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Abstract

We introduce DavIR, a model-based data selec-
tion method for post-training Large Language
Models. DavIR generalizes Reducible Holdout
Loss to core-set selection problem of causal
language modeling, and quantifies the “learn-
ability” of a given datum with respect to a
pre-trained LLM based on relative reduction
in loss during fine-tuning, a metric we show to
be closely related to the implicit reward model
described in Direct Preference Optimization
(DPO). We show that 6% of Alpaca dataset se-
lected with DavIR can steer both the LLaMA
and Gemma model family to produce supe-
rior performance compared to the same models
trained on the full 52K dataset. We also show
that Alpaca dataset compressed with DavIR
can be combined with GSM8K dataset to ef-
fectively balance open-domain freeform QA
and mathematical reasoning capabilities. Fi-
nally, we apply the DavIR objective to DPO
and develop a normalized DavIR-DPO objec-
tive which improves alignment performance of
Zephyr-7B-SFT model by 8% (relative) on Al-
pacaEval, compared against training on vanilla
DPO objective.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2022; Touvron et al.,
2023; Ouyang et al., 2022) have sparked a revo-
lution in the field of Natural Language Processing
(NLP), with far reaching impacts in domains such
as law (Cui et al., 2023), medical (Singhal et al.,
2022) and finance (Wu et al., 2023).

A critical step in the current paradigm of
post-training LLMs is Supervised/Instruction Fine-
tuning (SFT/IFT), which enables pre-trained mod-
els to exhibit strong instruction-following capabili-
ties (Chung et al., 2022; Ouyang et al., 2022; Tou-
vron et al., 2023; Wang et al., 2022; Zheng et al.,
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2023). Selecting the most effective training data
during this stage is particularly important since
effective steering of LLM during SFT could be
achieved by just a few thousand carefully curated
data (Zhou et al., 2023). Previous approaches to
selecting SFT training data focused on data qual-
ity and diversity (Ji et al., 2023; Zhou et al., 2023;
Chen et al., 2023b,a; Li et al., 2023a), guided by
the intuition of encouraging LLMs to output ac-
curate and reliable information while maintaining
generalization capabilities to a wide range of tasks
and scenarios.

However, by focusing on the quality and diver-
sity of the data, existing methods are data-centric,
and are agnostic to the capabilities of the pre-
trained model upon which fine-tuning occurs. In-
stead, following the “Superficial Alignment Hy-
pothesis” (Zhou et al., 2023) which postulates
that fine-tuning process unlocks the capabilities of
pre-trained LLMs, we seek a model-centric data
selection algorithm that chooses data that:

1. Quantifies the degree to which a model “learns”
a data before and after training;

2. Does not require querying closed-source teacher
models which may lead to security concerns;

3. Is theoretically grounded in the implicit re-
ward function of the underlying LLM (see Sec-
tion. 3.1).

We note that the previously proposed Reducible
Holdout Loss (Mindermann et al., 2022) admits a
simplification that satisfy the three requirements
above (Rafailov et al., 2023). However, when ap-
plying RHO-like objectives to language modeling
tasks, we observed a significant challenge: the
RHO metric is highly correlated with the sequence
length of the input data. This correlation introduces
an undesirable bias in the data selection process,
reducing the core-set selection to an approximation
of length-based filtering. We show that this issue
is inherent to the sequential nature of language
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modeling in state-of-the-art LLMs, and cannot be
resolved by normalizing the total cross entropy loss
by number of tokens in a datum (document).

Instead, a subtle yet crucial change in normal-
ization of the RHO objective - normalizing with
reference model loss instead of number of tokens
- dramatically reduced the length dependency of
the object. We term this modified RHO objective,
and the consequent data selection method, DavIR
(Data Selection via Implicit Reward).

We demonstrate the effectiveness of DavIR
across model families (LLaMA (Touvron et al.,
2023), Gemma (Team et al., 2024a,b)) and
across data domains (Alpaca (Taori et al., 2023),
LIMA (Zhou et al., 2023), GSM8K (Cobbe et al.,
2021)) and across benchmarks benchmarks (Self-
Instruct (Wang et al., 2022), Vicuna (Zheng et al.,
2023), Koala (Geng et al., 2023), OpenAssis-
tant (Köpf et al., 2023), Helpful Base (Bai et al.,
2022), GSM8K (Cobbe et al., 2021)). We show
that DavIR outperforms all (to the best of author’s
knowledge) state-of-the-art core-set selection meth-
ods across benchmarks.

Finally, as the introduction of normalization in
the DavIR objective led to a deviation from the
implicit reward model given by the vanilla DPO ob-
jective, we propose DavIR-DPO that incorporates
the normalization proposed in the current work. We
show that DavIR-DPO metric is the least correlated
with the difference in length of paired responses in
UltraFeedback dataset (Cui et al., 2024), and train-
ing Zephyr-7B-SFT model using the DavIR-DPO
metric led to an 8% boost of length-controlled per-
formance on AlpacaEval (Li et al., 2023b; Dubois
et al., 2024) as compared to when trained using the
vanilla DPO objective.

2 Background and Related Works

Supervised (Instruction) Fine-tuning of LLM
In training LLMs, Supervised (Instruction) Fine-
tuning (SFT/IFT) plays a pivotal role during post-
training by fine-tune LLMs with a small amount
of data to enable instruction-following and multi-
round dialogue. Two predominant methods of
collecting SFT training data are 1) distillation
from teacher models (e.g. Self-Instruct (Wang
et al., 2022), Alpaca (Taori et al., 2023), Evol-
Instruct (Xu et al., 2023)) and 2) manual annota-
tion (e.g. InstructGPT (Ouyang et al., 2022), Vi-
cuna (Zheng et al., 2023), LIMA (Zhou et al.,
2023)).

LLaMA 7B LLaMA 13B

43 37 20(H)

46 37 17(H)

35 46 19

43 45 12

Tie
Win

Lose

24 55 21

54 35 11

32 52 16

62 23 15

DavIR (3K)
vs.

Full Dataset (52K)

DavIR (3K)
vs.

GPT-Select (9K)

(G)

(G)

Figure 1: DavIR outperforms full data fine-tuning
and data selection based on teacher LLM across
model scales. Performance comparison of 7B and 13B
parameter models fine-tuned with data selected using
DavIR (3,000 items), the full Alpaca dataset (52K), and
data filtered using ChatGPT (9,229 items). “G" repre-
sents evaluation using GPT-4, and “H" represents human
evaluation. The statistical significance of performance
gain of DavIR over training on full dataset and other
core-set selection methods are established in subsequent
sections.

Implicit Reward in Direct Preference Optimiza-
tion First proposed in (Rafailov et al., 2023),
Direct Preference Optimization (DPO) emerged
as a post-training method following supervised-
fintuning. DPO simplifies the RLHF pipeline by
directly optimizing a language model using prefer-
ence data, eliminating the need for explicit reward
modeling and reinforcement learning. The simplic-
ity of DPO and its effectiveness has led to wide
adoption across models. A large body of follow-up
works have been proposed that modify the DPO
objective to improve robustness (Azar et al., 2023;
Ji et al., 2024; Chowdhury et al., 2024; Chen et al.,
2024; Wu et al., 2024), address issues of data
scarcity (Liu et al., 2024; Jung et al., 2024) or pro-
vide stronger control over likelihood of producing
winning and losing responses (D’Oosterlinck et al.,
2024; Melnyk et al., 2024). Recent works have also
began to explore length-dependencies of the DPO
objective (Zhou et al., 2024; Park et al., 2024).

Core-set Selection for LLM Core-set selection
and dataset pruning has a long and rich history in
ML research (Har-Peled and Kushal, 2005; Paul
et al., 2021), where the goal is to find small sub-
sets of training data which gives similar or supe-
rior performance as compared to training on the
full dataset. A wide range of metrics have been
explored for core-set selection, including model
loss (e.g. RETRIEVE (Killamsetty et al., 2021),
RHO (Mindermann et al., 2022)), gradient (e.g.
CRAIG (Mirzasoleiman et al., 2020)), influence
function (e.g. (Yang et al., 2022)) and cluster-
ing. (Birodkar et al., 2019; Sorscher et al., 2022).
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Within the scope of LLMs, prior arts have primarily
focused on data selection during pre-training, such
as DoReMi (Xie et al., 2023a), RHO, DRO (Oren
et al., 2019), and DSIR (Xie et al., 2023b). For
post-training LLMs, recent works have focused
on selecting training data based on quality, based
on either 1) human annotation (e.g. LIMA (Zhou
et al., 2023)), 2) LLM (e.g. AlpaGasus (Chen et al.,
2023b)) or 3) validation loss on evaluation dataset
(e.g. Instruction Mining (Cao et al., 2023)).

3 DavIR: Data Selection via Implicit
Reward

3.1 DavIR in Supervised Fine-Tuning
As an ever increasing number of post-training
datasets are developed for LLMs , it is important
for practitioners to select a compute-permissible
subset of the training data that achieves similar, or
better, performance than the full available training
corpus.

As such, the task that DavIR is set out to solve
is one of core-set selection for post-training LLM:
given a base model πbase, and a collection of train-
ing data Dfull = {(xi, yi)}i (where (xi, yi) rep-
resents the prompt/response pair that constitutes
a training datum), find a minimal subset of the
training dataset Dtrain ⊂ Dfull, |Dtrain| ≪ |Dfull|
such that the model trained on Dtrain achieves com-
parable, or better, performance than that trained
on Dfull.

At the core of the DavIR algorithm is the con-
cept of “learnability” in post-training LLMs. We
are motivated by the “Superficial Alignment Hy-
pothesis” (Zhou et al., 2023) which suggests the
post-training stage of LLMs involves using a small
number of carefully selected training samples to
steer a pre-trained LLMs to align with desired re-
sponse patterns. In particular, this suggests that the
training samples ought to be tightly coupled with
the underlying capabilities of the base LLM model,
or that such samples need to be “learnable” by the
base model.

A simple and intuitive quantification of “learn-
ability” is subtracting the evaluation loss of the
base model πbase from that of the reference model
πref (πbase trained on all of Dfull):

SRHO-LM(x, y) = Lbase(y|x)− Lref(y|x)
= [− log πbase(y|x)]− [− log πref(y|x)] .

(1)

This approach is akin to that of Reducible Holdout
Loss (RHO) (Mindermann et al., 2022) and we

refer to this vanilla generalization of RHO to causal
language modeling as simply RHO-LM.

We note that the RHO-LM metric in Equation (1)
is closely related to the implicit reward function in
the Direct Preference Optimization (Rafailov et al.,
2023) procedure. As shown in (Rafailov et al.,
2023), under mild conditions, reward functions
r(x, y) consistent with the Bradley-Terry (BT) pref-
erence model (Bradley and Terry, 1952) can be
equivalently written as:

r(x, y) = β log
π(y|x)

πbase(y|x)
= β · [Lbase(x, y)− L(x, y)]

(2)

for some language model π(y|x) obtained by train-
ing via Reinforcement Learning with Human Feed-
back procedure (using Proximal Poliy Optimiza-
tion) from a base model πbase(y|x) using the said
reward function r(x, y) till optimality.

In other words, the reference model πref(y|x) in
RHO-LM can be obtained from πbase(y|x) via re-
ward maximization of the implicit reward function
r(x, y) in Equation (2). As such, selecting data via
RHO-LM using the score function can be viewed
as choosing data with maximum reward given by
this implicit reward model.

However, we found empirically that the vanilla
RHO-LM metric in Equation (1) is highly corre-
lated with sequence length of the training data (see
also Appendix. B), an issue that persists despite ag-
gregating the token-level losses via the averaging
operation. This is inherently due to the sequential
nature of language modeling, where increasing se-
quence length introduces additional contexts that
constraints the distributions of all (subsequent) to-
kens. The effect of this length dependency is not
to be under-estimated, as Table. 1 shows that corre-
lation between length and average (across tokens)
cross-entropy loss as well as entropy of predic-
tive probabilities could be as high as -0.9 (on a
scale of [-1, 1]). Consequently, the RHO objec-
tive, which subtracts these length-dependent ob-
jectives, is also prone to be highly correlated with
sequence length (see Table. 2) - an issue that only
applies to language modeling and was therefore
overlooked by the original RHO work which dealt
with image classification or NLP tasks with single
classification objective (i.e. grammatical correct-
ness in CoLA (Warstadt et al., 2018) and sentiment
analysis in SST-2 (Socher et al., 2013)).

Fortunately, we found that a simple, yet highly
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Pearson Spearman

Dataset Model Entropy Loss Entropy Loss

Alpaca

albert-base-v2 -0.67 -0.76 -0.90 -0.97
bert-base-uncased -0.64 -0.79 -0.88 -0.95
gemma-2-2b -0.66 -0.61 -0.80 -0.76
gemma-2b -0.68 -0.56 -0.83 -0.69

GSM8K

albert-base-v2 -0.78 -0.85 -0.83 -0.91
bert-base-uncased -0.73 -0.57 -0.77 -0.90
gemma-2-2b -0.75 -0.72 -0.79 -0.74
gemma-2b -0.77 -0.66 -0.80 -0.68

MBPP

albert-base-v2 -0.69 -0.83 -0.64 -0.85
bert-base-uncased -0.76 -0.87 -0.80 -0.93
gemma-2-2b -0.85 -0.82 -0.90 -0.85
gemma-2b -0.85 -0.82 -0.91 -0.83

Table 1: Language modeling objectives are highly
correlated with sequence lenghth. Pearson correlation
and Spearman rank correlation of entropy and loss with
respect to number of tokens in a given document. Note
that all correlations are negative, indicating that token-
level entropy/loss decrease as corresponding context
length increases.

effective, normalization technique could dramati-
cally mitigate the length-dependency of the RHO-
LM metric, resulting in the normalized score func-
tion, which we term DavIR:

SDavIR(xi, yi) =
Lbase(xi,yi)−Lref(xi,yi)

Lbase(xi,yi)
(3)

Note that the denominator in the normalization
could be either the base or the reference losses
without impacting the ordering of the data via the
DavIR metric SDavIR (see Appendix. C for a sim-
ple proof). The reduction in both spearman and
pearson correlation is shown in Table. 2.

Given the DavIR score function, the DaVIR al-
gorithm for supervised fine-tuning data selection is
simply given as Algorithm 1.

Algorithm 1 DavIR for Supervised Fine-tuning

1: πref(y|x)← πbase(y|x) trained on Dfull
2: for each (xi, yi) ∈ Dfull do
3: Lbase(xi, yi)← − log πbase(yi|xi)
4: Lref(xi, yi)← − log πref(yi|xi)
5: Compute SDavIR(xi, yi) as in Equation (3)
6: end for
7: Re-train πbase on top-kDfull SDavIR(xi, yi)

As we later demonstrate, while vanilla RHO-LM
is effective in selecting a subset of the training data,
it far under-performs the length-regularized DavIR
algorithm in the downstream tasks performances
across multiple datasets and models (see Figure. 2).

In fact, as demonstrated in Table 6, DavIR is able
to outperform all (to the best knowledge of the
authors) existing core-set selection techniques on
post-training LLMs.

Finally, we note that both RHO-LM and DavIR
score functions capture the essence of training on
data that are “learnable, worth learning, and not yet
learnt” (Mindermann et al., 2022), while dramati-
cally reducing the length-dependencies of the orig-
inal RHO objective. By focusing on the same next-
token-prediction objective as training LLM, and
omitting confounding factors such as additional
small proxy models (Xie et al., 2023a) or hold-out
dataset (Mindermann et al., 2022), DavIR provides
exact single datum-level measurement of “learn-
ability” that tightly couples with the underlying
capabilities of the pre-trained model.

3.2 DavIR in Direct Preference Optimization
The performance gain of DavIR over the vanilla
RHO-LM motivated use to revisited the DPO train-
ing objective and the underlying BT preference
model. In particular, we propose a simple gener-
alization of the DPO objective with normalization
from the reference model loss. In particular, in-
spired by the formula in Equation. 3, we propose
the following DavIR-DPO loss:

LDavIR-DPO(πθ;πref)

= −E
[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

/
| log πref(yw | x)|

− β log
πθ(yl | x)
πref(yl | x)

/| log πref(yl | x)|
)]

.

(4)

We remark that concurrent research on regularizing
the DPO loss by the length of the responses has
been proposed (Park et al., 2024).

4 Experiments and Results

4.1 Experimental Setup
Training Dataset. Training datasets used in the
current study are shown in Table. 4. Note that both
Alpaca-4 and Alpaca-3.5 were proposed in (Taori
et al., 2023), with the same prompts but different
responses generated by GPT-4 and GPT-3.5-Turbo
respectively.

Test Dataset and Evaluation Method. For
open-domain freeform QA style evaluation of
LLaMA models, our test set is an amalgamation of
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Alpaca GSM8K LIMA MBPP

RHO-LM DavIR RHO-LM DavIR RHO-LM DavIR RHO-LM DavIR

gemma-2b
spearman ↓ 0.75 0.30 0.58 0.06 0.20 0.02 0.39 0.62

pearson ↓ 0.64 0.33 0.59 0.07 0.23 0.01 0.41 0.68

gemma-2-2b
spearman ↓ 0.83 0.47 0.66 0.45 0.17 0.01 0.89 0.39

pearson ↓ 0.64 0.46 0.65 0.44 0.18 0.10 0.81 0.33

Table 2: DavIR reduces length dependency from the RHO-LM objective. Absolute Pearson correlation and
Spearman rank correlation of entropy and loss with respect to number of tokens in a given document. See
Appendix. B for more detail.

DPO Type Reference Resp. Len. Diff.

Vanilla (Rafailov et al., 2023) 0.38
AOT (Melnyk et al., 2024) 0.12
APO (Down) (D’Oosterlinck et al., 2024) 0.36
APO (Zero) (D’Oosterlinck et al., 2024) 0.39
EXO (Pair) (Ji et al., 2024) 0.42
Hinge (Liu et al., 2024) 0.39
IPO (Azar et al., 2023) -0.10
NCA (Chen et al., 2024) 0.29
Robust (Chowdhury et al., 2024) 0.38
SPPO (Hard) (Wu et al., 2024) -0.11
DavIR Here 0.07

Table 3: Pearson correlation of DPO objective against
difference in response length for different flavors of
DPO loss type in UltraFeedback (Cui et al., 2024)

Name Number Source

LIMA (Zhou et al., 2023) 1K Human
Alpaca-4 (Taori et al., 2023) 52K GPT-4
Alpaca-3.5 (Taori et al., 2023) 52K GPT-3.5-Turbo
GSM8K (Cobbe et al., 2021) 7.5K Human
UltraFeedback (Cui et al., 2024) 61K GPT-4

Table 4: Training datasets used for experimental val-
idation of DavIR.

800 prompts from HH-RLHF, Koala, Self-Instruct,
Open Assistant, and Vicuna, covering multiple as-
pects of daily use, such as generating, math, coding,
and instruction-following. The model generated
responses were evaluated either with GPT-4 (ad-
justed for positional bias in evaluation prompt) or
human evaluator (blind ranking) as referee. Note
that only 100 questions were randomly selected for
human evaluation (20 questions per dataset). The
performance of models trained with DavIR filtered
dataset is compared against either 1) same based
model trained with other data selection method
as in Fastchat (Zheng et al., 2023), or 2) against
frozen model (e.g. Text-Davinci-003) as in Al-
pacaEval (Li et al., 2023b). Experiments with
Gemma and Zephyr models were evaluated using

AlpacEval2.0 (Dubois et al., 2024).

Models and Baselines. For IFT/SFT experi-
ments, we used LLaMA-7B, LLaMA-13B (Tou-
vron et al., 2023), Gemma-2B (Team et al., 2024a)
models as our base models πbase. DavIR is com-
pared against a wide range of baseline data selec-
tion methods (See Table. 5): 1) full dataset, 2)
random sampling, 3) ChatGPT-based data filter-
ing (Chen et al., 2023b), 4) RHO-LM(Mindermann
et al., 2022), 5) EL2N (Paul et al., 2023), 6) Forget-
ting score (Toneva et al., 2019), and 7) Influence
function-based DataInf (Kwon et al., 2024). Note
that, for ChatGPT-based data filtering approach, a
specific version of ChatGPT API was prompted to
assign an integer quality score (1-5) to each data
point in the Alpaca-3.5 dataset. To avoid intro-
ducing additional variabilities due to changes of
ChatGPT API, for comparison against ChatGPT-
based data filtering, we did not generate new data
by querying ChatGPT, but instead directly used the
9k subset of Alpaca-3.5 reported in (Chen et al.,
2023b). The comparison with which is shown in
Figure. 1 where ChatGPT-based data filtereing is re-
ferred to as “GPT-Select”. DPO experiments were
conducted using Zephyr-7B-SFT (Tunstall et al.)
and compared against training with the vanilla DPO
objective.

4.2 DavIR in SFT

4.2.1 Impact of Length Normalization in
DavIR

We first demonstrate the effect of normalization in
the DavIR objective as compared to the RHO-LM
objective. As shown in Figure. 2, while LLaMA
models trained on subset of data selected using
the RHO-LM objective can achieve comparable
performance to that of the model trained on the
full dataset, DavIR outperforms the full dataset
baseline by a wide margin.
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Name Model Dep. Val. Set Method/Metric Domain Metric Selection

EL2N Loss No ℓ2 Loss between logits and 1-hot label Image Class. Larger
Forgetting Loss No # epochs were data loss increase Image Class. Larger
DataInf Gradient Yes Approx. influence function Text Generation Most Negative
AlpaGasus ChatGPT No ChatGPT scores 0-5 Text Generation Larger
RHO Loss Yes Eq. (1) Image Class./NLP Class. Larger
DavIR Loss No Eq. (3) Text Generation Larger

Table 5: Baseline core-set selection methods.

W
in
S
co
re

DavIR
RHO-LM
Full Dataset

Number of Training Data Number of Training Data

LLaMA 7B + Alpaca-3.5-DavIR LLaMA 13B + Alpaca-3.5-DavIR
Comparison Against Fine-tuning on Full Dataset

Figure 2: Models fine-tuned with data selected by
DavIR surpass the full dataset on Alpaca3.5. This
figure shows the win score comparison between mod-
els trained with different sizes of datasets and the full
dataset, as well as the improvement brought by using
the normalization method. We select the model fine-
tuned on the full dataset as the baseline. Win Score is
computed as 1 + (Nwin −Nlose)/Ntotal, with 1 being
equal performance.

4.2.2 16x Compression in Freeform Chat
Dataset

As show in Figure. 1, both LLaMA-7B and
LLaMA-13B model can be effectively fine-tuned
with a 3K subset sampled from the 52K Alpaca
dataset using DavIR. A natural question to ask is
whether this is a result of simply reducing redun-
dancy in the training dataset, which could also
be achieved by simply randomly sampling the
dataset. To address this question, we compared
performance of DavIR against random sampling
and fine-tuning on full Alpaca-4 dataset using Text-
Davinci-003 as a frozen baseline model. We show
in Figure. 3 that the number of training data, when
randomly sampled, improve model performance
logarithmically, dramatically under-performing the
proposed method.

To further demonstrate DavIR’s effectiveness
against other baseline methods, we compared
DavIR’s performance scaling across number of
training data (selected from Alpaca dataset) against
4 other core-set selection methods (EL2N, Forget-
ting Score, DataInf, RHO), evaluated on Gemma-

Number of Training Data
W
in
R
at
e
(%
)

Number of Training Data

DavIR
Random Selection
Full Dataset

LLaMA 7B + Alpaca-4-DavIR
Comparison Against Text-Davinci-003

LLaMA 13B + Alpaca-4-DavIR

Figure 3: DavIR significantly out perform random
sampling. Using Text-Davinci-003 as the frozen base-
line model, we show that performance of random selec-
tion of the Alpaca-4 dataset scales logarithmically with
number of training data, significantly under-performing
DavIR. Note that the x-axis is log-scale. Win Rate
is computed as Nwin/Ntotal, where Nwin, Ntotal are
number of win and total number of test data.

2B model using AlpacaEval. As shown in Table. 6,
DavIR is the only method that consistently out-
performs full dataset baseline across number of
training samples. Even in the low data regime
(less than 5K selected from the 52K dataset) when
DavIR is not the best performing method, its per-
formance gap with the best performing method is
small. We’d also like to emphasize that computing
the DavIR score requires only computing valida-
tion losses. In contrast, the second best perform-
ing algorithm (DataInf) requires significantly more
compute as it requires computing Influence Func-
tions via gradient and approximated Hessian. To
show that the performance gain of DavIR compared
against other methods is statistically significant, we
estimated the 95% confidence interval of the Al-
pacaEval score via bootstrap sampling (shown in
Table. 12). Since the bootstrap sampled distribu-
tion of AlpacaEval score is highly Gaussian, we
performed t-test between the sample distributions
of AlpacaEval scores, will DavIR beating almost
all baseline methods across number of data with
very low p-values, providing conclusive evidence
of the effectiveness of DavIR. Refer to Appendix. E
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Figure 4: Data mixing with LLaMA-7B and DavIR.
The x-axis represents the number of selected Alpaca-4
data points, plotted on a logarithmic scale.

for more details on statistical analysis.
Finally, to demonstrate the effectiveness of

DavIR on other dataset, we performed data sub-
set selection on the LIMA dataset. We show that
even for a carefully curated dataset (1K), DavIR is
still able to achieve a 3x compression (300) while
achieving comparable performance to training on
the full dataset (win score 1.01).

4.2.3 Balancing Open-Domain QA and
Mathematical Reasoning

A key application of core-set selection in LLM in
production is data flywheel scenario, where a con-
stant stream of additional training data for multiple
domdains need to be filtered and combined to pro-
duce the best and most-balanced model for a wide
range of downstream tasks. To that end, we evalu-
ated the performance of LLaMA-7B model trained
on a combination of the full GSM8K dataset (math-
ematical reasoning) and DavIR-fitlered Alpaca-4
subset (freeform QA). As shown in Figure. 4, while
we do observe the issue of “alignment tax” (Casper
et al., 2023) where increasing Alpaca-4 data size
caused a slight decrease in GSM8K accuracy,
DavIR offers the flexibility for LLM developers
to control the balance of open-domain QA with
mathematical reasoning capabilities. In particular,
the addition of 3.2K Alpaca-4 data (using 16.7%
of total trainig data) boosts open-domain QA per-
formance from <10% win-rate to >60% win-rate,
at the cost of 2% reduction of GSM8K accuracy as
compared to the model trained solely on GSM8K
training set.

4.2.4 Generalization between Models
As shown above, DavIR is highly effective across
both model sizes (LLaMA-7B/-13B) as well as

model families (LLaMA, Gemma). However, as
DavIR was fundamentally motivated by the hypoth-
esis that the best post-training data must be model-
dependent, we sought to examine the data selected
by different models. Comparing the best data sub-
set selected using LLaMA-7B and LLaMA-13B
models, we observe that only 516 of the top 800
data are scored highly by both models (see Table. 9
in Appendix. D), with the largest difference stem-
ming from mathematical reasoning-related prompts
as shown in Table. 10 in Appendix. D. Given that
both models belong to the LLaMA family of model,
and were presumably trained using similar training
recipes (architecture, hyperparameters, datasets),
we expect the discrepancy between data subsets
selected by different models to widen when com-
paring between models of different families. This
provides support for our intuition that the effective-
ness in steering pre-trained model is highly depen-
dent on the capabilities of the pre-trained model
itself.

To probe the model-dependency of the post-
training data selection from a different perspective,
we explored a relaxed version of the DavIR algo-
rithm. In this relaxed version, the base, reference
model and re-trained models are allowed to be from
different pre-trained models. For example, instead
of using the LLaMA-7B base model throughout
the data selection and re-training process, we ex-
perimented with computing DavIR score between
LLaMA-7B base model and LLaMA-13B model
trained on all of Alpaca dataset, and re-trained
LLaMA-7B base model on the selected subset (and
similarly for other combinations of base, reference
and re-trained models). As shown in Table. 7, any
misalignment in the models used in DavIR algo-
rithm resulted in a decrease in performance, pro-
viding further support to the model-dependency of
the optimal post-training data subset.

4.3 DavIR in DPO
We trained Zephyr-7B-SFT (Tunstall et al.) on Ul-
traFeedback (Cui et al., 2024) paired preference
dataset using both vanilla DPO objective as well
as the DavIR-DPO objective in Equation. 4. Both
models are evaluated on AlpacaEval againest the
text-davinci-003 model. We present the result in
Table. 8 show that Zephyr trained using the DavIR-
DPO objective outperforms that using the vanilla
DPO objective, especially when evaluated using
length-controlled metric (Dubois et al., 2024). Note
that Zephyr model class was chosen for the DPO
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Method Selection 3000 4000 5000 6000 7000 8000 9000 10000

Random N/A 10.6 12.7 15.9 16.1 17.0 16.3 16.7 17.6

EL2N
Lowest 10.3 13.5 17.6 17.6 19.0 18.4 18.7 18.5
Highest 10.0 11.1 11.3 11.8 12.4 13.3 13.9 14.3

Forgetting
Lowest 10.4 12.8 16.7 16.6 17.1 17.0 17.7 16.7
Highest 9.5 12.4 13.4 15.5 16.7 17.8 18.9 18.2

DataInf
Lowest 10.3 12.2 13.9 15.0 15.0 14.4 15.3 15.4
Highest 10.3 13.7 15.9 18.6 18.7 19.8 18.5 18.8

RHO
Lowest 9.6 12.1 13.7 15.3 15.7 16.1 16.2 16.6
Highest 9.9 12.3 14.5 15.8 15.3 15.5 16.5 16.7

DavIR
Lowest 10.6 12.7 14.2 14.3 13.1 12.0 13.2 13.6
Highest 10.8 13.1 17.1 20.2 20.2 20.4 20.2 19.7

Full N/A 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3

Table 6: Comparing DavIR to baselines for post-training Gemma-2B model on Alpaca dataset. Performance
reported here is the AlpacaEval win-rate against GPT-4. For completeness, we included the performances of Gemma-
2B trained on Alpaca subsets selected by choosing both lowest and highest metric values (EL2N, Forgettting, DataInf,
RHO, DavIR). Note that comparison against AlpaGasus is shown in Fig. 1, and is omitted here because we only
have access to the full 9K+ subset reported by the authors of (Chen et al., 2023b) which limits our ability to perform
ablation across number of data points. Refer to Appendix. E for statistical analysis of the performance comparison
between DavIR and other baseline methods.

πbase πref πretrain Against Data Win Score

13B 13B + Alp-4 13B 13B + Alp-4 8K 1.2
7B 7B + Alp-4 7B 7B + Alp-4 8K 1.125

13B 13B + Alp-4 7B 7B + Alp-4 8K 0.825
7B 13B + Alp-4 7B 7B + Alp-4 8K 1.01

Table 7: DavIR performs best when base, reference
and re-trained models share the same pre-trained
backbone. For simplicity, 7B/13B refer to LLaMA-7B
and LLaMA-13B respectively, πretrain refers to the pre-
trained model that is trained with the DavIR selected
data subset. Win Score is computed against models fine-
tuning on Dfull as shown in the “Against” column. Note
that the first two rows correspond to experiments where
there is no model mismatch and the bottom tow rows
correspond to the relaxed DavIR algorithm with model
mismatch.

experiments, as opposed to LLaMA and Gemma
as in the SFT experiments, for it differentiates be-
tween pretrained, instruction fine-tuned and DPO
post-trained models, thus helping us isolate the ef-
fect of length-normalization at the DPO training
stage.

5 Conclusion

We introduce DavIR, a model-based data selec-
tion method for LLM fine-tuning that focuses on
“learnability” of data points given a base pre-trained
model. We show that DavIR is closely related
to, and is a generalization of, the Implicit Reward
Model concept proposed in Direct Preference Op-
timization. By comparing DavIR to a wide range

Length-Controlled
Win-Rate

Win-Rate

Zephyr DPO 57.23 82.31
Zephyr DavIR-DPO 61.83 82.96

Table 8: Comparing Zephyr trained on Davir-DPO
vs. vanilla DPO objective.

of data selection baselines, we demonstrate its ef-
fectiveness across models, data domain and data
mixtures. Finally, we show that, by incorporating
the proposed normalization back to the DPO objec-
tive, we are able to improve DPO performance after
the supervised fine-tuning stage of LLM training.

6 Limitations & Discussions

Integration of DavIR to Data Flywheel As
briefly discussed above, data compression tech-
niques such as DavIR serve a critical, albeit incom-
plete, role in the data flywheel of training LLMs. In
particular, DavIR does not take into account other
aspects of data selection such as quality and diver-
sity. In practice, DavIR needs to be used in con-
junction with methods such as weighted sampling
and prompt classification to ensure that the core-set
selection is performed in a manner that does not
artificially bias the distribution of the selected data.
In this work, we provided a simple example of data
mixture between Alpaca and GSM8K which hints
at the importance of using DavIR in a manner that
is conscious of data diversity. In production, how-
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ever, more careful design of the data pipeline is
required, for which DavIR could serve as the data
compression module.

Application of DavIR to Reasoning Tasks A
key limitation of DavIR is that its effectiveness
varies based on the application domain of the train-
ing dataset. In particular, when we applied DavIR
to compressing the GSM8K training dataset alone
for LLaMA models, we did not observe a clear
performance gain with subset of the training data.
In fact, as shown in Figure. 5, we observed almost
linear scaling of number of GSM8K training sam-
ple and the GSM8K evaluation accuracy, suggest-
ing that the GSM8K dataset was in-compressible
with LLaMA-7B using DavIR. We hypothesize that
this could be caused by LLaMA-7B having insuffi-
cient underlying mathematical reasoning capabili-
ties, leading to very large training data requirement.
However, we could not rule out the possibility that
perhaps Cross-Entropy Loss is a poor metric for
how well data related to mathematical reasoning
has been learnt by a given model, thereby render-
ing the normalized score metric unable to capture
“learnability” of such data. We leave explorations of
alternate metrics to Cross-Entropy Loss for future
works.
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Figure 5: GSM8K training data was in-compressible
with LLaMA-7B.

7 Ethics Statement

This research aims to provide a model-based al-
gorithm for core-set selection of LLM alignment
training data. Experimental validation in the cur-
rent work leverages previously published datasets,
and are employed in accordance with their intended
use cases. While these datasets are widely used,
we acknowledge that we cannot fully ascertain the
extent to which they may contain discriminatory,

biased, or sensitive material.

Responsible Usage: Data selection via DavIR is
based purely on model’s perceived degree of under-
standing, and makes no assumption about safety of
the original training data. As such, caution must be
exercised when deploying DavIR in production to
ensure that necessary safety practices are adopted
both before and after using DavIR for subset selec-
tion.

AI Assistant Usage: Claude-3.5-Sonnet and
GPT-4o were used for grammatical correction in
the current manuscript.
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A Details on Human Evaluation of Model
Performance

For open-domain freeform QA style evaluation
of LLaMA models (an amalgamation of 5 test
datasets), we used a combination of LLM (GPT-4)
and human as referee. For human evaluation, 20
questions per test dataset were randomly selected
as prompts, resulting in total 100 prompts. One
human annotator (unpaid, college educated, age
20-25, proficient in English) was provided side-
by-side comparison of two responses generated
by two models for each question and asked to de-
termine whether the response on the “left” is bet-
ter/same/worse (win/tie/lose) than the response on
the “right”. The annotator is blind to the identity of
the model for which the responses were generated,
and the responses were randomly ordered.

B Effect of Normalization for Score
Function

In Figure. 6, we compare the sequence length of the
Alpaca dataset ranked by either un-normalized and
normalized score functions. It is apparent that with-
out normalization, data with the highest scores(low
ranking) correspond to data with very short se-
quence lengths. In contrast, the introduction of
normalization completely removes the

Figure 6: Effect of normalization on score function and
sequence length. The relationship between the sequence
length and ranking for both with and without normaliz-
ing score function is shown for the (left) top-6400 subset
and (right) full 52K Alpaca-4. We observe that, with-
out normalization, data with highest score values have
noticeably short sequence length, which is resolved by
normalization.

C Choice of Denominator in Normalized
Score Function Does Not Impact
Ranking

Proposition 1. Choosing either Lref (x, y) or
Lbase(x, y) as the denominator for normalization
does not affect the ranking of the learnability score.

Specifically, if

Lbase(x1,y1)−Lref (x1,y1)
Lbase(x1,y1)

>
Lbase(x2,y2)−Lref (x2,y2)

Lbase(x2,y2)
(5)

then it also holds that

Lbase(x1,y1)−Lref (x1,y1)
Lref (x1,y1)

>
Lbase(x2,y2)−Lref (x2,y2)

Lref (x2,y2)

(6)

Proof. Assume that

Lbase(x1,y1)−Lref (x1,y1)
Lbase(x1,y1)

>
Lbase(x2,y2)−Lref (x2,y2)

Lbase(x2,y2)
(7)

which can be rewritten as

1− Lref (x1, y1)Lbase(x1, y1)
> 1− Lref (x2, y2)Lbase(x2, y2)

. (8)

This implies

Lref (x1, y1)
Lbase(x1, y1)

<
Lref (x2, y2)
Lbase(x2, y2)

. (9)

Taking the reciprocal of both sides, we get:

Lbase(x1, y1)
Lref (x1, y1)

>
Lbase(x2, y2)
Lref (x2, y2)

. (10)

Subtracting one from both sides, we obtain:

Lbase(x1,y1)−Lref (x1,y1)
Lref (x1,y1)

>
Lbase(x2,y2)−Lref (x2,y2)

Lref (x2,y2)
.

(11)
Thus, we have shown that normalizing by either
Lbase or Lref does not affect the ranking of the
learnability score.

D Analysis of Data Selected via DavIR

To explore what types of data are required by the
model during the SFT process, we conducted a
further analysis of the data selected by the 7B and
13B models. In Table 9, we show the number and
percentage overlap of the data points selected by
both LLaMA-7B and LLaMA-13B models.

No. Data 800 1,600 3,200 6,400 9,600 26,000 39,000

No. Overlap 516 1,111 2,399 5,123 8,033 24,358 38,075
Percent Overlap 64.5% 69.4% 74.9% 80.0% 83.7% 93.7% 97.6%

Table 9: The number and percentage overlap of data
points selected by LLaMA-7B and LLaMA-13B.
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Constituency Parsing via Benepar. We used the
Benepar to parse constituency of the top 800 data
points selected by the LLaMA-7B and LLaMA-
13B models, which have 516 overlapping data
points as shown in Table. 9. Benepar decomposes
natural language statements into hierarchical repre-
sentation of constituency, from which we visualize
the top two level verb predicate and noun objects.

Upon close examination of Figure. 7a and Fig-
ure. 7b, we observe that, comparing the more pow-
erful LLaMA-13B against LLaMA-7B, fewer cre-
ation tasks (e.g. write, generate, create) and more
interpretative tasks (e.g. explain, describe) data
were selected, with slighter more diverse long tail
tasks.

Prompt Category Classification with LLM.
Constituency parsing via Benepar, while helpful,
does not effectively convey the semantics of the
training data. Instead, we employed GPT-4 as clas-
sifier for a more precise semantically-oriented task
classification.

In particular, we first classified Alpaca’s seed
instructions into 7 primary categories. The cate-
gories are then used to further classify the first 800
data entries selected by models 7B and 13B. As
shown in Table. 10, data in the "Problem Solving
and Math" category had the most significant change
between the two base models, increasing by 76.9%
from 7B to 13B. We hypothesize that this could be
due to the substantial difference in mathematical
and reasoning capabilities between the 7B and 13B
models, thereby increasing the learnability of these
SFT data for the 13B model.

Category 7B 13B ∆ (∆%)

Programming and Coding 60 56 -4(-6.6%)
Planning and Organization 63 57 -6 (-9.5%)
Knowledge and Information Extraction 275 296 +21 (+7.6%)
Language and Text Processing 53 45 -8 (-15.1%)
Creative Writing and Entertainment 311 286 -25 (-8.0%)
Problem Solving and Math 26 46 +20 (+76.9%)
Recommendations and Suggestions 9 8 -1 (-11.1%)
Others 3 6 –

Table 10: Comparison of first 800 data selected by
LLaMA-7B and LLaMA-13B model based on cate-
gory.

Finally, in Table. 11, we provide examples of
data in Alpaca-4 with the highest normalized scores
as computed using LLaMA-7B base model.

E Statistical Analysis of AlpacaEval

We first note that both the data selection proce-
dure of DavIR and the model inference and evalu-
ation procedures are deterministic (greedy decod-
ing). Therefore, to establish a statistical signifi-
cance analysis of the comparison between DavIR’s
performance to other methods, we performed boot-
strap estimation with 1000 samples from the 805
questions of the AlpacaEval dataset, giving us the
95% confidence interval shown in Table. 12.

As the bootstrap estimations of the performances
on AlpacaEval is highly Gaussian for all experi-
ments with similar variance, we performed t-test
between DavIR and all other baseline method. The
p-values , shown in Table. 13 below show that the
performance gain of DavIR over other methods is
indeed significant across number of samples (with
p-values very close to 0).
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(a) Top 800 data points selected by 7B model (b) Top 800 data points selected by 13B model

Figure 7: Comparison of top 800 data points selected by different models
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Category Score Instruction Input Output

Knowledge 12.4 Identify the odd one out:
Twitter, Instagram, Tele-
gram.

Telegram.

Knowledge 9.80 Convert the following sen-
tence into the present con-
tinuous tense.

He reads books. He is reading books.

Knowledge 8.78 Identify the most suitable
adverb for the following
sentence.

She works. She works diligently.

Knowledge 8.21 Analyze the tone of the fol-
lowing sentences.

I am so upset with
you right now.

The tone of the sentences is angry and
accusatory.

Transcription 7.38 Rewrite the following sen-
tence using active voice.

The news report
was read by the cap-
tain.

The captain read the news report.

Knowledge 7.59 How did Julius Caesar
die?

Julius Caesar was assassinated by a
group of up to 60 conspirators, led by
Gaius Cassius Longinus and Marcus Ju-
nius Brutus, in the Senate House on the
Ides of March (15 March) of 44 BC.

Mathematics 6.09 Calculate the total surface
area of a cube with a side
length of 5 cm.

Total surface area of the cube: 150 cm2.

Knowledge 5.96 Provide one example of a
cultural practice.

An example of a cultural practice is the
Japanese tea ceremony.

Mathematics 4.96 Use the given data to cal-
culate the median.

[2, 3, 7, 8, 10]. The median of the given data is 7.

Knowledge 5.15 What is the product of 6
and 2?

The product of 6 and 2 is 12.

Knowledge 5.11 Give two examples of a
liquid.

Two examples of liquids are water and
oil.

Correction 5.12 Evaluate this sentence for
spelling and grammar mis-
takes.

He finnished his
meal and left the
resturant.

He finished his meal and left the restau-
rant.

Knowledge 4.95 Arrange the given num-
bers in ascending order.

2, 4, 0, 8, 3. 0, 2, 3, 4, 8.

Knowledge 4.66 Given a set of numbers,
find the maximum value.

Set: {10, 3, 25, 6,
16}.

The maximum value is 25.

Mathematics 4.53 Convert from Celsius to
Fahrenheit.

Temperature in Cel-
sius: 15.

Temperature in Fahrenheit: 59.

Knowledge 4.16 Transform the following
sentence into the passive
voice.

I bought a book. A book was bought by me.

Mathematics 4.12 Convert the given equation
into an algebraic expres-
sion.

3x + 5y = 9. 3x + 5y - 9 = 0.

Knowledge 4.10 What are the three primary
colors?

The three primary colors are red, blue,
and yellow.

None 3.93 Render a 3D model of a
house.

<nooutput>This type of instruction can-
not be fulfilled by a GPT model.

Table 11: Example data with highest DavIR scores selected with LLaMA-7B base model.
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Method Selection 3000 4000 5000 6000 7000 8000 9000 10000

Random N/A 10.7(8.6∼12.8) 12.7(10.7∼14.7) 15.9(13.6∼18.3) 16.1(13.8∼18.5) 17.0(14.8∼19.3) 16.4(14.1∼18.8) 16.7(14.5∼18.9) 17.6(15.1∼20.2)

EL2N
Lowest 10.4(8.5∼12.2) 13.5(11.3∼15.7) 17.6(15.4∼19.8) 17.6(15.4∼20.1) 19.0(16.5∼21.6) 18.5(16.2∼20.9) 18.7(16.5∼21.3) 18.4(16.0∼21.0)
Highest 10.0(8.2∼11.9) 11.1(9.3∼13.2) 11.2(9.3∼13.2) 11.8(9.7∼13.9) 12.4(10.3∼14.7) 13.2(11.2∼15.4) 13.9(11.8∼16.2) 14.3(12.3∼16.7)

Forgetting
Lowest 10.4(8.6∼12.3) 12.8(10.7∼15.0) 16.6(14.4∼19.1) 16.5(14.2∼18.9) 17.1(14.8∼19.5) 17.0(14.7∼19.4) 17.7(15.6∼20.1) 16.7(14.6∼19.1)
Highest 9.5(7.7∼11.4) 12.4(10.5∼14.6) 13.4(11.3∼15.5) 15.5(13.2∼17.9) 16.7(14.6∼18.9) 17.8(15.6∼20.3) 18.9(16.6∼21.3) 18.2(15.7∼20.5)

DataInf
Lowest 10.2(8.4∼12.1) 12.3(10.3∼14.4) 13.9(11.9∼16.0) 15.1(12.7∼17.4) 15.0(13.0∼17.4) 14.3(12.1∼16.6) 15.3(13.2∼17.5) 15.4(13.3∼17.7)
Highest 10.3(8.4∼12.2) 13.8(11.6∼15.9) 15.9(13.7∼18.2) 18.6(16.2∼21.2) 18.8(16.2∼21.2) 19.8(17.4∼22.6) 18.5(16.1∼20.9) 18.9(16.4∼21.3)

RHO
Lowest 9.6(7.9∼11.6) 12.1(10.0∼14.3) 13.8(11.7∼16.0) 15.3(13.1∼17.5) 15.7(13.5∼18.0) 16.1(13.8∼18.4) 16.2(13.9∼18.4) 16.6(14.2∼19.0)
Highest 9.9(8.1∼11.9) 12.2(10.3∼14.5) 14.6(12.3∼16.8) 15.8(13.5∼18.0) 15.4(13.1∼17.6) 15.5(13.2∼17.9) 16.5(14.2∼18.9) 16.7(14.4∼19.0)

DavIR
Lowest 10.5(8.7∼12.5) 12.7(10.7∼14.8) 14.2(12.0∼16.4) 14.3(12.1∼16.5) 13.1(11.1∼15.3) 12.0(9.9∼13.8) 13.2(11.1∼15.4) 13.6(11.4∼15.7)
Highest 10.8(8.8∼12.9) 13.1(11.0∼15.2) 17.1(14.8∼19.6) 20.2(17.7∼22.7) 20.2(17.6∼22.7) 20.3(17.9∼22.9) 20.2(17.8∼22.5) 19.7(17.3∼22.1)

Full N/A 18.3(15.9∼20.6) 18.3(15.9∼20.6) 18.3(15.9∼20.6) 18.3(15.9∼20.6) 18.3(15.9∼20.6) 18.3(15.9∼20.6) 18.3(15.9∼20.6) 18.3(15.9∼20.6)

Table 12: DavIR comparison with baselines with 95% Confidence Interval.

Method Selection 3000 4000 5000 6000 7000 8000 9000 10000

Random N/A 5.3E-03 2.4E-16 1.3E-93 0.0E+00 0.0E+00 0.0E+00 0.0E+00 8.8E-229

EL2N
Lowest 4.4E-26 - - 3.1E-307 1.3E-78 1.2E-187 2.8E-134 5.7E-99
Highest 6.0E-65 6.4E-276 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Forgetting
Lowest 3.9E-22 6.2E-08 5.2E-17 0.0E+00 0.0E+00 0.0E+00 1.5E-321 0.0E+00
Highest 1.7E-160 1.8E-43 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.9E-108 1.1E-146

DataInf
Lowest 2.9E-38 2.4E-63 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
Highest 2.6E-29 - - 4.4E-136 4.4E-116 1.1E-17 7.9E-180 3.8E-46

RHO
Lowest 3.5E-141 1.8E-84 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
Highest 6.6E-86 5.2E-67 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

DavIR Lowest 1.1E-12 1.5E-16 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
Full N/A - - - 3.9E-189 6.1E-193 1.8E-224 3.2E-209 6.2E-124

Table 13: p-values of t-test comparing DavIR and all other selection methods presented in Table. 6 and
Table. 12. Note that since the hypothesis s that DavIR out-performs other methods, only results where DavIR
out-performs the baseline methods have corresponding p-values.
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