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Abstract

Spatial transcriptomic technologies enable mea-
suring gene expression profile and spatial in-
formation of cells in tissues simultaneously.
Clustering of captured cells/spots in the spa-
tial transcriptomic data is crucial for under-
standing tissue niches and uncovering disease-
related changes. Current methods to cluster
spatial transcriptomic data encounter obsta-
cles, including inefficiency in handling multi-
replicate data, lack of prior knowledge incor-
poration, and producing uninterpretable clus-
ter labels. We introduce a novel approach,
LLMiniST1, to identify spatial niche using a
zero-shot large language models (LLMs) by
transforming spatial transcriptomic data into
spatial context prompts, leveraging gene ex-
pression of neighboring cells/spots, cell type
composition, tissue information, and external
knowledge. The model was further enhanced
using a two-stage fine-tuning strategy for im-
proved generalizability. We also develop a
user-friendly annotation tool2 to accelerate the
creation of well-annotated spatial dataset for
fine-tuning. Comprehensive method perfor-
mance evaluations showed that both zero-shot
and fine-tunned LLMiniST had superior per-
formance than current non-LLM methods in
many circumstances. Notably, the two-stage
fine-tuning strategy facilitated substantial cross-
subject transferability. The results demonstrate
the feasibility of LLMs for tissue niche identi-
fication using spatial transcriptomic data and
the potential of LLMs as a scalable solution to
efficiently integrate minimal human guidance
for improved performance across large-scale
datasets.

1The source code of our implementation can be found at
https://github.com/wJDKnight/LLMiniST.

2The source code of the software can be found at https:
//github.com/wJDKnight/draw_spatial.

† Corresponding authors.

1 Introduction

Spatial transcriptomic technologies have enabled
us to profile gene expression and preserve the
spatial location of cells/spots within intact tis-
sues (Moffitt et al., 2022) simultaneously. A com-
mon and critical analytical task for such data is
to identify spatial niches that are higher-order tis-
sue structures. This task, often termed spatial
clustering, is fundamental to construct spatial at-
lases (Zeng et al., 2023) and plays a pivotal role in
visualizing tissue anatomy, inferring spatial conti-
nuity, detecting niche-specific marker genes (Cable
et al., 2022), uncovering spatial signatures of de-
velopment and disease (Elhanani et al., 2023), and
identifying molecular regulatory networks within
distinct niches (Vandereyken et al., 2023).

Current spatial clustering techniques perform un-
supervised clustering on spatial transcriptomic data
to delineate distinct spatial niches within tissues.
A prevalent strategy uses graph neural networks
(GNNs) (Wu et al., 2021) to aggregate spatial
gene expression profiles. This process yields low-
dimensional embeddings that capture both gene
expression and spatial context, which are then sub-
jected to clustering algorithms (Dong and Zhang,
2022; Long et al., 2023; Ren et al., 2022; Zong
et al., 2022). However, existing inductive spatial
clustering methods face several limitations. First,
they typically require training a new model from
scratch for each dataset, relying solely on data
without incorporating prior knowledge (Liu et al.,
2024a). Second, they often struggle with data with
replicates (Yuan et al., 2024), necessitating analysis
for each replicate separately and thus hindering the
identification of consistent niches across different
subjects. Finally, current methods typically out-
put uninterpretable cluster labels, requiring further
analysis to determine their biological relevance.

In this paper, we introduce Large Language
Model for identifying niches in Spatial
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Transcriptomics (LLMiniST), a novel ap-
proach that identifies spatial niches using LLMs.
We converts spatial transcriptomic data into spatial
context prompts that effectively encode spatial in-
formation for the LLM to interpret. These prompts
integrate gene expression profiles from spatially
neighboring cells and cell type composition, along
with basic tissue section information and external
knowledge about established niches within the
given tissue type. We explore the application of
LLMs in two ways: zero-shot prompting and a
dedicated two-stage fine-tuning approach. The
zero-shot prompting directly applied trained LLMs
while the two-stage fine-tuning approach fine-tunes
the LLMs using human guidance to generalize to
new, unseen data. The latter approach enhances
the robustness and applicability of LLMiniST to
a wider range of spatial transcriptomic datasets.
LLMiniST offers a new paradigm for spatial niche
identification, moving beyond purely data-driven
approaches towards a more context-aware and
knowledge-informed analysis.

In comparison to non-LLM clustering methods,
applying large language models (LLMs) to identify
spatial niche types in spatial transcriptomics data
presents unique challenges. First, methodology for
converting complex spatial transcriptomic informa-
tion into effective LLM prompt is not well estab-
lished (Sahoo et al., 2024). This involves trans-
lating high-dimensional gene expression patterns
and spatial coordinates into a format that lever-
ages the language processing capabilities of the
LLM. Second, LLMs rely heavily on the knowl-
edge for pre-training, which may be insufficient or
inconsistent with the specific biological context of
a given spatial transcriptomic dataset. The inher-
ent noise and variability in gene expression data
further complicate this issue (Vandereyken et al.,
2023). Finally, the inherent heterogeneity across
biological samples poses a significant hurdle, po-
tentially causing the biological "truth" derived from
the LLM’s knowledge not universally applicable
and leading to inaccurate or incomplete niche type
identification in subjects different from those in the
knowledge data for pre-training.

This study embarks on a comprehensive eval-
uation of LLMiniST to determine its efficacy in
identifying spatial niches using diverse spatial tran-
scriptomic datasets. First, we find the pre-trained
knowledge within general LLMs well aligns with
the biological principles governing spatial niche
formation and organization. Second, by leveraging

a limited set of pathologist-annotated samples from
a single subject, we can fine-tune an LLM, creating
a specialized model capable of accurately delineat-
ing spatial niches across the remaining unannotated
tissue sections from the same subject. Third, a
fine-tuned LLM generalize well to data from other
subjects that have similar tissue architectures, pro-
viding broadly applicable models for spatial niche
identification.

The contributions of this work are summarized
as follows: (1) We are the first to address the use of
LLMs for niche identification in spatial transcrip-
tomics. (2) We demonstrate the potential of LLMs
in this area, achieving comparable or superior per-
formance in some instances, while also highlight-
ing limitations when pre-trained knowledge con-
flicts with real data and providing a two-stage fine-
tuning solution for it. (3) To address the data
scarcity bottleneck and promote the widespread
adoption of our fine-tuning approach, we have de-
veloped a user-friendly graphic software to em-
power researchers to efficiently generate high-
quality, ground-truth annotated datasets. We be-
lieve this work can pave the way for future advance-
ments in applying LLMs to spatial transcriptomic
analysis.

2 Related Work

2.1 Large Language Models

LLMs have demonstrated remarkable performance
across various topics, leading to increasing efforts
in exploring their potential in specialized fields
such as single-cell transcriptomics (Bian et al.,
2024; Chen and Zou, 2024; Hou and Ji, 2024).
Prompt engineering has emerged as a crucial tech-
nique for extending LLMs’ capabilities (Sahoo
et al., 2024). Parameter Efficient Fine-Tuning
(PEFT) offers solutions for adapting these mod-
els to specific tasks while minimizing computa-
tional overhead (Han et al., 2024; Mao et al., 2024).
LLMs also show a promising potential on graph-
related task (Wang et al., 2024; Li et al., 2024).
Motivated by such advancements, we explored the
potential of LLMs to identify spatial niches using
spatial transcriptomic data.

2.2 Spatial Clustering Methods

Numerous spatial clustering methods have been
developed to identify spatial niches in spatial tran-
scriptomic data. These methods exploit the spatial
locations of cells in various manners to enhance
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clustering accuracy (Pham et al., 2023; Zhao et al.,
2021). A particularly popular approach is to rep-
resent the spatial transcriptomic data using graphs.
Graph neural networks (GNNs) (Liu et al., 2024b;
Li et al., 2022; Ren et al., 2022; Zong et al., 2022;
Long et al., 2023) and its variants like graph con-
volutional networks (GCNs) (Hu et al., 2021) and
graph attention networks (GAT) (Dong and Zhang,
2022), can be adopted for learning cell representa-
tions from graphs. These learned representations
are then utilized in downstream clustering tasks.
Given the success of GNNs in effectively encod-
ing spatial information for representation learning,
we adopt a similar paradigm to construct spatially-
aware prompts. .

3 Method: LLMiniST

3.1 Problem Definition

In this work, our objective is to infer the niche la-
bel of each cell/spot 3 in a spatial transcriptomic
dataset, leveraging gene expression, cell type infor-
mation (if available), and spatial location. Suppose
the spatial transcriptomic dataset D comprises data
from P subjects. We denote the data for subject p
as Dp, thus D = {Dp}Pp=1. For each subject p, the
data Dp consists of Mp tissue sections (replicates),
represented as Dp = {Rp,m}Mp

m=1, where Rp,m de-
notes the m-th replicate of subject p. Each replicate
Rp,m comprises the following components:

1) Gene Expression Matrix: Xp,m ∈ RNp,m×G,
where Np,m is the number of cells and G represents
the number of genes. We assume a common set of
genes is measured across all replicates and subjects
for simplicity.

2) Spatial Coordinates: Sp,m ∈ RNp,m×D,
where D is the dimensionality of the spatial co-
ordinates (typically D ∈ {2, 3}).

3) Cell Type Annotations (except for Visium):
cp,m ∈ {1, 2, . . . , Cp}Np,m , where Cp is the num-
ber of cell types of subject p.

4) Niche Annotations (Optional): Ap,m ⊆
{1, 2, . . . , Np,m} denoting the indices of cells with
such annotations. The niche labels are given by
np,m ∈ {1, 2, . . . ,K}|Ap,m|, where K is the num-
ber of distinct niches. Each element np,m,i indi-
cates the niche label assigned to cell i ∈ Ap,m. If
no niche annotations are available, then Ap,m = ∅
and np,m are undefined.

3Hereafter, we use "cells" to refer to both cells and spots,
unless there is a need to distinguish between them.

Given a replicate Rp,m =
(Xp,m,Sp,m, cp,m, (Ap,m,np,m)), we aim to
infer the niche label for each cell in this replicate
or the whole spatial transcriptomic dataset.

3.2 Spatial Context Prompt Engineering
We assessed two approaches for leveraging LLMs
to identify niches using spatial transcriptomic data:
the zero-shot approach (LLMiniST-Z) and the fine-
tuning approach (LLMiniST-F). An overview of
this framework is presented in Figure 1.

LLMiniST-Z uses Rp,m = (Xp,m,Sp,m, cp,m)
to construct a spatial context prompt for cell i,
which is directly input into an LLM to predict its
niche type ni

4. The spatial context prompt em-
ployed in this approach comprises three compo-
nents: (i) task description, (ii) spatial profile, and
(iii) response format.

• Task Description: This component estab-
lishes the objective, specifies the tissue region
and potential niches for all cells, and defines
the input format.

• Spatial Profile: The spatial profile for cell i is
constructed by first defining its neighborhood
Ni. A cell j is considered a neighbor of cell i
(i.e., j ∈ Ni) if their spatial distance d(si, sj)
is less than a predefined threshold δ. For each
cell i and its neighborhood Ni, the spatial
profile is characterized by two ordered lists:

1. Neighbor Cell Type List: Ordered by
the frequency of each cell type t in
neighborhood Ni defined as: fi,t =
1

|Ni|
∑

j∈Ni
I(cj = t), where I(·) is the

indicator function, equal to 1 if the con-
dition is true and 0 otherwise. The cell
type list is sorted in descending order of
fi,t.

2. Neighbor Marker Gene List: Ordered
by the average expression level of each
marker gene g in neighborhood Ni cal-
culated as: expri,g = 1

|Ni|
∑

j∈Ni
xj,g.

The list of marker genes is sorted in de-
scending order of expri,g.

• Response Format: To facilitate convenient
downstream processing, we require LLMs to
output only the most probable niche, without
explanation. However, users can optionally

4For clarity and simplicity, we omit the subscripts p and
m when the context makes the meaning unambiguous.
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LLM

Spatial Context Prompt

End-to-End Output

Fine-Tune

First-Pass

Second-Stage

Output: {White Matter}

You will be provided with a list of cell types in the 
neighborhood of a cell and marker genes expressed in the 
neighborhood. Your task is to identify the 
microenvironments the cell belong to. ... Below are the cell's 
neighbor context:
    

LLM

a

b
Spatial Profile

Task Description

Neighbor cell-types: {The list of neighboring cell types}, 
Marker genes: {The list of neighboring marker genes}

Task Description

Spatial Profile of 
the target cell

Spatial Profiles of 
the Niche Prototypes

Niche {1}: 
Neighbor cell 
types : {...};
Marker genes: 
{...}.
Niche {2}: 
Neighbor cell 
types: {...};
Marker genes: 
{...}.
Niche {3}: 
Neighbor cell 
types: {...};
Marker genes: 
{...}.
...

Figure 1: An overview of the pipeline of (a) zero-shot approach and (b) fine-tuning approach.

request detailed reasoning steps for improved
interpretability (Examples in Appendix A).

LLMiniST-F leverages cells with label to con-
struct example prompts and responses to fine-tune
the LLM. While the prompts share the same struc-
tural components as those in LLMiniST-Z, the task
description within LLMiniST-F is augmented to
include the spatial profiles of niche prototypes gen-
erated as follows. The mean cell type frequency
and the mean marker gene expression for niche e is
calculated by averaging the fp,m,i,t and exprp,m,i,g

of the cells belongs to niche e. The spatial pro-
file of niche prototype is generated similarly to
that of a cell. The augmented prompts of the cells
with labels are used to fine-tune the LLM. When
identifying cells from different samples or subjects,
we proposed a two-stage strategy to adjust the dif-
ference between samples or subjects (referred as
LLMiniST-Fs). In the first stage, an initial fine-
tuned model generates predictions for the test data.
Cells with majority of their neighbors sharing their
predicted niche are identified as high-confidence
predictions. We update the spatial profiles of the
predicted niches for these high-confidence cells.
Niches lacking high-confidence cells keep their
original prototypes. The updated spatial profiles
and the initial model together generate improved
predictions for the remaining low-confidence cells.
The examples of prompts for both approaches can
be found in Appendix A.

Labeling Tool is a user-friendly software for bi-
ologists to easily annotate regions of interest for
ground truth, promoting the use of our fine-tuning
approach in more datasets. This tool allows for
the creation of new high-quality data sets, which is
critical for ongoing model improvement and bench-
marking, especially when working with rare tissue
types. A brief description of the usage of the soft-
ware can be found in Appendix B.

3.3 Compared Methods

For the zero-shot approach (LLMiniST-Z), we eval-
uate three LLMs: GPT-4o mini (gpt-4o-mini-2024-
07-18) (OpenAI, 2024), GPT-4o (gpt-4o-2024-08-
06) (OpenAI, 2024), and Gemini 1.5 Pro (gemini-
1.5-pro) (Team, 2024), which are closed-source
and pre-trained models developed by OpenAI and
Google, respectively. While we are aware of
biomedical-specific LLMs (Wu et al., 2024; Bolton
et al., 2024; Labrak et al., 2024), we choose GPT-4o
and Gemini 1.5 because these biomedical LLMs do
not outperform general-purpose LLMs in biomed-
ical question-resolution tasks according to their
benchmarking. In addition, none of the models are
trained for spatial transcriptomics. We are contin-
uously updating and will use advanced LLMs as
soon as they become available. For the fine-tuning
approach (LLMiniST-F), we employ GPT-4o mini
as the base model. We access their functionali-
ties and generated outputs through their respective

9278



APIs. We aslo benchmark LLMiniST against 12
state-of-the-art non-LLM spatial clustering meth-
ods and 2 non-spatial clustering methods (Yuan
et al., 2024).

3.4 Datasets

We selected three distinct types of spatial tran-
scriptomic datasets with manual annotations:
STARmap (Wang et al., 2018), MERFISH (Mof-
fitt et al., 2018), and Visium (Maynard et al.,
2021). Statistics of the datasets can be
found in Appendix C. All datasets and cor-
responding ground-truth annotations are down-
loaded from https://figshare.com/projects/
SDMBench/163942 (Yuan et al., 2024).

4 Experiment

4.1 Experimental Settings

Validation and Testing We evaluated the zero-shot
approach by executing it 3 times for each repli-
cate of each subject, except for MERFISH dataset.
Given the suboptimal performance of the zero-shot
approach on MERFISH data, we conducted only
a single trial for this dataset. For the evaluation
of fine-tuning approaches, both LLMiniST-F and
LLMiniST-Fs were run 3 times on each replicate of
each subject. After fine-tuning the LLM, we define
the application of LLMiniST-F to unlabeled cells
within the same replicate as supervised validation.
Applying the fine-tuned LLM to different replicates
of the same subject is termed intra-subject testing.
Conversely, testing on data from other subjects is
designated as cross-subject testing. For clarity, we
denote the LLMiniST-F fine-tuned with spots from
Subject 1 (D1) as LLMiniST-D1-F, and its second-
stage results are referred to as LLMiniST-D1-Fs.
The LLMiniST fine-tuned with spots from D2 and
D3 follow analogous naming conventions. The
fine-tuning replicates were excluded from testing.
Evaluation Metrics We employ three clustering
evaluation metrics to assess the accuracy of pre-
dicted cluster labeling using ground truth: Nor-
malized Mutual Information (NMI), Homogeneity
score (HOM), and Completeness score (COM) (Pe-
dregosa et al., 2012). On the other hand, to evaluate
the spatial continuity of the predicted segmenta-
tions, we employ three metrics: CHAOS (Yuan
et al., 2024), the Percentage of Allowed outliers for
Segmentation (PAS) (Shang and Zhou, 2022), and
the Average Silhouette Width (ASW) (Yuan et al.,
2024). Benchmarking of non-LLM methods on

those metrics was effectively conducted by Yuan
et al. (2024), and results of non-LLM methods are
derived from the work. The detailed explanation
for those metrics is given in Appendix E.
Spatial Neighborhood Definition Two cells or
spots are considered neighbors if the spatial dis-
tance between them is below a specified threshold
δ, which was set to 72 (700 pixels), 100 (100 pix-
els) and 344 (600 pixels) for STARmap, MERFISH,
and Visium, respectively (representative examples
are illustrated in the Appendix F). These thresholds
were selected such that the resulting neighborhood
represents the minimal functional unit of the tissue
niches, encompassing the characteristic scale of
its structural complexity. Spatial profiles are con-
structed from all cells residing within the neighbor-
hood. Dataset-specific preprocessing procedures
are applied, the specifics of which are elaborated
upon in the Appendix G.

4.2 Performance Comparison
We first report the results of intra-subject testing.
The accuracy and continuity performance of the
zero-shot approach on STARmap is shown in Fig-
ure 2. The NMI of zero-shot and fine-tuning ap-
proaches in all datasets are in Table 1.

Observation 1. General LLMs possess intrinsic
knowledge and capability to discern spatial niches.
All three large language models (LLMs) demon-
strated superior performance compared to current
non-LLM spatial clustering methods as illustrated
in the Figure 2. Specifically, the zero-shot approach
with Gemini 1.5 Pro consistently achieved the high-
est rank across all evaluated metrics, excelling in
both accuracy-related and continuity-related assess-
ments. This is uncharacteristic of non-LLM meth-
ods, which may perform well in accuracy but fall
short in continuity. Notably, even the GPT-4o mini,
which is a smaller LLM, achieved a higher aver-
age rank than the best model-based method across
all considered metrics, whether in terms of accu-
racy or continuity, as depicted in the Figure 2. We
also tested replacing cell type names by abstract
labels. This change led to a NMI decrease from
0.72 to 0.19 under the zero-shot settings, which un-
derscores the importance of biological knowledge
inside the cell type names for LLM performance in
spatial niche identification.

Observation 2. A larger general LLM tends
to exhibit superior performance. Comparing the
results between GPT-4o mini and GPT-4o suggests
that the model with a larger parameter count gen-
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Accuracy

Continuity

Figure 2: Assessment of the zero-shot approach on STARmap in terms of accuracy and continuity. The LLMiniST-Z
with GPT-4o mini, GPT-4o, or Gemini 1.5 Pro is denoted as the respective LLM name. For NMI, HOM, COM, and
ASW, higher values are better. For CHAOS and PAS, lower values are better.

erally demonstrates enhanced performance (Fig-
ure 2). This observation underscores the potential
advantages conferred by the scale of an LLM in the
zero-shot task. Considering that Gemini 1.5 Pro
performs the best, it will represent the zero-shot ap-
proach (LLMiniST-Z) in subsequent comparisons.

Observation 3. End-to-end spatial niche identi-
fication is achievable. Our method not only accu-
rately classifies cells but also automatically gener-
ates meaningful labels for each identified niche cat-
egory, surpassing the capabilities of traditional clus-
tering methods that only offer generic cluster tags.
This end-to-end approach is more interpretable and
readily applicable in practice.

Observation 4. The complexity of spatial tran-
scriptomic data limits the feasibility of the zero-
shot approach. Suboptimal results were observed
in MERFISH and Visium datasets (Table 1), par-
ticularly in the MERFISH dataset, where the aver-
age NMI of the zero-shot approach (with Gemini
1.5 Pro as a representative) was lower than that
of baseline non-spatial clustering methods. This
is likely attributed to coarse-grained cell type an-
notations and the intricate spatial niche structures

present in the MERFISH dataset. In Visium data,
the mixed-cell spots necessitate deconvolution to
infer cell-type composition, a process susceptible
to inaccuracies. We also tested a domain-specific
LLM specifically designed for single-cell analysis,
ChatCell (Fang et al., 2024), in addition to general-
purpose LLMs (GPT4o and Gemini). On a Visium
sample, ChatCell achieved an NMI of 0.45, compa-
rable to Gemini 1.5 Pro (NMI 0.44). These results
show that current LLMs are not adapted for com-
plex spatial transcriptomic data, highlighting an
urgent need for tissue-specific tuning in this area.

Observation 5. The fine-tuned approach
demonstrates superior performance and gener-
alizability across replicates of the same subject.
The fine-tuned model not only achieved the highest
accuracy in the supervised validation, but also out-
performed other non-LLM methods in intra-subject
testing (Table 1). Specifically, the results imply that
annotating a portion of cells in a single replicate
provides sufficient information for LLMiniST-F to
generalize and accurately identify cells across all
other replicates. Besides, the superior performance
of LLMiniST-F over Gemini 1.5 Pro highlights

9280



Method Type Method STARmap Visium MERFISH Avg. Rank

LLM-based

LLMiniST-F (supervised) 0.811±0.003 0.760±0.002 0.795±0.006 - -
LLMiniST-Fs 0.752±0.013 0.695±0.036 0.610±0.027 0.686 1.7
LLMiniST-F 0.753±0.011 0.678±0.051 0.581±0.020 0.67 2.0
LLMiniST-Z 0.755±0.040 0.471±0.090 0.068±0.031 0.431 9.7

Non-LLM based

BASS 0.693±0.100 0.581±0.021 0.519±0.053 0.598 4.3
SCAN-IT 0.630±0.055 0.546±0.047 0.578±0.045 0.585 5.0

BayesSpace - 0.565±0.087 - 0.565 5.0
GraphST 0.433±0.061 0.592±0.049 0.317±0.056 0.448 6.0
stLearn - 0.552±0.014 - 0.552 6.0

SpaceFlow 0.606±0.061 0.433±0.042 0.535±0.077 0.525 8.3
CCST 0.353±0.083 0.507±0.022 0.468±0.031 0.443 8.7

SpaGCN 0.318±0.011 0.513±0.047 0.214±0.015 0.348 9.0
STAGATE 0.538±0.079 0.507±0.042 0.204±0.085 0.417 9.3

SEDR 0.113±0.057 0.532±0.030 0.142±0.045 0.263 10.3
conST 0.067±0.021 0.511±0.084 0.107±0.012 0.228 11.7

SpaGCN(HE) - 0.475±0.043 - 0.475 13.0

Non-Spatial
Leiden 0.066±0.026 0.329±0.009 0.177±0.004 0.191 13.0

Louvain 0.065±0.021 0.336±0.014 0.169±0.009 0.19 13.3

Table 1: Comparison of Normalized Mutual Information (NMI) for Different Methods on Three Datasets. LLMiniST-
F (supervised) is the supervised validation results, which is not included in comparison. The highest NMI values and
those statistically indistinguishable from the highest (t-test, p >0.05) are boldfaced. (Mean ± Standard Deviation)

the effectiveness of fine-tuning in addressing the
limitations of the zero-shot approach when applied
to complex spatial transcriptomic data. Except for
NMI, LLMiniST-Fs also perform well in terms
of other matrics (Appendix H). We also conduct
noise resilience experiments for LLMiniST-F on
MERFISH dataset validating our method’s stability
under data perturbations (Appendix I).

Then, we evaluate how LLMiniST-F general-
ize to data from three different subjects of Vi-
sium. (Figure 3). We also compared the perfor-
mance of LLMiniST-D1-F with LLMiniST-D2-F
and LLMiniST-D3-F in Subjects 2 and 3, respec-
tively (Figure 4a).

Observation 6. The fine-tuned model exhibits
good zero-shot generalizability. Although the
spots used to fine-tune LLMiniST-D1-Fs are not
from Subject 2 or 3, it still achieved the highest
average rank across the three accuracy matrices
(Figure 3a). This demonstrates the LLM is effi-
cient in domain-adaption, and the fine-tunning ap-
proach can facilitate zero-shot generalization on
completely unseen data. While LLMiniST-D1-Fs
does not achieve the best performance in terms of
continuity, this may be attributed to the lack of
considering the overall spatial context.

Observation 7. The two-stage strategy en-
hances generalizability. Both intra-subject (Ta-
ble 1) and cross-subject (Figure 3) evaluations

a

b

Figure 3: The performance of LLMiniST on the Sub-
jects 2 and 3 of the Visium dataset. a, Accuracy-related
metrics; b, Continuity related metrics. LLMiniST-F is
fine-tuned with Subject 1. For NMI, HOM, COM, and
ASW, higher values are better. For CHAOS and PAS,
lower values are better.

demonstrate the effectiveness of the two-stage
strategy, as evidenced by the superior perfor-
mance of LLMiniST-Fs compared to LLMiniST-
F. Furthermore, the two-stage approach enables
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Figure 4: NMI improvement achieved by the proposed two-stage stategy on the Subjects 2 and 3 of the Visium
dataset. (a) Comparison of LLMiniST fine-tuned using spots from different subjects, with and without two-stage
strategy. (b) Identification results for a replicate of Subject 2. (c) Identification results for a replicate of Subject 3.

LLMiniST-D1-Fs to achieve an accuracy compara-
ble to or even surpassing that of LLMiniST-D2-F
and LLMiniST-D3-F within their respective sub-
jects (Figure 4 a). Notably, as illustrated in Fig-
ure 4 b and c, the second stage successfully rectifies
misidentifications in low-confidence instances.

Observation 8. Fine-tuned models effectively
handle mismatched labels. Unlike other non-LLM
methods that require a pre-defined number of clus-
ters, k, LLMiniST-F operates without this con-
straint, offering a more robust and unbiased so-
lution. Despite the misalignment of niche com-
ponents between Subject 3 and the other subjects,
particularly concerning the absent niches of Layers
1 and 2, both LLMiniST-D1-F and LLMiniST-D1-
Fs proficiently circumvent the misclassification of
spots into these non-existent niches (Figure 4c).

4.3 Proportions of Examples for Fine-tuning

We examined the impact of varying the proportion
of labeled cells on fine-tuning performance using
the MERFISH dataset (Figure 5). Specifically, we
fine-tuned LLMiniST with subsets ranging from
5% to 70% of labeled cells from a single replicate.

Observation 9. Fine-tuning requires only a
small fraction of labeled cells for high accuracy.
Fine-tuning with just 5% of the cells already sur-
passes the accuracy of other non-LLM methods
(Figure 5). Furthermore, the benefits of increasing
the proportion of labeled cells appear to saturate be-
yond 30%. This suggests that labeling a relatively
small portion of a sample is sufficient to adapt gen-
eral LLMs into specialized models with high ac-

0.2 0.4 0.6
Proportion of labeled cells

0.55

0.60

0.65

0.70

0.75

0.80

N
M

I

0.704

0.757
0.784

0.801
0.817

SOTA performance
LLMiniST-F (validation)

Figure 5: Impact of labeled cell proportion on the per-
formance of LLMiniST-F, evaluated on a supervised
validation set from the MERFISH dataset. Error bars
indicate the standard deviation.

curacy. The fine-tuning approach offers a scalable
solution where minimal human input can yield sub-
stantial results, even with massive datasets.

5 Conclusion

This work compared the performance of LLMs
with non-LLM methods for niche identification in
spatial transcriptomic data. We demonstrate the
feasibility of zero-shot LLMiniST. Furthermore,
by incorporating a two-stage fine-tuning strategy,
LLMiniST exhibits a strong generalizability to sam-
ples from either the same or different subjects. We
further demonstrate that fine-tuning with just a sub-
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set of labeled cells is sufficient to boost LLMs be-
yond state-of-the-art performance, and we have
designed a user-friendly software tool to facilitate
the efficient annotation of such training data.

6 Limitations

Recent advances in spatial transcriptomics have
introduced a suite of new technologies that require
thorough assessment. In addition, the availability
of datasets with reliable ground-truth information
is currently a limiting factor. We will continuously
promote our annotation software among biologists
to obtain more ground-truth data from a broader
range of tissue regions. To improve annotation
efficiency, future work will investigate methods for
selecting a minimal subset of cells that provides
maximal information for fine-tuning, as opposed to
the current random selection approach.

With the emergence of new open-source local
LLMs, a promising future strategy involves apply-
ing knowledge distillation to these smaller archi-
tectures and integrating this with fine-tuning. This
combined approach aims to improve operational
speed while preserving high levels of performance.
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A Examples of prompt

We provide examples of spatial context prompts for
LLMiniST-Z and LLMiniST-F (Figure 6). Note
that the prompt format of LLMiniST-F is identical
to that of LLMiniST-Fs.

B Software for Annotations

We develop as software (Figure 7) that provides a
comprehensive set of tools for visualizing, anno-
tating, and performing basic and AI-powered anal-
ysis on spatial transcriptomics data. It combines
data loading, interactive plotting, multiple selection
methods, annotation management, and advanced
analytical capabilities within a user-friendly graph-
ical interface. The detailed usage and source code
of the software can be found at https://github.
com/wJDKnight/draw_spatial.

STARmap Visium MERFISH
Number of subjects 3 3 1

Number of replicates for each subject 1 4 5
Total number of cells/spots 3,268 47,681 28,317

Table 2: Statistics of datasets.

C Statistics of Datasets

STARmap and MERFISH both have single-cell res-
olution and therefore provide cell type annotations.
In contrast, Visium is a spatial transcriptomics plat-
form that generates data at the resolution of spots,
each encompassing 1-10 cells, without providing
individual cell type annotations. Table 2 shows
statistics of datasets.

D Full List of Compared Methods

We compare LLMiniST against spatial clustering
methods, including BASS (Li and Zhou, 2022),
conST (Zong et al., 2022), SpaceFlow (Ren et al.,
2022), SCAN-IT (Cang et al., 2021), CCST (Li
et al., 2022), GraphST (Long et al., 2023), STA-
GATE (Dong and Zhang, 2022), SpaGCN (Hu
et al., 2021), SpaGCN(HE) (Hu et al., 2021),
SEDR (Xu et al., 2024), stLearn (Pham et al.,
2023), and BayesSpace (Zhao et al., 2021). No-
tably, BayesSpace, stLearn, and SpaGCN(HE) rely
on the presence of histological images, so these
methods could not be evaluated on the STARmap
and MERFISH datasets due to the absence of im-
age data. To provide a baseline for comparison, we
also incorporate the Leiden (Traag et al., 2019) and
Louvain (Blondel et al., 2008) algorithms, which
do not use spatial information.

E Explanation of Metrics

All of the accuracy-related metrics, NMI, HOM,
and COM, range from 0 to 1, with higher values
indicating better agreement between the predicted
and true cluster assignments. To provide a com-
prehensive comparison of overall accuracy across
different methods, we calculate the average rank
based on the average across the three metrics. For
continuity-related metircs, lower values of CHAOS
and PAS indicate higher spatial continuity. In con-
trast, ASW is rescaled to 0 - 1 by Yuan et al. (2024),
with higher values corresponding to greater spatial
coherence of the predicted segments.

F Neighborhood Examples

The spatial scope of our neighborhood analysis is
visualized in Figure 8. Each sub-figure represents
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You will be provided with a list of cell types in the neighborhood of a cell and highly variable genes 
expressed in the neighborhood. All cells are from the mouse hypothalamic preoptic region. The 
Neighbor cell-types are ordered from most frequent to least frequent. The marker genes are ordered 
from highest expression to lowest expression. Your task is to identify the microenvironments the cell 
belong to. The cell can only belong to one of the 8 microenvironments: MPA, MPN, BST, fx, PVH, 
PVT, V3, PV. Only output the most possible microenvironment in the plain text format like this: 
Outputs: {'microenvironment 1'} Below are the list of cell-types and highly variable genes in the cell's 
neighborhood: 

Neighbor cell-types: {Astrocyte, Inhibitory, Mature oligodendrocytes, Excitatory}
Marker genes: {Ermn, Aldh1l1, Mbp, Sgk1, Sox8, Sst, Ebf3, Gjc3, Mlc1, Cxcl14} 

Outputs: {‘MPA'} 

AI

You will be provided with a list of tissue microenvironments in Human dorsolateral prefrontal 
cortex. The cell types and marker genes in the neighborhood of those microenvironments will be 
shown. The neighbor cell-types are ordered from most frequent to least frequent. The genes are 
ordered from highest expression to lowest expression.   Below are typical examples of 
microenvironments:

Microenvironment: {Layer4}, Neighbor cell-types: {Excit_L4, Excit_L2_3, Excit_L5, Excit_L3_4_5, 
Astro, Excit_L6, Inhib}, marker genes: {PVALB, RORB, RAB3C, PCP4, PLP1, ZMAT4, FA2H};  
Microenvironment: {Layer6}, Neighbor cell-types: {Excit_L4, Excit_L5, Excit_L2_3, Excit_L6, 
Excit_L3_4_5, Excit_L5_6, Oligo}, marker genes: {KRT17, PLP1, MOBP, FEZF2, CPNE5, GFAP, 
ETV1};  
Microenvironment: {Layer3}, Neighbor cell-types: {Excit_L2_3, Astro, Excit_L3_4_5, Excit_L4, 
Excit_L6, OPC, Excit_L3}, marker genes: {HPCAL1, CUX2, LAMP5, FREM3, KCNIP2, 
FOXJ1};  
Microenvironment: {WM}, Neighbor cell-types: {Oligo, Excit_L5, Excit_L4, Astro, Excit_L6, 
Excit_L2_3, Micro}, marker genes: {GFAP, PLP1, MOBP, KRT17, AQP4, FA2H, ETV1};  
Microenvironment: {Layer5}, Neighbor cell-types: {Excit_L5, Excit_L4, Excit_L2_3, Excit_L3_4_5, 
Excit_L6, Oligo, Excit_L5_6}, marker genes: {PCP4, PLP1, FEZF2, ETV1, RORB, RAB3C, 
MOBP}  

Neighbor cell-types: {Excit_L2_3, Excit_L3_4_5, Excit_L4, Astro, Excit_L6, OPC, Excit_L3}, 
Marker genes: {PVALB, ZMAT4, FREM3, CUX2, BGN, ETV1, LAMP5} 

Outputs: {‘Layer 3'} 

AI

Based on the examples, identify which microenvironment categories the following cell belongs to. 
The target cell can only be one of the 5 microenvironments: Layer4, Layer6, Layer3, WM, Layer5. 
Only output the most possible microenvironment in the plain text like this: Outputs: 
{'microenvironment 1'}. Below are cell types and marker genes in the neighborhood of the cell: 

a

c

You will be provided with a list of cell types in the neighborhood of a cell and highly variable genes 
expressed in the neighborhood. All cells are from the mouse hypothalamic preoptic region. The 
Neighbor cell-types are ordered from most frequent to least frequent. The marker genes are ordered 
from highest expression to lowest expression. Your task is to identify the microenvironments the cell 
belong to. The cell can only belong to one of the 8 microenvironments: MPA, MPN, BST, fx, PVH, 
PVT, V3, PV. Output the most possible microenvironment. Below are the list of cell-types and highly 
variable genes in the cell's neighborhood: 

Neighbor cell-types: {Astrocyte, Inhibitory, Mature oligodendrocytes, Excitatory}
Marker genes: {Ermn, Aldh1l1, Mbp, Sgk1, Sox8, Sst, Ebf3, Gjc3, Mlc1, Cxcl14} 

Let's analyze the provided information to determine the most likely microenvironment for the cell.
● Neighbor Cell Types: The presence of astrocytes, inhibitory neurons, mature oligodendrocytes, and 

excitatory neurons suggests a general brain region rather than a highly specialized niche.
● Marker Genes:

○ Ermn: This gene is enriched in the medial preoptic area (MPA).
○ Aldh1l1: A marker for astrocytes. Consistent with the presence of astrocytes in the neighborhood.
○ Mbp: A marker for mature oligodendrocytes, which are also present in the neighborhood.
○ Sgk1: Activity-regulated kinase that is highly expressed in the PVH.
○ Sst: Somatostatin, typically expressed in inhibitory neurons.
○ Ebf3: Expression in the preoptic area.

Considering all the evidence, the most likely microenvironment is the MPA given the presence of Ermn.
AI

b

Figure 6: Examples of spatial context prompts. a, a zero-shot prompt for a cell in MERFISH dataset; b, a zero-shot
prompt without limitation for output format; c, a fine-tuning prompt for a spot in Visium dataset.

a different dataset, and within each, a red circle de-
lineates the perimeter of the neighborhood that was
taken into account for constructing spatial profile.

G Data Preprocessing for Spatial Context
Prompt

Spatial Context Prompt for STARmap The
STARmap dataset features clear cell type anno-
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Figure 7: Screenshot of the spatial annotation software.

tations and a simple layered structure (Wang et al.,
2018). We only used neighborhood cell type com-
position for spatial context prompt. In addition, we
identified distally located cell types from the target
cell and used the 3 farthest cell types as negative
examples in prompt engineering.

Spatial Context Prompt for MERFISH MER-
FISH data provides a less detailed cell type reso-
lution, making it challenging to distinguish cells
across spatial niches. To enhance our analysis, we
incorporated expression data from adjacent genes 3.
Our gene selection process involves combining all
five samples, normalizing each cell by total gene
counts, and scaling genes to have unit variance and
zero mean. Utilizing 30 principal components, we
conducted CCAIntegration with the Seurat pack-
age (Hao et al., 2023) and clustered the integrated
data with FindClusters() at a resolution of 0.1. Fi-
nally, we identified the top five marker genes per
cluster using FindConservedMarkers().

Spatial Context Prompt for Visium Visium data
does not inherently offer cell type annotations, as
each spot encompasses the gene expression profile
of multiple cells. To mitigate this limitation, we
employed spatial deconvolution techniques, SDe-

PER (Liu et al., 2024b), to estimate the proportions
of cell types within each spot. Subsequently, the
cell type composition for a specific spot was deter-
mined as the mean of the cell type compositions
of its adjacent spots. Acknowledging that the pre-
cision of these estimated cell type proportions can
be influenced by the efficacy of the deconvolution
algorithm, we incorporated neighboring gene ex-
pression data into our analysis. For Visium, 22
established marker genes (Yuan et al., 2024) of the
dorsolateral prefrontal cortex were selected.

Post-refinement Assuming that the spatial niche
should be smooth across the spatial, we add a refine-
ment step for the identification result like SpaGCN
and GraphST (Hu et al., 2021; Long et al., 2023).
In this step, we examine the assignment of the
niche of each cell and its surrounding areas. For
a given cell, if more than half of its surrounding
cells are assigned to a different niche, this cell
will be relabeled to the same niche as the major
label of its surrounding cells. For the zero-shot ap-
proach, we add this step in the predictions. For the
fine-tuning approach, this step is added after both
LLMiniST-F and LLMiniST-Fs, except for iden-
tifying high-confidence cells. The high-confident
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Figure 8: Depiction of the neighborhood size across three different datasets.

MERFISH STARmap Visium Avg. Rank
LLMiniST-Fs 0.613±0.021 0.757±0.020 0.683±0.036 0.684 1.0
LLMiniST-F 0.580±0.017 0.755±0.018 0.662±0.044 0.666 2.3
SCAN-IT 0.598±0.048 0.716±0.077 0.561±0.054 0.625 4.3
BayesSpace - - 0.565±0.079 0.565 5.0
BASS 0.432±0.043 0.715±0.090 0.585±0.020 0.577 5.3
GraphST 0.219±0.042 0.440±0.045 0.591±0.054 0.416 6.0
SpaceFlow 0.483±0.080 0.753±0.066 0.529±0.048 0.588 6.0
CCST 0.536±0.035 0.360±0.091 0.534±0.028 0.477 7.0
stLearn - - 0.543±0.009 0.543 7.0
STAGATE 0.207±0.087 0.564±0.069 0.509±0.037 0.426 9.3
SpaGCN 0.210±0.013 0.344±0.016 0.520±0.045 0.358 9.3
Gemini 1.5 Pro 0.045±0.025 0.753±0.043 0.411±0.079 0.403 10.7
conST 0.110±0.012 0.072±0.022 0.515±0.087 0.232 12.0
SEDR 0.116±0.036 0.114±0.058 0.455±0.067 0.228 12.3
SpaGCN(HE) - - 0.483±0.043 0.483 13.0
Leiden 0.167±0.007 0.065±0.026 0.334±0.008 0.189 13.3
Louvain 0.157±0.007 0.055±0.017 0.335±0.014 0.182 13.7

Table 3: Intra-subject HOM: Mean ± SD

cells are selected based on the unrefined LLMiniST-
F’s results.

H Results of Intra-Subject Testing

The following results present the performance of
LLMiniST in terms of HOM, COM, CHAOS, PAS,
and ASW, evaluated using intra-subject testing
across all datasets (Table 3 - 7).

I Noise resilience experiments

To demonstrate robustness to noise, we simulated
non-capture noise by randomly zeroing gene ex-
pression values on MERFISH data. We counted
the number of genes changed in the top-10 marker
gene rankings before and after randomly zeroing.
We observed minimal changes in the top-10 marker
gene rankings (Figure 9). Furthermore, the fine-
tuned LLMiniST showed resilient performance on
MERFISH data with increasing noise (Figure 9).
Even with 50% of the values set to 0, the NMI
drops by only 12.5%.

MERFISH STARmap Visium Avg. Rank
LLMiniST-Fs 0.608±0.033 0.748±0.006 0.707±0.040 0.688 2.0
LLMiniST-F 0.582±0.025 0.750±0.006 0.695±0.060 0.676 3.0
BASS 0.651±0.070 0.672±0.107 0.577±0.022 0.633 3.3
GraphST 0.593±0.129 0.429±0.083 0.594±0.044 0.538 5.3
BayesSpace - - 0.566±0.096 0.566 6.0
SCAN-IT 0.560±0.045 0.566±0.057 0.533±0.045 0.553 6.7
stLearn - - 0.562±0.022 0.562 7.0
Gemini 1.5 Pro 0.153±0.036 0.757±0.038 0.554±0.110 0.488 7.3
SpaceFlow 0.603±0.077 0.508±0.059 0.367±0.037 0.493 8.3
SEDR 0.187±0.063 0.113±0.057 0.659±0.047 0.32 8.3
STAGATE 0.201±0.083 0.516±0.087 0.506±0.047 0.408 9.0
SpaGCN 0.218±0.018 0.297±0.013 0.506±0.050 0.34 9.7
CCST 0.415±0.030 0.350±0.082 0.483±0.021 0.416 9.7
conST 0.104±0.012 0.063±0.019 0.507±0.081 0.224 12.7
Louvain 0.183±0.011 0.079±0.029 0.337±0.016 0.2 13.3
Leiden 0.190±0.004 0.067±0.027 0.325±0.011 0.194 13.3
SpaGCN(HE) - - 0.468±0.042 0.468 14.0

Table 4: Intra-subject COM: Mean ± SD

MERFISH STARmap Visium Avg. Rank
SCAN-IT 0.029±0.000 0.073±0.003 0.061±0.001 0.054 2.3
CCST 0.028±0.000 0.077±0.003 0.061±0.001 0.055 3.0
BASS 0.029±0.001 0.074±0.002 0.061±0.001 0.055 3.7
Gemini 1.5 Pro 0.030±0.001 0.072±0.001 0.062±0.001 0.054 4.0
LLMiniST-Fs 0.030±0.001 0.073±0.001 0.062±0.002 0.055 4.3
LLMiniST-F 0.030±0.001 0.074±0.001 0.062±0.001 0.055 5.7
SpaceFlow 0.029±0.001 0.074±0.002 0.064±0.002 0.056 6.7
GraphST 0.030±0.001 0.077±0.002 0.063±0.002 0.056 8.3
STAGATE 0.048±0.004 0.077±0.003 0.062±0.001 0.062 9.0
SEDR 0.046±0.004 0.107±0.001 0.062±0.001 0.072 9.7
BayesSpace - - 0.063±0.002 0.063 10.0
stLearn - - 0.064±0.001 0.064 11.0
SpaGCN 0.049±0.001 0.091±0.002 0.065±0.002 0.068 12.0
Louvain 0.055±0.001 0.091±0.002 0.068±0.003 0.071 12.7
conST 0.060±0.002 0.110±0.002 0.065±0.003 0.078 13.7
Leiden 0.055±0.002 0.101±0.002 0.069±0.002 0.075 14.0
SpaGCN(HE) - - 0.067±0.002 0.067 15.0

Table 5: Intra-subject CHAOS: Mean ± SD
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MERFISH STARmap Visium Avg. Rank
SCAN-IT 0.027±0.003 0.025±0.006 0.015±0.003 0.022 3.0
CCST 0.005±0.001 0.111±0.036 0.011±0.003 0.042 3.3
BASS 0.026±0.006 0.055±0.020 0.029±0.000 0.037 3.7
LLMiniST-Fs 0.041±0.008 0.014±0.001 0.048±0.011 0.034 4.0
Gemini 1.5 Pro 0.068±0.039 0.012±0.004 0.057±0.033 0.046 5.3
LLMiniST-F 0.053±0.009 0.022±0.006 0.062±0.017 0.046 5.7
BayesSpace - - 0.053±0.013 0.053 6.0
SpaceFlow 0.028±0.005 0.050±0.006 0.199±0.056 0.092 7.3
SEDR 0.392±0.089 0.462±0.112 0.038±0.011 0.298 8.3
GraphST 0.064±0.028 0.158±0.030 0.118±0.014 0.113 8.7
STAGATE 0.589±0.100 0.089±0.025 0.084±0.029 0.254 9.3
stLearn - - 0.126±0.012 0.126 11.0
Louvain 0.568±0.042 0.316±0.023 0.392±0.074 0.426 12.0
SpaGCN 0.590±0.039 0.356±0.048 0.133±0.028 0.36 12.0
Leiden 0.579±0.036 0.552±0.123 0.442±0.041 0.524 13.7
conST 0.847±0.023 0.700±0.065 0.202±0.148 0.583 14.0
SpaGCN(HE) - - 0.228±0.053 0.228 15.0

Table 6: Intra-subject PAS: Mean ± SD

MERFISH STARmap Visium Avg. Rank
BASS -0.017±0.020 0.187±0.074 0.087±0.022 0.086 3.3
CCST 0.292±0.018 0.064±0.052 0.170±0.078 0.175 3.3
SCAN-IT -0.018±0.056 0.184±0.032 0.162±0.080 0.109 3.3
BayesSpace - - 0.085±0.070 0.085 5.0
LLMiniST-Fs -0.117±0.034 0.226±0.003 0.010±0.034 0.04 6.3
SEDR -0.121±0.067 -0.024±0.035 0.105±0.070 -0.013 7.0
stLearn - - 0.044±0.010 0.044 8.0
STAGATE -0.195±0.044 0.111±0.030 0.060±0.023 -0.008 8.7
GraphST -0.126±0.035 0.054±0.052 0.040±0.012 -0.011 8.7
LLMiniST-F -0.147±0.044 0.226±0.005 0.001±0.046 0.026 9.0
SpaGCN -0.172±0.011 0.025±0.023 0.082±0.043 -0.022 9.3
SpaceFlow -0.029±0.059 0.080±0.036 -0.066±0.029 -0.005 9.3
SpaGCN(HE) - - 0.021±0.035 0.021 10.0
Gemini 1.5 Pro -0.225±0.096 0.231±0.037 -0.045±0.087 -0.013 10.3
conST -0.101±0.015 -0.056±0.009 -0.001±0.024 -0.052 10.7
Louvain -0.143±0.011 -0.091±0.010 0.010±0.019 -0.075 11.3
Leiden -0.168±0.025 -0.100±0.010 0.001±0.010 -0.089 12.7

Table 7: Intra-subject ASW: Mean ± SD
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Figure 9: Noise Resilience Experiments on MERFISH
dataset. The changes of NMI is calculated as the perfor-
mance loss.
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Figure 10: Runtime of non-spatial methods in three
datasets. The red auxiliary line marks the estimated
time of our method.

J Running Time

We used the official APIs for both GPT and Gem-
ini. Our zero-shot method takes approximately
0.2–0.5 seconds per cell, resulting in a total run-
time of around 1,500 seconds for each Visium or
MERFISH sample, and roughly 300 seconds for
each STARmap sample. The runtime of existing
non-LLM methods is benchmarked by Yuan et al.
(2024). We summarized the runtime of different
methods in different datasets in Figure 10. Our
approach offers two advantages: (1) it avoids out-
of-memory errors, and (2) it scales linearly with
the number of cells. In comparison, GNN-based
methods are often limited by graph size.
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