 1.860 1.861 1.856
] 76.3(6.0) | 70.9(5.9) 71.0(6.5) 69.5(6.4) 71.7(5.5) 73.2(58) | 0501 0342 0290 0358 0311 0353 2211 1833 1837 1.841 1.846
K 96.7(0.9) - 96.1(0.9) 95.8(1.2) 95.8(0.7) 96.5(0.8) 0.059 0.030 0.031 0.029 0.032 - 1923 1.920 1.923 1.922
Large L 84,0(2,5) # # 88.5(6.4) 93.4(4.6) | 0383 i 0171 0.098 B #1927 1.926
M 92.1(1.7) 91.7(0.8) 88.2(4.3) 91.2(0.6) 92.4(0.5) 0.200 0.139 0.118 0.126 0.138 1.924 1.922 1.926 1.925
Average 0.151 - - 0.066 0.068 - - 1.621 1.623

Table 5: MacroF1, TPRGap, and Speedup of the models generated by Llama3.1 along with undersampling approaches. The
color scale is the same of previous tables. In large datasets (K, L, M), cells with “-” represent methods with an execution time
with undersampling greater than the classification time without it and were disregarded. Cells with “*” represent methods that
could not be executed due to a memory allocation failure during the undersampling step.

presents effectiveness (MacroF1), bias (TPRGap),
and efficiency (Speedup) results obtained when
applying these 5 US methods together with the
LLM - Llama3.1 - classifier considering all
datasets, including the largest ones (K, L and M).
Color scales follow the previous patterns.

Analyzing the US methods concerning scala-
bility for the largest datasets (K, L, and M), we
observe that CNN, despite being a highlight in the
SLM analyses, was unable to scale for any of the
larger sets, presenting very high undersampling
times, comparable to running the LLM (LLama3.1)
classification without any undersampling.

This behavior is explained by its time complex-
ity (O(n?), with n being the number of instances)
(Cunha et al., 2021). NM1 and NM2 also did not
scale for the largest dataset (L, with more than 1
million documents) due to excessive memory usage.
The only methods capable of scaling for very large
datasets with high imbalance were our proposals.

Regarding effectiveness, we observed that even
with the change of classifier to Llama3.1, UBR and
E2SC_US maintained their effectiveness compared
to the classifier that does not use undersampling in
all 13 datasets. In particular, E2SC_US proved to
be statistically superior to the model trained with-
out undersampling in the L dataset. CNN and NM1,
despite not generalizing to all datasets, present

effectiveness statistically similar to NoUnder in the
datasets where they have been able to run. NM2,
in turn, loses (statistically) in one dataset (D).

Regarding bias, as seen in Table 9 in Appendix
B, LLMs present lower bias than SLMs. Even in
this case, UBR and E2SC_US manage to reduce
model bias in all datasets, especially UBR, which
achieved, on average, the highest reduction, gen-
erating an average TPRGap of (0.066) — a 56%
reduction in bias compared to NoUnder (0.151)
Furthermore, UBR achieved the best bias reduction
results in 9 out of 13 datasets when compared to
E2SC_US. We also note that CNN, in dataset B,
increased model bias, a behavior that did not occur
in the analyses with the SLM. Our methods also
achieved excellent efficiency — a speedup of 1.621
(UBR) and 1.623 (E2SC_US) on average.

5.5 arbon Emission

One consequence of reducing total model training
time is the cutting of carbon emissions. Table
6 presents the carbon emissions (Lannelongue
et al., 2021) generated during model training after
applying the US methods. We present the results
for Llama3.1 in the largest datasets.

We can observe that UBR and E2SC_US achieve
a significant reduction of approximately 50% in car-
bon emissions compared to the model trained with-

9330

dataset NoUnder UBR E2SC_US
K 0.652 0.339 0.339
L 28.659 14.857 14.879
M 3.478 1.805 1.806

Avarage 10.930 5.667 5.675

Table 6: Carbon Emission Results (CO-), in Kg, for generat-
ing models using Llama3.1 with undersampling.

out undersampling. This reduction is especially
relevant in the context of sustainability, consider-
ing the popularity of current SLMs and LLMs and
numerous research groups/companies that train,
through fine-tuning or using an in-context process,
such models on a daily basis.

Summarizing, both — UBR and E2SC_US
— have proven to be very effective in reducing
model bias without compromising effectiveness,
compared to language models, either small or large,
trained without the application of undersampling.
In addition, our US methods can significantly
reduce the total training time, with a corresponding
cutoff in carbon emissions during training.

5.6 Discussion — The Role of Randomness

To better understand why UBR and E2SC_US
reduce bias while some methods increase it, we
further analyze Table 3. In datasets such as A and
E, NCR, ENN, ALLKNN, and RENN increase
dataset bias. These methods remove the majority
class training examples misclassified by KNN with-
out weighting their importance. This unweighted
approach can eliminate key patterns, reduce data
variability, and prevent models from learning ex-
cluded patterns. As a result, bias may increase due
to reinforcement of majority class existing patterns.
On the other hand, other KNN-based strategies,
such as CNN, which include explicit criteria to pre-
vent the removal of important patterns, can signifi-
cantly reduce bias. This strategy, however, incurs a
higher computational cost (O(n?)) for CNN case).

Accordingly, we built our proposals by intro-
ducing randomness weighted by the semantic
difficulty criteria (UBR) or by (logistic regression)
confidence (E2SC-US) to prevent the removal of
important patterns at a low cost. The weighted
randomness process adopted in UBR is computa-
tionally cheap and effective (Andrade et al., 2024,
2023). In the case of E2SC_US, we leverage a
computationally cheap, yet calibrated and effective
classifier (logistic regression), justifying the
improved performance compared to UBR. In short,
our solutions combine the strengths of the best ex-
isting approaches while avoiding their weaknesses.

dataset | NoUnder UBR UBR_moreDiff E2SC_US E2SC_minCnf

A 0.063 0.015 0.030 0.002 0.092
B 0.065 0.028 0.041 0.034 0.063
C 0.041 0.008 0.022 0.000 0.067
D 0.076 0.002 0.026 0.019 0.092
E 0.096 0.002 0.049 0.001 0.206
F 0.160 0.002 0.089 0.006 0.138
G 0.102 0.013 0.020 0.006 0.138
H 0.190 0.026 0.001 0.040 0.217
I 0.333 0.126 0.200 0.222 0.336
J 0.350 0.184 0.421 0.215 0.262
Mean 0.148 0.041 0.090 0.054 0.161

Table 7: TPRGap generated by RoOBERTa in conjunction with
the original and modified undersampling approaches.

To confirm our conjectures, we conducted an
extra experiment (Table 7) showing TPRGap for
variations of our methods using RoBERTa. We
removed the random factor and applied only the
elimination of documents with higher semantic
difficulty (UBR_moreDiff) or lower confidence
(E2SC_minCnf). Bias increased compared to the
original methods, reinforcing that non-random
removal, especially in specific data groups, can
hinder generalization and increase bias.

6 Conclusions and Future Work

The impact of class imbalance and model bias
towards the majority class in SLM and LLM text
classifiers remains underexplored. Existing US
solutions have limitations, prompting us to propose
two novel undersampling techniques (UBR and
E2SC_US), drawing inspiration from the Instance
Selection field. We evaluated 19 baselines across
13 datasets using ROBERTa (SLM) and Llama3.1
(LLM), assessing effectiveness, bias reduction,
efficiency, scalability, and consistency. Results
showed our methods were the only ones to
significantly reduce class imbalance bias (up to
56%) without sacrificing effectiveness. They also
improved efficiency (1.6x speedup or more) and
cut carbon emissions by 50%. UBR was the most
consistent in bias reduction, while E2SC_US ex-
celled in efficiency. Future work will extend these
methods to multi-class, hierarchical, and extreme
(XM)TC, expand experiments to other LLMs, and
compare US with oversampling methods.

Acknowledgements

This work was supported by CNPq, CAPES, In-
stituto Nacional de Ciéncia e Tecnologia em In-
teligéncia Artificial Responsdvel para Linguistica
Computacional, Tratamento e Disseminacdo de In-
formacdo (INCT-TILD-IAR), FAPEMIG, AWS,
Google, NVIDIA, CIIASadde, and FAPESP.

9331

Limitations

Despite relevant contributions, our study has some
limitations. One of them is that our evaluation
targeted specifically the sentiment classification
task. First, it is worth noting that although the
methods are proposed for binary classification,
important problems such as spam, fake news, mis-
information detection, hate speech, and sentiment
analysis, among many others, can all be mapped
to binary classification problems, which makes
the proposed approach broadly relevant. However,
although we have considered a large set of datasets,
increasing the number of dataset domains and
extending our analysis to include tasks such as
topic classification, multi-class, and hierarchical
ATC would provide new and valuable insights.

As mentioned in Section 3, we limited the
removal rate parameter of our proposals to a max-
imum of 50%. We adopted this value considering
that Cunha et al. (2023a) empirically pointed out
that this is the limit of reduction where it was still
possible to avoid effectiveness losses. However,
this limit was set in the context of a specific
instance selection solution (E2SC) and it would
be interesting to further study this parameter by
investigating proposals and heuristics for learning
optimal dataset-specific domain reduction rates.

References

Claudio Andrade, Fabiano M Belém, Washington
Cunha, Celso Franca, Felipe Viegas, Leonardo
Rocha, and Marcos André Gongalves. 2023. On
the class separability of contextual embeddings
representations—or “the classifier does not matter
when the (text) representation is so good!”. IP&M.

Claudio Andrade, Washington Cunha, Guilherme Fon-
seca, Ana Pagano, Luana Santos, Adriana Pagano,
Leonardo Rocha, and Marcos Gongalves. 2024. Ex-
plaining the hardest errors of contextual embedding
based classifiers. In CONLL’24, pages 419-434.

Bernhard E Boser, Isabelle M Guyon, and Vladimir N
Vapnik. 1992. A training algorithm for optimal mar-
gin classifiers. In 5th COLT.

Breiman. 2001. Random forests. Machine learning.

Glenn W Brier. 1950. Verification of forecasts ex-
pressed in terms of probability. Monthly weather
review, 78(1):1-3.

Tiangi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd acm sigkdd KDD.

Washington Cunha, Sérgio D. Canuto, Felipe Viegas,
Marcos André Gongalves, Leonardo Rocha, et al.

2020. Extended pre-processing pipeline for text clas-
sification: On the role of meta-feature representa-
tions, sparsification and selective sampling. I/P&M.

Washington Cunha, Celso Franga, Guilherme Fonseca,
Leonardo Rocha, and Marcos André Gongalves.
2023a. An effective, efficient, and scalable
confidence-based instance selection framework for
transformer-based text classification. In the 46th
ACM SIGIR.

Washington Cunha, Vitor Mangaravite, Christian
Gomes, Sérgio Canuto, Felipe Viegas, Celso Franga,
Martins, Jussara M Almeida, et al. 2021. On the cost-
effectiveness of neural and non-neural approaches
and representations for text classification: A compre-
hensive comparative study. IP&M.

Washington Cunha, Alejandro Moreo, Andrea Esuli,
Fabrizio Sebastiani, Leonardo Rocha, and Mar-
cos André Gongalves. 2024. A noise-oriented
and redundancy-aware instance selection framework.
ACM Trans. Inf. Syst. Just Accepted.

Washington Cunha, Leonardo Rocha, and Marcos An-
dré Gongalves. 2025. A thorough benchmark of
automatic text classification: From traditional ap-
proaches to large language models. arXiv preprint
arXiv:2504.01930.

Washington Cunha, Felipe Viegas, Celso Franca, Thier-
son Rosa, Leonardo Rocha, and Marcos André
Gongalves. 2023b. A comparative survey of in-
stance selection methods applied to nonneural and
transformer-based text classification. ACM CSUR.

Paula Czarnowska, Yogarshi Vyas, and Kashif Shah.
2021. Quantifying social biases in nlp: A generaliza-
tion and empirical comparison of extrinsic fairness
metrics. TACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Georgios Douzas, Maria Lechleitner, and Fernando Ba-
cao. 2022. Improving the quality of predictive mod-
els in small data gsdot: A new algorithm for generat-
ing synthetic data. Plos one.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Xavier Ferrer, Tom van Nuenen, Jose M. Such, Mark
Coté, and Natalia Criado. 2021. Bias and discrimi-
nation in ai: A cross-disciplinary perspective. I[EEE
Technology and Society Magazine.

Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. 2005.
Borderline-smote: a new over-sampling method in
imbalanced data sets learning. In International con-
ference on intelligent computing. Springer.

9332

https://doi.org/10.1145/3705000
https://doi.org/10.1145/3705000

Peter Hart. 1968. The condensed nearest neighbor rule
(corresp.). IEEE transactions on information theory.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in NeurIPS.

Miroslav Kubat, Stan Matwin, et al. 1997. Address-
ing the curse of imbalanced training sets: one-sided
selection. In Icml. Citeseer.

Anil Kumar, Dinesh Singh, and Rama Shankar Yadav.
2024. Entropy and improved k-nearest neighbor
search based under-sampling (enu) method to handle
class overlap in imbalanced datasets. Concurrency
and Computation, 36(2):€7894.

Loic Lannelongue, Jason Grealey, and Michael Inouye.
2021. Green algorithms: quantifying the carbon foot-
print of computation. Advanced science.

Jorma Laurikkala. 2001. Improving identification of
difficult small classes by balancing class distribution.
In 8th Conference on AIME.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. In ACL.

Wei-Chao Lin, Chih-Fong Tsai, Ya-Han Hu, and Jing-
Shang Jhang. 2017. Clustering-based undersampling
in class-imbalanced data. Info. Sciences.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Washington Luiz, Felipe Viegas, Rafael Alencar, Fer-
nando Mourdo, Thiago Salles, Darlinton Carvalho,
Marcos Andre Gongalves, and Leonardo Rocha.
2018. A feature-oriented sentiment rating for mo-
bile app reviews. WWW °18.

Inderjeet Mani and I Zhang. 2003. knn approach to
unbalanced data distributions: a case study involving
information extraction. In Proceedings of workshop
on learning from imbalanced datasets. ICML.

Shashank Mujumdar, Stuti Mehta, Hima Patel, and
Suman Mitra. 2023. Identifying semantically dif-
ficult samples to improve text classification. arXiv
preprint arXiv:2302.06155.

Albert Orriols-Puig and Ester Bernad6-Mansilla. 2009.
Evolutionary rule-based systems for imbalanced data
sets. Soft Computing.

Andrea Pasin, Washington Cunha, Marcos André
Gongalves, and Nicola Ferro. 2024. A quantum an-
nealing instance selection approach for efficient and
effective transformer fine-tuning. In Proceedings of
the 2024 ACM SIGIR ICTIR, pages 205-214.

Alexander Ponomarenko, Nikita Avrelin, Bilegsaikhan
Naidan, and Leonid Boytsov. 2014. Comparative
analysis of data structures for approximate nearest
neighbor search. Data analytics.

Sivaramakrishnan Rajaraman, Prasanth Ganesan, and
Sameer Antani. 2022. Deep learning model calibra-
tion for improving performance in class-imbalanced
medical image classification tasks. PloS one.

Zilma Silveira Nogueira Reis, Adriana Silvina Pagano,
Isaias Jose Ramos de Oliveira, Cristiane dos San-
tos Dias, et al. 2024. Evaluating large language
model-supported instructions for medication use:
First steps toward a comprehensive model. Mayo
Clinic Proceedings: Digital Health, 2(4):632-644.

Filipe N Ribeiro, Matheus Aradjo, Pollyanna Gongalves,
Marcos André Gongalves, and Fabricio Benevenuto.
2016. Sentibench-a benchmark comparison of state-
of-the-practice sentiment analysis methods. EPJ DS.

Michael R Smith, Tony Martinez, and Christophe
Giraud-Carrier. 2014. An instance level analysis of
data complexity. Machine learning.

Ivan Tomek. 1976a. An experiment with the edited
nearest-neighbor rule.

Ivan Tomek. 1976b. Two modifications of cnn. /[EEE
Transactions on Systems, Man, and Cybernetics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, et al. 2023. Llama:
Open and efficient foundation language models.

Pattaramon Vuttipittayamongkol, Eyad Elyan, Andrei
Petrovski, and Chrisina Jayne. 2018. Overlap-based
undersampling for improving imbalanced data classi-
fication. In /9¢th IDEAL. Springer.

Heitor Werneck, Nicollas Silva, Matheus Viana, Adri-
ano Pereira, Fernando Mourio, and Leonardo Rocha.
2021. Points of interest recommendations: Methods,
evaluation, and future directions. Inf. Syst.

Dennis L Wilson. 1972. Asymptotic properties of near-
est neighbor rules using edited data. IEEE Transac-
tions on Systems.

Raymond E Wright. 1995. Logistic regression.

Show-Jane Yen and Yue-Shi Lee. 2006. Under-
sampling approaches for improving prediction of the
minority class in an imbalanced dataset. In ICIC.

Bruna Stella Zanotto, Ana Paula Beck da Silva Et-
ges, Renata Ruschel, Washington Luiz, et al. 2021.
Stroke outcome measurements from electronic medi-
cal records: cross-sectional study on the effectiveness
of neural and nonneural classifiers. JMIR Med. Infor.

Qian Zhou and Bo Sun. 2024. Adaptive k-means clus-
tering based under-sampling methods to solve the
class imbalance problem. Data Info. Management.

9333

https://doi.org/https://doi.org/10.1016/j.mcpdig.2024.09.006
https://doi.org/https://doi.org/10.1016/j.mcpdig.2024.09.006
https://doi.org/https://doi.org/10.1016/j.mcpdig.2024.09.006
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971

dataset RoBERTa BART BERT SVM LR RF XGB LGBM KNN
Macro F1 TPRGap | Macro FI TPRGap | Macro F1 TPRGap | Macro F1 TPRGap | Macro F1 TPRGap | Macro F1 TPRGap | Macro F1 TPRGap | Macro FI ~ TPRGap | Macro F1 TPRGap

A 88.6(0.7) 0.063 89.3(1.1) 0.048 84.3(1.7) 0.050 71.8(2.5) 0.187 71.4(2.5) 0.228 67.0(2.4) 0.370 64.9(2.4) 0.417 63.2(3.2) 0.375 64.3(3.1) 0.478
B 89.0(0.7) 0.065 88.3(1.4) 0.079 86.9(0.8) 0.057 72.1(1.5) 0.257 72.9(1.5) 0.209 68.6(1.8) 0.422 67.6(1.4) 0.247 69.4(2.7) 0.250 65.9(2.8) 0.498
C 933(1.1) 0041 [93.7(1.2) 0036 | 89.122) 0063 | 79.33.1) 0.111 80.4(2.1) 0.117 | 75.7(2.8) 0221 | 75.0(1.5) 0.171 68.9(59) 0208 | 76.9(2.1) 0.166
D 89.3(1.2) 0.076 89.1(1.1) 0.085 85.5(2.0) 0.146 76.4(2.1) 0213 75.6(3.6) 0.223 73.3(3.0) 0.271 71.5(1.8) 0.302 72.8(3.4) 0.296 72.7(3.2) 0.330
E 89.7(1.9) 0.096 88.9(1.7) 0.117 86.1(1.8) 0.134 79.0(1.7) 0.215 78.6(2.0) 0.245 72.6(4.0) 0.257 TLI(1.7) 0.472 71.7(3.7) 0.385 73.3(3.4) 0.263
F 942(1.0) 0.160 [93.7(1.0) 0.053 | 88.0(1.3) 0.108 | 82.0(1.0) 0238 | 80.4(1.4) 0320 | 72.6(1.9) 0526 | 74.0(1.4) 0476 | 7402.8) 0372 | 75.4(1.3) 0454
G 90.1(1.5) 0.102 90.1(1.6) 0.099 86.4(1.9) 0.125 70.9(2.0) 0.404 71.9(1.7) 0.399 64.5(2.0) 0.615 64.0(1.9) 0.660 63.9(4.4) 0.633 60.8(1.5) 0.654
H 83.8(5.0) 0.190 81.6(5.6) 0.198 79.1(3.6) 0.290 67.0(5.6) 0.539 63.0(6.8) 0.619 54.9(5.1) 0.731 56.7(5.2) 0.666 56.4(5.3) 0.598 55.2(6.4) 0.800
I 832(34) 0333 | 83.0(58) 0283 | 79.84.9) 0350 | 68.13.8) 0.610 | 63.1(64) 0733 | 59.8(4.6) 0.809 | 59.2(3.5) 0.803 | 58.4(10.5) 0763 | 56.5(4.4) 0.875
J 81.0(4.5) 0.350 78.0(6.1) 0.410 76.4(4.4) 0.447 50.5(5.0) 0.944 53.3(4.7) 0.914 54.3(5.7) 0.888 53.4(5.3) 0.898 55.7(11.2) 0.833 46.4(0.1) 0.998
K 93.1(0.6) 0.156 92.6(1.4) 0.149 90.6(1.3) 0.203 82.6(0.3) 0.412 83.1(1.1) 0.408 80.1(1.0) 0.522 76.1(1.5) 0.594 79.4(0.8) 0.525 65.4(2.6) 0.788
L 92.0(0.1) 0.166 | 91.1(0.1) 0.192 | 89.8(0.2) 0225 | 81.6(0.4) 0.416 | 82.0(0.3) 0430 | 80.6(0.7) 0.519 | 73.4(0.1) 0.644 | 7440.1) 0.622 | 62.3(04) 0791
M 87.8(2.5) 0.308 88.6(1.2) 0.296 85.3(0.7) 0.383 78.7(0.3) 0.601 78.2(0.7) 0.562 78.9(0.4) 0.561 72.0(0.3) 0.698 73.6(0.7) 0.668 60.9(0.5) 0.866

Avarage ‘ 0.162 0.157 0.198 0.396 0.416 0.516 0.542 0.502 0.612

Table 8: MacroF1 and TPRGap results of the classifiers. Cells in bold indicate the highest numerical values for a
dataset, and cells in green are statistically equivalent to the highest numerical classification value.

A Comparison among Classifiers -
Effectiveness and Bias

Seeking to analyze how recent state-of-the-art
Transformer-based algorithms are affected by class
imbalance in sentiment analysis tasks and under-
stand if there is room for improvement, we com-
pared them with traditional classifiers using the
analyzed skewed datasets. We consider ATC meth-
ods based on SLMs RoBERTa (Liu et al., 2019),
BART (Lewis et al., 2020) and BERT (Devlin
et al., 2018), which are among the best sentiment
classifiers (Cunha et al., 2023b).

We use the same methodology discussed
in (Cunha et al., 2023b) to adjust the hyperparam-
eters. We set the initial learning rate as 5 x 1072,
the maximum number of epochs as 20, and the
patience as 5 epochs. We performed a grid search
on max_len (150 and 256) and batch_size (16, 32
and 64), as these specified values directly impact
the efficiency and effectiveness of the model.

We also consider 6 traditional classifiers:
KNN, Random Forest (Breiman, 2001), Logistic
Regression (Wright, 1995), Support Vector
Machine (Boser et al., 1992), XGBoost (Chen and
Guestrin, 2016) and LightGBM (Ke et al., 2017).

Table 8 presents the MacroF1 and TPRGap re-
sults for these classifiers. First, we can highlight the
superiority, in terms of effectiveness, of classifiers
based on Transformers when compared to tradi-
tional ones — these were inferior (statistically) to
Transformers in all 13 datasets considered, a result
consistent with the literature (Cunha et al., 2021).

RoBERTa and BART stand out among the
Transformer-based classifiers, with statistically
equivalent classification results on all datasets,
but one: L, in which RoBERTa was slightly
superior. BERT, in turn, is statistically equivalent
to RoBERTa and BART in only 5 of the 13 datasets.
Finally, when we analyze the absolute numerical
values of each classifier, the RoBERTa model
produces the highest MacroF1 values in 10 datasets

while BART does so in 3 of them, reinforcing
the results from the literature reporting (Cunha
et al., 2023b) RoBERTa as being a state-of-the-art
sentiment classifier. It is, therefore, the classifier
of choice used in all analyses in our article.
Analyzing Table 8 again, now focusing on the
class imbalance bias (average TPRGap) of the ap-
proaches (remind that the smaller the TPRGap, the
smaller the bias), we observe that classifiers based
on Transformers present lower bias when compared
to traditional ATC methods. For traditional classi-
fiers, the method that obtained the best values was
SVM with an average TPRGap of 0.396, which is
more than double the average TRPGap of meth-
ods based on Transformers that achieved 0.162
(RoBERTa), 0.157 (BART) and 0.198 (BERT).
This result is very interesting, and as far as we
know, it has not been reported in the literature - the
good ability of SLMs to deal with imbalanced data.
Despite this, SLMs still present high TPRGap
results in datasets with a high imbalance, as is the
case with datasets K, L, and M, with IR equal to
10.73, 13.84, and 39.71. This evidence suggests
that there is still room for improvement, that is,
room to explore and devise novel techniques capa-
ble of reducing the class imbalance bias of SLMs.

dataset LLama 3.1 RoBERTa
MacroF1 TPRGap MacroF1 TPRGap

A 91.9(1.0) 0.038 88.6(0.7) 0.063
B 93.2(0.8) 0.028 89.0(0.7) 0.065
C 97.6(1.1) 0.017 93.3(1.1) 0.041
D 91.2(1.0) 0.076 89.3(1.2) 0.076
E 93.9(1.4) 0.065 89.7(1.9) 0.096
F 95.2(0.7) 0.053 94.2(1.0) 0.160
G 91.7(1.8) 0.090 90.1(1.5) 0.102
H 83.9(5.4) 0.228 83.8(5.0) 0.190
1 88.8(3.7) 0.223 83.2(3.4) 0.333
J 76.3(6.0) 0.501 81.0(4.5) 0.350
K 96.7(0.9) 0.059 93.1(0.6) 0.156
L 84.0(2.5) 0.383 92.0(0.1) 0.166
M 92.1(1.7) 0.200 87.8(2.5) 0.308

Average 0.151 0.162

Table 9: MacroF1 and TPRGap results of the classifiers
(RoBERTa and Llama3.1). Cells in bold indicate the
highest numerical values for a dataset, and cells in green
are statistically equivalent to the highest value.

9334

dataset MacroF1 TPRGap Speedup
NoUnder AKCS ENUB ENUT ENUC ENUR NoUnder AKCS ENUB ENUT ENUC ENUR | AKCS ENUB ENUT ENUC ENUR
A 88.6(0.7) 89.2(1.3) 89.2(0.9) 88.9(1.2) 88.9(1.1) 88.9(1.1) 0.063 0.008 0.035 0.033 0.032 0.032 | 0.885 1.188 1.119 1.185 1.186
B 89.0(0.7) 89.0(1.2) 84.1(11.9) 84.1(11.9) 84.1(11.9) 84.1(11.9) 0.065 0.010 0.145 0.145 0.145 0.145 | 0.665 1.107 1.107 1.106 1.106
C 93.3(1.1) 942(1.5) 943(1.6) 94.0(1.7) 94.2(1.7) 94.3(1.6) 0.041 0.008 0.028 0.035 0.037 0.028 | 1.070 1.361 1441 1439 1.354
D 89.3(1.2) 83.5(11.3) 88.8(1.7) 88.1(1.9) 88.1(1.9) 88.8(1.7) 0.076 0.085 0.036 0015 0.015 0.036 | 1.301 1.139 1255 1.254 1.139
E 89.7(1.9) 88.5(1.9) 89.4(1.4) 89.9(1.3) 90.1(1.7) 89.4(1.4) 0.096 0.028 ~0.104 | 0.083 0.081 [0.104 | 1.202 1.026 1070 1.075 0.971
F 94.2(1.0) 92.4(1.0) 93.7(0.9) 93.9(0.8) 94.0(0.9) 93.7(0.9) 0.160 0.032 0.060 0.055 0.048 0.060 | 1.048 1.310 1.164 1.168 1.309
G 90.1(1.5) 87.6(1.8) 89.9(1.0) 90.0(0.8) 90.0(0.8) 89.9(1.0) 0.102 0.029 0.064 0.067 0.067 0.064 | 0.744 1275 1.145 1.145 1271
H 83.8(5.0) 80.3(3.9) 83.7(3.5) 83.7(45) 83.7(3.5) 83.7(3.5) 0.190 0.114 0.146 0.123 0.146 0.146 | 1.288 1297 1.179 1.296 1.294
I 83.2(3.4) 752(3.7) | 844(3.9) 834(54) 833(35) 84.4(3.9) 0.333 0.096 0303 0276 0.296 0.303 | 1.537 1.227 1.041 1346 1.226
J 81.04.5) 61.0(5.1) | 77.6(2.9) 77.6(2.9) 77.6(2.9) 77.6(2.9) 0.350 0.162 = 0350 0350 0350 0.350 | 2477 1.790 1787 1.783 1.783
Average 0.148 0.057 0127 0.118 0.122 0.127 | 1.222 1.272 1231 1280 1.264

Table 10: MacroF1, TPRGap, and Speedup of the models generated by ROBERTa along with the undersampling approaches.
For the MacroF1 results, green cells represent executions that are statistically equivalent to the NoUnder results. For TPRGap,
the greener the cell, the greater the bias reduction, while the redder it is, the greater the bias increase compared to NoUnder. For
Speedup, the greener the cell, the greater the reduction in total training time compared to the approach without undersampling,

whereas the redder it is, the longer the time.

B Comparison between SLMs and L1.Ms
classifiers on imbalanced datasets

Table 9 presents a comparative analysis between
the ATC models based on Transformers of 1st
(SLMs) and 2nd (LLMs) generations, represented
respectively by RoOBERTa and Llama3.1. Bold
values in MacroF1 represent the best results and
green cells represent the statistical ties between
methods. Regarding effectiveness, we observe the
superiority of Llama3.1, which achieves the best
result in 11 of the 13 datasets and is statistically
inferior to ROBERTa in only one dataset. We also
observe that, in terms of bias, LLM has a lower av-
erage value, 0.151 for Llama3.1, against 0.162 for
RoBERTa. Even so, significant potential for class
imbalance bias reduction is observed, particularly
in larger datasets with an Imbalance Ratio (IR)
greater than 5. Under these conditions, even ad-
vanced LLLM models exhibit high TPRGap values,
which can reach up to 0.5 (as verified in dataset I).

C Experiments with Recent US methods

Table 10 presents MacroF1, TPRGap, and Speedup
results obtained by the most recent undersampling
methods utilized with RoBERTa. Regarding
effectiveness, as measured by MacroF1, the
methods of the ENU family maintain a statistically
equivalent performance to NoUnder in all 10
datasets. On its turn, AKCS presents a statistically
significant drop in 2 datasets.

For TPRGap, all methods increase bias in
relation to NoUnder, with this worsening observed
for AKCS (1 dataset), ENUT and ENUC (2
datasets) and ENUB and ENUR (4 datasets).

Finally, in terms of Speedup, ENUB, ENUT, and
ENUC considerably reduce training time, although
still lower than the best speedups presented in
Section 5.3. The other methods do not significantly
worsen training time, with impacts observed in
only 1 (ENUR) and 3 (AKCS) datasets.

Since none of the methods managed to simul-
taneously meet the first three criteria analyzed —
maintain effectiveness, reduce class imbalance
bias, and improve efficiency — we chose not to
include their results in the main body of the paper.

D Imbalance Ratio after Undersampling

Table 11 shows the IR of the datasets after applying
the undersampling methods proposed in this paper.
Our methods can perfectly balance classes in 8
out of 13 datasets. In Datasets I to M, our methods
do not balance perfectly because, as mentioned in
Section 3, we limited the reduction to 50% of the
dataset of only majority class data. These results
also reveal opportunities for improvement.

dataset NoUnder UBR E2SC_US
A 1.41 1 1
B 1.44 1 1
C 1.51 1 1
D 1.71 1 1
E 2.17 1 1
F 2.23 1 1
G 2.66 1 1
H 2.72 1 1
I 5.32 2.16 2.16
J 6.60 2.80 2.80
K 10.73 4.87 4.87
L 13.84 6.42 6.42
M 39.71 19.35 19.35

Table 11: Datasets’ IR before and after undersampling.

E Hardware Utilized in the Experiments

The experiments related to small datasets (A - J)
that used RoBERTa as a classifier were carried
out on AWS. The undersampling steps, which re-
quire exclusively CPU processing, used an instance
of type c6ba.4xlarge, while for the classification
steps, which require specialized hardware (GPU),
we used instances of type g4dn.xlarge. The ex-
periments that used Llama3.1 as a classifier had
the undersampling steps performed on instances of
type g5.4xlarge and the classification was executed
on an AMD Ryzen 5 5600X 6-Core and 12-Threads,
64 Gb RAM and an NVIDIA GeForce RTX 3090.

9335

MacroF1

dataset | NoUnder [CNN NMI NM2 CC_NN SBC NM3 OBU NCR THT TL 0SS ENN RENN ALLKNN | UBR E2SC_US
K 93.1(0.6) 91.2(1.5) 92.2(1.1) 56.7(9.9) 41.3(3.5) [86.3(3.8) 92.9(1.5) 83.6(1.4)[93.51.0) 93.2(0.7) 91.6(1.3) 69.4(1.4) 68.3(3.4) 92.0(0.9) 92.9(0.7)
L 92.0(0.1) * * 44.92.3) * * - 76.7(1.0) - - - - - 91.4(0.7) 91.7(0.2)
M 87.8(2.5) 87.1(1.3) 85.1(3.5) 30.9(1.7) 51.0(1.7) [77.3(9.1) 80.1(21.4) 60.3(1.5) [80.0(21.4) 72.7(26.5) 79.8(21.2) 69.2(3.5) 67.9(2.6) 86.9(0.6) 88.7(0.3)
TPRGap
K 0.1559 0.075 0.086 0.351 0.580 0.092 0.128 0.018 0.137 0.140 0.081 0.165 0.178 0.070 0.091
L 0.166 * * 0.485 * * - 0.033 - - - - - 0.104 0.124
M 0.308 0.207 0.208 0.619 0.198 0.245 0.434 0.067 0.443 0.579 0.403 0.045 0.042 0.185 0214
Avarage | 0.210 * * 0.485 * * - 0.039 - - - - 0.120 0.143
Speedup
K 1.687 1.963 2.468 6.443 1.325 1.073 1.723 1.038 0.985 1.537 1.855 2.042 1.880 1.884
L * * 2.006 * - 1.878 - - - - - 2.026 1.924
M 2.709 2.867 12498 39.486 1.777 1.038 2.103 0.892 1.318 1.230 0.946 1.713 2.067 2.903
Avarage * * 5.657 * * - 1.901 - - - - - 1.991 2.237

Table 12: MacroF1, TPRGap, and Speedup of the models generated by RoBERTa along with undersampling
approaches. The color scale is the same of previous tables. Cells with “-” represent methods with an execution time
with undersampling greater than the classification time without it and were disregarded. Cells with “*” represent
methods that could not be executed due to a memory allocation failure during the undersampling step.

F Results of SLMs in Large Datasets

Table 12 presents effectiveness (MacroF1), bias
(TPRGap), and efficiency (Speedup) results of the
undersampling methods applied in conjunction
with RoBERTa on the large datasets. In MacroF1,
green cells indicate statistical ties with NoUnder,
and bold cells highlight the highest values for a
dataset. For TPRGap, darker green cells indicate
greater bias reduction than NoUnder, while red
cells represent increased bias. For Speedup color
scale, greener cells reflect higher speedup, whereas
red cells indicate execution times longer than
NoUnder. It is observed that, in addition to the
proposed methods, only IHT and SBC were able
to scale for all large datasets. However, these
methods cannot maintain statistically equivalent
effectiveness in any dataset.

Regarding effectiveness, efficiency, and bias,
the results remain consistent with the analyses pre-
sented in Section 5.4, where UBR and E2SC_US
are capable of reducing model bias, decreasing
the total training time while maintaining statistical
equivalence to the model trained without US.

G Best Calibrated Weak Classifier

We conducted a comparative analysis of weak
classifiers to identify the best option for use in our
undersampling method. Our goal was to find a
classifier that is not only effective and efficient but
also well-calibrated, meaning that its predicted
class probabilities consistently correspond to the
observed accuracy of the classifier (Rajaraman
et al., 2022). In the experiments, we evaluated the
following classifiers: K-Nearest Neighbors (KNN,
used in the original E2SC method), Random Forest
(RF), Naive Bayes (NB), Nearest Centroid (NC),
Decision Trees (DT), Logistic Regression (LR),
XGBoost (XGB), LightGBM (LGBM), and Linear

SVM (LSVM). We used four datasets described
in Table 13 for the analysis.

Dataset Size

Books 33,594
ACM 24,897
20NG 18,846
Twitter 6,997

Table 13: Datasets.
We assessed the calibration of the weak classifiers
using the Brier Score (BS) (Brier, 1950), a scoring
rule used to measure the accuracy of probabilistic
predictions. Brier (Brier, 1950) defines it as:

| NK
BSZNZZ(P(KZJU%)—%)Q,
i—1 j—1

where y;; is the one-hot vector with a value of 1 at
the true class index of x;, and O otherwise. The BS
ranges from 0 (best) to 2 (worst) — the closer to zero,
the better the calibration of the probability estimate.

Weak classifier ~ Average BS

LR 0.37
KNN 0.44
XGB 0.45
LGBM 0.48
NB 0.49

RF 0.5
LSVM 0.73
NC 0.75
DT 0.77

Table 14: Brier Score Average for each weak classifier.

Table 14 presents the average Brier Score (BS)
values for each classification method. It is observed
that the Logistic Regression model is the most cal-
ibrated, even outperforming K-Nearest Neighbors
(KNN). Table 15 presents the MacroF1 values and
execution time. We excluded the LSVM, NC, and
DT methods for this analysis, as they had already
shown significantly high Brier Score (BS) values.
In the table, we see that LR also stands out in both
effectiveness and efficiency, being 13.8x and 97.8x
faster than its competitors while also achieving the

9336

Dataset LR KNN XGB LGBM NB RF
MacroF1 Time (s) | MacroF1 Time (s) | MacroF1 Time (s) | MacroF1 Time (s) | MacroF1 Time (s) | MacroF1 Time (s)
Books 81.2(0.5) 3.82 76.5 (0.5) 1442 | 755(0.5) 41.18 | 78.8(0.4) 5546 | 73.3(0.6) 1.86 7570 (0.6) 154.12
20NG 86.1 (0.7) 5.10 82.8 (0.4) 5.27 77.8(0.7) 74.83 81.8(0.7) 9436 | 77.4(0.5) 3.44 81.64 (0.6) 127.07
ACM 59.6 (0.6) 1.69 58.6 (2.0) 3.43 58.6(0.8) 23.35 62.5(1.5) 2396 | 40.7(0.8) 3.38 60.08 (0.8) 165.34
Twitter | 63.1 (1.1) 0.12 52.9(2.2) 0.71 52.9(1.2) 4.05 53.2(2.0) 3.93 31.4(0.7) 0.40 43.59 (2.1) 7.97

Table 15: Effectiveness and efficiency of weak classifiers.

highest MacroF1 values. Based on these results, we
consider LR the best weak classifier, which is why
it was selected to be part of our E2SC_US method.

H Hyperparameters of ATC models

We use the same methodology discussed in (Cunha
et al., 2023b) to adjust the hyperparameters. For all
models, we set the initial learning rate as 5 x 1072,
the maximum number of epochs as 20, and the
patience as 5 epochs. We performed a grid search
on max_len (150 and 256 for SLMs, 150 for LLMs)
and batch_size (16, 32 and 64 for SLMs, 2 and 4 for
LLMs), as these specified values directly impact
the efficiency and effectiveness of the model. For
the LLMs, we adopted the methodology provided
by (Andrade et al., 2024). Thus, we fine-tuned
the LLMs by applying QLoRA, fixing the initial
learning rate as 2e-4, the number of epochs and
the batch_size as 4, and the max_len as 256.

I Time Complexity - All Methods

Method

Time Complexity

CNN O(n®)
NMI O(n?)
NM2 0(n?)
CC_NN 0(n?)
SBC 0(n?)
NM3 O(n?)
OBU 0(n?)
NCR 0(n?)
IHT O(nlog(n)
TL 0(n?)
0SS O(n?)
ENN O(n?)
RENN O(n?)
ALLKNN O(n?)
AKCS O(n?)
ENUB O(n?)
ENUT 0(n?)
ENUC 0(n?)
ENUR O(n?)
UBR O(nlog(n)
E2SC_US O(n)

Table 16: Time complexity of undersampling methods.

Table 16 presents the time complexity of all
baselines. For the time complexity analysis, our
two proposals can be divided into two steps: (1)
calculation of the probability distribution and (2)
sampling weighted by the obtained distribution.

Let n be the total number of instances in the
dataset. In the E2SC_US method, the time com-
plexity of the first step is equivalent to that of the
logistic regression algorithm used to estimate the

confidence of each document, that is, O(n). In the
UBR method, the first step involves a search for
the nearest neighbors that is done using an approxi-
mated version of KNN (Ponomarenko et al., 2014),
whose complexity is O(nlogn).

The second step, which consists of weighted
random sampling, has constant complexity O(1)
for both methods. Thus, the final complexity is
O(n) for E2SC_US and O(n logn) for UBR.

Macro-F1

Method 50% 60% 70% 80% Balanced
e2sc_US 89.1(0.9) 87.1(0.9)
UBR 90.5(0.5) 86.6(1.1) 56.0(6.6) 35.2(8.0)
TPRGap
Method 50% 60% 70% 80% Balanced
e2sc_US 0.091 0.077 0.060 0.022 0.010
UBR 0.07 0.050 0.004 0.350 0.671

Table 17: MacroF1 and TPRGap of the models gen-
erated by RoBERTa along with the undersampling ap-
proaches using different maximum removal percentages.
Cells in green are statistically equivalent to the highest
numerical classification value. Macro-F1 and TPRGap
for NoUnder are respectively 93.1(0.6) and 0.156.

J Change in the maximum reduction rate

In these experiments, we gradually increased the
maximum removal limit by 10% step until the
dataset became balanced. We tested this varia-
tion using ROBERTa regarding the two proposed
methods, UBR and E2SC_US. Table 17 presents
the MacroF1 and TPRGap results of the models,
where the “NoUnder” represents the model trained
without applying undersampling. The percentage
columns indicate the maximum percentage of the
dataset that the undersampling techniques could re-
duce. The maximum limit for the experiments pre-
sented in the paper was 50%, a theoretical threshold
where performance losses can be avoided, as found
in (Cunha et al., 2023a). Finally, the "Balanced"
column indicates that the US methods reduced the
majority class until it reached the same size as the
minority class. Cells in green indicate a statistical
tie with the NoUnder model. The experiments were
conducted using the luxury beauty data (K), which
was chosen due to its high imbalance (10.73).
Results indicate that, in terms of Macro-F1, the
average value tends to decrease as the removal
percentage increases. This trend continues until

9337

dataset | CNN NMI NM2 CC NN SBC NM3 OBU NCR IHT TL 0SS ENN RENN ALLKNN UBR E2SC_US
A 24906 0027 0085 11621 11443 0045 0216 0.31 0093 0073 0.109 0064 0072 0074 1308 0.026
B 110086 0.064 0215 27.280 11365 0065 0226 0313 0085 0.198 0276 0.166 0.195 0167 1294 0.039
c 4854 0009 0024 3843 2241 0012 0059 0040 0042 0019 0036 0018 0022 0022 0212 0016
D 23157 0020 0063 6791 3.134 0029 0.39 0.106 0091 0060 0.112 0055 0062 0068 0381 0.022
E 40329 0025 0076 13.037 3915 0031 0212 0131 0125 0073 0.113 0072 0082 0117 2219 0028
F 90.988 0.062 0230 29.804 17.660 0.080 0399 0361 0.187 0208 0295 0220 0813 0472 3859 0.053
G 58004 0.042 0.135 15380 21.646 0061 0327 0264 0.160 0.166 0229 0.166 0437 0313 3151 0.040
H 2897 0005 0010 1.890 1713 0006 0061 0028 0058 0013 0027 0013 0020 0023 0147 0016
I 2183 0004 0008 2474 1250 0005 0053 0.029 0048 0012 0026 0014 0054 0042 0097 0015
J 2791 0005 0007 2979 2401 0006 0.100 0.032 0056 0016 0031 0018 0050 0042 0192 0018
Table 18: Undersampling time for the datasets.
datasets | NoUnder _CNN___NMI___NM2__CCNN__SBC___NM3___OBU __ NCR THT TL 0SS ENN __RENN _ALLKNN __UBR _ E2SC_US
A 366.433 269.810 340.329 322.627 295.390 289.799 334.188 266.310 302438 309.881 394.366 380.871 258761 266.044 297.699 318.464 334.785
B 551.192 437.966 473.696 494.413 437.015 392497 346.657 410.095 557.339 447.777 572.473 556.084 372960 363.797 379.263 461.863 432.504
C 226.080 161.181 182.717 206.129 184.102 135.699 181.182 186.013 184.686 202.721 258.822 255384 211.222 217.488 201.768 215.498 161.409
D 616.196 382.343 419.170 424782 403.984 373.120 412.610 480.193 406.266 439.205 519.633 535497 313.155 332.073 425.742 395421 359.800
E 365.993 270.777 278.721 278.792 236.228 202.760 261.127 264700 227.464 309.298 390.247 385.644 219.812 226932 222.781 264.189 233.058
F 1,133.576 773.686 739.941 824.100 714.546 766.416 801.155 851.946 1,009.367 872.291 1,197.111 1,138.421 891.936 927.876 977.119 886.730 745.976
G 516.820 287.591 311.189 318.789 261.194 277.108 293.716 320.897 391.141 309.413 489.285 483.619 370.127 291.108 324982 285.654 264.690
H 148.707 95.459 77.227 92.766 90.233 93.265 97.760 111.547 105.974 90.843 143.731 146.537 96.644 97.960 84.813 85.896 90.850
I 145.117 61.304 83.792 95.200 87.725 49.393 68.100 111.299 165.422 94.398 144.575 181.267 146.428 145.308 148.446 89.381 89.681
J 156.327 62.749 92242 96.195 105224 42911 50961 110.453 104.887 97.302 140.992 160.648 116.850 127.889 116.296 98.865 86.526
Table 19: Classification time of the RoOBERTa model trained alongside the undersampling methods.
datasets | NoUnder CNN NMI NM2 CC NN SBC NM3 OBU NCR IHT TL 0SS ENN RENN ALLKNN UBR E2SC_US
A 2060 1407 1708 1708 1708 1576 1708 1520 1445 1708 1954 1949 1303 1303 1416 1708 1708
B 3249 2427 2667 2667 2667 2459 1554 2380 3155 2667 3230 3230 1947 1888 1718 2667 2667
C 1104 708 878 878 878 606 878 818 821 878 1057 1049 788 788 843 878 878
D 1781 1292 1314 1314 1314 1290 1314 1489 1226 1314 1711 1707 1039 1039 1118 1314 1314
E 2188 1531 1380 1380 1380 941 1314 1571 1071 1380 2179 2178 828 828 857 1380 1380
F 3776 2040 2338 2338 2338 2336 2338 2600 3025 2338 3708 3688 2922 2653 2798 2338 2338
G 2754 1499 1506 1506 1506 1505 1506 1813 2139 1506 2619 2614 1883 1512 1731 1506 1506
H 703 395 378 378 378 376 378 471 474 318 672 670 421 334 349 378 378
1 750 266 375 375 375 195 237 539 706 375 749 738 658 606 630 375 375
] 676 268 338 338 338 177 178 391 513 338 653 643 527 506 516 338 338

Table 20: Number of remaining instances in the training set after applying the undersampling methods.

the point at which the US models are no longer
statistically equivalent to the NoUnder model. This
threshold occurs at 50% for UBR, which supports
the ideas presented in (Cunha et al., 2023a), sug-
gesting that 50% is the limit where the dataset can
be reduced without a loss in effectiveness. How-
ever, we obtained a threshold of 70% for e2sc_US,
which is not contrary to the ideas in (Cunha et al.,
2023a) since the authors discuss how this rate does
not necessarily represent the best reduction rate
for all datasets, as for some of the datasets they
analyzed, the threshold values were higher than
50%, making it merely an average estimate.

Regarding class imbalance bias, in E2SC_US,
TPRGap values decrease as the removal percentage
increases. For UBR, the values also show a
reduction, except at the 80% threshold and
when the data is balanced, where bias increases.
The extreme reduction of 80% of the instances
may eliminate essential patterns, decreasing data
variability and preventing the models from learning
certain patterns. Consequently, the models struggle
to handle these patterns when encountered in the
test set. This limitation is evidenced by the fact
that, in addition to exhibiting high bias, these
models also showed low effectiveness, indicating
that they failed to adapt well to the data patterns.

K Efficiency Gains Analysis

Tables 18, 19, and 20 present, respectively: the time
spent performing undersampling, RoBERTa’s total
classification time (including fine-tuning and pre-
diction time), and number of instances remaining
in the training set after applying undersampling. As
previously presented, for the methods in which it
was possible to define a specific reduction amount,
we limited the reduction to up to 50% of the total
number of instances in the training set — an em-
pirical limit (given the state-of-the-art) for possible
reduction without loss of efficiency (Cunha et al.,
2023a) — or until it equals the minority class.

In simpler terms, we observe that performance
gains primarily result from the reduction in the
training set size, leading to a decrease in the fine-
tuning time of LLMs/SLMs models. Methods that
remove fewer training documents, such as TL and
OSS, exhibit lower performance gains than those
that remove more, such as SBC and NM3. For ex-
ample, in dataset J, the TL method removed only 23
instances, resulting in a classification time nearly
identical to that of the model without undersam-
pling. On the other hand, in the same dataset, the
NM3 method removed more than 70% of the train-
ing data, which, while significantly reducing clas-
sification time, negatively impacted its efficiency.

9338

Majority Class

dataset metrics RoBERTa LLama
NoUnder CNN NMI1 NM2 UBR E2SC_US | NoUnder ~ CNN NM1 NM2 UBR E2SC_US
Fl 90.7(0.6) 89.7(1.5) 90.6(0.7) 90.7(0.7) 90.7(1.2) 90.5(0.9) | 93.3(0.9) 91.8(1.5) 92.5(1.2) 92.9(1.4) 93.1(1.0) 93.3(1.2)
A Precision | 89.9(1.5) 93.3(1.7) 92.0(1.6) 92.4(1.4) 91.6(1.8) 92.1(1.7) | 93.0(1.4) 94.6(1.9) 94.0(1.7) 94.9(1.5) 94.6(2.0) 95.0(1.7)
Recall | 91.6(1.8) 86.4(3.0) 89.3(1.7) 89.1(1.6) 89.9(1.8) 89.0(2.0) | 93.7(1.9) 89.3(2.6) 91.0(2.0) 91.02.2) 91.8(2.3) 91.7(1.7)
F1 91.1(0.6) 89.8(2.1) 90.3(1.0) 90.1(0.5) 90.4(0.9) 91.0(0.9) | 94.4(0.6) 93.7(1.4) 92.2(4.8) 93.9(0.6) 94.5(0.6) 94.0(0.5)
B Precision | 90.2(1.0) 92.7(1.4) 91.0(1.5) 91.3(1.2) 90.9(0.8) 91.2(0.9) | 94.3(1.3) 96.1(1.2) 93.6(3.3) 96.1(1.0) 95.9(0.8) 94.8(1.1)
Recall | 92.1(1.1) 87.3(3.8) 89.7(1.6) 89.1(1.0) 89.9(1.7) 90.8(1.5) | 94.6(1.1) 91.6(2.5) 90.9(6.1) 91.9(1.5) 93.2(0.9) 93.2(0.8)
Fl 94.7(0.9) 94.9(0.9) 95.4(1.2) 95.2(0.9) 95.4(0.8) 94.7(1.0) | 98.1(0.8) 98.1(0.6) 97.9(0.9) 98.6(0.6) 98.3(0.9) 98.4(0.7)
C Precision | 94.3(1.4) 96.0(1.1) 96.2(1.4) 95.5(1.2) 96.1(1.5) 95.8(1.6) | 97.9(1.5) 98.8(0.7) 98.5(1.1) 99.2(0.7) 98.6(0.8) 98.5(0.9)
Recall | 95.3(1.5) 93.9(1.4) 94.6(1.5) 95.0(1.8) 94.9(1.5) 93.6(1.6) | 98.4(0.9) 97.4(1.3) 97.3(1.4) 98.0(1.3) 98.0(1.2) 98.4(0.9)
Fl 92.2(0.8) 91.0(0.8) 91.0(1.2) 89.3(1.2) 91.4(1.0) 91.4(1.4) | 93.7(0.7) 93.3(0.7) 93.0(1.0) 90.3(1.5) 93.2(1.3) 93.1(1.4)
D Precision | 91.3(1.2) 93.0(1.4) 91.8(1.6) 92.5(1.2) 93.5(1.1) 92.9(1.2) | 92.7(1.4) 94.0(1.3) 94.0(1.1) 94.3(0.9) 94.1(1.0) 93.8(1.4)
Recall | 93.3(1.2) 89.1(1.7) 90.3(2.0) 86.2(1.7) 89.5(1.5) 90.1(2.4) | 94.7(1.2) 92.6(1.2) 91.9(1.4) 86.7(2.5) 92.3(2.3) 92.4(2.0)
Fl 93.6(1.2) 93.2(1.1) 92.2(1.4) 92.9(1.3) 92.8(1.1) 92.9(1.2) | 96.2(0.9) 95.4(1.0) 94.2(1.3) 94.4(1.3) 94.7(1.2) 95.0(1.1)
E Precision | 93.0(1.5) 94.6(1.1) 95.4(1.3) 95.1(1.5) 95.5(1.2) 95.4(1.3) | 95.6(1.2) 96.8(0.8) 97.3(0.9) 96.3(1.3) 97.2(0.8) 96.7(1.2)
Recall | 94.2(1.9) 91.8(2.2) 89.3(2.4) 90.8(2.1) 90.4(1.7) 90.6(1.9) | 96.8(1.3) 94.1(1.9) 91.3(2.5) 92.6(1.9) 92.3(2.0) 93.3(1.7)
Fl 96.5(0.6) 95.4(0.7) 95.2(0.8) 95.1(0.8) 95.6(0.9) 95.5(0.8) | 97.1(0.5) 96.5(0.8) 96.1(0.6) 96.2(0.5) 96.4(0.7) 96.8(0.6)
F Precision | 95.8(0.9) 97.5(0.6) 96.9(0.5) 96.9(0.7) 97.2(0.8) 97.4(0.8) | 96.6(0.8) 97.9(0.6) 97.9(0.5) 97.7(0.6) 97.7(0.5) 97.7(0.7)
Recall | 97.1(0.6) 93.5(1.2) 93.6(1.3) 93.4(1.1) 94.1(1.4) 93.8(1.2) | 97.6(0.8) 95.0(1.4) 94.4(1.1) 94.8(0.8) 95.0(1.4) 95.9(0.9)
Fl 94.6(0.8) 94.1(1.1) 93.9(1.3) 93.5(1.2) 93.5(0.7) 93.1(1.0) | 95.6(0.9) 94.5(0.9) 94.0(1.0) 94.2(1.1) 94.1(0.8) 94.4(0.9)
G Precision | 94.3(1.0) 96.2(0.9) 96.6(1.1) 96.9(0.5) 96.7(0.7) 96.3(1.0) | 95.2(1.5) 97.0(1.1) 96.6(0.9) 97.1(0.7) 96.8(0.8) 96.7(1.1)
Recall | 95.0(1.0) 92.1(1.6) 91.5(2.0) 90.3(2.0) 90.5(1.4) 90.2(1.4) | 96.0(0.7) 92.2(1.1) 91.6(1.7) 91.5(2.0) 91.6(1.6) 92.2(1.7)
Fl1 91.7(2.0) 89.7(3.2) 87.7(3.1) 88.3(2.6) 89.0(2.3) 87.7(3.4) | 92.1(2.3) 89.3(1.8) 87.2(1.8) 86.9(1.7) 87.8(1.5) 87.9(1.9)
H Precision | 90.8(3.1) 94.2(2.8) 94.1(3.3) 94.7(3.1) 94.6(2.8) 94.4(3.2) | 90.2(3.4) 92.9(2.2) 94.7(3.2) 93.4(3.5) 92.6(2.8) 93.3(3.5)
Recall | 92.8(2.3) 85.8(4.7) 82.5(5.0) 83.0(4.1) 84.1(2.9) 82.2(5.3) | 94.2(2.2) 86.0(3.1) 80.9(2.8) 81.5(3.2) 83.7(3.3) 83.4(3.2)
F1 95.3(0.9) 93.3(1.3) 93.5(1.6) 93.5(1.9) 94.1(1.4) 94.1(1.5) | 96.8(0.9) 93.2(2.3) 94.1(1.3) 95.4(1.2) 95.3(1.5) 95.1(1.0)
I Precision | 93.3(1.3) 96.0(2.0) 95.1(2.0) 94.8(2.2) 96.0(1.4) 94.6(2.2) | 95.6(1.6) 95.8(1.6) 95.8(1.6) 96.1(1.7) 96.4(1.7) 95.6(1.7)
Recall | 97.4(0.9) 90.9(2.2) 92.0(2.2) 92.3(2.3) 92.3(1.7) 93.6(1.5) | 98.0(1.4) 90.9(4.1) 92.6(2.3) 94.9(2.6) 94.3(24) 94.7(2.3)
Fl 95.4(1.2) 93.2(1.5) 93.4(1.5) 92.1(1.9) 93.2(1.6) 93.6(1.6) | 95.0(1.1) 91.3(2.1) 91.2(2.0) 91.2(1.8) 92.2(1.7) 92.7(1.5)
J Precision | 94.3(1.1) 95.6(1.4) 95.4(1.3) 95.1(1.8) 95.8(2.0) 95.4(1.1) | 92.5(1.4) 93.0(1.4) 93.7(2.6) 92.8(2.3) 92.9(1.7) 93.4(1.9)
Recall | 96.5(1.9) 91.1(2.8) 91.6(2.5) 89.6(3.4) 91.03.3) 92.02.8) | 97.7(1.5) 89.7(3.1) 89.03.0) 89.7(2.7) 91.6(3.2) 92.0(2.7)
Fl 99.4(0.1) - 99.3(0.2) 99.3(0.2) 99.3(0.1) 99.4(0.1)
K Precision 99.4(0.2) - 99.6(0.2) 99.6(0.2) 99.6(0.1) 99.6(0.1)
Recall 99.5(0.2) - 99.0(0.2) 98.9(0.4) 98.9(0.2) 99.2(0.2)
Fl 98.1(0.3) - * * 98.4(0.8) 99.1(0.1)
L Precision 97.2(0.3) - #* * 98.6(1.2) 99.2(0.0)
Recall 99.1(0.2) - * * 98.2(0.4) 99.0(0.2)
Fl1 99.6(0.1) - 99.6(0.0) 99.3(0.3) 99.5(0.0) 99.6(0.0)
M Precision 99.5(0.1) - 99.6(0.0) 99.7(0.1) 99.7(0.0) 99.6(0.0)
Recall 99.8(0.0) - 99.5(0.1) 99.0(0.7) 99.4(0.1) 99.6(0.1)

Table 21: F1, Precision, and Recall of the majority class generated by the ROBERTa and LLama classifiers, along
with the best undersampling methods. The number in parentheses represents the 95% confidence interval. Cells
with “-” represent methods with an execution time with undersampling greater than the classification time without it
and were disregarded. Cells with “*” represent methods that could not be executed due to a memory allocation

failure during the undersampling step.

Another factor that influences performance is
the complexity of the undersampling algorithms
themselves. For instance, the CNN algorithm has
a complexity of O(n?) and, consequently, incurs a
very high execution time in large datasets, affecting
overall performance. It is worth noting that the
proposed methods achieve a balance between selec-
tion speed and the removal of a significant amount
of data, ensuring a reduction in total classification
time without compromising model effectiveness.

Another point that can be observed when
analyzing Table 20 is that among the methods with
the same removal rate -NM1, NM2, CC_NN, IHT,
UBR, and E2SC_US- our proposed methods are
the ones that show the best performance in terms
of effectiveness and bias reduction. This suggests
that the choice of which instances to remove is a
key factor in achieving better results, highlighting
that not only the quantity but also the quality of
the selection makes a difference.

L Classes F1 Behavior

Tables 21 and 22 present F1, precision, and
recall values for the best undersampling methods
found in section 5 (UBR, E2SC_US, CNN, NM1,
NM?2) and for the models without undersampling
(NoUnder) across all datasets, considering the
results obtained using RoOBERTa and LLama as
classifiers. Average values are presented with
confidence intervals in parentheses, based on
results from 10 (for datasets A to J) or 5 folds (for
datasets K to M) for the majority and minority
classes, respectively. As previously mentioned, we
did not consider RoBERTa for the large datasets.

By analyzing Tables 21 and 22, we observe that
by applying undersampling approaches, the clas-
sification model tends to increase the number of
instances attributed to the minority class, which in-
creases this class’s recall, but with a corresponding
reduction in precision. On the other hand, as the

9339

Minority Class

dataset metrics RoBERTa LLama
NoUnder CNN NM1 NM2 UBR E2SC_US | NoUnder CNN NM1 NM2 UBR E2SC_US
Fl1 86.6(0.9) 86.7(1.6) 87.2(1.0) 87.4(0.9) 87.1(1.8) 87.1(1.3) | 90.5(1.2) 89.3(1.8) 89.7(1.5) 90.4(1.7) 90.6(1.4) 90.9(1.6)
A Precision | 88.0(2.1) 82.9(3.0) 85.6(1.7) 85.4(1.8) 86.1(2.1) 853(2.1) | 91.2(2.3) 86.2(29) 83.0(24) 88.1(24) 89.1(2.5) 88.9(2.0)
Recall 85.4(2.5) 91.2(25) 88.9(2.6) 89.6(22) 88.3(2.7) 89.1(2.8) | 89.9(2.3) 92.7(2.7) 91.7(2.6) 93.0(2.3) 92.4(3.2) 93.0(2.5)
F1 86.9(0.9) 86.5(2.0) 86.3(1.4) 86.2(0.9) 86.4(1.1) 87.2(1.2) | 92.0(0.9) 91.6(1.6) 89.6(54) 91.7(0.7) 92.4(0.8) 91.6(0.8)
B Precision | 88.4(1.4) 83.5(3.5) 85.5(2.0) 84.8(1.1) 85.8(2.0) 87.0(1.9) | 92.3(1.4) 88.9(2.8) 88.1(6.7) 89.1(1.7) 90.7(1.2) 90.5(1.0)
Recall 85.6(1.7) 90.022) 87.1(23) 87.7(1.9) 87.1(1.2) 87.4(1.4) | 91.8(2.0) 94.6(1.8) 91.4(3.8) 94.6(1.5) 94.3(1.1) 92.6(1.7)
F1 91.9(1.4) 925(1.3) 93.1(1.8) 92.9(1.4) 932(1.2) 92.1(1.5) | 97.1(1.3) 97.2(0.8) 96.9(1.4) 97.9(0.8) 97.5(1.3) 97.6(1.1)
C Precision | 92.8(2.1) 91.1(1.9) 92.0(22) 92.6(2.5) 92.5(2.0) 90.8(2.1) | 97.5(1.3) 96.3(1.8) 96.0(1.9) 97.1(1.8) 97.0(1.8) 97.6(1.3)
Recall 91.2(2.3) 94.1(1.7) 94.3(2.2) 93.2(2.0) 94.1(24) 93.6(2.6) | 96.7(2.3) 982(1.1) 97.7(1.6) 98.8(1.0) 98.0(1.2) 97.8(1.5)
F1 86.3(1.6) 85.4(1.2) 84.9(1.9) 83.2(1.8) 86.2(1.5) 86.0(2.1) | 88.8(1.3) 88.8(1.3) 88.3(1.6) 85.3(2.0)0 88.7(1.9) 88.5(2.1)
D Precision | 88.1(2.0) 82.8(2.2) 84.02.6) 79.02.2) 83.3(20) 84.1(3.2) | 90.7(1.9) 87.8(1.7) 86.7(2.0) 80.2(3.2) 87.5(3.4) 87.4(2.8)
Recall 84.7(2.3) 88.5(2.5) 86.03.0) 88.1(2.1) 89.3(1.9) 88.2(22) | 87.1(2.7) 89.924) 90.0(1.9) 9L.I(1.4) 90.1(1.8) 89.6(2.4)
F1 85.9(2.6) 86.0(2.0) 84.7(2.3) 85.7(2.5) 85.7(2.0) 858(22) | 91.6(1.9) 90.5(1.9) 88.7(2.3) 88.6(24) 89.4(2.1) 89.7(2.1)
E Precision | 87.4(4.0) 83.7(3.8) 79.8(3.6) 82.1(3.6) 81.4(2.7) 81.7(3.1) | 93.02.7) 88.1(3.4) 83.7(4.0) 85.4(3.2) 852(3.4) 86.7(2.9)
Recall 84.6(3.5) 88.7(24) 90.5(2.7) 89.8(3.2) 90.6(2.5) 90.5(2.7) | 90.4(2.8) 93.2(1.9) 94.5(1.9) 92.3(2.7) 94.1(1.8) 93.1(2.7)
F1 91.9(1.4) 90.5(1.4) 89.9(1.4) 89.8(1.6) 90.7(1.8) 90.6(1.7) | 93.4(1.0) 92.5(1.7) 91.8(1.3) 91.9(1.1) 92.3(1.3) 93.0(1.3)
F Precision | 93.4(1.4) 86.8(2.1) 86.9(2.2) 86.5(2.1) 87.7(2.5) 87.2(2.3) | 94.6(1.8) 89.7(2.6) 88.5(2.1) 89.1(1.5) 89.7(2.6) 91.2(1.8)
Recall 90.5(2.1) 94.7(1.3) 93.3(1.0) 93.4(1.5) 93.8(1.8) 94.4(1.6) | 92.3(1.9) 955(1.3) 95.5(1.1) 94.9(1.4) 95.1(1.2) 94.8(1.6)
F1 85.5(2.2) 85.6(2.5) 85.4(29) 849(2.3) 84.6(1.3) 83.8(2.1) | 87.9(2.7) 86.7(22) 85.6(2.1) 86.2(2.3) 859(1.7) 86.3(1.9)
G Precision | 86.4(2.4) 81.3(3.3) 80.3(3.7) 78.5(3.3) 78.5(2.5) 77.8(2.5) | 89.0(1.8) 81.8(2.3) 80.7(3.1) 80.7(3.7) 80.7(2.8) 81.9(3.3)
Recall 84.7(2.8) 90.4(2.4) 91.4(27) 92.5(1.1) 91.8(1.9) 90.8(2.4) | 87.04.0) 92.4(27) 91.4(24) 92.8(1.8) 92.02.1) 91.5(2.8)
Fl 758(8.0) 764(69) 732(5.8) 744(58) 753(.1) 73.6(62) | 75.6(8.7) 745(3.7) 7273.9) 709(5.6) 71.7(35) 724(52)
H Precision | 79.0(5.9) 69.8(8.1) 64.8(5.7) 65.8(5.7) 66.9(4.8) 65.0(72) | 81.9(6.7) 68.8(4.7) 62.9(3.3) 62.4(3.8) 65.1(3.5) 65.0(4.6)
Recall | 73.8(10.4) 852(7.8) 852(8.9) 86.7(8.6) 86.7(7.1) 86.2(8.3) | 71.4(11.2) 81.9(5.7) 87.1(8.0) 83.3(10.2) 81.0(7.9) 82.9(9.5)
F1 71.0(5.9) 69.6(6.0) 68.5(7.8) 68.1(9.1) 72.3(6.1) 69.0(8.8) | 80.8(6.5) 70.1(7.5) 71.7(5.5) 76.4(5.6) 76.8(6.2) 74.6(4.7)
I Precision | 82.4(5.1) 62.8(5.4) 642(7.6) 64.6(8.8) 66.5(6.3) 67.5(7.3) | 89.3(7.3) 65.1(10.8) 67.6(6.3) 77.1(94) 74.1(7.2) 75.8(8.9)
Recall 63.0(7.6) 79.7(10.8) 74.5(10.6) 73.0(11.4) 79.7(7.0) 71.4(11.8) | 75.7(9.6) 78.8(8.3) 78.009.1) 78.8(9.9) 812(9.2) 76.509.7)
Fl1 66.7(8.0) 62.3(7.4) 62.6(6.7) 57.8(8.3) 62.5(7.9) 63.7(6.9) | 57.5(11.0) 50.6(9.9) 50.9(11.2) 47.9(11.2) 51.2(9.6) 53.7(10.2)
J Precision | 74.9(12.7) 56.4(8.1) 57.3(8.0) 51.4(8.3) 57.4(10.7) 59.8(10.4) | 77.3(13.7) 47.4(12.5) 45.6(10.5) 44.2(10.0) 52.1(13.6) 53.2(11.8)
Recall 61.48.0) 71.8(9.9) 70.7(8.6) 68.6(12.1) 72.6(12.9) 70.6(7.6) | 47.6(10.9) 55.6(8.3) 60.0(16.5) 53.9(15.4) 53.8(12.0) 56.8(12.9)
Fl1 94.0(1.6) - 92.8(1.6) 92.3(2.1) 92.4(1.3) 93.6(1.4)
K Precision 94.5(1.7) - 89.9(2.0) 89.2(3.3) 89.1(1.7) 91.4(24)
Recall 93.6(2.2) - 96.0(1.7) 95.8(2.1) 96.0(1.3) 96.0(0.8)
Fl1 70.0(4.7) - * * 78.6(12.1) 87.7(1.2)
L Precision 82.5(4.6) - * * 76.4(7.5) 86.3(2.2)
Recall 60.7(4.6) - * * 81.1(17.2) 89.2(0.3)
F1 84.5(3.3) - 83.8(1.6) 77.1(8.2) 82.9(1.1) 85.2(1.0)
M Precision 89.9(2.1) - 82.02.6) 69.8(14.3) 79.4(1.7) 84.7(2.5)
Recall 79.8(4.3) - 85.6(1.0) 87.2(29) 86.8(1.6) 85.8(1.2)

Table 22: F1, Precision, and Recall of the minority class generated by the ROBERTa and LLama classifiers, along
with the best undersampling methods. The number in parentheses represents the 95% confidence interval. Cells
with “-” represent methods with an execution time with undersampling greater than the classification time without it
and were disregarded. Cells with “*” represent methods that could not be executed due to a memory allocation

failure during the undersampling step.

datasets | CNN NMI_NM2 CC_NN _SBC _ NM3 OBU NCR _ IHT TL 0SS ENN RENN ALLKNN UBR E2SC_US
A 13002) LI0.0) 1202) 12(0.1) 12(0.01) LI10.1) 140.1) 13(02) 1202) 090.1) 10O.I) 14(02) 1402) 1302) 120.1) LI0.1)
B 1.000.1) 120.1) 1.10.1) 12(0.1) 14(02) 1.6(0.3) 14(02) 1.00.1) 1202) 1.00.1) 100.1) 1502 1.502) 1502) 120.1) 1.3(0.1)
c 150.3) 1.3(03) 1.10.3) 13(04) 1.7(03) 1.3(0.3) 13(02) 1.3(02) 12004) 09(02) 090.2) 12(03) 1.10.3) 1203) 1.103) 14(0.3)
D 1502) 1502) 1502) 1.603) 1.602) 1.50.3) 13(03) 1.60.3) 1403) 12(02) 120.2) 2.004) 1903) 1.604) 1603) 1.70.3)
E 120.1) 1.3(02) 130.1) 1.50.1) 1.904) 1.50.2) 140.1) 1.7(0.3) 1200.2) 09(0.0) 1.00.0) 1.803) 1.80.3) 1.803) 140.2) 1.6(0.2)
F 14004) 1.6(04) 14(04) 1504) 1504) 1.504) 1304) 1.2(03) 1304) 1.00.3) 1.00.2) 3.042) 1304) 2838) 1404) 1.50.4)
G 150.1) 1.7002) 1.602) 1.902) 1.8(03) 1.80.3) 1.6(02) 1.3(02) 1.70.2) 1.1002) 1.1(0.2) 14(03) 1.80.3) 1.60.2) 180.2) 2.0(0.3)
H 150.2) 1.9(03) 1.6(0.3) 1.6(02) 1.6(03) 1.60.3) 14(03) 14(0.3) 1.70.2) 1.002) 110.2) 1.603) 1.604) 1803) 180.2) 1.7(0.2)
1 23(04) 1.8(04) 1.6(0.3) 1.7(04) 3.00.7) 2.1(0.2) 1403) 090.2) 1705) 1.00.1) 080.2) 1.103) 110.2) 1.00.2) 1.703) 1.7(0.4)
] 24(02) 17(02) 17(0.3) 1502) 3504) 3.1(0.3) 1502) 150.0) 1702) L10.1) 1.002) 14(02) 120.2) 140.1) 1.60.2) 1.8(0.1)

Table 23: Speedup results in the total cost (time) for generating the models using the RoBERTa classifier in conjunction with
undersampling approaches. The greener the cell, the greater the reduction in total training time compared to the approach without
undersampling. The redder, the longer the time. Numbers in parentheses represent 95% confidence intervals

model reduces the number of documents attributed
to the majority class, the opposite effect occurs:
recall decreases while precision increases. These
changes occur in a balanced way so that recall com-
pensates for precision, keeping the F1-score of the
classes practically unchanged before and after un-
dersampling, as evidenced in the tables below and
in the results presented in the main article. Despite
maintaining overall classification effectiveness, the
decrease in documents assigned to the majority

class is responsible for a significant improvement
(decrease) in the model’s bias. These results are
consistent across all datasets and classifiers.

M Speedup with confidence interval

Table 23 is identical to Table 4, except for the
confidence interval values, which were omitted
from Table 4 due to space limitations and to
improve readability. As previously mentioned, we
did not consider RoOBERTa for the large datasets.

9340

