
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9238–9258
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Byte Latent Transformer: Patches Scale Better Than Tokens
Artidoro Pagnoni1, Ram Pasunuru‡, Pedro Rodriguez‡, John Nguyen‡,

Benjamin Muller, Margaret Li1, Chunting Zhou⋄, Lili Yu,
Jason Weston, Luke Zettlemoyer3, Gargi Ghosh, Mike Lewis,

Ari Holtzman2,⋄,†, Srinivasan Iyer†

FAIR at Meta, 1Paul G. Allen School of Computer Science &
Engineering, University of Washington, 2University of Chicago

Correspondence: artidoro@cs.washington.edu, sviyer@meta.com

Abstract
We introduce the Byte Latent Transformer
(BLT), a new byte-level LLM architecture that,
for the first time, matches tokenization-based
LLM performance at scale with significant
improvements in inference efficiency and ro-
bustness. BLT encodes bytes into dynamically
sized patches, which serve as the primary units
of computation. Patches are segmented based
on the entropy of the next byte, allocating more
compute and model capacity where increased
data complexity demands it. We present the
first FLOP controlled scaling study of byte-level
models – up to 8B parameters and 4T training
bytes – demonstrating the feasibility of scaling
models trained on raw bytes without a fixed vo-
cabulary. Both training and inference efficiency
improve due to dynamically selecting long
patches when data is predictable, along with
qualitative improvements on reasoning and long
tail generalization. For fixed inference costs,
BLT shows significantly better scaling than
tokenization-based models, by simultaneously
growing both patch and model size. 1

1 Introduction

Existing large language models (LLMs) are trained
almost entirely end-to-end, except for tokenization—
a heuristic pre-processing step that groups bytes into
a static set of tokens. Such tokens bias how a string
is compressed, leading to shortcomings such as do-
main/modality sensitivity (Dagan et al., 2024), sen-
sitivity to input noise (Pruthi et al., 2019; Sun et al.,
2020), a lack of orthographic knowledge (Edman
et al., 2024), and multilingual inequity (Liang et al.,
2023; Petrov et al., 2024; Limisiewicz et al., 2024).

Tokenization has previously been essential
because directly training LLMs on bytes is
prohibitively costly at scale due to long se-
quence lengths (Xue et al., 2022). Prior work
mitigates this by employing more efficient self-
attention (El Boukkouri et al., 2020; Clark et al.,

1‡ Joint second, † Joint last author, ⋄ Work done at Meta.

1021 1022

Total Training FLOPs

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Bi
ts

-p
er

-b
yt

e
(B

PB
)

40
0B

 b
yt

es

1T
 b

yt
es

BPB vs Training Bytes at Fixed Inference FLOPs
BLT Entropy ps=6 5.2B
BLT Entropy ps=8 6.4B
LLaMA 2 BPE 3.6B
LLaMA 3 BPE 3.9B

Figure 1: Scaling trends for fixed inference FLOP
models (fully) trained with varying training budgets. In
token-based models, a fixed inference budget determines
the model size. In contrast, the BLT architecture
provides a new scaling axis allowing simultaneous
increases in model and patch size while keeping the
same training and inference budget. BLT patch-size
(ps) 6 and 8 models quickly overtake scaling trends of
BPE Llama 2 and 3. BPE compute-optimal point and
crossover point are indicated with vertical lines.

2022) or attention-free architectures (Wang et al.,
2024). However, at scale, the computational cost of
a Transformer (Vaswani et al., 2017) is dominated
by large feed-forward network layers that run on
every byte, not the cost of the attention mechanism.

We introduce the Byte Latent Transformer (BLT),
a tokenizer-free architecture that learns from raw
byte data and, for the first time, matches the perfor-
mance of tokenization-based models at scale. Fol-
lowing Yu et al. (2023); Nawrot et al. (2023); Slagle
(2024), instead of directly operating on bytes, BLT
groups bytes into patches which serve as the primary
unit of computation. To close the gap with BPE
tokenization, we improve on previous work with a
dynamic, learnable method for grouping bytes into
patches and a new architecture that mixes byte and
patch information. Unlike tokenization, BLT has no
fixed vocabulary for patches. Arbitrary groups of

9238

mailto:artidoro@cs.washington.edu
mailto:sviyer@meta.com

bytes are mapped to latent patch representations via
light-weight learned encoder and decoder modules.

We present the first FLOP-controlled scaling
study of byte-level models, demonstrating that
models with up to 8B parameters and 4T training
bytes can be trained end-to-end from bytes without
fixed-vocabulary tokenization. BLT matches
training FLOP-controlled performance of Llama
3 while using up to 50% fewer FLOPs at inference.
Additionally, BLT offers significant improvements
in handling the long-tail of data, showing enhanced
robustness to noisy inputs and better character-level
understanding, as evidenced by its performance
on orthographic knowledge, phonology, and
low-resource machine translation tasks.

Finally, with BLT models, we can simultaneously
increase model size and patch size while main-
taining the same inference FLOP budget. Longer
patch sizes, on average, save compute which can
be reallocated to grow the size of the global latent
transformer, because it is run less often. We conduct
inference-FLOP controlled scaling experiments (Fig-
ure 1), and observe significantly better scaling
trends than with tokenization-based architectures.

In summary, this paper contributes the following:
1) We introduce BLT, a byte latent LLM archi-
tecture that dynamically allocates compute for
improved FLOP efficiency. 2) We achieve training
FLOP-controlled parity with Llama 3 up to 8B scale,
with potential FLOP efficiency gains of up to 50%.
3) We unlock a new dimension for scaling LLMs,
allowing model and patch size to jointly increase
while maintaining a fixed-inference budget. 4) We
demonstrate BLT’s improved robustness to input
noise and its awareness of sub-word aspects missed
by token-based LLMs. 2

2 Patching: From Bytes to Patches

Segmenting bytes into patches allows BLT to dy-
namically allocate compute based on context. Fig-
ure 3 shows several different methods for segment-
ing bytes into patches. Formally, a patching function
segments a sequence of bytes xxx= {xi,|i= 1,...t}
of length t into a sequence of m < t patches
ppp= {pj |j=1,...m} by mapping each xi to the set
{0,1} where 1 indicates the start of a new patch. For
both token-based and patch-based models, the com-
putational cost of processing data is primarily deter-
mined by the number of steps executed by the main
Transformer. In BLT, this is the number of patches

2Training and inference code for BLT are attached.

Local Decoder

<s> B e t et r _ t h a n _ B P E

B e t et r _ t h a n _ B P E !

Local Encoder

Latent Transformer

θ

H

5. Small Byte-Level
Transformer Makes
Next-Byte Prediction

4. Unpatching to Byte
Sequence via
Cross-Attn

3. Large Latent
Transformer Predicts
Next Patch

2. Entropy-Based
Grouping of Bytes Into
Patches via Cross-Attn

1. Byte-Level Small
Transformer Encodes
Byte Stream

Figure 2: BLT comprises three modules, a lightweight
Local Encoder that encodes input bytes into patch rep-
resentations, a Latent Transformer over patch represen-
tations, and a lightweight Local Decoder to decode the
next patch of bytes. BLT incorporates byte n-gram em-
beddings and a cross-attention mechanism to maximize
information flow between bytes and patches (Figure 4)
and preserve access to the byte-level information.

needed to encode the data with a given patching
function. Consequently, the average size of a patch,
or simply patch size, is the main factor for determin-
ing the cost of processing data during both training
and inference with a given patching function.

2.1 Tokenization vs. Patching
We use “tokens” to refer to byte-groups drawn from
a finite vocabulary determined prior to training as
opposed to “patches” which refer to dynamically
grouped sequences without a fixed vocabulary.
Unlike with tokens, patch-based models have
direct access to the underlying bytes (e.g. character
information). In §A, we discuss BPE tokenization
in more detail and why it cannot be directly used
as a patching function.

2.2 Strided and Space Patching
We describe here two approaches from the literature
for grouping bytes into patches with details in §B.

Strided Patching MegaByte (Yu et al., 2023)
groups bytes into patches of fixed size k. However,
this does not take into account information density
for compute allocation and leads to inconsistent
patching byte sequences, such as the same word
being split differently.

Space Patching Slagle (2024) starts new patches
after space-like bytes which are natural boundaries

9239

Figure 3: Patching schemes group bytes in different ways, each leading to a different number of resulting patches.

for linguistic units in many languages. This en-
sures words are patched in the same way across
sequences and that flops are allocated for hard pre-
dictions which often follow spaces. However, space
patching cannot handle all languages and domains,
and cannot vary the patch size.

2.3 Entropy Patching
Rather than relying on a rule-based heuristic such as
whitespace, we instead take a data-driven approach
to identify high uncertainty next-byte predictions.
We introduce entropy patching, which uses entropy
estimates to derive patch boundaries. In BLT train-
ing and inference, entropy patching is a lightweight
preprocessing step executed during dataloading.

We train a small byte-level auto-regressive
language model on the training data for BLT
and compute next byte entropies under the LM
distribution pe over the byte vocabulary V:

H(xi)=−
∑

v∈V
pe(xi=v|xxx<i)log pe(xi=v|xxx<i)

We experiment with two methods to identify
patch boundaries given entropies H(xi). Global
finds points above a global entropy threshold, as
illustrated in Figure 6. Approximate Monotonicity,
identifies points that are high relative to the previous
entropy. This can also be interpreted as identifying
points that break approximate monotonically
decreasing entropy withing the patch.

Global H(xi)>θg

Approx. Monotonic H(xi)−H(xi−1)>θr

Although Nawrot et al. (2023) propose a similar
entropy-base approach, they do not match BPE
performance. This is likely due to a combination
of the use of a different segmentation criterion, a
separate classifier for boundary detection, and a
less expressive model architecture.

3 BLT Architecture

BLT is composed of a large global autoregressive
transformer that operates on patch representations,
along with two smaller local models that encode

sequences of bytes into patches and decode next
patch representations back into bytes (Figure 2).

3.1 Latent Global Transformer Model

The Latent Global Transformer is an autoregressive
transformer model G with lG layers, which maps
a sequence of latent input patch representations,
pj into a sequence of output patch representations,
oj .3 This module consumes the bulk of the FLOPs
during pre-training as well as inference, and thus,
choosing when to invoke it allows us to control and
vary the amount of compute expended for different
portions of the input sequence. This module uses
a block-causal attention mask (Dubey et al., 2024).

3.2 Local Encoder

The Local Encoder Model, denoted by E , is a
lightweight transformer-based model with lE <<lG
layers, whose main role is to efficiently map a
sequence of input bytes xi, into expressive patch
representations, pj . We employ a cross-attention
layer after each transformer layer to expressively
aggregate byte representations into patch repre-
sentations (Figure 4). First, the input sequence
of bytes, xi, are embedded using a R256×hE

matrix, denoted as ei. These embeddings are
then augmented with additional information in
the form of hash-embeddings (§3.2.1). A series
of alternating transformer and cross-attention
layers (§3.2.2) then transform these representations
into patch representations, pj that are processed
by the global transformer, G. The transformer
layers use a local block causal attention mask; each
byte attends to a fixed window of wE preceding
bytes that in general can cross the dynamic patch
boundaries but can not cross document boundaries.

3.2.1 Encoder Hash n-gram Embeddings

A key component in creating robust, expressive
representations is to incorporate information about
preceding bytes. In BLT, we model both the byte xi
individually and as part of a byte n-gram. For each

3We use j to denote patches and i to denote bytes.

9240

step i, we first construct byte-grams of length n:

gi,n={xi−n+1,...,xi}

We then introduce hash n-gram embeddings,
that map all byte n-grams via a hash function to
an index in an embedding table Ehash

n for each
n∈{3,4,5,6,7,8} (Bai et al., 2010). The resulting
embedding is then added to the embedding of
the byte before being normalized and passed as
input to the local encoder model. We calculate the
augmented embedding

e′i=ei+
∑

n=3,...,8

Ehash
n (Hash(gi,n))

Hash(gi,n)=RollPolyHash(gi,n)%|Ehash
n |

We normalize e′i by the number of n-grams sizes
plus one and use RollPolyHash (Rabin, 1981) as
defined in §E. Unlike Deiseroth et al. (2024), hash
n-gram embeddings are only used to improve
the input byte-representations without switching
to n-gram based predictions. In section 7, we
ablate the effects of n-gram hash embeddings with
different values for n and embedding table size on
FLOP-controlled scaling trends. We find hash n-
gram embeddings to perform better than frequency
based n-gram embeddings as discussed in §J.

3.2.2 Encoder Multi-Headed Cross-Attention

The encoder cross-attention helps expressively
aggregate byte representations into patch represen-
tations which will be used as inputs to the Latent
Transformer. We closely follow the Perceiver cross-
attention (Jaegle et al., 2021), with the main differ-
ence being that latent representations correspond to
variable patch representations as opposed to a fixed
set of latent representations (Figure 4), and only
attend to the bytes that make up the respective patch.
The module comprises a query vector, correspond-
ing to each patch pj , which is initialized by pooling
the byte representations corresponding to patch pj ,
followed by a linear projection, EC ∈RhE×(hE×UE),
where UE is the number of encoder cross-attention
heads. Formally, if we let f(bytes(pj)) denote a
pooling function applied to the sequence of bytes

corresponding to patch pj , then we calculate

P0,j=EC(f(bytes(pj))

Pl=Pl−1+Wo

(
softmax

(
QKT

√
dk

)
V

)

where hl=Encoder-Transformer-Layerl(hl−1)

Ki=Wk(hl,i), Vi=Wv(hl,i),

Qj=Wq(Pl−1,j)

where P ∈Rm×hG represents m patch representa-
tions to be processed by the global model, which
is initialized by pooling the byte embeddings e′i
corresponding to each patch pj . Wq, Wk, Wv and
Wo are projections for queries, keys, values, and
outputs where the keys and values are the encoder
byte hidden states hl,i. We use a masking strategy
specific to patching where each query Qj only
attends to the keys and values that correspond to
the bytes in patch j. Because we use multi-headed
attention overQ,K andV and patch representations
are typically of larger dimension (hG) than hE , we
maintain Pl as multiple heads of dimension hE
when doing cross-attention, and later, concat these
representations into hG dimensions. Additionally,
we use a pre-LayerNorm on the queries, keys and
values and no positional embeddings are used in this
cross-attention module. Finally, we use a residual
connection around the cross-attention block.

3.3 Local Decoder

Similar to the local encoder, the local decoderD is a
lightweight transformer-based model with lD<<lG
layers, that decodes a sequence of global patch
representations oj , into raw bytes, yi. The local de-
coder predicts a sequence of raw bytes, as a function
of previously decoded bytes, and thus, takes as input
the hidden representations produced by the local en-
coder for the byte-sequence. It applies a series of lD
alternating layers of cross attention and transformer
layers. The cross-attention layer in the decoder is
applied before the transformer layer to first create
byte representations from the patch representations.

3.3.1 Decoder Multi-headed Cross-Attention
In the decoder cross-attention, the roles of the
queries and key/values are interchanged: the
byte-representations are now the queries, and the
patch representations are now the key/values. The
initial byte-representations for the cross-attention
are initialized as the byte embeddings from the
last encoder layer i.e. hlE . The equations for the

9241

Decoder Patch Cross Attention

Queries Key/Vals (Split + Mask)

Byte Transf. Layer X Dec.
LayersEncoder Patch Cross Attention

Key/Vals (Patch Mask) Queries
(Pooling Init)

X Enc.
LayersByte Transf. Layer

Byte Embeds Byte Encoder Hidden States

Byte Encoder
Hidden States Global Patch Inputs

Global Outputs

Byte Decoder
Hidden States

Figure 4: The encoder cross-attention uses patch representations as queries, and byte representations as key/values
to encode byte into patch representations. In the decoder, the roles are reversed. Here cross-att k=2.

decoder cross-attention, which closely resemble
those of the encoder, are provided in §F.

4 Experimental Setup

We carefully design controlled experiments to
compare BLT with tokenization based models
with particular attention to not give BLT any
advantages, including from possibly using longer
sequence contexts. Hyperparameters and settings
not explicitly discussed here are described in detail
in §G. The exact equations for FLOPs computation
of BLT, Transformer, and Cross-Attention FLOPs
can be found in §H. The equation of the standard
bits-per-byte (BPB) metric can also be found in §I.

Pre-training Datasets All model scales that we
experiment in this paper are pre-trained on two
datasets: 1) The BLT-Exp dataset (Touvron et al.,
2023), which comprises 2 trillion tokens collected
from a variety of publicly available sources cleaned
and filtered to improve quality; and 2) BLT-1T: a
higher quality 1 trillion token dataset gathered from
various public sources, and also including a subset
of the pre-training data released by Datacomp-
LM (Li et al., 2024). The former is used for ablations
and scaling trends experiments to determine the
best architectural choices for BLT, while the latter
is used for a complete pre-training run to compare
with the Llama 3 architecture on downstream tasks.

Entropy Model and Threshold For models
using entropy patching, we estimate a patching
threshold that achieves a desired average patch
size on the pretraining data mix. We default to
the global entropy threshold when not specified.
Unless otherwise mentioned, our entropy model
is a transformer with 100M parameters, 14 layers,
and a hidden dimensionality of 512, sliding window
attention of 512 bytes and trained on the same

distribution as BLT. We experiment with different
model sizes, receptive fields, and architectures
(§O). When the receptive field of the model is small
enough, the trained entropy model can be encoded
in an efficient lookup table.

Efficient Training on Patches When loading
batches of data, dynamic patching methods yield
different ratios of bytes to patches. For efficiency,
our implementation packs batches of patches as
opposed to bytes to ensure a constant number of
patches in each batch and avoid padding steps in the
more expensive latent transformer. During training,
we pad or truncate byte sequences to 12k and 24k
respectively for BLT-Exp and BLT-1T datasets, to
avoid memory spikes from unusually large patches.

Equalizing Context Length In BLT, varying the
patch size has significant implications on the context
size of the model. To avoid any advantage from
having access to a larger context, we ensure that the
number of bytes in each batch remains constant on
average. We therefore adjust the sequence length of
the Latent Transformer to achieve 8k and 16k byte
contexts for the BLT-Exp and BLT-1T datasets.

5 Scaling Trends

We present a holistic picture of the scaling trends
of byte-level models that can inform further
scaling of BLT models. Our scaling study aims
to address limitations of previous research on
byte-level models: (a) We compare trends for the
compute-optimal training regime, (b) We train FLOP

matched 8B models on 1T tokens/4T bytes and
evaluate on downstream tasks, and (c) We measure
scaling trends in inference-cost controlled settings.

5.1 Compute Optimal Scaling Trends
Using the BLT-Exp dataset, we train various
compute-optimal BPE and BLT models across four

9242

1021 1022

Total Training FLOPS

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Bi
ts

-p
er

-b
yt

e
(B

PB
)

BPB vs Training FLOPs at Compute Optimal Ratio (Space Patching)
BLT Space ps=6
BLT Space w/o cross-attn
LLaMA 3 BPE
Megabyte++ ps=4
Megabyte++ ps=6
SpaceByte

1021 1022

Total Training FLOPs

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Bi
ts

-p
er

-b
yt

e
(B

PB
)

BPB vs Training FLOPs at Compute Optimal Ratio (Entropy Patching)
BLT Entropy ps=4
BLT Entropy ps=8
LLaMA 2 BPE
LLaMA 3 BPE
Megabyte++ ps=4
Megabyte++ ps=6

Figure 5: Scaling trends for BLT models with different architectural choices, as well as for baseline BPE token-based
models. We train models at multiple scales from 1B up to 8B parameters for the optimal number of tokens as computed
by (Dubey et al., 2024) and report bits-per-byte on a sample from the training distribution. BLT models perform
on par with state-of-the-art tokenizer-based models such as Llama 3, at scale. PS denotes patch size. We illustrate
separate architecture improvements on space-patching (left) and combine them with dynamic patching (right).

different sizes, ranging from 1B to 8B parameters,
and plot FLOPs agains LM performance in terms
of BPB on a sample from the training data mix.
The compute-optimal setup defines a ratio between
model parameters and training data size which is
theoretically designed to achieve the best perfor-
mance within a given training budget (Hoffmann
et al., 2022; Dubey et al., 2024). This provides a
robust baseline for our model. For each BPE model,
we train a BLT model on the same data with a
Latent Transformer matching its Transformer size.
The BPB performance of global and monotonic
patching are equivalent so we only report global.

As illustrated in Figure 5, BLT models either
match or outperform their BPE counterparts and this
trend holds as we scale model size and FLOPs. To
the best of our knowledge, BLT is the first byte-level
architecture to achieve matching scaling trends with
BPE-based models at compute optimal regimes.

Finally, our BLT architecture trends between
Llama 2 and 3 when using significantly larger patch
sizes. The BPE tokenizers of Llama 2 and 3 have an
average token size of 3.7 and 4.4 bytes. In contrast,
BLT can achieve similar scaling trends with an
average patch size of 8 bytes. Inference FLOP are
inversely proportional to the average patch size, so
a patch size of 8 bytes would lead to nearly 50%
inference FLOP savings. BLT patch size 8 also
performs comparably better as we scale model and
data size suggesting benefits for larger patch sizes
at larger compute scales.

Llama 3
1T Toks

BLT-Space
6T Bytes

BLT-Global
4.5T Bytes

BLT-Mono
4.5T Bytes

Arc-E 77.6 75.4 76.4 79.6
Arc-C 53.3 49.8 52.1 52.1
HellaSwag 79.1 79.6 80.4 80.6
PIQA 80.7 81.1 81.3 80.6
MMLU 58.1 54.8 56.2 57.4
MBPP 40.2 37.6 42.2 41.8
HumanEval 31.1 27.4 29.3 35.4

Average 60.0 58.0 59.7 61.1

Bytes/Patch Train Mix 4.4 6.1 4.5 4.5

Table 1: Comparison of FLOP-matched BLT and BPE 8B
models trained on the BLT-1T dataset on downstream
tasks. BLT outperforms Llama 3, and depending on the
patching scheme, achieves significant FLOPs savings at
the expense of minor performance reduction.

5.2 Beyond Compute Optimal Evaluations

To assess scaling properties further, we train 8B
models beyond compute optimal on 4T bytes of a
higher-quality dataset, and measure performance
on a suite of standard classification and generation
benchmarks (§K for task details).

In Table 1, we compare BPE Llama 3 tokenizer-
based model, and three variants of BLT: space-
patching, global, and approx. monotonic entropy
patching (as discussed in §N). All models are
trained with an equivalent FLOP budget. However,
with BLT-Entropy we additionally make an
inference time adjustment of the entropy threshold
to 0.1 which we find to improve task performance
at the cost of more inference steps.

The monotonic BLT-Entropy model outperforms
the Llama 3 model on 4 out of 7 tasks while being
trained on the same number of bytes. This improve-

9243

Llama 3
1T toks

Llama 3.1
16T toks

BLT-Mono
4.5T bytes

HellaSwag Original 79.1 80.7 80.6
HellaSwag Noise Avg. 56.9 64.3 64.3

- AntSpeak 45.6 61.3 57.9
- Drop 53.8 57.3 58.2
- RandomCase 55.3 65.0 65.7
- Repeat 57.0 61.5 66.6
- UpperCase 72.9 76.5 77.3

Phonology-G2P 11.8 18.9 13.0

CUTE 27.5 - 54.1

Table 2: 8B BLT and BPE Llama 3 trained on 4T
bytes on tasks that assess robustness to noise and
character-level understanding (best result bold). We also
evaluate Llama 3.1 and underline best result overall.

ment is likely due to a combination of (1) a better
use of training compute via dynamic patching, and
(2) the direct modeling of byte-level information
as opposed to tokens. The Global BLT-Entropy
matches BPE but underperforms on structured tasks
like MMLU (see discussion §M). On the other hand,
BLT-Space underperforms the Llama 3 tokenizer
on all but one task, but it achieves a significant
reduction in inference FLOPs with its larger patch
size of 6 bytes compared to 4.5 for the other models.

5.3 Patches Scale Better Than Tokens

With BLT models, we can simultaneously increase
model size and patch size while maintaining the
same training and inference FLOP budget and
keeping the amount of training data constant.
Arbitrarily increasing the patch size is a unique
feature of patch-based models which break free
of the efficiency tradeoffs of fixed-vocabulary
token-based models (see discussion in §A).

We conduct a fixed inference scaling study to
test the hypothesis that larger models taking fewer
steps on larger patches might perform better than
smaller models taking more steps. Starting from
a 3.6B Llama 2 tokenizer-base model, we find FLOP

equivalent Llama 3 tokenizer and BLT-Entropy
models with average patch sizes of 6 and 8 bytes
on the training datamix (see §L for details and
additional experiments).

Figure 1 shows that BLT models achieve better
scaling trends than tokenization-based architectures.
BPE models perform better with small training bud-
gets but are quickly surpassed by BLT, not far be-
yond the compute-optimal regime. In practice, it can
be preferable to spend more during the one-time pre-
training to achieve a better performing model with

Language → English English → Language

Llama 3 BLT Llama 3 BLT

High Resource 27.90 28.42 18.55 17.47
Low Resource 7.58 9.83 2.35 3.29

Overall Average 12.1 14.0 5.9 6.4

Table 3: Performance (BLEU) on translation tasks from
FLORES-101 (Goyal et al., 2022). 8B BLT versus BPE
Llama 3 both trained for 4T bytes.

a fixed inference budget. A perfect example of this
is the class of 8B models, like Llama 3.1, which has
been trained on two orders of magnitude more data
than what is compute-optimal for that model size.

6 Byte Modeling Improves Robustness

An early motivation for byte-level models is
their potential robustness to byte level noise and
awareness of the constituents of tokens, which
current tokenizer-based models struggle with. To
measure these phenomena, we perform additional
evaluations on benchmarks that evaluate both
robustness to input noise as well as awareness
of characters, in both English and multi-lingual
settings. We summarize the results in Table 2 and
Table 3 with more details in §R.

Noisy Data We create noised versions of Hel-
laSwag and find that BLT outperforms in terms of
robustness the Llama 3 BPE model by a large mar-
gin and even improves over Llama 3.1 in many tasks
indicating that the byte-level awareness is not some-
thing that can easily be obtained with more data.

Phonology - Grapheme-to-Phoneme (G2P) We
assess BLT’s capability to map a sequence of
graphemes (characters) into a transcription of their
pronunciation (phonemes). On the G2P task (5-shot
setting) from Phonology Bench (Suvarna et al.,
2024), we find that BLT outperforms the baseline
Llama 3 4T bytes tokenizer-based model.

Character-level Understanding The CUTE
benchmark (Edman et al., 2024) comprises tasks
related to character understanding, orthographic
and semantic similarity, and sequence manipulation.
Table 12 shows that BLT-Entropy outperforms by
a large margin both BPE Llama 3 models on this
benchmark. In particular, our model demonstrates
exceptional proficiency in character manipulation
tasks achieving 99.9% on both spelling tasks.

Low Resource Machine Translation We eval-
uate BLT on translation tasks from FLORES-101

9244

BPB

XAtt. Dec. XAtt. Enc. Pool Init Wiki CC Github Train Dist

- All Layers False 0.830 0.915 0.442 0.891
- Last Layer False 0.836 0.906 0.447 0.886
- - - 0.833 0.892 0.446 0.866

First Layer Last Layer True 0.825 0.883 0.443 0.861
All Layers Last Layer True 0.823 0.871 0.443 0.846
All Layers All Layers True 0.828 0.868 0.443 0.844

Table 4: Ablations on the use of Cross Attention for a
1B BLT model trained on 100B bytes.

benchmark (Goyal et al., 2022) and report BLEU
in Table 3. BLT outperforms the Llama 3 tokenizer-
based model, achieving a 2-point overall advantage
in translating into English and a 0.5-point advantage
in translating from English. BLT performs compa-
rably better in the lower-resource language families,
underscoring the effectiveness of byte modeling for
generalizing to long-tail byte sequences.

7 Ablations and Discussion

In this section, we present ablations for the primary
architectural choices of BLT. For LM performance,
we report bits-per-byte (BPB) on different datasets
and a random sample of the training data.

Cross-Attention In Table 4, we ablate including
cross-attention at various points in BLT. In the
encoder, we test initializing the queries with 1) the
same learned embedding for every global state, 2)
a hash embedding of the bytes in the patch, and
3) pooling of the encoder hidden representation
of the patch bytes at the given encoder layer. We
find that using cross-attention in the decoder is
most effective while in the encoder, there is a slight
improvement but only with pooling initialization of
queries. Additionally, we find that cross-attention
helps particularly on Common-Crawl.

n-gram Hash Embeddings We ablate various
hash n-gram sizes and embedding vocabularies
and present results in Table 5. We find that hash
embeddings help on all domains, but particularly on
Wikipedia and Github. Smaller n-gram sizes (3,4,5)
outperform larger ones (6,7,8). Using larger per
n-gram vocabulary underperforms using smaller
vocabularies but different n-gram sizes for the same
total vocabulary. Using different n-gram sizes
likely helps discriminate among collisions from
the hash-function. At 8B scale going from 500K
to 300K hashes changed performance by 0.001 bpb
on 15k steps. This indicates that hashes are vital
to bringing the performance of BLT to match those

BPB

Ngram Ngram Voc Total Voc Wiki CC Github Train Dist

- - - 0.892 0.867 0.506 0.850
6,7,8 100k 300k 0.873 0.860 0.499 0.842
6,7,8 200k 600k 0.862 0.856 0.492 0.838
3,4,5 100k 300k 0.859 0.855 0.491 0.837
6,7,8 400k 1M 0.855 0.853 0.491 0.834
3,4,5 200k 600k 0.850 0.852 0.485 0.833
3,4,5,6,7,8 100k 600k 0.850 0.852 0.486 0.833
3,4,5 400k 1M 0.844 0.851 0.483 0.832
3,4,5,6,7,8 200k 1M 0.840 0.849 0.481 0.830
3,4,5,6,7,8 400k 2M 0.831 0.846 0.478 0.826

Table 5: Ablations on the use of n-gram hash embedding
tables for a 1B BLT model trained on 100B bytes. We
find that hash n-gram embeddings are very effective with
very large improvements in BPB. The most significant
parameter is the per-ngram vocab size and that smaller
ngram sizes are more impactful than larger ones.

of tokenizer based models, however, after 300K
hashes, there are diminishing returns. Additionally,
it appears that the gains are largely complementary
with cross-attention as they provide improvements
on different datasets.

8 Related Work

Character language modeling has been a focus since
early neural models due to their ability to handle
out-of-vocabulary words without back-off methods
(Sutskever et al., 2011; Mikolov et al., 2012;
Graves, 2013). Kim et al. (2016) used convolutional
and highway networks feeding into LSTM-based
RNNs, matching state-of-the-art performance on
English and surpassing it on morphologically rich
languages. Kenter et al. (2018) and Zhang et al.
(2015) demonstrated the effectiveness of byte-level
and character-based models on morphologically-
rich languages and classification tasks, respectively.
Hierarchical LSTM models (Chung et al., 2019)
and CNN-based ByteNet (Kalchbrenner et al.,
2016) further advanced character-level modeling.

Transformers with attention (Vaswani et al.,
2017) and subword tokenization (Sennrich et al.,
2016) improved language modeling. Al-Rfou et al.
(2019) used deep transformers with auxiliary losses,
outperforming LSTM-based character models but
not word-level LLMs. GPT-2 (Radford et al., 2019)
found byte-level LMs less competitive on large
datasets. Byte-level transformers (Choe et al., 2019;
El Boukkouri et al., 2020; Clark et al., 2022; Xue
et al., 2022; Tay et al., 2022; Sun et al., 2023) showed
promise but required more compute. Recent work
(Wang et al., 2024) using the Mamba Architecture
(Gu and Dao, 2023) improved byte-level models

9245

without patching. Patching reduces the computa-
tional cost of byte-level LLMs. Nawrot et al. (2022)
and Nawrot et al. (2023) explored static and dy-
namic patching, outperforming byte-level baselines.
Lester et al. (2024) used arithmetic coding for se-
quence compression, achieving better performance
than byte-level baselines but not subword models.

Our work is inspired by MegaByte (Yu et al.,
2023), a decoder-only causal LLM using static
patching. We find that static patching lags behind
state-of-the-art tokenizer-based models in a FLOP

controlled setting, and demonstrate how BLT
bridges this gap. Slagle (2024) suggested improve-
ments to MegaByte, showing gains over tokenized
models in specific domains. We report further
experiments indicating the need for architectural
enhancements to scale byte-level models to match
token-based models like Llama 3.

9 Conclusion

The Byte Latent Transformer redefines the conven-
tional dependency on fixed-vocabulary tokenization
in LLMs. By dynamically grouping bytes into
patches, BLT allocates computational resources
based on data complexity, leading to improvements
in both efficiency and robustness. BLT models
match tokenization-based models at scales up to
8B and 4T bytes, and can trade minor losses in
evaluation metrics for up to 50% reductions in
inference FLOPs. While directly engaging with raw
byte data, BLT better handles the long-tail of data,
offering improvements in robustness to noisy inputs
and handling of sub-word structures. Furthermore,
BLT unlocks a new scaling dimension, allowing
simultaneous increases in model and patch size
within a fixed inference budget. This paradigm
becomes advantageous for compute regimes
commonly encountered in practical settings. These
results position BLT as a promising alternative to
traditional tokenization-based approaches, for more
efficient and adaptable language models.

10 Limitations

In this work, for the purposes of architectural
choices, we train models for the optimal number
of steps as determined for Llama 3 (Dubey et al.,
2024). However, these scaling laws were calculated
for BPE-level transformers on the BLT-Exp dataset
and may lead to suboptimal (data, parameter sizes)
ratios in the case of BLT. We leave for future
work the calculation of scaling laws for BLT

potentially leading to even more favorable scaling
trends for our architecture. Additionally, many of
these experiments were conducted at scales upto
1B parameters, and it is possible for the optimal
architectural choices to change as we scale to
8B parameters and beyond, which may unlock
improved performance for larger scales.

While the research question of this work is
whether Transformer models can match BPE
performance with raw byte-level training signal,
we should investigate the use of state-space models
(e.g. Mamba (Gu and Dao, 2023)) as an alternative
to the transformer for byte-level modeling. The
use of such models within BLT might fit the local
encoder-decoder modules. Others have shown that
directly modeling bytes with such models might
also be an effective approach (Wang et al., 2024).

We deliberately choose to use patching methods
that are not jointly trained with the main model
to avoid adding secondary objectives that might
compete with the byte-level cross-entropy loss
used to train BLT. Some initial experiments using
the encoder as the entropy model showed there
might be some trade-offs. We further hypothesized
these issues might be exacerbated when scaling up.
However, now that we demonstrated BLT success-
fully scales up to BPE performance, future work
can explore patching schemes learned end-to-end
alongside model training such as Gumbel-Sigmoid
patching proposed by Nawrot et al. (2023).

Existing transformer libraries and codebases are
designed to be highly efficient for tokenizer-based
transformer architectures. While we present
theoretical FLOP matched experiments and also
use certain efficient implementations (such as
FlexAttention) to handle layers that deviate
from the vanilla transformer architecture, our
implementations may yet not be at parity with
tokenizer-based models in terms of wall-clock time
and may benefit from further optimizations.

While we provide code and detailed hyperpa-
rameter settings to experiment with BLT models,
pretraining such models from scratch requires
significant amounts of compute resources. We
conducted promising experiments on initializing the
BLT weights with already pretrained model weights.
However, we leave it to future work to determine
whether pretrained token-based models can effec-
tively be converted to operate on patches of bytes.

9246

Acknowledgements

We would like to thank Kalyan Saladi for help with
everything relating to pre-training infrastructure;
Gabriel Synnaeve, Ammar Rizvi, Jacob Kahn,
Michel Meyer for helping organize resources for
scaling up BLT; Badr Youbi Idirissi, Mathurin
Videau, and Jade Copet for invaluable discussions
and feedback about BLT, for access to the Lingua
framework for open-sourcing code for BLT, and
for help preparing the BLT-1T dataset used in this
paper; Omer Levy, who was actively involved in
the early stages of the project and provided valuable
feedback and ideas; Driss Guessous for help with
FlexAttention; and Sida Wang, Melanie Sclar,
Amanda Bertsch, and Hunter Lang for feedback
and discussions.

Contributors

In this section, we list individual contributions.

Core Contributors: Artidoro Pagnoni, Srini-
vasan Iyer, Ramakanth Pasunuru, Pedro Rodriguez,
John Nguyen, Gargi Ghosh (Project Lead)

Core Advising Group: Mike Lewis, Ari
Holtzman, Luke Zettlemoyer

Advisors and Contributors: Jason Weston, Ben-
jamin Muller, Margaret Li, Chunting Zhou, Lili Yu

References
Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy

Guo, and Llion Jones. 2019. Character-level language
modeling with deeper self-attention. In Association
for the Advancement of Artificial Intelligence,
volume 33, pages 3159–3166.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models.

Bing Bai, Jason Weston, David Grangier, Ronan
Collobert, Kunihiko Sadamasa, Yanjun Qi, Olivier
Chapelle, and Kilian Weinberger. 2010. Learning
to rank with (a lot of) word features. Information
retrieval, 13:291–314.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
and 1 others. 2020. Piqa: Reasoning about physical
commonsense in natural language. In Association
for the Advancement of Artificial Intelligence, pages
7432–7439.

Adam Casson. 2023. Transformer flops.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-
man, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, and 39 others. 2021.
Evaluating large language models trained on code.

Dokook Choe, Rami Al-Rfou, Mandy Guo, Heeyoung
Lee, and Noah Constant. 2019. Bridging the
gap for tokenizer-free language models. arXiv,
abs/1908.10322.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio.
2019. Hierarchical multiscale recurrent neural
networks. In Proceedings of the International
Conference on Learning Representations.

Jonathan H Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an efficient
tokenization-free encoder for language representation.
Transactions of the Association for Computational
Linguistics, 10:73–91.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? Try ARC, the AI2 reasoning challenge.
arXiv.

Gautier Dagan, Gabriel Synnaeve, and Baptiste Roziere.
2024. Getting the most out of your tokenizer for
pre-training and domain adaptation. In Forty-first
International Conference on Machine Learning.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. FlashAttention: Fast and
memory-efficient exact attention with io-awareness.
Proceedings of Advances in Neural Information
Processing Systems, 35.

Björn Deiseroth, Manuel Brack, Patrick Schramowski,
Kristian Kersting, and Samuel Weinbach. 2024.
T-FREE: Subword tokenizer-free generative LLMs
via sparse representations for memory-efficient em-
beddings. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 21829–21851, Miami, Florida, USA. Associ-
ation for Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv.

Lukas Edman, Helmut Schmid, and Alexander Fraser.
2024. CUTE: Measuring llms’ understanding of their
tokens. arXiv.

Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne,
Hiroshi Noji, Pierre Zweigenbaum, and Jun’ichi
Tsujii. 2020. CharacterBERT: Reconciling elmo and
bert for word-level open-vocabulary representations
from characters. In Proceedings of International
Conference on Computational Linguistics.

9247

https://www.adamcasson.com/posts/transformer-flops
https://doi.org/10.18653/v1/2024.emnlp-main.1217
https://doi.org/10.18653/v1/2024.emnlp-main.1217
https://doi.org/10.18653/v1/2024.emnlp-main.1217

Philip Gage. 1994. A new algorithm for data
compression. The C Users Journal, 12(2):23–38.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary,
Peng-Jen Chen, Guillaume Wenzek, Da Ju, Sanjana
Krishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The Flores-101 evaluation
benchmark for low-resource and multilingual
machine translation. Transactions of the Association
for Computational Linguistics, 10:522–538.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. arXiv.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language
understanding. In Proceedings of the International
Conference on Learning Representations.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, and 1 others. 2022. Train-
ing compute-optimal large language models. In
Proceedings of Advances in Neural Information
Processing Systems.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol
Vinyals, Andrew Zisserman, and Joao Carreira. 2021.
Perceiver: General perception with iterative attention.
In Proceedings of the International Conference of
Machine Learning. PMLR.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Aäron van den Oord, Alexander Graves, and Koray
Kavukcuoglu. 2016. Neural machine translation in
linear time. arXiv.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv.

Tom Kenter, Llion Jones, and Daniel Hewlett. 2018.
Byte-level machine reading across morpholog-
ically varied languages. In Association for the
Advancement of Artificial Intelligence.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander
Rush. 2016. Character-aware neural language models.
In Association for the Advancement of Artificial
Intelligence.

Brian Lester, Jaehoon Lee, Alex Alemi, Jeffrey Pen-
nington, Adam Roberts, Jascha Sohl-Dickstein, and
Noah Constant. 2024. Training llms over neurally
compressed text. arXiv.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi,
Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, and 1 others. 2024.
Datacomp-lm: In search of the next generation of
training sets for language models. arXiv.

Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman
Goyal, Marjan Ghazvininejad, Luke Zettlemoyer,
and Madian Khabsa. 2023. Xlm-v: Overcoming
the vocabulary bottleneck in multilingual masked
language models. In Proceedings of Empirical
Methods in Natural Language Processing.

Tomasz Limisiewicz, Terra Blevins, Hila Gonen,
Orevaoghene Ahia, and Luke Zettlemoyer. 2024.
Myte: Morphology-driven byte encoding for better
and fairer multilingual language modeling. arXiv.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. arXiv.

Tomáš Mikolov, Ilya Sutskever, Anoop Deoras,
Hai-Son Le, Stefan Kombrink, and Jan Cernocky.
2012. Subword language modeling with neu-
ral networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 8(67).

Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and
Edoardo Maria Ponti. 2023. Efficient transformers
with dynamic token pooling. In Proceedings of
the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6403–6417, Toronto, Canada. Association for
Computational Linguistics.

Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski,
Lukasz Kaiser, Yuhuai Wu, Christian Szegedy, and
Henryk Michalewski. 2022. Hierarchical transform-
ers are more efficient language models. In Findings
of the Association for Computational Linguistics:
NAACL 2022, pages 1559–1571, Seattle, United
States. Association for Computational Linguistics.

Aleksandar Petrov, Emanuele La Malfa, Philip Torr, and
Adel Bibi. 2024. Language model tokenizers intro-
duce unfairness between languages. Proceedings of
Advances in Neural Information Processing Systems.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lipton.
2019. Combating adversarial misspellings with robust
word recognition. In Proceedings of the 57th Annual
Meeting of the Association for Computational
Linguistics, pages 5582–5591, Florence, Italy. As-
sociation for Computational Linguistics.

Michael O Rabin. 1981. Fingerprinting by random
polynomials. Technical report.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, and 1 others. 2019.
Language models are unsupervised multitask learners.
OpenAI blog, 1(8):9.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages
1715–1725, Berlin, Germany. Association for
Computational Linguistics.

Noam Shazeer. 2020. GLU variants improve transformer.
arXiv.

9248

https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.18653/v1/2023.acl-long.353
https://doi.org/10.18653/v1/2023.acl-long.353
https://doi.org/10.18653/v1/2022.findings-naacl.117
https://doi.org/10.18653/v1/2022.findings-naacl.117
https://doi.org/10.18653/v1/P19-1561
https://doi.org/10.18653/v1/P19-1561
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162

Kevin Slagle. 2024. Spacebyte: Towards deleting
tokenization from large language modeling. arXiv.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. 2021. RoFormer: En-
hanced transformer with rotary position embedding.
arxiv e-prints, art. arXiv.

Li Sun, Florian Luisier, Kayhan Batmanghelich, Dinei
Florencio, and Cha Zhang. 2023. From characters
to words: Hierarchical pre-trained language model
for open-vocabulary language understanding. In
Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3605–3620, Toronto, Canada.
Association for Computational Linguistics.

Lichao Sun, Kazuma Hashimoto, Wenpeng Yin,
Akari Asai, Jia Li, Philip Yu, and Caiming Xiong.
2020. Adv-bert: Bert is not robust on misspellings!
generating nature adversarial samples on bert. arXiv
preprint arXiv:2003.04985.

Ilya Sutskever, James Martens, and Geoffrey E Hinton.
2011. Generating text with recurrent neural networks.
In Proceedings of the International Conference of
Machine Learning, pages 1017–1024.

Ashima Suvarna, Harshita Khandelwal, and Nanyun
Peng. 2024. Phonologybench: Evaluating phonolog-
ical skills of large language models. arXiv.

Yi Tay, Vinh Q Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon
Baumgartner, Cong Yu, and Donald Metzler. 2022.
Charformer: Fast character transformers via gradient-
based subword tokenization. In International
Conference on Learning Representations.

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, and 1 others. 2023. Llama 2: Open
foundation and fine-tuned chat models. arXiv.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Neural Information Processing Systems.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan
Yan, and Alexander M Rush. 2024. Mambabyte:
Token-free selective state space model. arXiv.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi
Rungta, Karthik Abinav Sankararaman, Barlas
Oguz, and 1 others. 2024. Effective long-context
scaling of foundation models. In Conference of
the North American Chapter of the Association for
Computational Linguistics.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts, and
Colin Raffel. 2022. Byt5: Towards a token-free future
with pre-trained byte-to-byte models. Transactions

of the Association for Computational Linguistics,
10:291–306.

Lili Yu, Dániel Simig, Colin Flaherty, Armen Agha-
janyan, Luke Zettlemoyer, and Mike Lewis. 2023.
Megabyte: Predicting million-byte sequences with
multiscale transformers. Proceedings of Advances
in Neural Information Processing Systems.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi,
and Yejin Choi. 2019. Hellaswag: Can a machine
really finish your sentence? arXiv.

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. Proceedings of Advances in
Neural Information Processing Systems, 32.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text
classification. In Proceedings of Advances in Neural
Information Processing Systems, volume 28. Curran
Associates, Inc.

A The Byte-Pair Encoding (BPE)
Tokenizer and Incremental Patching

Many modern LLMs, including our baseline Llama
3, use a subword tokenizer like BPE (Gage, 1994;
Sennrich et al., 2016). We use “tokens” to refer
to byte-groups drawn from a finite vocabulary
determined prior to training as opposed to “patches”
which refer to dynamically grouped sequences with-
out a fixed vocabulary. A critical difference between
patches and tokens is that with tokens, the model
has no direct access to the underlying byte features.

A crucial improvement of BLT over tokenization-
based models is that redefines the trade off between
the vocabulary size and compute. In standard LLMs,
increasing the size of the vocabulary means larger
tokens on average and therefore fewer steps for
the model but also larger output dimension for
the final projection layer of the model. This trade
off effectively leaves little room for tokenization
based approaches to achieve significant variations
in token size and inference cost. For example,
Llama 3 increases the average token size from 3.7
to 4.4 bytes at the cost of increasing the size of its
embedding table 4x compared to Llama 2.

When generating, BLT needs to decide whether
the current step in the byte sequence is at a patch
boundary or not as this determines whether more
compute is invoked via the Latent Transformer.
This decision needs to occur independently of the
rest of the sequence which has yet to be generated.
Thus patching cannot assume access to future
bytes in order to choose how to segment the byte

9249

https://doi.org/10.18653/v1/2023.acl-long.200
https://doi.org/10.18653/v1/2023.acl-long.200
https://doi.org/10.18653/v1/2023.acl-long.200
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

sequence. Formally, a patching scheme fp satisfies
the property of incremental patching if it satisfies:

fp(xxx<i)=fp(xxx)<i

BPE is not an incremental patching scheme as the
same prefix can be tokenized differently depending
on the continuation sequence, and therefore does
not satisfy the property above4.

B Strided Patching Details

Perhaps the most straightforward way to group
bytes is into patches of fixed size k as done in
MegaByte (Yu et al., 2023). The fixed stride is easy
to implement for training and inference, provides a
straightforward mechanism for changing the aver-
age patch size, and therefore makes it easy to con-
trol the FLOP cost. However, this patching function
comes with significant downsides. First, compute is
not dynamically allocated to where it is needed most:
one could be either wasting a transformer step j if
only predicting whitespace in code, or not allocating
sufficient compute for bytes dense with information
such as math. Second, this leads to inconsistent and
non-contextual patching of similar byte sequences,
such as the same word being split differently.

C Space Patching Details

Slagle (2024) proposes a simple yet effective im-
provement over strided patching that creates new
patches after any space-like bytes5 which are natural
boundaries for linguistic units in many languages.
In Space patching, a latent transformer step (i.e.,
more FLOPs) is allocated to model every word. This
ensures words are patched in the same way across
sequences and that flops are allocated for hard pre-
dictions which often follow spaces. For example,
predicting the first byte of the answer to the ques-
tion “Who composed the Magic Flute? ” is much
harder than predicting the remaining bytes after “M”
since the first character significantly reduces the
number of likely choices, making the completion
“Mozart” comparatively easy to predict. However,
space patching cannot gracefully handle all lan-
guages and domains, and most importantly cannot
vary the patch size. Next, we introduce a new patch-
ing method that uses the insight that the first bytes

4Using a special delimiter token to indicate patch bound-
aries can turn BPE into an incremental patching scheme but
increases the byte-sequence length.

5Space-like bytes are defined as any byte that is not a latin
character, digit, or UTF-8 continuation byte. In addition, each
patch must contain at least one non space-like byte.

in words are typically most difficult to predict, but
that provides a natural mechanism for controlling
patch size.

D Entropy Patching Illustration

Here illustrate the entropy H(xi) of the next byte
and the resulting patches. Patches end when H(xi)
exceeds the global threshold θg, shown as a red
horizontal line. The start of new patches are shown
with vertical gray lines. For example, the entropies
of “G” and “e” in “George R.R. Martin” exceed
θg, so “G” is the start of a single byte patch and “e”
of a larger patch extending to the end of the named
entity as the entropy H(xi) stays low, resulting in
no additional patches.

E Rolling Polynomial Hashing

Given a byte n-gram gi,n = {bi−n+1, ... , bi}, the
rolling polynomial hash (Rabin, 1981) of gi,n is
defined as:

Hash(gi,n)=
n∑

j=1

bi−j+1a
j−1 (1)

Where a is chosen to be a 10-digit prime number.

F Decoder Cross-Attention Details

In the decoder cross-attention, the roles of the
queries and key/values are interchanged: the
byte-representations are now the queries, and the
patch representations are now the key/values. The
initial byte-representations for the cross-attention
are initialized as the byte embeddings from the last
encoder layer i.e. hlE . Equations for the decoder
cross-attention are found at §F. The subsequent byte-
representations for layer l, dl,i are computed as:

D0=hlE

Bl=Dl−1+Wo

(
softmax

(
QKT

√
dk

)
V

)

where Dl=Decoder-Transformer-layerl(Bl)

Qi=Wq(dl−1,i),Ki=Wk(DC(oj)),

Vi=Wv(DC(oj))

where once again, Wk,Wv are key/value projection
matrices that operate on a linear transformation and
split operation DC , applied to the final patch repre-
sentations oj from the global model, Wq is a query
projection matrices operating on byte representa-
tions dl−1 from the previous decoder transformer
layer (or hlE for the first layer), and Wo is the output

9250

< D a e n e r y s _ T a r g a r y e n _ i s _ i n _ G a m e _ o f _ T h r o n e s , _ a _ f a n t a s y _ e p i c _ b y _ G e o r g e _ R . R . _ M a r t i n . >
0

1

2

3

4
En

tr
op

y
of

 N
ex

t B
yt

e

Figure 6: This figure plots the entropy H(xi) of each byte in “Daenerys Targeryen is in Game of Thrones, a fantasy
epic by George R.R. Martin.” with spaces shown as underscores.

projection matrix, thus making B∈RhD×nb , where
nb is the number of output bytes. The next decoder
representations Dl are computed using a decoder
transformer layer on the output of the cross-attention
block, B. As in the local encoder cross-attention,
we use multiple heads in the attention, use pre Lay-
erNorms, no positional embeddings, and a residual
connection around the cross-attention module.

G Hyperparameters

We describe hyperparameters distinguishing those
that are specific to BLT from those that are standard
to the Transformer.

G.1 Transformer
Architecture Hyperparameters

For all the transformer blocks in BLT, i.e. both
local and global models, we largely follow the archi-
tecture of Llama 3 (Dubey et al., 2024); we use the
SwiGLU activation function (Shazeer, 2020) in the
feed-forward layers, rotary positional embeddings
(RoPE) (Su et al., 2021) with θ = 500000 (Xiong
et al., 2024) only in self-attention layers, and
RMSNorm (Zhang and Sennrich, 2019) for layer
normalization. We use Flash attention (Dao
et al., 2022) for all self-attention layers that use
fixed-standard attention masks such as block causal
or fixed-window block causal, and a window size of
512 for fixed-width attention masks. Since our cross-
attention layers involve dynamic patch-dependent
masks, we use Flex Attention6 to produce fused im-
plementations and significantly speed up training.

G.2 BLT-Specific Hyperparameters

To study the effectiveness of BLT models, we
conduct experiments along two directions, scaling
trends, and downstream task evaluations, and we
consider models at different scales: 400M, 1B, 2B,
4B and 8B for these experiments. The architecture
hyperparameters for these models are presented
in Table 6. We use max-pooling to initialize the

6https://pytorch.org/blog/flexattention

queries for the first cross-attention layer in the local
encoder. We use 500,000 hashes with a single hash
function, with n-gram sizes ranging from 3 to 8, for
all BLT models. We use a learning rate of 4e−4 for
all models. The choice of matching learning rate
between token and BLT models follows a hyperpa-
rameter search between 1e−3 and 1e−4 at 400M
and 1B model scales showing the same learning rate
is optimal. For scaling trends on Llama-2 data, we
use training batch-sizes as recommended by (Dubey
et al., 2024) or its equivalent in bytes. For optimiza-
tion, we use the AdamW optimizer (Loshchilov
and Hutter, 2017) with β1 set to 0.9 and β2 to 0.95,
with an ϵ=10−8. We use a linear warm-up of 2000
steps with an cosine decay schedule of the learning
rate to 0, we apply a weight decay of 0.1, and global
gradient clipping at a threshold of 1.0.

H FLOPs Estimation

We calculate the computational cost of a model by
estimating the number of Floating Point OPerations
(FLOPs) needed to execute it or train it. FLOPs
estimates provide a platform independent way of
comparing the computational cost of a neural archi-
tecture and are standard in the field (Kaplan et al.,
2020). Additionally, given that the building blocks
of the BLT architecture are standard Transformer
modules, the hardware utilization achieved by the
BLT model should be in line with standard dense
Transformer models. FLOPs improvements should
therefore directly translate in efficiency gains.

We largely follow the equations for computation
of transformer FLOPs from Chinchilla (Hoffmann
et al., 2022) comprising FLOPs for the feed-forward
layers, QKVO projections in the self-attention layer,
and computation of attention and output projection.
A notable difference is that we assume the input
embedding layer is implemented as an efficient
lookup instead of a dense matrix multiplication,
therefore becoming a 0-FLOP operation. Following
previous work, we estimate that the backwards pass
has twice the number of FLOPs as the forward pass.

9251

https://pytorch.org/blog/flexattention

Encoder Global Latent Transf. Decoder Cross-Attn.
Model lE #heads hE #Params lG #heads hG #Params lD #heads hD #Params #heads k

400M 1 12 768 7M 24 10 1280 470M 7 12 768 50M 10 2
1B 1 16 1024 12M 25 16 2048 1B 9 16 1024 113M 16 2
2B 1 16 1024 12M 26 20 2560 2B 9 16 1024 113M 16 3
4B 1 16 1024 12M 36 24 3072 4.1B 9 16 1024 113M 16 3
8B 1 20 1280 20M 32 32 4096 6.4B 6 20 1280 120M 20 4

Table 6: Architectural hyper-parameters for different BLT model sizes that we train for FLOP-controlled experiments
described in this paper.

To compute FLOPs per byte for BLT models, we
add up the FLOPs for the local encoder transformer,
the global latent transformer, and the local decoder
transformer, together with the cross attention blocks
in the encoder and the decoder:

Next we describe the exact equations for FLOPs
computation of BLT, Transformer, and Cross-
Attention FLOPs. Here, we provide the equations
used for FLOP computation for the forward-pass of
transformer and BLT models based on (Hoffmann
et al., 2022; Kaplan et al., 2020; Casson, 2023). We
assume that the backward pass uses twice as much
FLOPs as the forward pass.

Transformer-FLOPs For a transformer model
with l layers, hidden dimension h, context length m,
nheads attention heads of dimension hk, and a feed-
forward multipler of dff , we compute FLOPs as:

Transformer-FLOPs(l,h,m,nheads,hk,dff ,V)=

Feed-forward(l,h,dff)

+QKVO(l,h,r=1)

+Attention(l,hk,nheads,m)

+De-Embedding(h,V)

BLT FLOPs For BLT models, we use the
above-mentioned primitives together with the
following equation from to compute total FLOPs.

BLT-FLOPs=

Transf. FL(hG ,lG ,m=nctx/np,V =0)/np

+Transf. FL(hE ,lE ,m=wE ,V =0)

+Transf. FL(hD,lD,m=wD,V =256)

+Cross Attn. FL(hE ,lE ,m=np,r=np/k)×k/np

+Cross Attn. FL(hD,lD,m=k,r=k/np)

where nctx is the sequence length in bytes, np is the
patch size, r is the ratio of queries to key/values, k is
the ratio of patch-dimension to byte-dimension i.e.
the number of local model splits that concatenate

to form a global model representation (k = 2 in
Figure 4). V corresponds to the vocabulary size for
the output projection, which is only used in the local
decoder. Depending on whether a module is applied
on the byte or patch sequence, the attention uses a
different context length,m. We modify the attention
FLOPs accordingly for each component.

I Bits-Per-Byte Estimation

Perplexity only makes sense in the context of a fixed
tokenizer as it is a measure of the uncertainty for
each token. When comparing byte and token-level
models, following previous work (Xue et al., 2022;
Yu et al., 2023; Wang et al., 2024), we instead report
Bits-Per-Byte (BPB), a tokenizer independent
version of perplexity. Specifically:

BPB(x)=
LCE(xxx)

ln(2)·nbytes
(2)

where the uncertainty over the dataxxx as measured
by the sum of the cross-entropy loss is normalized
by the total number of bytes inxxx and a constant.

J Frequency-based n-gram Embedddings

Prior to using hash n-gram embeddings in the
final BLT architecture, we also experimented with
frequency-based n-gram embeddings. For each
n∈{1,2,3,4,5,6,7,8} there is an embedding matrix
Engram

n that contains the most frequent byte-grams
for the given n. Since it is intractable to store
embeddings as n grows, we only store embeddings
for the most frequent 100,000 byte-grams for each
byte-gram. If a particular position i includes an
n-gram present in the corresponding the embedding
matrix, then this embedding is passed to the next
step, encoder multi-headed cross-attention. If a
byte-gram is infrequent and therefore not in the
matrix, then its embedding is obtained from encoder
hash embeddings instead.

Since frequency-based n-grams are limited
by the vocabulary of the n-gram tables with

9252

Operation FLOPs per token/byte

Attention (l,hk,nheads,m) 4×l×hk×nheads×m+1
2

QKVO (l,h,r) (r×2+2)×2×l×h2

Feed-forward (l,h,dff) 2×l×2×h×dffh
De-Embedding (h,V) 2×h×|V |
Cross-Attention (l,hk,nheads,p,r) Attention(l,hk,nheads,p) + QKVO(l,hk×nheads,r)

Table 7: FLOPs for operations used in transformer and BLT models. l corresponds to layers, h is the hidden dimension
(hk with nheads heads), m is the context length, dff = 4 is the feed-forward dimension multiplier, p is the patch
size, and r is the ratio of queries to keys.

infrequent n-grams not being represented at all,
we subsequently moved to hash-based n-gram
embeddings. See Table 8 for a comparison of hash
and frequency based n-gram embeddings.

K Task Evaluation Details

For task evaluation, we select the following
common sense reasoning, world knowledge, and
code generation tasks:

Classification tasks include ARC-Easy
(0-shot) (Clark et al., 2018), Arc-Challenge
(0-shot) (Clark et al., 2018), HellaSwag (0-
shot) (Zellers et al., 2019), PIQA (0-shot) (Bisk
et al., 2020), and MMLU (5-shot) (Hendrycks
et al., 2020). We employ a prompt-scoring method,
calculating the likelihood over choice characters,
and report the average accuracy.

Coding related generation tasks: We report
pass@1 scores on MBPP (3-shot) (Austin et al.,
2021) and HumanEval (0-shot) (Chen et al., 2021),
to evaluate the ability of LLMs to generate Python
code.

L Fixed Inference Scaling Details

We conducted fixed inference FLOPs scaling ex-
periments at two different scales. The two plots are
presented in Figure 7. BLT demonstrates improved
scaling trends at two different scales suggesting that
these observation would continue to hold at scale.

For patch size 8 models, we use 3 encoder layers
instead of 1. We train each model for various
training FLOP budgets. Model details can be found
at Table 9.

The crossover point where BLT improves over
token-based models has shifted slightly closer to the
compute-optimal point when moving to the larger
FLOP class models (from 3x down to 2.5x the com-
pute optimal budget). Similarly, the larger patch

size 8 model has steeper scaling trend in the larger
FLOP class overtaking the other models sooner. As
discussed in Section 5.1, larger patch sizes appear
to perform closer to BPE models at larger model
scales. We attribute this, in part, to the decreasing
share of total FLOPs used by the byte-level Encoder
and Decoder modules which seem to scale slower
than the Latent Transformer. When growing total
parameters 20x from 400M to 8B, we only roughly
double BLT’s local model parameters. This is im-
portant as larger patch sizes only affect FLOPs from
the patch Latent Transformer and not the byte-level
modules. In fact, that is why the BLT-Entropy ps=8
went from 1.6x to 1.7x of the Llama 2 model size
when moving to the larger model scale.

In summary, our patch-length scaling study
demonstrates that the BLT patch-based architecture
can achieve better scaling trends by simultaneously
increasing both patch and model size. Such trends
seem to persist and even improve at larger model
scales.

M Entropy
Patching Example from MMLU

We illustrate how a few-shot example from a down-
stream task i.e. MMLU (Hendrycks et al., 2020), is
patched using an entropy-model trained for use with
BLT models in Figure 8. Directly using the entropy
model with the full-context window causes repet-
itive patterns to be heavily patched. For example,
“10 times, with an rms deviation of about” in the
MMLU query is patched frequently the first time it
is encountered, but is part of very large patches the
next three times, which, although inference efficient,
maybe undesirable for reasoning. One method that
we use to avoid such a “entropy” drift is by resetting
the entropy context with new lines and using a
approximate monotonic constraint (see Section N).

9253

bpb

Hash Ngram Sizes Per Hash Ngram Vocab Ngram Sizes Per Ngram Vocab Total Vocab Wikipedia CC Github Train Dist

- - - - - 0.892 0.867 0.506 0.850
6,7,8 50k 6,7,8 50k 300k 0.878 0.860 0.497 0.843
6,7,8 100k - - 300k 0.873 0.860 0.499 0.842
6,7,8 100k 6,7,8 100k 600k 0.868 0.857 0.494 0.839
6,7,8 200k - - 600k 0.862 0.856 0.492 0.838
3,4,5 50k 3,4,5 50k 300k 0.862 0.856 0.491 0.837
3,4,5 100k - - 300k 0.859 0.855 0.491 0.837
6,7,8 200k 6,7,8 200k 1M 0.861 0.855 0.491 0.837
6,7,8 400k - - 1M 0.855 0.853 0.491 0.834
3,4,5,6,7,8 50k 3,4,5,6,7,8 50k 600k 0.855 0.853 0.488 0.834
3,4,5 100k 3,4,5 100k 600k 0.851 0.853 0.486 0.834
3,4,5 200k - - 600k 0.850 0.852 0.485 0.833
3,4,5,6,7,8 100k - - 600k 0.850 0.852 0.486 0.833
3,4,5 400k - - 1M 0.844 0.851 0.483 0.832
3,4,5 200k 3,4,5 200k 1M 0.843 0.850 0.482 0.830
3,4,5,6,7,8 100k 3,4,5,6,7,8 100k 1M 0.844 0.850 0.482 0.830
3,4,5,6,7,8 200k - - 1M 0.840 0.849 0.481 0.830
3,4,5,6,7,8 200k 3,4,5,6,7,8 200k 2M 0.833 0.846 0.478 0.826
3,4,5,6,7,8 400k - - 2M 0.831 0.846 0.478 0.826

Table 8: Ablations on the use of frequency-based as well as hash-based n-gram embedding tables for a 1B BLT model
trained on 100B bytes.

Llama 2 Llama 3 Entropy ps=6 Entropy ps=8 Inference FLOPs Compute Optimal (Bytes) Crossover (Bytes)

470m 450m 610m (1.2x) 760m (1.6x) 3.1E8 50B 150B
3.6B 3.9B 5.2B (1.3x) 6.6B (1.7x) 2.1E9 400B 1T

Table 9: Details of models used in the fixed-inference scaling study. We report non-embedding parameters for each
model and their relative number compared to Llama 2. We pick model sizes with equal inference FLOPs per byte.
We also indicate BPE’s compute-optimal training data quantity and the crossover point where BLT surpasses BPE
as seen in Figure 1 (both expressed in bytes of training data). This point is achieved at much smaller scales compared
to many modern training budgets.

N Entropy Model Context

Empirically, we find that using entropy patching
yields progressively larger patches in structured
content like multiple choice tasks (see patching on
an MMLU example in Figure 8) which are often
very repetitive. These variations are caused by
lower entropy on the repeated content found in the
entropy model context. So for the large scale run
of BLT-Entropy with patch size 4.5, we reset the
entropy context with new lines and use approximate
monontonicity constraint as it suffers less from
"entropy drift" from changes in context length. This
change only affects how we compute entropies, but
we still follow the same procedure to identify the
value of the entropy threshold.

O Entropy Model Ablations

To study the effect of varying entropy model size
and context window length on scaling performance,
we train byte-level entropy transformer models
of different model sizes between 1m and 100m

Llama 3
BPE

Space Patching
BLT

Entropy Patch Size 4
BLT

Arc-E 67.4 67.2 68.9
Arc-C 40.5 37.6 38.3
HellaSwag 71.3 70.8 72.7
PIQA 77.0 76.5 77.6

Table 10: Benchmark evaluations of two patching
schemes for 8b BLT models and BPE Llama 3 baseline.
These are compute-optimal models trained on the Llama
2 data.

parameters, with varying context window lengths
from 64 to 512. We plot bpb vs training FLOP

scaling law curves, created using our 400m and
1b BLT models trained on the Llama-2 dataset
and present them in Figure 9. We find that scaling
performance is positively correlated with both these
dimensions of the entropy model, with diminishing
returns when we scale beyond 50m parameters.

9254

1020

Total Training FLOPs

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
Bi

ts
-p

er
-b

yt
e

(B
PB

)

50
B

by
te

s

15
0B

 b
yt

es

BPB vs Training Bytes at Fixed Inference FLOPs
BLT Entropy ps=6 550M
BLT Entropy ps=8 760M
LLaMA 2 BPE 450M
LLaMA 3 BPE 450M

1021 1022

Total Training FLOPs

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Bi
ts

-p
er

-b
yt

e
(B

PB
)

40
0B

 b
yt

es

1T
 b

yt
es

BPB vs Training Bytes at Fixed Inference FLOPs
BLT Entropy ps=6 5.2B
BLT Entropy ps=8 6.4B
LLaMA 2 BPE 3.6B
LLaMA 3 BPE 3.9B

Figure 7: Scaling trends for fixed inference FLOP models (fully) trained with varying training budgets. In token-based
models, a fixed inference budget determines the model size. In contrast, the BLT architecture provides a new scaling
axis allowing simultaneous increases in model and patch size while keeping the same training and inference budget.
BLT patch-size (ps) 6 and 8 models quickly overtake scaling trends of BPE Llama 2 and 3. Moving to the larger
inference budget makes the larger patch size 8 model more desirable sooner. Both BPE compute-optimal point and
crossover point are indicated with vertical lines.

Ngram Embeds Enc Layers Dec Layers BPB

False 1 9 0.850
False 5 5 0.843

True 5 5 0.844
True 3 7 0.824
True 1 9 0.822

Table 11: When paired with hash n-gram embeddings,
a light-weight local encoder is sufficient. More layers
can then be allocated to the decoder for the same cost.

P Patching Ablations

In Table 10, we present benchmark evaluations for
compute-optimal tokenizer-based models, space,
and entropy patching BLT models, trained on the
BLT-Exp dataset (Dubey et al., 2024). Although
space patching is a simpler strategy that does not
involve running an entropy model on the fly during
training, we find that the gains we observed using
entropy-based patching on scaling trends do indeed
carry forward even to downstream benchmark tasks.
7

Q Local Model Hyperparamaters

In Table 11, we ablate various settings for the num-
ber of layers in the local encoder and decoder. When
paired with hash n-gram embeddings, BLT works

7Space patching results are from earlier runs without
cross-attention, but similar trends are observed even with
cross-attention.

well with an encoder that is extremely light-weight
i.e. just one layer, and with a heavier decoder.

R Robustness Experiment Details

Noisy Data We create noised versions of the
benchmark classification tasks described in
Section 5.2, to compare the robustness of tokenizer-
based models with that of BLT. We employ
five distinct character-level noising strategies to
introduce variations in the text: (a) AntSpeak: This
strategy converts the entire text into uppercase,
space-separated characters. (b) Drop: Randomly
removes 10% of the characters from the text. (c)
RandomCase: Converts 50% of the characters
to uppercase and 50% to lowercase randomly
throughout the text. (d) Repeat: Repeats 20% of
the characters up to a maximum of four times. (e)
UpperCase: Transforms all characters in the text
to uppercase. During evaluation, we apply each
noising strategy to either the prompt, completion,
or both as separate tasks and report the average
scores. In Table 12 we report results on noised
HellaSwag (Zellers et al., 2019) and find that BLT
indeed outperforms tokenizer-based models across
the board in terms of robustness, with an average
advantage of 8 points over the model trained on the
same data, and even improves over the Llama 3.1
model trained on a much larger dataset.

Phonology - Grapheme-to-Phoneme (G2P)
We assess BLT’s capability to map a sequence
of graphemes (characters representing a word)
into a transcription of that word’s pronunciation

9255

Figure 8: An example of default entropy-based patching with global threshold during inference on MMLU. Green
denotes the prompt, Blue denotes the few-shot examples, and red denotes the question to be answered. Note that
the size of the patches for the repeated phrases in the answer choices is much larger, which means that the global
model is invoked significantly fewer times than its tokenizer-based counterpart, with this inference patching scheme.

1020 2 × 1020 3 × 1020

Total Training FLOPS

0.85

0.90

0.95

1.00

1.05

Bi
ts

-p
er

-b
yt

e
(B

PB
)

BPB vs Training FLOPs at Compute Optimal Ratio
P=100m,w=512
P= 10m,w=128
P= 10m,w=512
P= 1m,w=512
P= 50m,w=512
P= 1m,w= 64

Figure 9: Variation of language modeling performance
in bits-per-byte (bpb) with training FLOPs for 400m and
1b BLT models patched with entropy models of different
sizes and context windows. Both dimensions improve
scaling performance, with diminishing returns beyond
50m parameter entropy models with a context of 512
bytes.

(phonemes). In Table 12, we present the results of
the G2P task in a 5-shot setting using Phonology
Bench (Suvarna et al., 2024) and find that BLT out-

performs the baseline Llama 3 1T tokenizer-based
model on this task.

CUTE To assess character-level understanding,
we evaluate BLT on the CUTE benchmark (Edman
et al., 2024), which comprises several tasks that
are broadly classified into three categories: under-
standing composition, understanding orthographic
similarity, and ability to manipulate sequences. This
benchmark poses a significant challenge for most
tokenizer-based models, as they appear to possess
knowledge of their tokens’ spellings but struggle
to effectively utilize this information to manipulate
text. Table 12 shows that BLT-Entropy outperforms
both BPE Llama 3 models by more than 25 points
on this benchmark. In particular, our model demon-
strates exceptional proficiency in character manipu-
lation tasks achieving 99.9% on both spelling tasks.
Such large improvements despite BLT having been
trained on 16x less data than Llama 3.1 indicates
that character level information is hard to learn
for BPE models. Figure 10 illustrates a few such
scenarios where Llama 3 tokenizer model struggles
but our BLT model performs well. Word deletion

9256

Task Prompt Llama 3 BLT

Substitute
Word

Question: Substitute " and " with " internet
" in " She went to the kitchen and saw two
cereals. ". Answer:

She went to
the kitchen
and saw two
cereals.

She went to
the kitchen
internet saw
two cereals.

Swap Char Question: Swap " h " and " a " in " that ".
Answer:

that taht

Substitute
Char

Question: Substitute " a " with " m " in "
page ". Answer:

- pmge

Semantic
Similarity

Question: More semantically related to "
are ": " seem ", " acre ". Answer:

acre seem

Orthographic
Similarity

Question: Closer in Levenshtein distance to
" time ": " timber ", " period ". Answer:

period timber

Insert
Char

Question: Add an " z " after every " n " in
" not ". Answer:

znotz nzot

Figure 10: Output responses from Llama 3 and BLT models for various tasks from CUTE benchmark. BLT model
performs better on sequence manipulation tasks compared to the tokenizer-based Llama 3 model. Note that few-shot
examples are not shown in the above prompts to maintain clarity.

and insertion are the only two tasks where BPE
performs better. Such word manipulation might not
be straightforward for a byte-level model but the
gap is not too wide and building from characters
to words could be easier than the other way around.
We use the same evaluation setup in all tasks and the
original prompts from Huggingface. BPE models
might benefit from additional prompt engineering.

Low Resource Machine Translation We
evaluate BLT on translating into and out of six
popular language families and twenty one lower
resource languages with various scripts from the
FLORES-101 benchmark (Goyal et al., 2022) and
report SentencePiece BLEU in Table 13. Our results
demonstrate that BLT outperforms a model trained
with the Llama 3 tokenizer, achieving a 2-point
overall advantage in translating into English and a
0.5-point advantage in translating from English. In
popular language pairs, BLT performs comparably
to or slightly better than Llama 3. However, BLT
outperforms Llama 3 on numerous language
pairs within lower-resource language families,
underscoring the effectiveness of byte modeling for
generalizing to long-tail byte sequences.

Llama 3
(1T tokens)

Llama 3.1
(16T tokens)

BLT
(1T tokens)

HellaSwag Original 79.1 80.7 80.6
HellaSwag Noise Avg. 56.9 64.3 64.3

- AntSpeak 45.6 61.3 57.9
- Drop 53.8 57.3 58.2
- RandomCase 55.3 65.0 65.7
- Repeat 57.0 61.5 66.6
- UpperCase 72.9 76.5 77.3

Phonology-G2P 11.8 18.9 13.0

CUTE 27.5 20.0 54.1
- Contains Char 0.0 0.0 55.9
- Contains Word 55.1 21.6 73.5
- Del Char 34.6 34.3 35.9
- Del Word 75.5 84.5 56.1
- Ins Char 7.5 0.0 7.6
- Ins Word 33.5 63.3 31.2
- Orthography 43.1 0.0 52.4
- Semantic 65 0.0 90.5
- Spelling 1.1 - 99.9
- Spelling Inverse 30.1 3.6 99.9
- Substitute Char 0.4 1.2 48.7
- Substitute Word 16.4 6.8 72.8
- Swap Char 2.6 2.4 11.5
- Swap Word 20.1 4.1 21

Table 12: We compare our 8B BLT model to 8B BPE
Llama 3 trained on 1T tokens on tasks that assess
robustness to noise and awareness of the constituents
of language (best result bold). We also report the perfor-
mance of Llama 3.1 on the same tasks and underline best
result overall. BLT outperforms the Llama 3 BPE model
by a large margin and even improves over Llama 3.1 in
many tasks indicating that the byte-level awareness is not
something that can easily be obtained with more data.

9257

Language Language → English English → Language

Llama 3 BLT Llama 3 BLT

Arabic 22.3 24.6 10.4 8.8
German 41.3 42.0 29.8 31.2
Hindi 20.7 20.9 7.8 7.2
Italian 34.0 33.9 24.4 26.2
Vietnamese 31.2 31.0 28.4 23.7
Thai 17.9 18.1 10.5 7.7

Armenian 1.7 6.3 0.6 0.9
Amharic 1.3 3.1 0.4 0.5
Assamese 2.7 5.4 0.8 1.6
Bengali 4.7 12.7 1.7 4.1
Bosnian 36.0 37.3 16.9 19.6
Cebuano 18.2 20.6 5.8 9.1
Georgian 1.7 7.4 1.0 2.5
Gujarati 2.0 5.8 1.0 2.2
Hausa 5.75 5.9 1.2 1.3
Icelandic 16.1 17.9 4.8 5.3
Kannada 1.6 3.9 0.7 1.7
Kazakh 5.6 7.0 1.0 2.6
Kabuverdianu 20.3 20.9 5.1 6.8
Khmer 4.4 9.5 0.8 0.8
Kyrgyz 4.6 5.1 0.9 2.0
Malayalam 1.8 3.5 0.7 1.4
Odia 1.6 2.7 0.8 1.1
Somali 5.0 5.0 1.1 1.4
Swahili 10.1 12.0 1.4 2.3
Urdu 9.3 9.5 2.0 1.4
Zulu 4.7 5.0 0.6 0.5

Overall Average 12.1 14.0 5.9 6.4

Table 13: Performance of 8B BLT and 8B Llama 3
trained for 1T tokens on translating into and from six
widely-used languages and twenty one lower resource
languages with various scripts from the FLORES-101
benchmark (Goyal et al., 2022).

9258

