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Abstract

Large Language Models (LLMs) are often used
as automated judges to evaluate text, but their
effectiveness can be hindered by various un-
intentional biases. We propose using linear
classifying probes, trained by leveraging dif-
ferences between contrasting pairs of prompts,
to directly access LLMs’ latent knowledge and
extract more accurate preferences. Through
extensive experiments using models of vary-
ing size from four different families and six di-
verse datasets assessing text quality evaluation
and common sense reasoning, we demonstrate
that both supervised and unsupervised probing
approaches consistently outperform traditional
generation-based judgement while maintaining
similar computational costs. These probes gen-
eralise under domain shifts and can even outper-
form finetuned LLM evaluators with the same
training data size. Our results suggest linear
probing offers an accurate, robust and compu-
tationally efficient approach for LLM-as-judge
tasks while providing interpretable insights into
how models encode judgement-relevant knowl-
edge. Our data and code is accessible at https:
//github.com/maiush/LP-as-a-Judge.

1 Introduction

Chatbot Large Language Models (LLMs) are often
trained using Reinforcement Learning with Hu-
man Feedback (RLHF) over preference datasets in
order to increase honesty, helpfulness, and harm-
lessness (Christiano et al., 2017; Stiennon et al.,
2020; Bai et al., 2022). This manifests as an in-
crease in value/judgement alignment with humans,
allowing for the use of such models as stand-in
replacements for human raters on various tasks of
evaluation (Zheng et al., 2023b; Shen et al., 2023;
Zeng et al., 2023; Stephan et al., 2024; Zhong et al.,
2022). This approach, commonly known as LLM-
as-a-Judge, is particularly powerful for its fast and
automatic nature.

In these tasks, LLM evaluators perform direct
score-based assessment or pairwise comparisons,
conventionally through generation-based predic-
tion, where models are prompted to output numer-
ical or Likert scale ratings, or comparative judge-
ments. However, several factors limit the accuracy
and efficiency of such approaches. Constrained-
decoding for format control can introduce arti-
facts, and unintentional biases can be introduced
by prompts. Overly verbose reasoning can obscure
or misalign core judgements. More fundamentally,
black-box approaches can lead to untrustworthy
or factually incorrect generations, frequently stem-
ming from biases learned during pretraining (Wei-
dinger et al., 2021; Park et al., 2023; Evans et al.,
2021; Hendrycks et al., 2021).

Previous work, such as Liu et al. (2024b),
demonstrates that reformulating direct-scoring
tasks as ranking problems based on pairwise prefer-
ences results in better alignment with human expert
labellers. To extract even more accurate judge-
ments than these generation-based approaches, we
propose using classifying probes. Empirical work
suggests models’ latent knowledge, independent
of the introduced biases considered above, can be
identified through the use of trained classifier heads
on the activations of a given model. Such probes
can be trained in a supervised (Alain and Bengio,
2017; Marks and Tegmark, 2024) or unsupervised
(Burns et al., 2023) fashion, and importantly, can
be trained using contrast pairs. This involves com-
paring the hidden state of a model when gener-
ating different possible answers, and observing
salient contrastive features in the change of hid-
den state, while controlling for irrelevant features
(Burns et al., 2023; Rimsky et al., 2024). This leads
both to better predictive performance and gains in
efficiency.

We present the first thorough investigation of
the performance of supervised and unsupervised
probes for LLM-as-a-Judge tasks of pairwise pref-
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Figure 1: Our method exploits the empirical result that LLMs’ internal features of “belief” or “judgement” are
correlated with linear directions in their embedding spaces. For Llama 3.1 70B evaluated on the MT-Bench dataset,
we find the first principal component of the contrast pair differences of embedding vectors roughly classifies
which model in a given example was preferred by a panel of human raters (left). Supervised or unsupervised
classifying probes built on these embedding vectors are more aligned with human raters than prompting
methods alone (right), and this result holds across different model families (Gemma 2, Llama 3.1) at different sizes

(from 2B to 70B parameters).

erences, comparing these methods to generation-
based evaluation, with and without supervised fine-
tuning (SFT). To summarise our main contribu-
tions:

* We introduce a way to extract human-aligned
judgement from LLMs, by leveraging linear
classifying probes and contrast pairs, in both
a supervised and unsupervised setup.

* Through extensive experiments, we show
classifying probes consistently outperform
generation-based evaluation.

* We also show supervised probes considerably
improve on the cost:performance ratio of SFT
in realistic scenarios.

* We demonstrate these probes correlate with
interpretable features of the underlying lan-
guage model, generalising well to different
domains and remaining more robust to distri-
butional shifts than prompting.

Our results are consistent across four widely-used
open-weights model families, at sizes ranging from
0.5B to 123B parameters, and six different datasets.
In light of our results, we encourage practitioners
to make use of classifying probes for similar tasks
for a more cost-efficient, robust, and performant
solution.

2 Background and Related Work

2.1 LLM-as-a-Judge

LLMs are increasingly employed as automatic,
reference-free evaluators for assessing natural lan-
guage tasks (Zhong et al., 2022; Chen et al., 2023;
Wang et al., 2023; Tan et al., 2024). Their applica-
tions span a wide range of domains, such as sum-
marisation (Shen et al., 2023), instruction follow-
ing (Zeng et al., 2023), legal analysis (Deroy et al.,
2024), reasoning (Stephan et al., 2024), and rec-
ommendation systems (Hou et al., 2024). Despite
their growing adoption, LLM-as-a-Judge faces sev-
eral challenges, including misalignment with hu-
man judgments (Chiang and Lee, 2023), biases in
various forms (Zheng et al., 2023b; Zhou et al.,
2024), inconsistencies in decision-making (Liu
et al., 2024a), and limitations in reasoning capa-
bilities (Stephan et al., 2024).

To address these issues, researchers have pro-
posed several methods to enhance the reliability
and accuracy of LLM-based judgments. G-Eval
(Liu et al., 2023) refines scoring granularity us-
ing a logit-weighted average of score tokens. Pair-
wise comparison techniques have been introduced
to improve alignment with human preferences, as
demonstrated by Liu et al. (2024b) and Liusie et al.
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(2024). Other approaches advocate for generat-
ing Chain-of-Thought rationales prior to evaluation
(Saha et al., 2025; Wang et al., 2024; Ankner et al.,
2024) or employing multi-agent debate frameworks
(Chan et al., 2024) or evaluator panels (Verga et al.,
2024) to enhance assessment robustness.

2.2 Representation Probing

Probing methods assess the extent to which
language model representations encode specific
knowledge. Typically, a probe is a supervised clas-
sifier (Conneau et al., 2018; Hupkes et al., 2018)
trained to extract information from these represen-
tations (Christiano et al., 2021; Belrose et al., 2023).
Linear probing (Alain and Bengio, 2018), which
employs a linear classifier, is particularly valued
for its efficiency and interpretability. Unsupervised
variants have also been explored (Burns et al., 2023;
Laurito et al., 2024).

Probing has been widely applied to interpret
model representations across various domains, in-
cluding word embeddings (Levy and Goldberg,
2014), sentiment (Maas et al., 2011), factual knowl-
edge (Marks and Tegmark, 2024), spatial and tem-
poral understanding (Gurnee and Tegmark, 2024),
and world models (Li et al., 2023). It has also been
used to detect behavioural patterns such as out-
liers (Mallen et al., 2024), inactive modules (Mac-
Diarmid et al., 2024), and unfaithful generation
(Azaria and Mitchell, 2023; Campbell et al., 2023).

In this work, we employ linear probing to extract
evaluation judgments from an LLM-as-a-Judge
setup. Compared to inference-based or logits-based
judgments, we show that linear probing improves
both accuracy and efficiency.

3 Methodology

In order to identify an LLM’s true “judgement”
via classifying probes, we seek to identify binary
features of belief or knowledge: a given text may or
may not be consistent with the knowledge the LLM
has learned during training, and we wish to identify
a linear direction in activation space correlated with
this property.

To identify such a direction, we make use of
contrast pairs (Burns et al., 2023). We begin
with a diverse set of binary statements or ques-
tions S = {s;}Y,. The contrast pairs are a dataset
of prompts X = {(x;",z; )}, constructed by ap-
pending contrasting tokens to each s;. Suppose for
example that s; = “The capital of France is Paris.”

A contrast pair for factual accuracy on s; could be
+

x; = “The capital of France is Paris. This state-
ment is true” and z;; = “The capital of France is
Paris. This statement is false”.

Both prompts are then used as inputs to an LLM,
and the embedding vectors ¢(z;") and ¢(z; ) of
the differing contrasting tokens are harvested at a
layer .

We assume both ¢(z;") and ¢(z; ) can be de-
composed into several features (high-level con-
cepts correlated with linear directions in activation-
space), most of which are shared, since both are
derived from the statement s;. We also assume we
can approximate both as a linear combination of
said features:

n m

QZS(JZ:_) _ fohaTEd + Zf’z-i- + 6+,

i=1 j=1

n k
ola;) =) FhrL Y Fooe
i=1 Jj=1

with all F*"¢d common to both embeddings,
F*/~ unique to each element of the contrast pair
and remaining information et/

Consider the contrast pair difference ¢(z;) —
¢(x; ), removing the effect of all F shared and leav-
ing only contrastive features. Two immediately
obvious contrastive features are:

* Agyntaz = F True _ FFalse the syntactical
difference in the prompts " and 2.

* Aknowledge = F T — Ft, the logical differ-
ence between both prompts: one is consistent
with the model’s internal knowledge while the
other is not. This can be thought of as the
model’s “belief” feature.

Given a dataset of contrast pair differences D =
{¢(zF) — ¢(z; )}, a centering step can be per-
formed to remove Agypq, before taking this dif-
ference:

da) = 9lai)

—ut,
P(x;) = pla;) —p~

)

where " and ;i are the mean embedding vec-
tors of {¢(z;)} and {¢(x; )} respectively. We
claim Agpouwiedge Will, in most cases, be the most
salient contrastive feature of the new dataset D =
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Given ground truth labels for each pairwise com-
parison, we can model the probability with a clas-
sifier:

P(z" true) = o(w' (¢(z]) — ¢(x,))).

The supervised probes we train in Section 4 are
described by the above classifier, the parameters of
which we fit using logistic regression.
Additionally, were the above claim of salience
of Apnowledge to be true, it would be identifiable as
the top principal component of our dataset, thereby
allowing us to obtain a probing classifier without
the need for ground-truth labels. Indeed, this ap-
proach is commonly used as an unsupervised prob-
ing technique for similar tasks (Burns et al., 2023;
Laurito et al., 2024), and we explore its use for
LLM-as-a-Judge pairwise comparisons here too.

4 Experimental Setup
4.1 Datasets

We investigate the performance of classifying
probes for LLM-as-a-Judge tasks through the use
of several datasets spanning different problem do-
mains.

LLM Chat Preferences MT-Bench (Zheng
et al., 2023a) is a multi-turn question set of pair-
wise comparisons of chatbot LLM interactions. A
subset of these comparisons have been performed
by several human labellers, and we use these as
ground-truth to measure performance against.

Text Quality The NEWSROOM (Grusky et al.,
2018), SummkEval (Fabbri et al., 2020), and
HANNA (Chhun et al., 2024) datasets all concern
the evaluation of text in terms of high-level con-
cepts. News articles with summaries (former two)
and story prompts with short stories (last) are eval-
uated by human labellers on several high-level fea-
tures such as “coherence” or “surprise”. Note these
are directly scored on a Likert scale; when neces-
sary we convert this task to one of pairwise com-
parisons, following Liu et al. (2024b).

Common Sense Reasoning The ROCStories
dataset (Mostafazadeh et al., 2016a) consists of
short story prompts provided with two potential
endings. One ending is always more consistent
with the story prompt, allowing for a pairwise
comparison task. We additionally make use of
the MCTACO (Zhou et al., 2019) and CaTeRS
(Mostafazadeh et al., 2016b) datasets which simi-
larly test common sense reasoning in the context
of causal/temporal understanding.

4.1.1 Prompts

Full prompt templates for all datasets can be found
in Appendix E or in our code repository at https:
//github.com/maiush/LP-as-a-Judge. How-
ever, the general prompt template used in all pair-
wise comparison experiments is shown below:

Consider the following two <items>:
Choice 1: <item 1>

Choice 2: <item 2>

Which is more <task>?

Answers must be a single choice.

When harvesting contrast pairs, we prime the
model with the following message:

Between Choice 1 and Choice 2, the more
<task> <item> is Choice <contrast_token>

4.2 Models

Our results robustly generalise between different
LLM model families. We demonstrate this in Sec-
tion 5, where we conduct scaling analyses only
within model families, as idiosyncratic differences
between them lead to different patterns of perfor-
mance and scaling. Specifically, we consider:

* the two smaller (8B, 70B) Llama 3.1 models
(Meta Al 2024).

* the Gemma 2 (2B, 9B, 27B) family of models
(Google Gemma Team, 2024).

* the Qwen 2.5 (0.5B, 1.5B, 3B, 7B, 14B, 32B,
72B) family of models (Qwen, 2025).

* Mistral Nemo (12B), Small (22B), and Large
(123B) (Mistral Al, 2024b,c,a).

All our experiments are conducted through
question-answering, and due to this all models we
use have undergone a post-training pipeline of (usu-
ally) instruction-tuning and some form of prefer-
ence learning such as reinforcement learning from
human feedback (Christiano et al., 2017).

4.3 Baselines

For the text quality datasets mentioned in Sec-
tion 4.1 we report baseline results of generation-
based prompting a given model to evaluate text
on the original Likert scale e.g., on a scale of 1 to
5, referring to this as direct-scoring. We addition-
ally report a recent improvement to this approach,
G-Eval (Liu et al., 2023), which re-weights predic-
tions using the model’s own predicted probabilities
for each possible answer choice.
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Figure 2: Unsupervised probes, in all but one test case, outperform generation-based methods like direct-
scoring and pairwise comparisons. Interestingly, within a given model family, unsupervised probing performance
with a small model almost always outperforms prompting performance with much larger models. This highlights
two related key findings: (1) the use of relatively large LLMs for LLM-as-a-Judge tasks may be unnecessarily
computationally wasteful and (2) there may be significant capability “left on the table” with smaller LLMs for such

tasks.

When re-framing the above tasks as pairwise
comparisons, and with all other datasets, we re-
port prompting performance for comparisons. To
address positional bias, we marginalise over posi-
tion and take an average of the model’s predicted
probabilities. Note: this assumes a consistent po-
sitional bias, and requires us to run each question
through the model twice (with the two possible
answer choices swapped).

4.4 Training Setup

Generation-based prediction is performed by ex-
amining model predicted probabilities for possible
answer choices e.g., for pairwise comparisons, we
compare the probabilities for the tokens “1” and
“2”. For activation harvesting, unless otherwise
stated, we take the embedding vector of the final
token (that is, the contrasting token) of a given
prompt, after the last decoder block and before the
final normalisation layer!.

Both supervised and unsupervised probes are fit
and tested on random distinct halves of a given
dataset.

!The choice of layer is further investigated in Appendix A.

5 Results

We first use the MT-Bench dataset to assess the
ability of different LLMs to compare two model-
generated answers to a user-question in a chatbot
interaction: a common task in LLM post-training.
A panel of human judges reached 80% agreement
on this dataset (Zheng et al., 2023a), and we ob-
tain ground-truth labels by taking the majority-vote
of this panel. Both supervised and unsupervised
probes perform similarly to each other at align-
ing with this ground-truth, achieving F1 scores of
roughly 0.8, as can be seen in Figure 1. Impor-
tantly, we find probes outperform prompting, while
maintaining the same inference cost of two forward
passes per example. This motivates our deeper in-
vestigation into the potential of classifying probes
for similar tasks, which we present now.

5.1 Experiment 1: Unsupervised Probes

We analyse the performance of the PCA-based un-
supervised probing method described in Section 3
through the three text quality datasets NEWS-
ROOM, SummEval, and Hanna, and the three com-
mon sense reasoning datasets ROCStories, MC-
TACO, and CaTeRS. A baseline for our probes
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Supervised Probes: Text Quality
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Figure 3: Supervised probes, in all cases, allow for a further improvement in alignment with human raters
over unsupervised probes. We also test parameter-efficient (LoRA) and full (sft) finetuning (for all models up to a
size of 14B parameters), finding that supervised probes still outperform finetuned generation-based evaluators for

smaller models, and match performance for larger models.

Llama 3.1 70B: Performance Under Adversarial Prompting
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Figure 4: Performance of classifying probes and generation-based prompting for Llama 3.1 70B on the LLMBar
dataset. All three methods suffer under adversarial prompting (non-bold subsets), however, both probing ap-
proaches remain significantly more robust than prompting.

should also be unsupervised; we compare against
zero-shot prompting on all datasets, calibrating
model predictions by running each input example
twice, swapping the order of examples in a given
pairwise comparison, allowing us to marginalise
over answer position to account for order effects.
In the case of the text quality datasets we can also
report direct scoring on the original Likert scale of
1-5, and a G-Eval-based (Liu et al., 2023) correc-
tion of this approach.

Unsupervised Probes Outperform Calibrated
Prompting Methods We find for all six datasets

and four model families, aside from a single test
case (Qwen 2.5 0.5B), the use of unsupervised
probes allows for significantly higher alignment
with human judgement (Figure 2). We see this as
evidence of a capability-gap between models’ abil-
ities measured through the flexibility and capacity
of their latent spaces and their abilities measured
through standard prompting approaches. Such a
gap may narrow over time with the release of newer
models with better instruction-following capabili-
ties, but it remains sizable for now. We therefore ad-
vocate the use of unsupervised probes for pairwise
comparison tasks in which labels are sparse/absent
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over prompting methods alone.

These results, further broken down into each of
the six constituent datasets aggregated in Figure 2,
can be found in Appendix F.

5.2 Experiment 2: Supervised Probes

For many LLM-as-a-Judge tasks, it may be feasi-
ble to obtain a (small) number of labelled examples
to guide the decision-making process of an LLM
evaluator. In such cases, a supervised probe can
be trained by replacing the PCA step above with a
standard supervised classifier, as described in Sec-
tion 3. For the same six datasets evaluated above,
we train supervised probes on 5000 examples and
examine their performance against corresponding
unsupervised probes on the remaining held-out ex-
amples.

Supervised Probes Outperform Unsupervised
Probes And Can Outperform Finetuning We
find, as shown in Figure 3, that supervised probes
often allow for a further increase in alignment with
human raters. For particularly sensitive tasks in
which supervised approaches are feasible, practi-
tioners may opt to finetune a given model to im-
prove its performance. We also find supervised
probes are a competitive alternative to such an ap-
proach, as shown in Figure 3. For both the text
quality and common sense reasoning tasks, super-
vised probes match or outperform LoRA (Hu et al.,
2022) and even full finetuning (performed on all
models up to a size of 14B parameters due to com-
putational constraints) with the same number of
training examples, at all model sizes tested?.

The results in Figure 3 may shed some light on
the difficulty of the text quality and common sense
reasoning tasks set up in our experiments. Note for
the former, finetuned models actually perform rel-
atively poorly, with a large capability gap against
both unsupervised and supervised probes. In the
common sense reasoning task, finetuning is much
more competitive. We hypothesize this is due to
the subjective vs objective nature of the two tasks.
The evaluation of text on abstract features such
as “coherence” and “empathy” (as is carried out
in the NEWSROOM, SummEval, and HANNA
datasets) is likely highly subjective, while common
sense reasoning can be considered a much more
objective task. This makes the latter much easier
to learn during pretraining, and further improve

?Details on the finetuning process performed are provided
in Appendix D.

on during finetuning. This is further reflected in
the larger improvement in supervised over unsu-
pervised probes for the text quality task: human-
generated labels allow the probe-fitting process to
efficiently align with raters. Conversely, finetun-
ing approaches likely require many more labels to
converge to this same distribution, with orders of
magnitude more parameters requiring tuning over
the logistic regression classifiers we train.

This suggests a key advantage of probing ap-
proaches constructed through contrast pairs: the
salience of the desired knowledge or belief is in-
creased, facilitating easier learning of the task and
reductions in computational cost compared to fine-
tuning. We expect, in the limiting case of labelled
data, finetuning approaches will overtake probe per-
formance due to their higher flexibility. However,
for many realistic applications, labelled data can
be unreasonably expensive to obtain.

These results, broken down into each of the six
constituent datasets aggregated in Figure 3, can be
found in Appendix F.

5.3 Experiment 3: Probe Generalisation

In addition to offering advantages in both computa-
tional cost and performance for LL.M-as-a-Judge
tasks, classifying probes yield key interpretability
insights into LLMs in general. We find evidence
they correlate with general features of belief or
judgement used by a given model.

Llama 3.1 70B: Probe Similarity

100 =
supervised

80 unsupervised
60

Count

40

20

0
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Cosine Similarity

Figure 5: Taking the example of Llama 3.1 70B, we find
most supervised probes are dissimilar while most unsu-
pervised probes are similar (up to sign), regardless of
the varying tasks in each of the six datasets considered.

This evidence, summarised in Table 1, comes
from an experiment into the generalisation of
probes under significant distributional changes.
Specifically, we train both supervised and unsu-
pervised probes using contrast pair differences of
activations from Llama 3.1 70B on each of the six
datasets examined in the above experiments, and
test each on the remaining five other datasets.
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F1-Score Probe Training Dataset
Supervised/Unsupervised | NEWSROOM SummEval HANNA ROCStories MCTACO CaTeRS
_ | NEWSROOM - 0.63/0.77  0.65/0.77  0.78/0.77  0.78/0.77  0.64/0.77
% SummEval 0.66/0.76 - 0.63/0.76 ~ 0.77/0.76  0.77/0.76  0.58/0.76
< | HANNA 0.67/0.71 0.62/0.71 - 0.71/0.71 0.71/0.71 ~ 0.59/0.70
E ROCStories 0.87/0.99 0.78/0.99  0.79/0.98 - 0.99/0.99  0.71/0.99
E MCTACO 0.79/0.95 0.67/0.95  0.70/0.95  0.96/0.95 - 0.74/0.95
CaTeRS 0.75/0.78 0.62/0.78  0.67/0.78  0.76/0.78  0.77/0.78 -

Table 1: Generalisation of classifying probes for Llama 3.1 70B. We train both supervised (/eft) and unsupervised
(right) probes on examples from a given dataset (columns), testing them on all five other datasets (rows) through
F1-score. The higher scoring probe of a given supervised/unsupervised pair is coloured. We find both sets of probes
generalise relatively well, and unsupervised probes in particular generalise very well on several occasions.

Classifying Probes Identify Generalising Fea-
tures Of Belief Or Judgement Generally, these
probes achieve high F1 scores, even when trained
and tested on very different tasks. Unsupervised
probes in particular generalise extremely well in
several cases, achieving F1 scores at or above
0.95. We hypothesize the contrast pair setup allows
probes to focus on task-independent features of
judgement, relying on models’ already vast knowl-
edge and human alignment due to pretraining to
infer the correct choice. Supervised probes can
leverage information about a specific task, but this
ultimately pushes the probe direction away from
these task-independent features, leading to slightly
worse generalisation than their unsupervised vari-
ants.

The better generalisation of unsupervised probes
is supported by Figure 5, in which the cosine
similarity between all probe directions across all
datasets is plotted. Up to a sign flip, unsupervised
probes are highly similar, with most having mag-
nitude similarity above 0.7. Meanwhile, the dis-
tribution for supervised probes is narrowly cen-
tred around zero. It is possible that supervised
probe similarity could be increased by training on
more/diverse data, but it is striking that unsuper-
vised probes trained on relatively different domains
identify similar features. It is unclear however
whether these features are causally relevant during
the forward pass, to represent belief and judgement,
but we investigate this further in Appendix B.

5.4 Experiment 4: Ablation Study

As a final test of classifying probes, we perform
an ablation study of performance under different
types of adversarial prompting strategies. To do so,
we make use of the LLMBar dataset (Zeng et al.,
2024) for evaluating instruction-following capabil-

ities. This dataset is split into several subsets, all
of which, other than the Normal and Natural sub-
sets, are specifically designed to induce incorrect
answers from LLM evaluators.

Classifying Probes Are More Robust to Domain
Shifts Than Prompting We train probes on the
Normal and Natural subsets only, testing them on
all other subsets, and comparing with generation-
based prompting as before. Figure 4 shows, for
Llama 3.1 70b, how all methods suffer a perfor-
mance drop under adversarial prompts. However,
we note for all but one subset, this drop is sig-
nificantly less severe for probing approaches over
prompting; note in particular the results on the
Constraint subset for example. This finding holds
across different model sizes and families - our repli-
cations of this experiment on other models can be
found in Appendix C. This complements our results
on probe generalisation: the relative robustness of
classifying probes likely aids their ability to gener-
alise to different domains.

6 Conclusion

We explore the use of linear classifying probes,
both supervised and unsupervised, to perform pair-
wise comparisons in several standard LLM-as-a-
Judge tasks. Our approach of using contrast pair
differences to increase the salience of relevant “be-
lief” or “judgement” features proves to be greatly
effective; unsupervised probes consistently outper-
form calibrated generation-based evaluators across
several open-weights LLM families and model
sizes, without a significant increase in computa-
tional cost. In realistic scenarios with limited but
available ground-truth labels, we also find super-
vised probes outperform unsupervised methods
and can even outperform finetuning of the same
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model. These probes generalise well to different
domains, and are more robust to (adversarial) distri-
butional shifts than prompting approaches. Our ex-
periments constitute the first comprehensive assess-
ment of both supervised and unsupervised probes
for LLM-as-a-Judge tasks against generation-based
approaches, with and without finetuning. They sug-
gest for practical applications, classifying probes
are a cost-efficient, robust, and powerful solution.

Limitations

Our experiments in Section 5.2 find supervised
probes outperform finetuned (both LoRA (Hu et al.,
2022) and full) generation-based evaluators given
the same training data. It could be interesting to
investigate how and when probe performance satu-
rates, and relatedly whether finetuning approaches
outperform probes in the limit of data availability.
While this is outside the scope of our study, future
work establishing the threshold at which this may
take place would better inform developers of best
practices.

Additionally, we focus the scope of LLLM-as-a-
Judge tasks covered in this work to those of pair-
wise preferences, as this setup lends itself well to
the use of binary classifying probes. We would
be excited to see future work exploring the use
of latent knowledge in direct-scoring tasks, where
texts are rated on a numerical or Likert scale. This
could be achieved through one-vs-rest or multi-
class probes for example.

Finally, there remain additional challenges to
overcome with probing methods in general. Red-
teaming studies and analyses (Farquhar et al., 2023;
Laurito et al., 2024) find that prompts which can
induce a language model into simulating a different
quality of knowledge e.g., “You are a smart profes-
sor...”, can significantly affect probe performance.
Addressing this challenge proves to be particularly
difficult for the research community, as it requires
a much better understanding of knowledge repre-
sentation within LLMs. For now, this presents a
fundamental limitation of probing and other similar
white-box approaches.
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We follow strict compliance with all dataset and
model licenses relevant in this work. Al assistants
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A On The Target Layer For Activation
Harvesting

All classifying probes examined in Section 5 are
trained following the same process. One key step,
as explained in Section 3, involves the harvesting
of activations during the forward pass. In the con-
trast pair setup, we do so on the token position of
contrasting tokens at the last layer of a given model.
Here, we briefly explore how necessary this choice
is.

We train supervised and unsupervised probes on
models from the Gemma 2 and Llama 3.1 families
on the MT-Bench dataset by harvesting activations
on contrasting tokens at all layers of a given model.
The performance of the downstream trained probes
are compared in Figure 6 (supervised probes) and
Figure 7 (unsupervised probes).

A comparison of the two figures is striking, and
reveals some of the key differences between super-
vised and unsupervised linear probes. For both,
average performance is poorer when probes are
trained on the first half of a given model than the
second. For supervised probes, the increase in per-
formance is smooth: by around 40-50% of the way
through the forward pass, they are able to learn as
best they can for the given task.

In contrast, we see a discontinuity in unsuper-
vised probe performance. This discontinuity ap-
pears after different numbers of layers depending
on the model, but we note the larger the model
the earlier it appears (for a given model family).
This discontinuity sees performance jump from an
F1 score of roughly 0.5 (a balance between pre-
cision and recall, moderately better than random
classification) to a maximum of roughly 0.8.

Taking our results in Section 5.3 at face value,
we hypothesize the main reason for this difference
is the salience of the desired feature. Supervised
probes are in a sense reflecting a quality of the la-
tent space itself, and how easy/difficult it may be to
identify any given feature within this space. Unsu-
pervised probes, by design, rely on the assumption
that the desired feature is the most salient of the
contrast pair differences, rather than the existence
of the feature at all.

The results in Figure 7 suggest that in larger
models this quality of salience is realised earlier in
the forward pass, perhaps due to higher representa-
tional capacity.

Nonetheless, our decision to harvest activations
at the last layer of a given model appears justi-

fied, as performance in both Figure 6 and Figure 7
remains at its best through the last layer. For practi-
tioners, this is particularly convenient as extraction
of the last hidden state of a given model is more eas-
ily facilitated in common open-LLM frameworks
than earlier layers.

B Causal Analysis Of Probe Directions

Within the context of concept-based interpretability
of LLMs, the term feature is ill-defined. Specifi-
cally, it is unclear what exactly constitutes a “true”
feature of a given model. One possible definition
is causal in nature: were the ablation of a given
feature representation to result in a model unable to
represent said feature, it is in some sense “true” and
causally relevant during the forward pass. This idea
has been used to investigate and “steer” LLM fea-
tures in previous works such as Arditi et al. (2024)
and Rimsky et al. (2024), and we follow a similar
approach here to investigate the extent to which the
features identified by our supervised and unsuper-
vised probes are “true”.

We repeat the prompting experiments performed
using the MT-Bench dataset with models from the
Gemma 2 and Llama 3.1 families. However, for
each model, we orthogonalize the last token’s em-
bedding against either the supervised or unsuper-
vised probe directions identified before, at all layers
during the forward pass. That is, after each decoder
block and the final layer normalisation, we perform
the vector rejection,

replacing the original hidden state vector = with 2’
given the probe direction p, meaning the model’s
computational operations are never permitted to
write information along this probe direction. The
difference in evaluator performances (from the
baseline un-steered model) are shown in Table 2.

We see negligible change in evaluator perfor-
mance regardless of probe type, and consider this
evidence against the hypothesis that the features
classifying probes identify are true features used
by a given language model during LLM-as-a-Judge
evaluation.

This may be due to the nature of high-
dimensional space: it is likely there are several
high-performing linear classifiers for such a task,
and our probes are only ever able to identify one.

It may also be the case that features used for the
expression of a belief are different from those used
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Figure 6: Performance of supervised probes trained on all layers of a given language model and evaluated on the
MT-Bench dataset. We see a relatively smooth increase in probe performance through the forward pass.
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Figure 7: Performance of unsupervised probes trained on all layers of a given language model and evaluated on
the MT-Bench dataset. In contrast with Figure 6, we see a discontinuous jump in performance of unsupervised
probes at differing points during the first half of the forward pass.

to assess belief in a token already generated. Note
in the contrast pair setup, activations are harvested
at the contrasting token position, as opposed to the
token before. It may well be that our probes, in
particular our unsupervised probes, are identifying
features related to a model’s belief in its own ut-
terances, rather than features related to evaluation
itself. This raises intriguing questions regarding
how realistic off-policy vs on-policy experiments
with LLMs are, and we would be excited to see this
explored in future work.

C Additional Results For Our Ablation
Study

We repeat the experiments performed in Section 5.4
on Gemma 2 2B, 9B, 27B, and Llama 3.1 8B. Re-
sults are consistent with our tests on Llama 3.1 70B
in that probes are, in general, more robust to adver-
sarial prompting strategies than generation-based
inference. Note this is particularly apparent with
the smallest model tested (Gemma 2 2B).

Results are shown in Figure 8 through to Fig-
ure 11.

D Details Of Supervised Finetuning
Experiments

For the experiments in Section 5.2 in which we
compare supervised probe performance with super-
vised finetuning, we use the OpenRLHF (Hu et al.,
2024) library. For LoRA (Hu et al., 2022) finetun-
ing we use a rank of 8 and « of 16, targeting all
modules. In all cases we train on a dataset of 5000
randomly chosen samples for one epoch. Full train-
ing configs can be found in our code repository at
https://github.com/maiush/LP-as-a-Judge.

E Full Prompts for All Datasets

E.1 Text Quality Datasets

The text quality datasets NEWSROOM (Grusky
et al., 2018), SummEval (Fabbri et al., 2020), and
HANNA (Chhun et al., 2024) all present the task
of the evaluation of generated text on high-level,
abstract features or aspects. Each original dataset
includes descriptions of these features, which we
use in our evaluator prompts for additional context.
These descriptions are listed in Table 3.

The prompt formats for the NEWSROOM and
SummEval datasets follow a very similar structure,
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Gemma 2 2B: Performance Under Adversarial Prompting
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Figure 8: Performance of classifying probes and standard prompting for Gemma 2 2B on the LLMBar dataset.

Gemma 2 9B: Performance Under Adversarial Prompting

1.0 B pairwise-comparisons
W s-probe
0.8 W u-probe
Los
S
w
—
Y04
0.2
@ e o 0% 2© e2 o~ S
W™ o' 2 A e e @ o e
(2 P <o R ¢
e e
p&
Subset

Figure 9: Performance of classifying probes and standard prompting for Gemma 2 9B on the LLMBar dataset.

Gemma 2 27B: Performance Under Adversarial Prompting
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Figure 10: Performance of classifying probes and standard prompting for Gemma 2 27B on the LLMBar dataset.

Llama 3.1 8B: Performance Under Adversarial Prompting
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Figure 11: Performance of classifying probes and standard prompting for Llama 3.1 8B on the LLMBar dataset.
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A F1 Score | Gemma 2 2B | Gemma 2 9B | Gemma 2 27B | Llama 3.1 8B | Llama 3.1 70B
Supervised -0.00 0.01 0.00 0.00 0.03
Unsupervised -0.01 0.01 0.00 0.01 0.03

Table 2: Change (A F1) in evaluator performance on the MT-Bench dataset following the ablation of a given probe
direction during the forward pass. For all models tested, we see neglibible change in the model’s capability when it
is unable to write information against the probe direction, suggesting these directions are not causally relevant for

evaluation.

as both assess the same exact task: a news article
CONTEXT is provided with given summaries (ITEMs).
We include the relevant DESCRIPTION according to
the ASPECT under study, consulting Table 3. For
the direct-scoring setting, the prompt template used
for NEWSROOM is:

Consider the following article and summary:

Article: {CONTEXT}

Summary: {ITEM}

{DESCRIPTION} Rate the {ASPECT} of this
summary from 1 to 5, where 1 represents
very low {ASPECT}, and 5 represents
excellent {ASPECT}. Responses must be a
single score.

For SummEval, the template is changed slightly,
to match the original dataset and paper:

Consider the following source and summary:
Source: {CONTEXT}

Summary: {ITEM}

{DESCRIPTION} Rate the {ASPECT} of this
summary from 1 to 5, where 1 represents
very low {ASPECT}, and 5 represents
excellent {ASPECT}. Responses must be a
single score.

For pairwise comparisons, we follow a very sim-
ilar template. For NEWSROOM:

Consider the following article:
Article: {CONTEXT}

Below are two summaries of the above
article:

Summary 1: {ITEM1}

Summary 2: {ITEM2}

{DESCRIPTION} Which summary is more
{ASPECT}? Responses must be a single
choice.

And for SummEval:

Consider the following source:
Source: {CONTEXT}

Below are two summaries of the above
source:

Summary 1: {ITEM1}

Summary 2: {ITEM2}

{DESCRIPTION} Which summary is more
{ASPECT}? Responses must be a single
choice.

For the HANNA dataset, we evaluate stories
generated from story-prompts. The above template
is therefore adjusted slightly. For direct-scoring:

Consider the following prompt and story:
Prompt: {CONTEXT}

Story: {ITEM}

{DESCRIPTION} Rate the {ASPECT} of this
story from 1 to 5, where 1 represents
very low {ASPECT}, and 5 represents
excellent {ASPECT}. Responses must be a
single score.

And for pairwise comparisons:

Consider the following prompt:
Prompt: {CONTEXT}

Below are two stories inspired

by the above prompt:

Story 1: {ITEM1}

Story 2: {ITEM2}

{DESCRIPTION} Which story is more
{ASPECT}? Responses must be a single
choice.

E.2 Common Sense Reasoning Datasets

For the ROCStories (Mostafazadeh et al., 2016a),
MCTACO citepzhou-etal-2019-going, and CateRS
(Mostafazadeh et al., 2016b) datasets, the task is
formatted only as one of pairwise comparisons.
Additionally, in all cases the evaluator must pick
the more sensible option, so all prompt templates
are very similar. For ROCStories:

Consider the following short story:
Story: {STORY}

Below are two statements:

Statement 1: {STATEMENT1}

Statement 2: {STATEMENT2}
Considering the context of the above
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Dataset Aspect Description
Informativeness | Informativeness is how well a summary of an article captures the

s key points of the article.

8 Relevance The details provided in a relevant summary of an article are con-

?04 sistent with details in the article.

= Fluency In a fluent summary of an article the individual sentences are well-

% written and grammatical.

Coherence In a coherent summary of an article the phrases and sentences fit
together and make sense collectively.

Coherence Coherence is the collective quality of all sentences. A coherent
summary of a source should be well-structured and well-organized.
It should not be a heap of related information, but should build
from sentence to sentence to a coherent body of information about
the source.

E Consistency Consistency is the factual alignment between a summary and

Ué summarized source. A coherent summary contains only statements

g that are entailed by the source document.

n Fluency Fluency is the quality of individual sentences. A fluent summary of
a source should have no formatting problems, capitalization errors
or obviously ungrammatical sentences (e.g., fragments, missing
components) that make the text difficult to read.

Relevance Relevance is the selection of important content from a source. A
relevant summary should include only important information from
the source document.

Relevance A relevant story matches its prompt.

Coherence A coherent story makes sense.

< Empathy An empathetic story allows the reader to understand the character’s

% emotions.

é Surprise A surprising story has a surprising end.

Engagement An engaging story allows the reader to engage with it.
Complexity A complex story is elaborate.

Table 3: Text descriptions of high-level abstract features/aspects in all text quality datasets. These are provided in
prompts for additional context.

story, which statement is more
consistent? Responses must be a single

choice.

With each STORY and STATEMENTSs obtained from

the dataset directly.
Similarly for MCTACO:

Consider the following passage:

Passage: {PASSAGE}

Below is a question regarding

the above passage:

Question: {QUESTION}
Choice 1: {CHOICE1}
Choice 2: {CHOICE2}

Which answer is more sensible?

Responses must be a single choice.

This dataset assesses common sense reasoning
through a specific QUESTION for each PASSAGE.
Lastly, for CaTeRS:

The following list of statements
form a story, however they are
unordered:

Unordered Statements: {UNORDERED?}
Below are two statements from this
list:

Statement 1: {STATEMENT1}
Statement 2: {{STATEMENT2}
Determine the correct order of the
above statements - which statement
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appears before the other? Responses
must be a single choice.

This dataset includes lists of unordered state-
ments, with the pairwise comparison task set up of
identifying the correct ordering of two such state-
ments, thereby assessing temporal understanding.

F Probe Performance by Dataset

We present the performance of supervised (Fig-
ure 12 to Figure 17) and unsupervised (Figure 18 to
Figure 23) probes on all constituent datasets of the
text quality (NEWSROOM (Grusky et al., 2018),
SummEval (Fabbri et al., 2020), HANNA (Chhun
et al., 2024)) and common sense reasoning (ROC-
Stories (Mostafazadeh et al., 2016a), MCTACO
(Zhou et al., 2019), CaTeRS (Mostafazadeh et al.,
2016Db)) tasks examined in Section 5.
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Supervised Probes: NEWSROOM
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Figure 12: Supervised probe performance on the NEWSROOM dataset.
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Figure 13: Supervised probe performance on the SummEval dataset.
10 Supervised Probes: HANNA
0.8 -/I—'/'_'/'——’. —— —_" "
o S, N
<] _— — L4 —o—=
o e
Q06 —
[
[
go4
$
<
021/ o u-probe
—=— s-probe
0005 150 3b 7b 1b 33b 73b 2b 9b 27b 8b 70b 12b 22b 123b
Qwen 2.5 Gemma 2 Llama 3.1 Mistral
Figure 14: Supervised probe performance on the HANNA dataset.
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Figure 15: Supervised probe performance on the ROCStories dataset.
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Supervised Probes: MCTACO
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Figure 16: Supervised probe performance on the MCTACO dataset.
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Figure 17: Supervised probe performance on the CaTeRS dataset.
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Figure 18: Unsupervised probe performance on the NEWSROOM dataset.
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Figure 19: Unsupervised probe performance on the SummEval dataset.
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Unsupervised Probes: HANNA
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Figure 20: Unsupervised probe performance on the HANNA dataset.
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Figure 21: Unsupervised probe performance on the ROCStories dataset.
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Figure 22: Unsupervised probe performance on the MCTACO dataset.
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Figure 23: Unsupervised probe performance on the CaTers dataset.
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