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Abstract

The advent of 1-bit large language models
(LLMs), led by BitNet b1.58, has spurred inter-
est in ternary LLMs. Despite this, research and
practical applications focusing on efficient edge
inference for ternary LLMs remain scarce. To
bridge this gap, we introduce Bitnet.cpp, an in-
ference system optimized for BitNet b1.58 and
ternary LLMs. Given that mixed-precision ma-
trix multiplication (mpGEMM) constitutes
the bulk of inference time in ternary LLMs, Bit-
net.cpp incorporates a novel mpGEMM library
to facilitate sub-2-bits-per-weight, efficient and
lossless inference. The library features two
core solutions: Ternary Lookup Table (TL),
which addresses spatial inefficiencies of previ-
ous bit-wise methods, and Int2 with a Scale
(I2_S), which ensures lossless edge inference,
both enabling high-speed inference. Our exper-
iments show that Bitnet.cpp achieves up to a
6.25x increase in speed over full-precision base-
lines and up to 2.32x over low-bit baselines,
setting new benchmarks in the field. Addition-
ally, we expand TL to element-wise lookup ta-
ble (ELUT) for low-bit LLMs in the appendix,
presenting both theoretical and empirical evi-
dence of its considerable potential. Bitnet.cpp
is publicly available at https://github.com/
microsoft/BitNet/tree/paper, offering a
sophisticated solution for the efficient and prac-
tical deployment of edge LLMs.

1 Introduction

In recent years, large language models have gar-
nered widespread attention due to their exceptional
performance across a variety of tasks. However,
the growing demand for efficient deployment on
edge devices, particularly driven by data privacy
concerns, poses challenges due to the limited com-
putational power and bandwidth of these devices.
To address these challenges, model compression
techniques are frequently employed. Notable ex-
amples benefiting from such techniques include
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Figure 1: A comparison of end-to-end inference speeds
on a 100B ternary LLM. (bz) represents the bits per
weight, where x denotes specific value. "N/A" indicates
that the tested CPU cannot host the specified model size
with the given kernel.

Gemini-Nano (Anil et al., 2024) and Phi3-mini
(Abdin et al., 2024), both designed for mobile and
personal devices. Furthermore, recent advance-
ments by BitNet b1.58 (Wang et al., 2023; Maet al.,
2024) represent a significant development in edge
LLM inference, introducing 1-bit LLMs by quantiz-
ing all weights to ternary values therefore reducing
the bits per weight (bpw) to 1.58, while preserving
accuracy comparable to full-precision LLMs. Sub-
sequent releases of ternary LLMs, including TriLM
(Kaushal et al., 2024), Llama3-8B-1.58 (Mekkouri
et al., 2024), and BitNet a4.8 (Wang et al., 2024a),
have demonstrated the effectiveness and applicabil-
ity of ternary architectures, thereby extending the
boundaries of the 1-bit era. Despite the burgeoning
interest in ternary LLMs, the conversion of their
theoretical benefits into practical advantages during
inference is still understudied.

To fill this gap, we aim to enhance the perfor-
mance of ternary LLMs edge inference by optimiz-
ing mpGEMM (e.g., 8-bit activation and 1.58-bit
weight). However, the non-integer bpw charac-
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Figure 2: An example to show lossless inference for BitNet b1.58 with Bitnet.cpp.

teristic of ternary weights conflicts with the rules
for computer memory access alignment, thus pos-
ing challenges in designing a sub-2-bit-per-weight,
efficient edge mpGEMM for ternary LLMs. Cur-
rently, TQ1_0 in llama.cpp(lla) utilizes 1.69 bits
to store ternary weights, but it is slower compared
to TQ2_0 and T-MAC(Wei et al., 2024), which
use 2 bits to maintain alignment. Moreover, prior
implementations of mpGEMM have not achieved
lossless inference for BitNet b1.58, as they fail
to fully align with BitNet b1.58 training schemes
during inference.

To address these issues, we develop Bitnet.cpp,
which incorporates a novel mpGEMM library. Our
key idea is to avoid intricate bit-level manipulations
by directly operating the weight elements when
designing mpGEMM, while strictly aligning with
BitNet b1.58 training schemes. Based on our ideas,
the library not only resolves spatial inefficiencies,
but also surpasses existing solutions in terms of per-
formance (Figure 1), achieving lossless inference
for BitNet b1.58 (Figure 2). To this end, our work
makes several contributions:

* First, we conduct a comprehensive survey of cur-
rent cutting-edge mpGEMM methods and iden-
tify their limitations when applied to ternary
LLMs. (Section 2)

* To overcome these limitations, we design and im-
plement a ternary mpGEMM library incorporat-
ing our innovative kernels, TL and I12_S, which
we integrate into Bitnet.cpp. This library facili-
tates fast and lossless inference through element-
wise design and precise alignment with training
schemes. (Section 3)

* We evaluate Bitnet.cpp on multiple edge de-
vices and demonstrate that it achieves a up to
6.25x speedup compared to state-of-the-art base-
lines, while realizing lossless inference for Bit-
Net b1.58. (Section 4)

* We use TL2_0 to discuss the advantages of Bit-
net.cpp compared to prior approaches with re-
spect to computational and memory access effi-
ciency.(Section 5)

* Finally, in the appendix, we extend TL beyond
ternary LLMs, to element-wise lookup table
(ELUT) for low-bit LLMs. We perform detailed
analyses of ELUT (Appendix A), demonstrating
its high efficiency and untapped potential. (Ap-
pendix B).

2 Ternary LLM & mpGEMM on Edge

In this section, we present a detailed examination of
the characteristics of ternary LLLMs and introduce
a systematic taxonomy of current edge mpGEMM
methods, as illustrated in Figure 3. We aim to
delineate the limitations of existing mpGEMM ap-
proaches in handling ternary LLMs, informed by
our comprehensive survey, with the objective of
guiding future optimizations.

2.1 Ternary LLM: Features

Ternary Weights A distinctive characteristic of
ternary LLMs is that the weights in the transformer
layers are ternary, allowing only three possible val-
ues: {-1, 0, 1}. Consequently, the information
content of these weights is approximately 1.58 bits
per weight, as calculated by log(3)/log(2). This
substantial compression not only markedly reduces
the model size, but also enables opportunities for
further optimization with existing mpGEMM meth-
ods, such as those employed in llama.cpp and T-
MAC.

Lossless Inference for BitNet b1.58 BitNet b1.58
performs ternary quantization on weights and int8
per-tensor quantization on activations during train-
ing. Based on this, if the training constraints are
preserved during inference, lossless inference can
be achieved for BitNet b1.58, as shown in Figure
2.
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Figure 3: A taxonomy of mpGEMM solutions for
ternary LLMs on edge devices. TL and I2_S are inte-
grated in Bitnet.cpp, while QX and TQX are integrated
in llama.cpp.

2.2 mpGEMM on Edge: Definitions

MAD-based and LUT-based We classify edge
mpGEMM methods into two computational strate-
gies: multiply-then-add (MAD)-based and
lookup table (LUT)-based. The MAD-based strat-
egy performs dot product calculations, while the
LUT-based strategy employs lookup tables to store
precomputed values, thereby enabling rapid accu-
mulation via table lookups.

Bit-wise and Element-wise Edge mpGEMM meth-
ods are additionally classified based on the fun-
damental unit of computation into Bit-wise and
Element-wise categories. Bit-wise methods pro-
cess data at the bit level, focusing solely on bit op-
eration without considering the attributes of weight
elements, precluding non-integer bits per weight.
In contrast, element-wise methods perform compu-
tations at the element level, taking into account the
distinct properties of each weight element, which
enables non-integer bits per weight.

2.3 mpGEMM on Edge: Taxonomy (Figure 3)

Bit-wise LUT-based (Up left) Recent research
by T-MAC has shown that bit-wise LUT-based
methods significantly outperform MAD-based ap-
proaches in edge inference, particularly emphasiz-
ing their efficiency for low-bit LLMs. However,
when applied to ternary LLMs, these bit-wise LUT-
based methods exhibit spatial inefficiencies, lead-
ing to a substantial performance decline in environ-
ments with limited bandwidth.

Bit-wise MAD-based (Down left) As a foun-
dational framework for LLM edge inference,
llama.cpp has pioneered several low-bit edge
mpGEMM methods, predominantly bit-wise MAD-
based, including the QX_0 and QX_K series. For

instance, Q2_K utilizes the K-quants method to
quantize weights to 2 bits, thereby ensuring the uni-
versality and correctness of the quantization. How-
ever, the application of Q2_K to ternary weights
introduces complications: in addition to wasted
space, maintaining accuracy with K-quants neces-
sitates a multi-step dequantization process prior to
performing the dot product, consequently increas-
ing the overall latency.

Element-wise MAD-based (Down right) In fact,
llama.cpp introduces two element-wise MAD-
based methods for ternary LLMs: TQ1_0 and
TQ2_0, with bits per weight of 1.69 and 2.06, re-
spectively. These methods leverage the ternary
nature of the weights to avoid the multi-step de-
quantization required by K-quants, thereby signif-
icantly boosting performance. Despite these ad-
vancements, the lack of support for tensor-wide
quantization means llama.cpp relies on per-block
quantization with a static block length of 256 for
activations (e.g., Q8_K). To accommodate this lim-
itation, TQX_0 also utilizes the block quantization
scheme. However, this approach is inconsistent
with the computational methods used during Bit-
Net b1.58 training, thus hindering TQX_0 from
achieving lossless inference.

3 Methodology

Kernel type bpw | Lossless
TL1_0 | LUT-based 2 X
TL1_1 | LUT-based 2 v
TL2_0 | LUT-based | 1.67 X
TL2_1 | LUT-based | 1.67 v
12.S | MAD-based 2 Ve

Table 1: Bitnet.cpp ternary mpGEMM library.

This section addresses the limitations of existing
edge mpGEMM methods, as previously discussed,
through the design and implementation of a novel
ternary mpGEMM library, summarized in Table 1.
We aim to showcase our pioneering techniques for
efficient edge inference of ternary LLMs, focusing
on two key dimensions: fast and lossless.

3.1 Fast Edge Inference

For MAD-based methods, llama.cpp has imple-
mented TQ1_0 and TQ2_0, which facilitate rapid
ternary LLM edge inference. However, the current
bit-wise approach for LUT-based methods does
not fully exploit the potential of ternary LLMs
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Figure 4: A simple example to explain the differences between various methods for completing mpGEMM when
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the bit-wise LUT-based solution, where the weights are split into different bit indices, and the result is obtained
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LUT-based solution, where all possible values of the weights are enumerated to obtain the index, and the result is
obtained by performing a lookup in the LUT, followed by accumulation. A, refers to the x, bit in weight A. In (2),

g=4and b = 2; whereasin (3) g =2 and C = 3.

for fast edge inference. Consequently, we have
developed the element-wise LUT-based (ELUT)
mpGEMM, which not only reduces bpw but also
addresses the spatial inefficiencies inherent in bit-
wise methods through element-wise mirror con-
solidation. To effectively implement ELUT in
ternary LLMs, noted as TL, we mitigate issues
such as misaligned memory access through signed-
unsigned weight splitting, overcome hardware in-
struction support deficiencies with 1bit sign oper-
ation, and resolve misaligned block computations
via block-fitting weight splitting. This subsection
will elaborate on our design and implementation
strategies. For an in-depth analysis of the reasons
behind ELUT’s acceleration and its broader im-
plications beyond ternary LLMs, please refer to
Appendix A.

3.1.1 Design: TL

Element-wise LUT-based mpGEMM The bit-
wise LUT-based mpGEMM, designed for gener-
ality, uses 2-bit storage for ternary weights, lead-
ing to space inefficiency, thus negatively affecting
speed. To overcome these limitations, we intro-
duce an element-wise LUT-based mpGEMM ap-
proach. In the following, we delineate the key dis-
tinctions among MAD-based, bit-wise LUT-based,
and element-wise LUT-based mpGEMM methods.

K
R=) AW (M
i1
b K/g
R=> Y Look-up(bLUT;, Wi;)  (2)
1751

K/g
R = Look-up(eLUT;, W;) 3)
1
Wez, |W|=C 4)

Consider a simple GEMM computation involv-
ing two input matrices: A (1, K) and B (K, 1).
As shown in Equation 1, MAD-based mpGEMM
computes the result using the dot product. In
LUT-based mpGEMM, the conventional approach
employs a bit-wise representation of the LUT, as
shown in Equation 2, where b denotes the bit-width
of the weight (2 for ternary weights, as 3 < 2?),
and g represents the group size. The bit-wise LUT
(bLUT) has a size of v9. By relaxing the bit-width
restriction and adopting an element-wise represen-
tation of the LUT, as shown in Equation 3, a finer-
grained expression is obtained. In this case, the
element-wise LUT (eLUT) has a size of C'Y, where
C denotes the cardinality of the weight set (3 for
ternary weights). Figure 4 illustrates a simple ex-
ample highlighting these differences.
Element-wise Mirror Consolidation (Wei et al.,
2024) introduced the concept of mirror consolida-
tion, positing that during LUT enumeration, half of
the values for b9 are inversely related to the other
half, effectively halving the LUT size. Extending
this concept to CY results in what we term element-
wise mirror consolidation. For the element-wise
LUT-based solution, due to the 128-bit SIMD reg-
ister instruction length (e.g., AVX2 vpshufb), CY is
constrained to a maximum of 16 (16 x int8 = 128).
Without element-wise mirror consolidation, the
maximum value of g for ternary LLMs remains
at 2, maintaining the same bpw as the bit-wise
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LUT-based method (4 bits for 2 weights, 32 < 2%,
However, employing element-wise mirror consol-
idation increases the maximum g to 3, thus com-
pressing bpw to 1.67 (5 bits for 3 weights, % < 2%).
Consequently, we have developed two practical de-
signs for TL. We refer to the design with g = 2
as TL1 and the design with g = 3, which incorpo-
rates element-wise mirror consolidation, as TL2.
Algorithm 3 details the design of TL1, while Algo-
rithm 4 outlines that of TL2.

3.1.2 Implementation: TL

Signed-Unsigned Weight Splitting To implement
element-wise mirror consolidation, we introduce
signed-unsigned weight splitting, where we use a
separate 1-bit sign weight to store the sign of the
enumeration, and a 4-bit index weight to store the
corresponding LUT index for unsigned enumera-
tion. It is evident that using continuous 5-bit stor-
age for 3 weights would cause severe memory ac-
cess misalignment. Since LUT-based mpGEMM is
inherently memory-intensive, the additional mem-
ory accesses caused by misalignment would signif-
icantly degrade performance. In contrast, signed-
unsigned weight splitting allows three weights to
be represented using 5 bits, adhering to the element-

wise approach, while simultaneously avoiding mis-
alignment issues in computation and memory ac-
cess. Figure 5 demonstrates the detailed compu-
tation flow of TL2, using signed-unsigned weight
splitting.

1bit Sign Operation Determining the sign of the
value indexed from the LUT using only 1 bit is
challenging, as values are represented in two’s com-
plement, and the design must ensure compatibility
with SIMD instructions.

x = sign @ (sign + )

5
x € int8, sign € {0,1} ©)

After evaluating multiple methods, we selected the
approach presented in Equation 5 to address the
issue. This sequence of operations, which includes
the XOR and ADD operations, enables the sign to
be determined by a single bit and is fully compat-
ible with both the AVX?2 and NEON instructions.
When the bit of sign is 0, the result remains un-
changed; otherwise, the result is converted to its
negative value.

Block-fitting Weight Splitting The TL series em-
ploys an LUT-centric data layout for mpGEMM
to address inefficiencies in memory storage and
access, as introduced by T-MAC. When adopting
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this layout, it is crucial to ensure that the minimal
compute blocks align precisely with the weight ma-
trix. As illustrated on the left side of Figure 6, for
TL1, the block length B K must be divisible by the
matrix dimension K. This condition is easily met
in TL1, as ¢ = 2, meaning K only needs to be a
multiple of 2. However, the situation differs for
TL2. Most LLM weight shapes do not have K as
a multiple of 3 when using TL2, where g = 3. To
address this, we introduce block-fitting weight split-
ting, which statically divides the weight into two
parts to fit the blocks. After splitting, as shown on
the right side of Figure 6, one portion of the weight,
with dimensions ThreeK = | 4= x BK3, is
computed using TL2, while the remaining portion,
TwoK = K — ThreeK, is computed using TL1.
By applying block-fitting weight splitting, we re-
solve the block mismatch issue without requiring
additional padding, thereby preventing potential
latency increases.

3.2 Lossless Edge Inference

To achieve lossless inference for BitNet b1.58, this
subsection first identifies the gaps between existing
methods and lossless inference. It then presents
innovative approaches for achieving lossless in-
ference using both MAD-based and LUT-based
methods.

3.2.1 Design & Implementation: TL

Since table lookups require SIMD instructions oper-
ating on 8-bit data, a potential conflict arises when
enumerating sums that might overflow if stored in
8-bit integers. T-MAC addresses this issue by quan-

bm’ bm *

tizing the accumulated sum to int8; however, this
approach introduces additional losses, preventing
lossless inference. To resolve this, we introduce the
pack-and-unpack technique. First, we maintain the
sums as int16 without additional quantization and
split the int16 enumerated sums into two parts us-
ing the pack instruction. Then, during the indexing
process, we apply the table lookup twice. After-
ward, we use the unpack instruction to concatenate
the two parts, ultimately obtaining the desired int16
result. Kernels that utilize typical additional quan-
tization are TL1_0 and TL2_0, whereas those that
use the pack-and-unpack technique are TL1_1 and
TL2_1.

3.2.2 Design & Implementation: 12_S

Due to inconsistency with training schemes, ex-
isting element-wise MAD-based methods do not
enable lossless inference for BitNet b1.58. In Bit-
net.cpp, 12_S is designed based on the element-
wise approach, adhering strictly to the ternary
weight and per-tensor int8 activation quantization
settings of BitNet b1.58 training, thereby ensur-
ing lossless inference. Furthermore, 12_S performs
comparably with TQ2_0 and supports mpGEMM
dimensions K that are multiples of 128, while
TQ2_0 only supports multiples of 256. As a re-
sult, we have optimized the MAD-based solutions
and integrated the implementation into Bitnet.cpp.

4 Experiments

We evaluated the performance of Bitnet.cpp for
end-to-end edge inference for ternary LLM. Com-
pared to state-of-the-art methods, Bitnet.cpp signif-
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referenced in (Wang et al., 2024b). Here, (bx) denotes the bpw value, where x represents the respective bpw.
Detailed performance information can be found on Table 7.

icantly improves ternary LLM edge inference per-
formance across different CPU architectures and
model sizes under the sub-2-bits-per-weight condi-
tion. For quality evaluation, compared to Float16,
TL1_0 and TL2_0 exhibit negligible loss, whereas
12 S, TL1 1, and TL2 1 achieve lossless in BitNet
b1.58.

4.1 Speed Evaluation
4.1.1 Devices

We conducted a performance evaluation of Bit-
net.cpp on two devices: the Apple M2 Ultra and
the Intel i7-13700H. These devices represent the
ARM and x86 architectures, respectively, covering
most edge devices and ensuring broad applicability
and reliable performance results for Bitnet.cpp.

4.1.2 Baselines

We conducted experiments from two perspectives:
lossless inference and fast inference. For the loss-
less inference aspect, we chose llama.cpp Float16
as the baseline and compared it with 12_S from
Bitnet.cpp. This comparison evaluates the lossless
inference performance of Bitnet.cpp, demonstrat-
ing its improvements in both accuracy and speed.
For the fast inference aspect, we conducted ex-
periments based on the two features of TL2_O:

element-wise and LUT-based. llama.cpp includes
two element-wise MAD-based solutions, TQ1_0
and TQ?2_0. To neutralize the effect of bpw, TQ1_0,
which has a bpw nearly identical to TL2_0, was
selected for comparison. This comparison aims
to evaluate the performance differences between
MAD-based and LUT-based solutions. For T-MAC,
a bit-wise LUT-based solution, the 2-bit kernel was
selected for comparison with TL2_0 to assess per-
formance differences between element-wise and
bit-wise methods.

4.1.3 End-to-end Inference Speed

We evaluated the token generation speed of Bit-
net.cpp and observed a significant speed advan-
tage across different CPU architectures and model
sizes compared to baselines. As illustrated in Fig-
ure 7, I2_S achieves up to a 6.25x speedup com-
pared to Float16, demonstrating that Bitnet.cpp
provides a comprehensive advantage in both accu-
racy and speed. Furthermore, TL2_0 outperforms
T-MAC by up to 2.32x on the Intel i7-13700H and
by up to 1.19x on the Apple M2 Ultra, indicating
a notable improvement in LUT-based mpGEMM
performance. Moreover, TL2_0 surpasses TQ1_0,
with up to 1.33x speedup on the Intel 17-13700H
and 1.65x on the Apple M2 Ultra, further improv-
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Figure 8: Multi-threaded end-to-end inference performance of the 3.8B model on Intel i7 13700H.

ing performance in element-wise mpGEMM with
bpw below 2. As detailed in Table 7, TL2_0
reaches 7.45 tokens/s on the Apple M2 Ultra and
1.69 tokens/s on the Intel i7-13700H, outperform-
ing previous ternary kernels in 100B ternary LLM
inference on edge devices. These findings highlight
the significant inference benefits of Bitnet.cpp.

4.2 Quality Evaluation

We used the bitnet_b1_58-large! model and the
perplexity? tool from llama.cpp for quality eval-
uation. For baselines, Floatl6 and Q4_0 from
llama.cpp were selected for comparison with Bit-
net.cpp. For tasks, we used WikiText2(Merity et al.,
2016) to measure perplexity (the lower, the bet-
ter), HellaSwag(Zellers et al., 2019) and Wino-
Grande(Sakaguchi et al., 2021) to measure accu-
racy (the higher, the better). As shown in Table 2,
both TL1_0 and TL2_0 achieve nearly identical
perplexity compared to Float16 on WikiText2 and
maintain accuracy comparable to Float16 on Wino-
Grande and HellaSwag. 12_S, TL1_1, and TL2_1
exhibit lossless performance relative to Float16
across all tasks. These results indicate that the loss
introduced by Bitnet.cpp is negligible.

5 Discussion

5.1 Memory-Computation Trade-off

The execution speed of a kernel is governed by
both instruction computation speed and data ac-
cess speed. The former is influenced by computa-
tional complexity, instruction types, and pipeline

"https://huggingface.co/1bitLLM/bitnet_b1_
58-1large

thtps://github.com/ggerganov/llama.cpp/tree/
master/examples/perplexity

Method WikiText2 | Winograd | HellaSwag
Perplexity] | Accuracyf | Accuracy?

Floatl6 | 11.29 55.32 43.0

Q4.0 11.57 55.09 42.25

TL1_0 11.30 55.32 43.0

TL2_0 11.30 55.32 43.0

TL1_1 11.29 55.32 43.0

TL2_1 11.29 55.32 43.0

12_S 11.29 55.32 43.0

Table 2: End-to-end inference quality.

depth, while the latter depends on memory access
complexity, data locality, and the type of memory
accessed. Ultimately, kernel execution speed is
constrained by the slower of the two. Naturally,
we refer to computation-related costs as compu-
tation overhead and data-access-related costs as
memory overhead. Thus, optimizing kernel per-
formance is essentially a matter of exploring the
compute-memory trade-off.

5.2 Towards Compute: Compared to TQ1_0

For the computation overhead comparison, we se-
lected TQ1_0, which has a bpw value nearly iden-
tical to that of TL2_0 to ensure a fair comparison.
As shown in Figure 8(a), the performance curves of
TL2_0 and TQ1_0 in a multi-threaded environment
exhibit similar trends, with TL2_0 consistently out-
performing TQ1_0 across all threads. These re-
sults demonstrate that LUT-based solutions con-
sistently outperform MAD-based alternatives in
computation-related overhead, reinforcing their ad-
vantage in computational efficiency and resulting
in notable performance improvements.
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5.3 Towards Memory: Compared to T-MAC

For the memory overhead comparison, TL2_0 has
an advantage over T-MAC in terms of bpw, thereby
modestly increasing the performance ceiling of
memory-intensive LUT-based solutions. As a re-
sult, significant performance improvements are
achieved, particularly in low-bandwidth environ-
ments. As shown in Figure 8(b), TL2_0 outper-
forms T-MAC in a multi-threaded setting. Notably,
TL2_0 continues to scale as the number of threads
increases to five, whereas T-MAC’s performance
starts to degrade. This indicates that TL2_0 reaches
the memory-bound state later than T-MAC, thereby
delaying bandwidth saturation and extending the
performance ceiling.

5.4 Generalization: ELUT

To enhance generality, we extend the design
concept of TL beyond ternary LLMs to ELUT
(element-wise LUT-based mpGEMM). Detailed
information ELUT can be found in the Appendix
A and Appendix B. ELUT is applicable to LLMs
whose weights assume a finite set of values and pro-
vides a finer-grained alternative to bit-wise LUT-
based mpGEMM. For LL.Ms with an integer bpw,
bit-wise LUT-based methods and ELUT are the-
oretically equivalent. The primary contribution
of ELUT lies in its ability to support mpGEMM
design for LLMs with non-integer bpw, such as
ternary LLMs.

6 Related Work

LUT-based mpGEMM Previous research has ex-
plored the application of LUT-based mpGEMM in
deep learning. (Ganji et al., 2023) employs LUT-
based mpGEMM to accelerate computations in con-
volutional neural networks, while (Davis Blalock,
2021; Tang et al., 2023) utilize this approach to
process vector-quantized activations. For LLM in-
ference, (Park et al., 2024; Maleki, 2023; Frantar,
2023) apply LUT-based GEMM on GPUs. How-
ever, in practice, these methods are often slower
than MAD-based approaches, such as (cut; bit), due
to the inefficiency of rapid table access on GPU.

LLM Inference FlashAttention (Dao et al., 2022;
Dao, 2023) introduces an innovative approach to
GPU attention kernel design. VLLM (Kwon et al.,
2023) and TensorRT-LLM (trt) have optimized
end-to-end inference performance using system-
atic techniques. Powerinfer (Song et al., 2024; Xue
et al., 2024) proposes novel strategies that intel-

ligently balance workloads across heterogeneous
devices, improving overall inference efficiency.

LLM Quantization Post-training quantization
(PTQ) refers to converting a full-precision LLM
to a low-precision without retraining, with related
works including (Xiao et al., 2023; Lin et al., 2024;
Chee et al., 2023; Frantar et al., 2023; Dettmers
et al., 2023, 2022; Shao et al., 2024). However,
PTQ inevitably results in quantization loss. In con-
trast, Quantization-Aware Training (QAT) effec-
tively avoids this issue. QAT involves retraining
a pretrained model to obtain a quantized model,
thus mitigating quantization loss. Relevant works
include (Liu et al., 2023; Chen et al., 2024; Du
et al., 2024). BitNet B1.58 adopts QAT, creating
conditions for lossless inference in the system.

7 Conclusion

In this paper, by optimizing mpGEMM, we ad-
dress the inefficiencies caused by the conflicts of
non-integer bpw in ternary LLMs with memory ac-
cess alignment rules, and enable lossless inference
for BitNet b1.58. Our key idea is to utilize a finer-
grained element-wise scheme instead of bit-wise,
and consistent with BitNet b1.58 training schemes.
Based on our key ideas, we develop Bitnet.cpp,
featuring TL, the first element-wise LUT-based
mpGEMM kernel for ternary LLMs, and 12_S, the
first lossless MAD-based kernel for BitNet b1.58.
The practical outcomes of our research are notewor-
thy. We have demonstrated that Bitnet.cpp achieves
up to 6.25x speedup compared to baselines and pro-
vided lossless inference for BitNet b1.58. To en-
hance the generality of our research, we extended
the TL to ELUT for low-bit LLMs, highlighting its
efficiency and potential. This paper presents exten-
sive work on optimizing edge inference for ternary
LLM:s from both algorithmic and engineering per-
spectives. It offers the research community new
insights into handling ternary and non-integer bpw
weights, shows the practical advantages of ternary
LLMs and presents the industry with innovative so-
lutions for deploying fast, lossless LLMs on edge
devices.

9313



Limitations

Bitnet.cpp has the following limitations:

* Bitnet.cpp currently only provides a practical so-
lution for ternary LLM inference on edge devices.
In the future, we plan to extend the Bitnet.cpp
to offer efficient inference solutions for ternary
LLMs across multiple devices.

* Bitnet.cpp is specifically designed for ternary
LLMs, with a relatively narrow range of appli-
cable model architectures. In response to this,
we have expanded the element-wise LUT-based
(ELUT) method to cover low-bit ranges in the
appendix. However, it still lacks support from
actual LLMs other than ternary ones.

* Bitnet.cpp does not discuss in detail the accel-
eration specifics of LLMs during the prefilling
stage, as there has been a shift in the resource
bottleneck from being memory-bound during the
decoding stage to computation-bound during the
prefilling stage. Therefore, the original optimiza-
tion methods are no longer applicable, and we
will continue to explore optimization methods
for the prefilling stage.
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In the appendix, we extend the concept of
element-wise LUT-based solutions beyond ternary
LLMs, analyzing its capabilities and potential from
a more general perspective.

A Insight

In this section, we will analyze the computational
complexity and memory access complexity of the
element-wise LUT-based (ELUT) mpGEMM algo-
rithm. Based on this analysis, we will compare our
results with those of MAD-based solutions and bit-
wise LUT-based solutions, drawing the conclusion
that the ELUT algorithm exhibits comprehensive
advantages in both computation and memory ac-
cess compared to previous algorithms.

A.1 Complexity

In general, mpGEMM requires two steps to com-
plete: the preprocessing stage and the accumulation
stage. As shown in Algorithm 1, for the MAD-
based solution, the preprocessing stage involves
quantizing the floating-point activations to integers,
with a computational complexity of O(/NK) and
a memory access complexity of O(NK). In the
accumulation stage, the MAD-based solution per-
forms element-wise multiplication and accumula-
tion for the K corresponding elements across M
rows and N columns, resulting in a computational
complexity of O(M NK) and a memory access
complexity of O(MNK).

As shown in Algorithm 2, for ELUT, the pre-
processing stage involves first performing quan-
tization to quantize the floating-point activations
into NK /g groups, and then enumerating the C'Y
possible values within each group to construct
the Lookup Table. The computational complex-
ity of this process is O(N K (CY/g), and the mem-
ory access complexity is also O(NKCY/g). In
the accumulation stage, ELUT performs lookup
and accumulation operations group by group.
The computational complexity of this process is
O(MNK/g), while the memory access complex-
ity is O(M NK(CY/g) because the entire Lookup
Table must be loaded for each group.

Through theoretical analysis, we can identify
several interesting insights. First, ELUT has
an advantage over the MAD-based solution in
terms of computational complexity for LLM infer-
ence. The overall computational complexity of the
MAD-based solution is O(M N K'), while ELUT is
max(O(NKCY9/g),O(MNK/g)). This implies
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Algorithm 1: MAD-based mpGEMM

Input: Activation A of shape N, K

Input: Weights W of shape M, K,
WeZ, |W|=C

Output: Result matrix R of shape M, N

/* C-complexity — Computational

Complexity */
/* M-complexity — Memory Access

Complexity */
/* Phasel : Preprocessing */
/* C-complexity : O(NK) /

M-complexity : O(NK) */

A, = Quantization(A)

/* Phase2 : Accumulation */
/* C-complexity : O(MNK) /
M-complexity : O(MNK) */

for m,n < 1to M, N do
| Rln,m] = S5 (Agln, k] + Wm, k)
end

/* Overall C-complexity : O(MNK)
*/

/* Overall M-complexity : O(MNK)
*/

Algorithm 2: ELUT mpGEMM

Input: Activation A of shape N, K

Input: Weights W of shape M, K,
WeZ, [W|=C

Input: Group size g

Output: Result matrix R of shape M, N

/* C-complexity — Computational

Complexity */
/* M-complexity — Memory Access

Complexity */
/* Phasel : Preprocessing */

/* C-complexity : O(NKCY9/g) /
M-complexity : O(NKCY/g) */

A, = Tbl-quantization(A)

LUT, = Table-setup(A,)

/* Phase2 : Accumulation */
/* C-complexity : O(MNK/g) /
M-complexity : O(MNKCY9/g) =*/

for m,n <+ 1to M, N do
Rn,m] =
S 9 Lookup(LUT a[n, k], Wm, k])
end
/* Overall C-complexity :
max(O(NKCY9/qg),O(MNK/g)) */
/* Overall M-complexity :
O(MNKCY/g) */




that as long as CY < M and g > 1, ELUT requires
fewer computations for mpGEMM. In LLMs, the
value of M, i.e., the hidden size, is generally large.
In contrast, the C' value for ternary LLMs is only
3 and g is only 2 or 3. Therefore, ELUT is com-
putationally more efficient than the MAD-based
solution.

However, ELUT has a disadvantage in terms
of memory access complexity compared to the
MAD-based solution. The memory access com-
plexity of the MAD-based solution is O(M N K),
while the LUT-based solution has a memory ac-
cess complexity of O(MNKCY/g). In practical
implementations, we employ optimization tech-
niques such as element-wise mirror consolidation
and LUT-centric data layout to reduce memory ac-
cess complexity, thereby significantly mitigating
the overhead caused by memory access.

A.2 Compared to MAD-based: More
Practical

In fact, when deploying LLLMs on current edge de-
vices, we often face the limitation of using only a
very small number of threads. Under such circum-
stances, the constraints on computational resources
are maximized, making computational complex-
ity a critical factor. In contrast, due to the limited
number of threads, memory access is unlikely to
reach bandwidth limits. In this context, ELUT,
with its computational complexity being only % of
that of the MAD-based solution in most cases, is
expected to outperform the MAD-based solution
in real-world inference scenarios for LLMs. There-
fore, ELUT is more suitable for deployment in
practical scenarios than the MAD-based solution.

A.3 Compared to Bit-Wise : More
Fine-grained

C | g | bpwy | bpwe
313 2 1.67
4 12 2 2
512 3 2.5

Table 3: A comparison table of bpw from bit-wise and
element-wise for different weight cardinality. C' repre-
sents the weight cardinality, g indicates to group size,
bpwy, denotes bit-wise bpw, bpw, refers to element-wise
bpw.

Although we have demonstrated that ELUT out-
performs MAD-based solutions in terms of perfor-

mance with low thread counts, the bit-wise LUT-
based solution also exhibits this advantage. The
advantage of the ELUT method over the bit-wise
method lies in its finer granularity of LUTs, shifting
from bit-based to element-based, ensuring a more
information-preserving compression of weights.
Returning to the computational complexity, in
most cases, the computational complexity of the
LUT method is O(M NK/g). For ternary LLMs,
when g = 3, the complexity is reduced by a factor
of % compared to g = 2. In terms of memory
access complexity, since mirror consolidation is
used when g = 3, we can compute the memory
access complexity for g = 2 and g = 3 as follows.

MNK3? MNK33/2
2 3 )

Based on this, since the bpw when g = 3 is ap-
proximately 1/6 lower than when g = 2 and mem-
ory access complexity is similar, we observe that
when using the ELUT method on ternary LLMs in-
ference, both computation and memory access are
reduced compared to the bit-wise method. Simi-
larly, as Table 3 shown, the same conclusion can be
extended to the case where C' # 2". This provides
theoretical guidance for TL implementation.

o( ) = O(

B Potential

After evaluating the performance of ELUT, we
have observed that it has a comprehensive advan-
tage over other methods. However, we believe that
ELUT has not yet reached its theoretical perfor-
mance limit. In the following, we will analyze the
hardware limitations affecting ELUT and estimate
its theoretical performance in the absence of such
constraints. This analysis aims to explore the poten-
tial of ELUT and provide insights for future hard-
ware designs targeting low-bit LLMs inference.

B.1 Bandwidth

Bandwidth is the data transfer rate between mem-
ory and the processor, and it also determines the
execution rate of kernels. Considering that ELUT
has a higher memory access complexity than the
MAD-based solution, bandwidth has a significant
influence on overall end-to-end inference speed. As
shown in Figure 7, it is evident that TL2_0 demon-
strates a more pronounced acceleration effect on
T-MAC for Intel i7-13700H compared to Apple M2
Ultra. The main reason for this phenomenon lies in
the significant difference in maximum bandwidth
between the two edge devices. In fact, the Apple
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Figure 9: ELUT performance potential curve.

M2 Ultra has a maximum bandwidth exceeding
800 GB/s, while the maximum bandwidth of the
Intel 17-13700H is less than 100 GB/s. As shown
in Figure 10, we used PCM (PCM) tool to measure
the token throughput and bandwidth at different
thread counts and compared them side by side. It
is clear that the shape of token throughput and
bandwidth curves are nearly identical. When the
thread count reaches 4, the token throughput also
reaches its maximum value due to the saturation
of the bandwidth, causing the end-to-end inference
speed to reach its peak. Therefore, we can conclude
that the maximum bandwidth limits the potential of
ELUT. Building on this, as shown in Figure 9, we
estimated the end-to-end inference speed when the
bandwidth is increased. We anticipate that, with
the increase in maximum bandwidth, ELUT will
reach the memory-bound state later, resulting in a
higher end-to-end inference speed, with the upper
bound still determined by the theoretical maximum
bandwidth. This estimation validates our theoret-
ical analysis of ELUT. Moreover, we are pleased
to note that there is currently a trend towards in-
creasing the bandwidth of edge devices, which will
further unlock the potential of ELUT.

B.2 Instructions Throughput

SIMD instructions are commonly used to imple-
ment kernels on CPUs, as SIMD allows a single
instruction to process multiple data elements simul-
taneously, achieving computation parallelism and
acceleration. For SIMD instructions, two metrics
determine the performance of the instruction: in-
struction throughput, which determines the number
of instructions that can be completed in a single
clock, and instruction latency, which determines

60
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Figure 10: Throughput and Bandwidth curve, tested
with bitnet-b1.58-large on intel core i5-13400F.

the number of clocks required to complete a sin-
gle instruction. On modern CPUs, since MAD
operations are widely used, common architectures
such as x86 and ARM have made specific opti-
mizations to ensure high instruction throughput
for these operations (as shown in Table 4). For
example, in the x86 architecture with AVX2 in-
structions, a single MAD instruction can complete
an int8 multiply-accumulate operation and con-
vert the result to int16. However, for ELUT, we
need to use three types of instructions—TBL (table
lookup), ADD (accumulation), and CVT (type con-
version)—to accomplish the same task. Although
the AVX documentation ? states that the latency of
the MAD instruction is 5 cycles, which is greater
than the latency of the TBL instruction, both in-
structions have the same throughput. This implies
that, under reasonable pipeline scheduling, the the-
oretical completion time for MAD and TBL in-
structions is the same. We validated this on an Intel
15-13400F, where the completion time for a single
MAD instruction was 3.77 ns, and for a single TBL
instruction, it was 3.70 ns, which is nearly identical.
However, since the table lookup must be followed
by addition and conversion (TBL+ADD+CVT),
this sequence inevitably leads to a reduction in
throughput. We observed that completing the same
task with TBL+ADD+CVT took 6.20 ns, approxi-
mately 68% longer than the raw latency of a single
MAD instruction. This highlights that, in terms of
throughput, the table lookup followed by the accu-
mulation method suffers significant performance
loss due to insufficient hardware support.

In previous work, (Mo et al., 2024; Xie et al.,

3https: //www.intel.com/content/www/us/en/docs/
intrinsics-guide/index.html
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Instruction Set LUT-based

MAD-based

AVX2
NEON

_mm256_shuffle_epi8
vqtbl1g_u8

_mm256_maddubs_epil6
vmlal_s8 / vmull_s16 + vaddq_s32

Table 4: Core instructions in AVX?2 and Neon for LUT-based and MAD-based mpGEMM.

2024) was implemented in hardware on GPUs and
FPGAs, respectively, as solutions similar to ELUT,
and they achieved performance improvements over
MAD-based solutions. This suggests that provid-
ing better hardware support for ELUT on edge
devices is highly promising. As shown in Figure
9, we estimated the performance of ELUT with
hardware support, and the results indicate a signif-
icant performance boost when bandwidth is not a
bottleneck. We sincerely hope that the exploration
of ELUT’s potential can inspire future hardware
designs to fully unlock ELUT’s capabilities.

B.3 Register Length

- — M=4096, C=2
\ —— M=4096, C=3

—— M=4096, C=4

> —— M=4096, C=5

-=- M=16384, C=2

--- M=16384, C=3

--- M=16384, C=4

--- M=16384,C=5

-+++ Current Register Length

Raw Latency (ms)
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log, (C9)

Figure 11: Register length and raw latency relationship
graph.

The length of registers also imposes a limitation
on the performance of ELUT. Taking AVX2 as an
example, the lookup width of the TBL SIMD in-
struction is 128 bits, which means that it can look
up 16 int8 values in one operation. Clearly, from
an element-wise perspective, all the possible values
of CY that we enumerate need to be covered in a
single lookup. Otherwise, we would need to use a
bit-wise approach, performing bit-by-bit lookups,
which sacrifices the memory access benefits ob-
tained from the element-wise method. For example,
in the case of ternary LLMs, with the limitation of
128-bit register length, we can enumerate at most
% possible values in the lookup table, which re-
stricts g < 3. Assuming we disregard the limitation

of instruction length, we simulate a longer instruc-
tion length using the original instructions without
considering precision. As shown in Figure 11, as
the length of SIMD registers increases, the number
of enumerable g values grows, thereby significantly
reducing computational complexity. Theoretically,
when CY = M, the computational complexity in-
troduced by enumerating LUTSs surpasses that of
table lookup and accumulation, and further increas-
ing the length of SIMD registers no longer yields
additional benefits. It is significant that the g val-
ues we can currently enumerate are still far from
the intersection point. Therefore, increasing the
register length provides a definite benefit in terms
of computational complexity. This also indicates
that the potential of ELUT has not yet reached its
theoretical limit.
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C TL Algorithm

Unpack Pack
-1 -1 0000
-1 0 0001
-1 1 0010
0 -1 0011
0 0 0100
0 1 0101
1 -1 0110
1 0111
1 1 1000

Table 5: TL1 Kernel transforms every two full-precision weights into 4-bit index and performs LUT computation.

Algorithm 3: TL1 mpGEMM

Input: Activation A of shape N, K
Input: Weights W of shape M, K
Output: Result matrix R of shape M, N
1 IndexWeight = PreprocessWeights(W, M, K)
2 LUT = PreCompute(4, N, K)
3 forn,m <+ 1to N,M do
4 ‘ Rln,m] = f:/f Lookup(LUT, IndexW eight,n, m, k)
s end
¢ Function PreCompute(A, N, K):
7 for n,k < 110 N,K/2do

8 for i < 110 3% do
/* Unpack shows in Table 5 */
9 LUT[n, k,i| = Unpack;(A[n, 2k], A[n, 2k + 1])
10 end
11 end
12 return R

13 Function PreprocessWeights(W, M, K):

14 for m,k < 110 M,K/2 do

/* Pack shows in Table 5 */
IndexWeight[m, k| = Pack(W[m,2k], W[m, 2k + 1])

15

16 end
17 return IndexW eight

9320



Unpack Pack
-1 -1 -1 11101
-1 -1 0 11100
-1 -1 1 11011
-1 0 -1 11010
0 | o | o0 [ 00000
1 0 1 01010
1 1 -1 01011
1 1 0 01100
1 1 1 01101

Table 6: TL2 Kernel compresses every three full-precision weights into a 1-bit sign (0 or 1) and a 4-bit index.

Algorithm 4: TL2 mpGEMM

1
2
3

e ® NS s

10
11
12
13

15
16
17

18
19
20

Input: Activation A of shape N, K
Input: Weights W of shape M, K
Output: Result matrix R of shape M, N
IndexWeight, Signweight = PreprocessWeights(W, M, K)
LUT = PreCompute(A, N, K)
forn,m < 1to N, M do
R[n,m] = 5131 Lookup(LUT, IndexW eight,n, m, k)
Rin,m] = Signweight x R[n,m|
end
Function PreCompute(A4, N, K):
forn,k < 110 N,K/3 do
for i < 1t03%/2 do
/* Unpack shows in Table 6 */
LUTn, k,i] = Unpack;(A[n, 3k], A[n, 3k + 1], A[n, 3k + 2])
end
end
return R
Function PreprocessWeights(W, M, K):
SignWeight = Sign(W)
W =|W]|
for m,k + 110 M, K/3 do
/* Pack shows in Table 6 */
IndexW eight[m, k] = Pack(W[m, 3k], W[m, 3k + 1], W[m, 3k + 2])
end
return IndexW eight, SignW eight
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D Performance

Kernels

Model eneral kernels ternary kernels
CPU ode g y

Size | Floatl6 | Q4.0 | TMAC | TQ1_0 | TQ2.0 | TL1.O | TL2.0 | I2_S
b(16) | bd.5) | b2) | b(1.69) | b2.06) | b2) | b1.67) | b(2)
700M | 30.73 | 67.57 | 76.29 | 11420 | 123.94 | 75.62 | 126.99 | 125.37
1.5B | 15.02 | 3546 | 4238 | 64.86 | 71.92 | 4344 | 74.16 | 7175
3.8B 585 | 1633 | 18.12 | 2659 | 33.19 | 17.91 | 3543 | 35.04

7B 3.30 9.09 12.29 17.96 19.92 11.89 | 20.72 | 20.62
Intel i7-13700H 13B 1.78 5.04 6.44 10.55 11.21 6.32 11.41 10.62
20C 64G 7 . . . . . . .

30B N/A 2.13 2.54 4.62 5.25 2.65 4.99 5.70

70B N/A 0.94 1.32 2.09 2.32 1.49 242 2.30

100B N/A 0.67 0.73 1.48 1.61 0.75 1.69 1.65
700M | 110.65 | 197.38 | 220.22 | 217.64 | 237.61 | 214.53 | 229.21 | 238.16
1.5B 59.49 | 117.77 | 135.27 | 130.10 | 145.68 | 132.68 | 138.28 | 143.43
3.8B 28.31 71.89 | 91.84 73.14 88.66 | 90.73 | 92.12 | 91.65

7B 14.87 | 3947 | 53.37 45.55 | 5490 | 5277 | 55.42 | 54.74
APPLE M2 13B 8.42 23.28 31.72 25.83 34.63 | 32.12 | 3322 | 32 .88

30B 3.78 10.98 16.40 12.85 1546 | 15.02 | 19.59 | 1641

70B 1.71 5.16 9.48 6.30 8.16 9.23 10.37 8.39

100B N/A 3.56 6.45 4.53 6.18 6.34 7.45 6.50

Table 7: Comparison of inference speed across different CPU (Unit: Tokens/Second) in an unlimited thread setting.
b(x) represents the bits per weight, where = denotes specific value. "N/A" indicates that the tested CPU cannot
host the specified model size with the given kernel. The token generation speed was determined by calculating the
average results from 10 tests conducted across different devices using diverse methodologies.
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