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Abstract

Extensively evaluating the capabilities of
(large) language models is difficult. Rapid de-
velopment of state-of-the-art models induce
benchmark saturation, while creating more
challenging datasets is labor-intensive. Inspired
by the recent developments in mechanistic in-
terpretability, we introduce circuit stability as
a new way to assess model performance. Cir-
cuit stability refers to a model’s ability to ap-
ply a consistent reasoning process—its circuit—
across various inputs. We mathematically for-
malize circuit stability and circuit equivalence.
Then, through three case studies, we empiri-
cally show that circuit stability and the lack
thereof can characterize and predict different
aspects of generalization. Our proposed meth-
ods offer a step towards rigorously relating the
generality of models to their interpretability1.

1 Introduction

Though there exists a wealth of theoretical tech-
niques to analyze and predict generalization, em-
pirically benchmarking a given language model’s
capabilities remains difficult. This gap between
theory and practice stems, in part, from the rapid
saturation of existing benchmarks and also the
labor-intensive process of creating new, more chal-
lenging datasets (Srivastava et al., 2023; Jimenez
et al., 2024; Glazer et al., 2024). One way to
sidestep these issues is to evaluate a specific ca-
pability shared among many tasks. For example,
needle-in-the-haystack evaluates language models’
ability to perform long-context recall (Kamradt,
2023), while SKILL-MIX measures skill composi-
tion performance (Arora and Goyal, 2023; Yu et al.,
2024). Although such datasets can be automatically
generated and scaled in difficulty, a fundamental
challenge remains: identifying specific capabilities
that are meaningful to benchmark in the first place.

1The codebase for our experiments can be found at https:
//github.com/alansun17904/circuit-stability

Even after identifying a capability-of-interest, cre-
ating salient tasks that precisely target this capabil-
ity is nontrivial.

In this paper, we seek to address some of these
issues by introducing the concept of circuit stabil-
ity. Informally, for a fixed task and model, circuit
stability is the consistency of a model’s reason-
ing process (its circuit) across collections of sub-
tasks. Consider solving an algorithmic problem
like parity. We expect a strong model to learn and
correctly apply a consistent algorithm regardless
of the length of its input. If, however, the model
learns a different algorithm for each input length,
its finite capacity will guarantee a length past which
the model will fail.

At the core of our approach are three key in-
sights. First, orthogonal to previous approaches
that evaluate a model’s performance on small, fi-
nite sets of examples by testing inputs one-by-one,
we extract and analyze the model’s circuit using
techniques from mechanistic interpretability (Olah
et al., 2020). Since the extracted circuit can be
reused and applied by the model to an infinite class
of examples, its stability could be a more robust
estimator of performance. This is analogous to the
formal verification of an algorithm where we do
not need to verify every input-output pair (Cousot
and Cousot, 1977). Additionally, instead of speci-
fying individual, potentially contentious skills-of-
interest, our approach makes a simplifying assump-
tion that a learned skill/circuit is useful only if it is
consistently applied by the model. Finally, unlike
mechanistic interpretability approaches that seek to
intractably extract hard circuits, which are discrete
subsets of the model’s computational graph, we in-
troduce a continuous relaxation: soft circuits. This
preserves rich structural insights while enabling
more easy computation.

Concretely, our contributions are four-fold:
• We formally define circuit stability (Section 3).
• Through two case studies on arithmetic reason-
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ing and Boolean expression evaluation, we show
that circuit stability can predict length, structural,
and compositional generalization (Section 4 and
Section 5, respectively).

• We show that circuit stability also predicts gen-
eralization even on tasks that are not naturally
algorithmic like sports understanding (Suzgun
et al., 2023).

• We demonstrate that circuit stability can be in-
duced through prompting methods like chain-of-
thought (Section 6).

In this paper, we focus our analyses of circuit stabil-
ity on language models based on the Transformer
architecture (Vaswani et al., 2017). Nevertheless,
the formal framework we introduce is modality-
and architecture-independent. We discuss this fur-
ther in Appendix A.

2 Background

Herein, we briefly review the circuits framework
and relevant concepts in mechanistic interpretabil-
ity, as they lay the foundation for our contribution.
Circuits. The goal of the circuits framework is
to interpret the decision processes of a neural net-
work. This is typically done through two processes:
first, identify a minimal subset of the model’s com-
putational graph that is responsible for a specific
behavior; second, assign human-interpretable ex-
planations to each of the extracted components.
The former is referred to as circuit discovery while
the latter is called mechanistic interpretability.

We represent a Transformer’s computational
graph using the framework introduced by (Elhage
et al., 2021; Conmy et al., 2023). Specifically, we
view each MLP layer as single node and, unless
otherwise specified, we also split each attention
head into four distinct nodes: key, query, value,
and output. A directed edge is drawn from nodes
𝑛𝑖 → 𝑛 𝑗 if the output of 𝑛𝑖 is directly used as an
input to 𝑛 𝑗 . A circuit is defined as a computational
subgraph.
Finding Subcircuits. Let 𝐺𝑀 = (𝑉𝑀 , 𝐸𝑀) be
the computational graph for a model 𝑀. For a
fixed task and model performance metric 𝐿, cir-
cuit discovery methods search for a minimal com-
putational subgraph: 𝑔𝑀 = (𝑣𝑀 , 𝑒𝑀), where
𝑣𝑀 ⊂ 𝑉𝑀 , 𝑒𝑀 ⊂ 𝐸𝑀 . Informally, after ablating
the edges and nodes not in 𝑔𝑀 , 𝑔𝑀 must maintain
model performance within a specified margin of
𝜀 > 0 (Wang et al., 2022; Shi et al., 2024). Alterna-
tively, one can also view this process as searching

for a binary function, 𝑐 : 𝐸𝑀 → {0, 1}, subject to
the aforementioned constraints. We refer to 𝑐 as a
hard circuit because any given edge in the compu-
tational graph takes on a binary state. Searching
for 𝑐 is known to be an intractable combinatorial
optimization problem (Adolfi et al., 2025). As
a result, many approximations to circuit discov-
ery have been derived (Nanda, 2023; Hanna et al.,
2024; Bhaskar et al., 2024). Even then, it has been
shown that the discovered circuit may be highly
sensitive to 𝐿 and 𝜀, the performance metric and
threshold, respectively (Conmy et al., 2023; Miller
et al., 2024). In this paper, we partially circumvent
these issues by redefining a circuit as a mapping
𝑐 : 𝐸𝑀 → R. For each 𝑒 ∈ 𝐸𝑀 , 𝑐(𝑒) represents the
change in 𝐿 after ablating 𝑒 from 𝐸𝑀 , essentially
capturing the importance of 𝑒. In this way, we yield
a soft circuit. We formalize this in Section 3.

3 Circuit Stability and Equivalence

In this section, we formally define circuit stability.
First, we define the notion of a task (Definition 1).
Then, tasks are equipped with variable substruc-
ture through subtasks (Definition 2). Building on
these subtasks, we define the three key concepts of
this paper: soft circuitry (Definition 3), 𝜀-circuit
stability (Definition 4) and 𝛼-circuit equivalence
(Definition 5).

Let 𝒳 ,𝒴 be the space of all finite input and out-
put strings (Du et al., 2023; Cotterell et al., 2023).
The exact construction of these spaces are unim-
portant. We only require a distribution over 𝒳 ×𝒴
which we call a task.
Definition 1 (Task). A task is a distribution over
𝒳 × 𝒴 denoted by 𝒟𝒳×𝒴 . This is also called the
data distribution.

A task may itself contain rich substructure. For
even a simple task such as two-operand addition2,
we can, naturally decompose this into many dis-
tinct collections of subtasks by simply partitioning
the input-output space. One way is to separate ad-
dition problems that require carrying at least one
digit versus ones that do not. On the other hand,
we could also create another collection of subtasks
by varying the number of digits in each operand.
Intuitively, an appropriate partitioning of the input-
output space should yield a collection of subtasks

2In this case, the marginal of 𝒟𝒳×𝒴 over 𝒳 assigns posi-
tive measure to a subset 𝑋 ⊂ 𝒳 only if all 𝑥 ∈ 𝑋 follows the
form “a + b = ” where 𝑎, 𝑏 ∈ Z≥0. And, the conditional
distribution of 𝒟𝒳×𝒴 on 𝒴 given “a + b = ” is a point mass
on the string 𝑎 + 𝑏.
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that make clear the necessary capabilities a model
must have to solve the task itself. For example, suc-
cess over the aforementioned partitions could indi-
cate both compositional and length generalization,
respectively (Wiedemer et al., 2023). Without the
loss of generality, we assume that all cells of any
subsequently discussed partition have positive mea-
sure under 𝒟𝒳×𝒴 . In this way, each cell contains
meaningful examples and skills that a model must
master in order to achieve perfect performance. By
way of its cells, a given partition also elicits its own
set of tasks. We call these conditional distributions
subtasks.

Definition 2 (Subtask). For a task, 𝒟𝒳×𝒴 and
partition 𝒮 of 𝒳 ×𝒴 . A subtask, over a cell 𝑠 ∈ 𝒮,
is the conditional distribution 𝒟𝒳×𝒴 |𝑠. For brevity,
we notate this as 𝒟𝑠 .

Through 𝒟𝒳×𝒴 , we can also measure the impor-
tance of any subtask by leveraging the marginal
distribution over 𝒮. We call this distribution the
partition distribution and notate it as P𝒮 .

We now precisely define a model’s soft circuit
relative to a task (or subtask). Our approach differs
from the traditional notion of a circuit defined in
mechanistic interpretability. Rather than assign a
binary indicator to the edges of the computational
graph, 𝐸𝑀 → {0, 1}, we perform a continuous
relaxation. A comparative analysis of this setting,
along with its implications, are provided in Sec-
tion 8.

Definition 3 (Soft Circuit). Consider a task 𝒟𝒳×𝒴 ,
a model 𝑀 : 𝒳 → 𝒴 with computational graph
𝐺𝑀 = (𝑉𝑀 , 𝐸𝑀), and some performance metric
𝐿 : 𝒴 × 𝒴 → R. With respect to 𝒟𝒳×𝒴 , 𝑀’s soft
circuit is a function 𝑐 : 𝐸𝑀 → R such that for any
𝑒 ∈ 𝐸𝑀 ,

𝑐(𝑒) B E
(𝑥,𝑦)∼𝒟𝒳×𝒴

[𝐿(𝑀{𝑒}(𝑥), 𝑦)−𝐿(𝑀(𝑥), 𝑦)], (1)

where 𝑀{𝑒} denotes 𝑀 after ablating edge 𝑒.

As long as 𝐿 is well-defined, 𝑐 always exists.
We defer the technical details of 𝐿 and the ablation
procedure to Appendix B. By our previous con-
structions, a subtask (Definition 2) may also induce
a soft circuit. So for any subtask 𝒟𝑠 , we denote its
induced soft circuit as 𝑐𝑠 .

Intuitively, 𝑐(𝑒) captures the singular importance
of 𝑒. By examining and comparing the collective
mapping, 𝑐, across subtasks, we gain insight into
holistic model behavior. Therefore, we take 𝐾 :
R𝐸

𝑀 × R𝐸
𝑀 → R to be a measure of the similarity

between two soft circuits: a kernel-like function3.
We are now ready to define circuit stability.

Definition 4 (𝜀-Circuit Stable). For 𝜀 > 0, a model,
𝑀, is ε-circuit stable with respect to a task 𝒟𝒳×𝒴
and a collection of partitions P if

inf
𝒮∈P

E𝑠,𝑠′∼𝒮[𝐾(𝑐𝑠 , 𝑐𝑠′)] > 𝜀, (2)

where 𝑠, 𝑠′ are two subtasks sampled i.i.d. from the
partition distribution P𝒮 .

In Equation 2, the expression inside the infimum
measures the stability of a model’s soft circuit as we
move between different subtasks. This stability is
weighted by the partition distribution. Thus, if two
subtasks have a low probability of occurring with
respect to 𝒟𝒳×𝒴 , we consider the skills required to
solve them unimportant. In turn, instability across
these subtasks is also disregarded. This allows us to
avoid specifying a priori which skills are important
for analysis.

For all our experiments, we take 𝐾 to be Spear-
man’s 𝜌. Concretely, we take soft circuits 𝑐𝑠 , 𝑐𝑠′
and individually induce a ranking of 𝐸𝑀 through
𝑐𝑠(𝐸𝑀), 𝑐𝑠′(𝐸𝑀). Then, we measure the correla-
tion coefficient between these ranks. Throughout,
we construct collections of partitions P manually,
based on the task at hand. In Section 6 and 8, we
discuss constructing partitions statistically.

Next, using 𝐾 we also define a type of pointwise-
equivalence between the soft circuits of any two
subtasks.

Definition 5 (𝛼-Equivalent). For 𝛼 > 0, soft cir-
cuits 𝑐𝑠 , 𝑐𝑠′ are 𝛼-equivalent if 𝐾(𝑐𝑠 , 𝑐′𝑠) ≥ 𝛼.

4 Case Study: Arithmetic Reasoning

In this section, we explore the circuit stability and
equivalence of gemma-2-2b4 over the task of two
operand addition (Rivière et al., 2024). These prob-
lems come in the form of “a + b = ”, where
𝑎, 𝑏 ∈ Z≥0. We examine a specific partition where
each subtask contains problems where the values of
𝑎 all have the same number of digits, and similarly
for 𝑏. This setup allows us to study two different

3𝐾 should be thought of as a reproducing kernel Hilbert
space kernel over the function space R𝐸𝑀 . However, for sim-
plicity, our experiments do not adhere to this guiding principle.
Instead we use a more interpretable similarity metric such as
rank correlation. A deeper investigation into the theoretical
properties of 𝐾 and its implications for circuit stability is left
for future work

42 billion parameter model containing over 79k circuit
edges as defined in Section 2.
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forms of generalization that have been separately
analyzed in the literature: length generalization,
where the number of digits in 𝑎, 𝑏 increase inde-
pendently (Cho et al., 2025), and compositional
generalization which tests whether models solve
addition problems recursively (Kudo et al., 2023;
Nikankin et al., 2025). We find that gemma-2-2b’s
circuit instability across subtasks correlates with
fluctuations in its performance on those same sub-
tasks, indicating a potential causal link between
circuit instability and generalization failures.

4.1 Experimental Setup
We denote a subtask as an ordered pair (𝑜1 , 𝑜2)
where 1 ≤ 𝑜1 , 𝑜2 ≤ 8. 𝑜1 , 𝑜2 denote the number
of digits in 𝑎, 𝑏 respectively. Over all experimental
settings, we provide the model with 𝑘 = 3 few-shot
examples. To implement circuit discovery (Defini-
tion 3), we choose 𝐿 to be the next-token patching
metric, defined in Equation 8. Each edge is ablated
through noisy-to-clean patching using both noisy
and clean samples from the same subtask. These de-
sign choices are well-documented in Heimersheim
and Nanda (2024) and we explore their implica-
tions in Appendix B. We perform circuit discovery
over each subtask, resulting in 64 soft circuits for
analysis.

4.2 Identifying Arithmetic Circuit Families
To analyze the relationships between subtasks, we
compute Spearman’s 𝜌, 𝐾, between their soft cir-
cuits. Using 𝛼 = 0.6, we apply the notion of 𝛼-
equivalence, as defined in Definition 5, to cluster
the arithmetic subtasks into roughly five distinct
clusters: equal-digit (𝑜1 = 𝑜2), one-digit difference
(𝑜1 = 𝑜2 ± 1), leading-operand heavy (𝑜1 > 𝑜2),
single-digit (𝑜2 = 1), and trailing-operand heavy
(𝑜2 > 𝑜1). These subtask clusters are visualized in
Figure 1(top).

To confirm that these clusters are not merely an
artifact of a particular setting of 𝛼, we perform
two complementary experiments. First, we directly
compute a set of 𝑡-SNE embeddings using all the
soft circuits (Maaten and Hinton, 2008). Notably,
these embeddings are independent of 𝛼. The rela-
tive distances between the embedded circuits are
visualized in Figure 1(bot). We find that the circuit
clusters we identified before form well-separated
groups under this representation as well.

Next, since we take 𝐾 to be Spearman’s 𝜌, 𝛼 is
naturally bounded between [−1, 1]. Consequently,
we expect the number of distinct subtask clusters to
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Figure 1: (top) Each node represents a distinct subtask.
An undirected path exists between two nodes if and
only if they are 𝛼-equivalence for 𝛼 = 0.6. (bot) 𝑡-SNE
embeddings of the soft circuits for each subtask with
perplexity=3. The node shape and color combinations
are consistent with the circuit clusters in (top).

increase monotonically as 𝛼 also increases mono-
tonically. This behavior is shown in Figure 2. As 𝛼
approaches its upper bound of 1, the number of sub-
task clusters converges to the total number of sub-
tasks. This indicates that no two subtasks have iden-
tical circuits. On the other hand, for 𝛼 = 0.4, only
one subtask cluster exists. This suggests the pres-
ence of a common set of circuit components that are
important for arithmetic generally. In other words,
no two distinct subtasks reply on entirely disjoint
sets of components. This observation aligns with
the previous findings of Stolfo et al. (2023); Hanna
et al. (2023); Nikankin et al. (2025) that the numer-
ical abilities of language models are mediated by a
common set of attention heads and MLPs.

Surprisingly, there exists a critical threshold
𝛼 = 0.6 where the number of circuit families ex-
plodes (see the red region in Figure 2). We visu-
alize the circuit families in this critical region in
Figure 3. As 𝛼 increases from 0.5 to 0.53, a clear
separation immediately forms between the trailing-
operand and leading-operand heavy subtasks. This
could indicate fundamental differences in how the
model is handling inputs from these two subtasks.
As 𝛼 continues to increase, we observe the emer-
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Figure 2: The number of 𝛼-circuit equivalence families
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5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8

6,1 6,2 6,3 6,4 6,5 6,6

7,7

8,8

6,7 6,8

7,1 7,2 7,3 7,4 7,5 7,6 7,8

8,1 8,2 8,3 8,4 8,5 8,6 8,7

Figure 3: The emergent families of 𝛼-equivalent sub-
tasks as 𝛼 varies between [0, 1].
gence and persistence of distinct families corre-
sponding to equal-digit, single-digit, and one-digit
difference subtasks. The stability of these families
over increasing 𝛼 suggests strong internal cohesion,
further validating our proposed clustering depicted
in Figure 1(bot).

4.3 Circuit Stability and Generalization

The family of 𝛼-equivalences (Definition 5) iden-
tified in the previous subsection deviate from our
expected clustering of a well-performing model
(Section 3). In particular, a model that truly un-
derstands two-operand addition should necessarily
recognize that addition is both commutative and
associative. In this section, we argue that lack of
𝛼-equivalence across these aforementioned circuit
families indicates that the model neither adheres to
nor fully internalizes these properties of addition.

First, an understanding and application of com-
mutativity implies that any subtask (𝑜1 , 𝑜2) should

be equivalent both in performance and circuitry
to the subtask (𝑜2 , 𝑜1). This is because a model
that learns this axiom could accordingly transpose
the two operands before adding, thereby achieving
consistent performance across this collections of
subtasks. However, as discussed previously, a lack
of 𝛼-equivalence between leading and trailing-digit
heavy families suggest that gemma-2-2b does not
respect commutativity. As a result, we expect a
significant performance gap as we move between
these subtask families. Indeed we observe this to
be the case. We benchmark gemma-2-2b across
all 64 subtasks. Per task, 𝑛 = 1000 problems are
sampled independently while maintaining the same
formatting scheme as before (see Section 4.1). Per-
formance is measured through exact string match
accuracy (Srivastava et al., 2023). We find that
gemma-2-2b’s performance positively skews to-
wards leading-digit heavy subtasks (see Figure 4).
In some cases, the performance difference between
(𝑜1 , 𝑜2) and (𝑜2 , 𝑜1) can be more than 20%.

Next, the associativity of addition implies that
any two-operand addition problem can be decom-
posed into a sequence of (1, 1) problems. More
generally, a subtask like (8, 2) could also be broken
down into a sequence of (8, 1) and (1, 1) problems.
Likewise, (6, 7) can be decomposed into (6, 6) and
(1, 1). If the model is leveraging associativity, we
would expect its errors to also compound in a pre-
dictable manner due to the repeated reuse of sim-
pler subtasks. But, we observe through the previous
subsection, that even adjacent subtasks like (8, 1)
vs. (8, 2) or (6, 6) vs. (6, 7) belong to different 𝛼-
equivalent clusters. This suggests that gemma-2-2b
is not exploiting associativity to systemically reuse
its circuit components across subtasks. This be-
havior is verified quantitatively in Figure 4, where
model performance steeply drops off across sub-
tasks (6, 6), (6, 7), etc.

Lastly, we hypothesize that within an 𝛼-
equivalent cluster, gemma-2-2b is reusing its circuit
components. This behavior has been previously
identified in other tasks (Merullo et al., 2023). We
find that hard circuits within the same 𝛼-equivalent
cluster share a large number of components or, in
some cases, even function as subcircuits of one an-
other (see an example in Figure 5). Here, we greed-
ily construct5 hard circuits by assigning the top
200 components—as given by the soft circuitry—

5Though this is a naive decoding method, empirically
it works quite well as an approximation for the actual cir-
cuit (Conmy et al., 2023; Hanna et al., 2024).
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gemma-2 (2b)
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Figure 4: Performance of gemma-2-2b over arithmetic
subtasks as Opr1 B 𝑜1 and Opr2 B 𝑜2 increase. Each
cell denotes the exact string match accuracy.

one (in circuit) and the remaining zero (out of cir-
cuit). In contrast to the sharp performance change
across non-equivalent subtasks, we find that within
𝛼-equivalent subtasks model performance decays
smoothly. This degradation in performance can
be characterized using tight-fitting regressions that
depend on the number of subtask compositions and
their associated error rates. We provide a detailed
analysis of this in Appendix C.

By combining our insights derived from circuit
stability analysis with the benchmark results in Fig-
ure 4, we can affirm that the measured performance
differences between subtasks are not merely an
artifact of statistical noise.

Circuit stability and the lack thereof also point
to tangible ways that we can improve the model.
For example, during training, circuit stability
could possibly be improved through causal align-
ment (Geiger et al., 2024; Gupta et al., 2024). Al-
ternatively, stability could also be induced at infer-
ence via prompting. By explicitly breaking down
a complex problem into simpler ones, we could
encourage component/subtask reuse. We explore
this latter possibility in Section 6 through chain-of-
thought prompting.

5 Case Study: Boolean Expressions

We now extend our analysis of circuit stability to a
different task that also exhibits rich subtask struc-
ture: Boolean expression evaluation (Suzgun et al.,
2023). Previously, we argued that circuit stability
implies both length and compositional generaliza-
tion. Here, we refine this perspective by showing
that circuit non-equivalence or instability can also
provide meaingful insights. Specifically, devia-
tions in stability may indicate structural general-

shared
subcircuitry!

 distinct
subcircuitry!

(a)

(b)

(c)

Figure 5: Circuits for (a) (8, 8) (b) (7, 7) and (c) (2, 7).
(a) and (b) share many subcircuit components and are
𝛼-equivalent for 𝛼 = 0.6. On the other hand, (c) is not
𝛼-circuit equivalent with either (a) or (b).

ization (Ye et al., 2021; He et al., 2024). In other
words, circuit stability is not simply a matter of
“more is better;” rather, its desirability depends on
how well it aligns with our prior knowledge of the
task.

5.1 Experimental Setup
We use phi-1.56 due to its strong performance on
logical and mathematical reasoning (Li et al., 2023).
We follow the same evaluation setup as Srivastava
et al. (2023) for Boolean expression evaluation and
prompt the model with 𝑘 = 3 few-shot examples.
We construct partitions based on three independent
variables: (1) expression length (number of words,
e.g., True and False has length 3); (2) parentheti-
cal depth (number of maximum nested parentheses,
e.g., (not (True)) has depth 2); and (3) the set
of logical operators used (not, and, or). Expres-
sion length ranges from 1 to 9, and depth from 0 to
6. Circuit discovery details are largely the same as
Section 4.1 and can be found in Appendix B and D.

5.2 Circuit Instability and Generalization
Not Subtask. Consider a Boolean expression that
contains only the literals True, False, and the op-
erator not. Since not is associative, adding and
removing an arbitrary number of parentheses to
any expression of this form should not change its
ground-truth label. Thus, we expect a model that
understands this axiom to apply the same circuit
whether or not there are parentheticals in the ex-
pression. To test if this holds for phi-1.5, we first
benchmark its circuit stability separately for sets of
expressions with and without parentheses.

6A 1.5 billion parameter model with 128k circuit compo-
nents.

9030



Not Not+And Not+And+Or
Subtask

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
an

k 
C

or
re

la
tio

n

*
*

*

Parentheses No Parentheses Cross

Figure 6: Circuit stability for phi-1.5 within and across
six subtasks. A permutation test is performed between
parenthetical and non-parenthetical pairs of subtasks.
“∗” denotes a statistically significant difference with a
setting of 𝑝 < 0.05. The error bars denote a 95% confi-
dence interval.

Concretely, for not expressions with parenthe-
ses, we partition the input space by both parenthet-
ical depth and expression length. In contrast, for
not expressions without parentheses, we partition
only by expression length. The left two columns of
the first bar group in Figure 6 illustrate phi-1.5’s
respective circuit stability across these two parti-
tions.

The separately evaluated circuit stability of
phi-1.5 on each task provides a baseline for com-
puting 𝛼-equivalence. If phi-1.5 applies the same
set of circuits across both parenthetical and non-
parenthetical subtasks, then circuit stability should
be consistent even as we permute the subtask soft
circuits between these two groups. In particular, we
expect this permutation not to cause circuit stability
to drop below the minimum stability observed in
across the two partitions. We find that phi-1.5
applies statistically significant different circuits be-
tween these two tasks (see rightmost bar of first bar
group in Figure 6).

We hypothesize that this lack of circuit equiva-
lence suggests that the model does not understand
associativity in not evaluation. Indeed this is the
case. Given any expression containing only nots
and literals, after adding parentheses, phi-1.5’s
performance decreases by 40%. Further, the model
is not self-consistent: adding parentheses to any
expression causes the model to flip its prediction.
This behavior is illustrated in the first bar group of
Figure 7.
Not+And Subtask. Now consider a Boolean
expression with logical operators not and and.
Adding and removing parentheses from this expres-
sion changes the order of evaluation. This may flip

Not Not+And Not+And+Or
Subtask

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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fo
rm
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Difference Consistency

Figure 7: (left columns) The performance difference
after adding parentheses. (right columns) The self-
consistency of phi-1.5 as a result of adding parentheti-
cals. The dotted line denotes random chance of 0.5 for
the consistency estimates.

the ground-truth label7. Consequently, a model that
respects operator precedence should apply substan-
tially different circuits across not+and expressions
with and without parentheses. We apply the same
experimental procedure as the previous not sub-
task. As shown in the second bar group of Figure 6,
we find that phi-1.5 does employ different soft
circuits across these partitions. Accordingly, in
Figure 7, we observe that phi-1.5’s performance
stabilizes between subtasks with and without paren-
theses. Additionally, phi-1.5 exhibits increased
self-consistency. That is, for any particular ex-
pression, adding parentheses does not change the
correctness of its prediction.
Not+And+Or Subtask. Similar to the previous
subtask, adding parentheses to an expression con-
taining the operators not, and, and or alters the
order of evaluation. As before, we observe that
phi-1.5’s circuits align with our expectations (see
third bar group of Figure 6). As a result, we see
consistent performance stability and increased self-
consistency (see rightmost bar group in Figure 7).

6 Case Study: Chain-of-Thought

In Section 4 and 5, we demonstrated that the
stability of a model’s circuit sheds light on its
generalization. Now, we examine methods that
tractably induce circuit stability. We hypothesize
that chain-of-thought improves performance by
promoting subtask decomposition and circuit com-
ponent reuse (Wei et al., 2022). As a result, we
expect chain-of-thought to substantially improve
circuit stability. Herein, we present some prelim-
inary evidence for this claim. Unlike previous

7(not False) and True != not False and True
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sections, we examine a task that is knowledge-
based: sports understanding (Suzgun et al., 2023).
Sports understanding is a binary classification task
which presents models with sports statements and
the model needs to decided whether they are true
or false8. We employ both Llama-3.1-8b and
Gemma-2-9b9 for this case study. Both models
are sufficiently large to show significant perfor-
mance improvements after prompting with chain-
of-thought, see Figure 8(left). As before, model
performance is also measured using exact string
match accuracy.

In contrast to our previous case studies, the sub-
task structure of this task much less apparent. As
a result, we opt to construct subtasks simply by
randomly partitioning the dataset into five disjoint
cells. We compute the average circuit stability pair-
wise across these five cells before (we use few-
shot prompting with 𝑘 = 3) and after chain-of-
thought prompting. These results are shown in
Figure 8(right). Across both models, we see that
chain-of-thought significantly circuit stability.

It should be noted that technically the partition
strategy we employ herein is not creating true sub-
tasks (see Definition 2). This is because we are
sampling from 𝒟𝒳×𝒴 a finite dataset first, then
randomly partitioning the resulting dataset. As a
result, the partitions we yield are i.i.d. with respect
to 𝒟𝒳×𝒴 . Thus, in some sense we are measuring
the variance of the soft circuitry distribution before
and after applying chain-of-thought. We could rem-
edy this by fixing a partition strategy a priori that
with high probability induces similar substasks (in
terms of transport distance). For example, we could
partition subtasks based on the value of the fifth
character of the input prompt. The connections
between these two approaches could be explored
more in future work.

7 Related Works
Most current work in mechanistic interpretability
relies on ad hoc interpretations tailored for a fixed
task and model (Wang et al., 2022; Stolfo et al.,
2023; Conmy et al., 2023; Hanna et al., 2023; Arditi
et al., 2024; Lee et al., 2024; Nikankin et al., 2025,
inter alia). As a result, generalizing these results

8For example, the model is presented with a statement like
“Santi Cazorla scored a touchdown.” This statement is false
because Santi Cazorla is a soccer player and a “touchdown” is
a part of American football and rugby (Suzgun et al., 2023).

98 billion parameter model containing over 1.5m circuit
edges and 9 billion parameter model with over 720k circuit
edges, respectively.
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Figure 8: (left) Exact string match accuracy of sports
understanding task under chain-of-thought versus few-
shot prompting. (right) Circuit stability across random
partitions. We perform a two-sample 𝑡-test, “∗” denotes
a significant difference (𝑝 < 0.05).
into actionable insights remains difficult. To ad-
dress this limitation, recent research has studied the
dynamics of circuits and their mechanisms. This
is also the focus of our paper. For example, works
like Nanda et al. (2022); Zhong et al. (2023); Hu-
mayun et al. (2024); He et al. (2024); Tigges et al.
(2024) examine circuits across the training horizon
which shed light on circuit formation and phenom-
ena such as grokking (Power et al., 2022). Further
studies such as Lee et al. (2024) seek to compare
the tangible mechanistic differences before and af-
ter applying post-training methods like alignment.
On the other hand, works such as Lieberum et al.
(2023); Wu et al. (2023); Merullo et al. (2023) ex-
amine the change in a model’s circuit with respect
to scaling. Perhaps most similar to our line of work
is the mechanistic interpretability of skill compo-
sition (Arora and Goyal, 2023; Yu et al., 2024)
which investigates how models combine learned
skills to solve novel problems. Notably, Chughtai
et al. (2023); He et al. (2024) analyzes the emer-
gence of skill composition in modular addition.
However, they focus on small, toy models. It is
unclear how their arguments and conclusions gen-
eralize to pretrained language models. In contrast,
our framework of circuit stability provides a gen-
eral characterization of circuits, their equivalence,
and their stability—independent of the task or any
specific model.

8 Conclusion and Discussion

In this paper, we introduce and formally define cir-
cuit stability and equivalence (Section 3). We pro-
vide empirical evidence that circuit stability char-
acterizes many key aspects of generalization and
argue that this type of stability is actionable (Sec-
tion 4 and 5). For example, it can be induced
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through prompting (Section 6). Our approach,
based on methods from mechanistic interpretabil-
ity, offers a step towards rigorously bridging the
generality of models with their interpretability.

Efficiency. Our definition of a soft circuit (Defi-
nition 3) involves continuous relaxation of the bi-
nary circuit function, 𝑐 : 𝐸𝑀 → {0, 1}. In most
circuit discovery procedures, this relaxation, imple-
mented via Equation 3, is necessary for tractabil-
ity (Conmy et al., 2023; Nanda, 2023; Syed et al.,
2024). As a result, many existing methods first per-
form this relaxation, then apply a greedy decoding
strategy to extract the binary circuit function. Thus,
our choice of both this continuous relaxation and
Spearman’s 𝜌 aligns with the standard practices of
circuit discovery. Approximations for Definition 3
are also computationally efficient. Methods such
as Syed et al. (2024); Hanna et al. (2024) only re-
quire (a constant factor of) two forward and one
backward pass of the model to estimate the entire
soft circuitry.

Occam’s Razor. Crucially, soft circuitry does
not account for higher level algorithmic similari-
ties. That is, we could have different soft circuits
which also correspond to distinct hard circuits, but
algorithmically they implement the same proce-
dure (Olsson et al., 2022; Merullo et al., 2023). We
do not see this as a limitation of the work but rather
a feature of our mathematical framework. From
a learning-theoretic perspective, duplicate mecha-
nisms necessarily imply longer minimum descrip-
tion lengths. In turn, this leads to looser general-
ization bounds (Hansen and and, 2001; Sefidgaran
et al., 2023, inter alia). More informally, if we sub-
scribe to the principle of Occam’s Razor (Blumer
et al., 1987; Shalev-Shwartz and Ben-David, 2014)
then we would also prefer a model with less dupli-
cate mechanisms. As a result, our analyses implic-
itly take into account these learning-theoretic con-
structs. Lastly, if one was truly concerned with al-
gorithmic differences, then 𝐾 could be augmented
using metrics from causal abstraction (Beckers and
Halpern, 2019; Geiger et al., 2021; Otsuka and
Saigo, 2022; Geiger et al., 2024, inter alia). How-
ever, this introduces additional complexities that
we leave for future work.

Finding Partitions. Throughout Sections 4, 5,
we leverage prior knowledge about the task to con-
struct partitions of interest. But, for more complex
tasks requiring an intricate composition of skills,
the appropriate partitions may not be obvious. In
Section 6, we demonstrate that this does not hinder

the practicality of circuit stability. Even randomly
chosen partitions can yield meaningful insights.
Alternatively, since soft circuitry is an expecta-
tion, we could have also sought to characterize
circuit stability through the asymptotic variance of
its limiting distribution. Further, we hypothesize
that if any of the partitions contain cells that are
𝜀-representative (Shalev-Shwartz and Ben-David,
2014) with respect to both 𝐿 and 𝒟𝒳×𝒴 in Equa-
tion 3, then they should lead to a sharp character-
ization of the model’s performance. Investigating
this connection could form the basis of interesting
future work and reduce reliance on constructing
partitions manually.

9 Limitations

Our empirical case studies in Sections 4, 5, and 6
are fairly limited in terms of the tasks and models
we benchmark. We hope that these preliminary
results will give the larger research community a
taste of how circuit stability can be used and leave
these extensions for future work.

Another limitation of the work is the choice of
circuit abstraction (Vilas et al., 2024). In Section 2,
we loosely defined the model’s circuit as a sub-
graph of its computational graph. However, there
are many ways this computational graph could be
specified. On one extreme, there exists the trivial
computation graph: an input and output node with
a single edge representing the entire function. On
the other extreme, we could define the graph as a
trace of the compiled machine code. This is also a
challenge that mechanistic interpretability faces. It
is unclear how circuit stability would react to these
different levels of abstraction. Perhaps future theo-
retical analyses of circuit stability could take this
into account by involving |𝑉𝑀 | into its bounds.
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Olsson et al., 2022; Wang et al., 2022; Hanna et al.,
2023). However, the concept of the circuit stabil-
ity can be extended to any neural network as long
as it admits a consistent computational graph. In
this section, we present three distinct neural ar-
chitectures associated with applications outside of
the language domain and demonstrate that even
in these cases, circuit stability is a well-defined
notion. In this way, circuit stability is a modality-
independent concept. An interesting line of future
work could be to extend this framework to study
the circuits and generalization of vision-language
models (Bordes et al., 2024).
Fully-Connected Neural Networks. A fully-
connected network consists of successive linear
layers with activation functions: 𝑀 = 𝑓𝑛 ◦ . . . ◦ 𝑓1
where 𝑓𝑖 : R𝑑𝑖 → R𝑑𝑖+1 . Here, 𝑑1 , 𝑑𝑛+1 are
the input and output dimensions. For given ac-
tivation functions 𝜎𝑖 : R → R, a single fully-
connected layer is defined as 𝑓𝑖(𝑥) = 𝜎𝑖(𝑊𝑖𝑥),
where 𝑊𝑖 ∈ R𝑑𝑖+1×𝑑𝑖 and 𝜎𝑖 is applied element-
wise. There are many ways to construct a valid
computational graph upon this architecture. For
brevity, we only show the most intuitive construc-
tion: a node in the 𝑖th layer is simply an entry in
𝑥. Specifically, we can decompose the 𝑗th entry

in layer 𝑖 as (𝜎𝑖(𝑊𝑖𝑥))𝑗 = 𝜎𝑖
(∑𝑑𝑖

𝑘=1𝑊𝑗𝑘𝑥𝑘
)
. Note

also that each entry in the input should also be as-
signed a node. Therefore, this node forms edges
with all nodes in the previous layer.
Convolutional Neural Networks. We take a
similar approach to the decomposition of fully-
connected neural networks. For simplicity, we
only consider the case of a single 2d-convolution
layer, a convolutional network with higher dimen-
sions or more layers can be derived inductively.
We directly lift this description of a convolutional
layer from (Sun et al., 2024). Let 𝑓 : R𝑐×ℎ×𝑤 →
R𝑐

′×ℎ′×𝑤′
. Suppose that this layer is parameterized

by kernels 𝑊𝑖 ∈ R𝑘×𝑘 for 1 ≤ 𝑖 ≤ 𝑐′ and some
𝑘 ∈ N as well as a bias 𝑏 ∈ R𝑐

′
. Then, it follows

that

𝑓 (𝑥)𝑗 =
(
1ℎ′×𝑤′𝑏 𝑗 +

𝑐∑
𝑖=1

𝑊𝑗 ∗ 𝑥[𝑖 , :, :]
)
,

for 1 ≤ 𝑗 ≤ 𝑐′ where 𝑓 (𝑥)𝑗 ∈ Rℎ′×𝑤′
for ℎ′, 𝑤′

being the resulting dimension after convolution
with a 𝑘 × 𝑘 kernel. Here, 1ℎ′×𝑤′ ∈ Rℎ′×𝑤′

is a
one matrix. Then, one convolutional layer needs
𝑐′ℎ′𝑤′+ 𝑐ℎ𝑤 nodes: one for each input and output

coordinate. A directed edge is drawn from all input
nodes to each output node10.
State-Space Language Models. A state-space
model processes input tokens sequentially. Each
token, 𝑥𝑡 is processed in constant time (Gu et al.,
2021) via a hidden state 𝑠𝑡 such that

𝑠𝑡+1 = A𝑠𝑡 +B𝑥𝑡 ,

𝑦𝑡 = C𝑠𝑡 +D𝑥𝑡 .

Thus, we can the computational at each time-step to
essentially be a combination of two fully-connected
neural networks. We can specify a well-defined
computational graph by unrolling the recursive
equations above. We define each 𝑥𝑡 for all 𝑡 as
a node and each entry of 𝑠𝑡 to also be a node. The,
the edges are given by the same schema we used to
define the fully-connected layers.
Putting it All Together. These examples demon-
strate that as long as we can specify a computa-
tional graph, the circuit of a model is well-defined.
Therefore, the existence of circuit stability as well
as its implications depends largely on the task dis-
tribution (Definition 1), its subtask distributions
(Definition 2), and the granularity of the computa-
tional graph. To this last point, a priori it is unclear
what the correct level of abstraction one should
impose on the nodes and edges. On one end, we
could define the nodes as the input/output of each
FLOP of compute. However, though this might pro-
vide lots of insight, the computation of its circuit
(Definition 3) would be intractable. On the other
end, we could define the computational graph as
a single node with no edges. Though this is com-
putationally more favorable, it yields no insights.
The subfield of causal abstraction addresses some
of these issues and we refer the reader to Geiger
et al. (2021).

B Circuit Discovery Details

For all of our circuit discovery experiments, we
perform attribution patching (Nanda, 2023). Attri-
bution patching is a linear approximation to acti-
vation patching also called causal mediation anal-
ysis (Heimersheim and Nanda, 2024). First intro-
duced by Vig et al. (2020) and extended upon by
Meng et al. (2022); Wang et al. (2022); Conmy et al.
(2023), activation patching seeks to determine the

10This may not be the tightest graph that we can build in
terms of the number of edges we need to construct. However,
after performing any ablations, we should expect those edges
that are non-tight to contribute a score of 0.
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effect of a single neural component on the entire
model’s output, for some fixed task. Then, by iso-
lating all such components, we have effectively
found the subcircuit responsible for the model’s
behavior on this specific task. More formally, let
𝐿(·) be a function that maps a model’s output into a
scalar, generically this could be some loss function.
This is the patching metric. For notational brevity,
we omit 𝐿’s dependency on the ground truth label.
Let 𝑐 be an arbitrary neural network component
that we wish to patch, and also denote by 𝑥 an ar-
bitrary input to our model 𝑀. Using Pearl’s (2009)
notion of do-calculus, activation patching can be
written as

Patch𝑐(𝑥, 𝑐★) B 𝐿(𝑀do(𝑐=𝑐★)(𝑥))−𝐿(𝑀(𝑥)), (3)

where 𝑐★ is a counterfactual output of activation 𝑐
that we patch in. In natural language, Patch𝑐(𝑥, 𝑐★)
can be expressed as “if we replace only the out-
put of component 𝑐 with 𝑐★, how will the model
now behave?” We encourage the reader to refer to
Heimersheim and Nanda (2024) for a detailed in-
troduction to activation patching and instead briefly
explain attribution patching, our design choices, as
well as our extensions to the multi-token setting.

One drawback of activation patching is its com-
putational cost. Consider a dataset of 𝑛 data points
and a model with 𝑘 neural components we are inter-
ested in patching, activation patching would require
𝒪(𝑛𝑘) forward passes. This becomes prohibitively
expensive when 𝑘 ≫ 1 (Kramár et al., 2024). Thus,
using Equation 3 as a jumping off point, attribu-
tion patching seeks to make activation patching
more efficient. Consider a first-order Taylor se-
ries approximation of 𝐿 around 𝑐 assuming that
𝑐★ ≈ 𝑐′, where 𝑐′ is the unpatched activation of 𝑐
on 𝑥. Then, it follows that

Patch𝑐(𝑥, 𝑐★) ≈ (𝑐′ − 𝑐★)∇𝑐𝐿(𝑥). (4)

Crucially, Nanda (2023); Syed et al. (2024) argue
that this new metric can be computed in two for-
ward passes and one backward pass for all com-
ponents. Thus, we only require 𝒪(𝑛) forward
and backward passes. Throughout the paper, we
use a variant of attribution patching introduced
by (Hanna et al., 2024) called edge attribution
patching with integrated gradients (EAP-IG). In
short, EAP-IG deduces a more accurate approxima-
tion to activation patching than vanilla attribution
patching in Equation 4. EA-IG operates by com-

puting a path integral from 𝑐′ → 𝑐★:

Δ𝑐′,𝑐∗
∫ 1

0

𝜕𝐿
𝜕𝑐′

𝑀do(𝑐=Δ𝑐′ ,−𝛼(𝑐★−𝑐′))(𝑥) 𝑑𝛼 (5)

≈ Δ𝑐′,𝑐∗
1
𝑚

𝑚∑
𝑘=1

𝜕𝐿
𝜕𝑐′

𝑀do(𝑐=Δ𝑐′ ,−𝑘(𝑐★−𝑐′)/𝑚)(𝑥), (6)

where Δ𝑐′,𝑐 = 𝑐′ − 𝑐 and 𝑚 is a hyperparameter
representing the number of steps to approximate
the integral. Equation 6 can be understood as a
Monte-Carlo estimate of the integral in Equation 5.
Generally, for such estimates to be accurate it re-
quires 𝑚 ≫ 1, potentially on the order of ∼ 105.
However, empirically Hanna et al. (2024) finds
even 𝑚 = 5 works quite well. These hyperparame-
ters are adopted for all of the circuit experiments.

B.1 Patching Multi-token Tasks
Herein, we detail circuit discovery in the case of
multitoken tasks. To the best of our knowledge,
almost all of the mechanistic interpretability litera-
ture deals with tasks that require only a single token
output. So, our methods represent one attempt to
generalize these existing approaches. We present
two distinct approaches, and briefly discuss their
interpretations (Table 1).

Denote by 𝑝 some prompt. Let 𝑡1 , 𝑡2 , . . . , 𝑡𝑛
be new tokens generated autoregressively by some
model 𝑀. We fix 𝑛 ≥ 1 and focus most of our
analysis on the case where 𝑛 = 2 as any finite 𝑛
can be derived inductively. Also denote by P the
probability distribution over 𝑡1 , 𝑡2 , . . . , 𝑡𝑛 condi-
tioned on some prompt 𝑝 induced by the model 𝑀
(Cotterell et al., 2023; Du et al., 2023). Let Pdo be
the model after intervention by one of the methods
described previously.
Next-token patching. Let 𝑡★1 , 𝑡

★
2 , . . . , 𝑡

★
𝑛 be the

expected output for a given prompt 𝑝. For a fixed
prompt, next-token patching defines the following
patching metric

NextToken(𝑝) B KL(P[𝑡1|𝑝] ∥ Pdo[𝑡1|𝑝])+ (7)
𝑛∑
𝑖=2

KL
(
P[𝑡𝑖|𝑝, 𝑡★[:𝑖]] ∥ Pdo[𝑡𝑖|𝑝, 𝑡★[:𝑖]]

)
. (8)

KL(P ∥ Pdo) denotes the KL-divergence between
P and Pdo. Essentially, Equation 8 measures the ef-
fect of patching any given component on model
𝑀’s next word prediction ability. Specifically,
this metric captures a “local property” of 𝑀 since
in each summand, we assume that 𝑀 has previ-
ously generated the correct tokens. To compute
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Feature Next-token Patching Joint-token Patching
Granularity Token Sequence
Focus Localized, stepwise effects Global multi-token coherence
Computational Cost Can compute exactly High; requires approximations
Insight Fine-grained, task-specific behavior Broader token dependencies

Table 1: Features of next-token patching versus joint-token patching. The former can be seen as grokking the
local token-level behavior of the model compared to the latter which can be viewed as uncovering global token
dependencies.

the patching metric across the entire task distri-
bution, we simply take the expectation over 𝑝:
E𝑝[NextToken(𝑝)].
Joint-token patching. As discussed previously, a
language model can be thought of as a measure
over the space of all sentences: P. Joint-token
patching directly measures the difference between
the measure P (induced by 𝑀) and Pdo (induced by
an intervention on 𝑀) over the joint distribution of
all 𝑛-tokens. Concretely, for a fixed prompt 𝑝,

JointToken(𝑝) B KL(P[𝑡1 . . . 𝑡𝑛|𝑝] ∥ Pdo[𝑡1 . . . 𝑡𝑛|𝑝]).
By expanding the definition of KL(· ∥ ·), it is easy
to see that for 𝑛 = 2:

JointToken(𝑝) = KL(P[𝑡1|𝑝] ∥ Pdo[𝑡1|𝑝])+
E𝑡1∼P[𝑡1|𝑝]

[
KL(P[𝑡2|𝑝, 𝑡1] ∥ Pdo[𝑡2|𝑝, 𝑡1])

]
.

Note the expectation in the second summand. This
is with respect to the token 𝑡1 generated by the
model without any intervention. The computation
of this expectation is hard especially if 𝑛 is large.

In both next-token and joint-token patching KL-
divergence is used. This follows from the rec-
ommendation and positive results of Conmy et al.
(2023), but one can technically use any other pre-
ferred metric. The key idea being that the metric
should capture the performance decrease of the
model after ablating an individual edge.

B.2 Noisy-to-Clean Patching
In Section 4 and 5, we perform noisy-to-clean
patching. That is, for a model 𝑀, we run the model
on a given example 𝑥 and cache all of the activa-
tions across all of the edges. Then, we take another
example 𝑥′ which is associated with a different
ground truth example. While the model runs on 𝑥′,
we patch in activations from 𝑥 and check to see how
much performance decreases with respect to the
label associated with 𝑥′. In the case of attribution
patching, we apply the same Taylor-expansion as
above. Noisy-to-clean activation gives us a picture
of the necessary components of the model.
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Figure 9: Exponential regression on exact string accu-
racy for equal-digit subtasks. That is, 𝑜1 = 𝑜2. The
𝑥-axis of the regression is the sum of the number of
digits in both operands.

B.3 Clean-to-Clean Patching
In cases where there is not necessarily a ground-
truth label, noisy-to-clean patching is not well-
defined. Herein, we propose a new type of patching
which we call clean-to-clean patching. This is ap-
plied in Section 6 and generally useful for circuit
discovery where the output is some open-form gen-
eration for autoregressive language models. Let
𝑥 be the input and 𝑥★ be the model’s sampled re-
sponse of 𝑥. We first run the model on 𝑥 with
padding tokens such that 𝑥 and 𝑥★ have the same
length. Similar to the procedure above, we cache
all of the intermediate activations. Then, we run
the model on 𝑥★ and patch in the appropriate acti-
vations from this “blanked” out 𝑥. The idea here
is that we are finding the necessary components
that exactly recover the model’s response on this
input, where the baseline is if the model had not
generated anything at all. In the case of attribution
patching, we apply the same Taylor-expansion as
above.

C Within-Task Regressions

In Section 4, we argued that within an 𝛼-equivalent
circuit family, performance decreases predictability.

9039



1 2 3 4 5 6 7 8
Number of Digits

0.70

0.75

0.80

0.85

0.90

0.95

E
xa

ct
 S

tri
ng

 M
at

ch
 A

cc
ur

ac
y

R2 = 0.9953
y 0.966 0.0079(0.95) 8.70x

Figure 10: Exponential regression on exact string accu-
racy for one-digit subtasks. That is 𝑜2 = 1. The 𝑥-axis
of the regression is simply the number of digits in 𝑜1 as
𝑜2 is constant.

Herein, we perform a regression analysis to analyze
this hypothesis. Specifically, we examine whether
the subtask performances shown in Figure 4 can be
predicted through an exponential regression using
the performance of the (1, 1) subtask. We perform
an exponential regression since we expect error to
be compounded. That is, for a (2, 2) task, at least
4 (1, 1) subtasks need to be computed. Thus, the
error should be compounding on the order of 0.954.
Likewise, a subtask that requires 𝑛, (1, 1) subtask
decompositions should require incur error on the
order of 𝒪(0.95𝑛). Therefore, consider a regres-
sion of the form 𝑦 = 𝑏 − 𝑐(0.95)𝑎𝑥 , where 𝑎, 𝑏, 𝑐
are learnable parameters and 𝑥 is the total number
of digits across both operands, and 𝑎𝑥 is the total
number of subtask decompositions. These regres-
sion results are shown in Figure 9 and Figure 10.
We find that a strong 𝑅2 is observed > 0.99.

D Reproducibility

Throughout the paper, we do not perform any
finetuning or training. Rather, we directly eval-
uate the pretrained models. All of our exper-
iments were conducted on two NVIDIA A100
80GB GPUs. Our codebase including the im-
plementations of the proposed algorithms and
figures can be found at https://github.com/
alansun17904/circuit-stability. The mod-
els and their weights used as case study through-
out the paper are loaded directly from the
transformer_lens package, its documentation
can be found at https://transformerlensorg.
github.io/TransformerLens/index.html. We
use all of the default hyperparameters and settings
of the package.
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