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Abstract

Social media platforms utilize Machine Learn-
ing (ML) and Artificial Intelligence (AI) pow-
ered recommendation algorithms to maximize
user engagement, which can result in inad-
vertent exposure to harmful content. Current
moderation efforts, reliant on classifiers trained
with extensive human-annotated data, struggle
with scalability and adapting to new forms of
harm. To address these challenges, we pro-
pose a novel re-ranking approach using Large
Language Models (LLMs) in zero-shot and few-
shot settings. Our method dynamically assesses
and re-ranks content sequences, effectively mit-
igating harmful content exposure without re-
quiring extensive labeled data. Alongside tradi-
tional ranking metrics, we also introduce two
new metrics to evaluate the effectiveness of re-
ranking in reducing exposure to harmful con-
tent. Through experiments on three datasets,
three models and across three configurations,
we demonstrate that our LLM-based approach
significantly outperforms existing proprietary
moderation approaches, offering a scalable and
adaptable solution for harm mitigation.

1 Introduction

Social media platforms are powered by Machine
Learning (ML) and Artificial Intelligence (AI)
based recommendation algorithms and models that
provide content for users. These algorithms and
models are designed to maximize user engagement
by learning to recommend content aligned with
users’ inferred interests or traits (Covington et al.,
2016). However, solely optimizing for user en-
gagement metrics can indirectly drive exposure to
harmful content. For instance, a teenager interested
in fitness may be recommended content promoting
eating disorders, users interested in finance may
encounter clickbait and scam videos, and a sad
adolescent may be directed to content about
depression or suicide.As a result, there are serious
concerns that platform recommendation systems
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Figure 1: An overview of our re-ranking approach for
mitigating exposure to harmful content. We prompt
the LLM with the input set of recommendations and
a set of preference constraints. The LLM re-ranks the
the recommendations in accordance with the provided
preferences. Here, recommendations B, E, and G are
harmful and hence, downranked.

can indirectly foment misinformation, addictions
or mental health crises, and lead to other problems
for individuals and society at large (Haidt and
Twenge, 2022, 2023; Roose, 2019; Tufekci, 2018).

Internally, social media platforms seek to miti-
gate harmful content using AI/ML classifiers. How-
ever, there are two major challenges associated with
their use (Gorwa et al., 2020; Chen, 2021; Khan
and Wright, 2021): (1) classifiers often require
large volumes of annotated data for training, and
(2) categorizing harmful content is a dynamic tem-
poral problem (e.g. a new dangerous challenge for
teenagers emerges online). Classifiers cannot auto-
matically generalize to new forms of harm, without
having been trained on explicitly labeled data. As
a result, harm classifiers are susceptible to concept
drift (Quiñonero-Candela et al., 2022) and requir-
ing humans to annotate large amounts of data.

In this paper, we propose methods that can
circumvent both issues: that of scale as well as that
of the dynamicity of harm. We utilize Large Lan-
guage Models (LLMs) for this purpose as they have
been shown to demonstrate stellar reasoning capa-
bilities on natural language input in the zero-shot or
few-shot learning setting (Wei et al., 2022) making
them ideal for harm mitigation. We find that, as
opposed to traditional harm classifiers such as
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Perspective API1, LLMs can excel at mitigating ex-
posure to harm in recommended content sequences
simply by pairwise comparisons and re-ranking,
most likely due to better utilization of their context
window. The benefits of pairwise re-ranking have
been explored in past work (Qin et al., 2024) and
we adopt this re-ranking strategy using LLMs to
mitigate exposure to harmful content on platforms.
This approach is visually depicted in Figure 1.

We propose two novel metrics to dynamically
analyze exposure to harmful content in recom-
mendation sequences and experiment with three
LLM preference re-ranking methods (zero-shot,
few-shot, in-context learning based (Dong et al.,
2022)). Through extensive experiments on three
harm datasets and three LLM architectures, we find
that our approach outperforms state-of-the-art con-
tent moderation baselines, such as Perspective API
and OpenAI’s Moderation API.2 In summary, we
make the following contributions:

• We propose a novel LLM-based approach that
can measure relative harm and mitigate harm-
ful content exposure on platforms. Our ap-
proach is able to generalize to various kinds
of harms without explicit training.

• We examine the performance of our approach
under three settings (zero-shot, zero-shot with
prompt engineering and few-shot) by varying
the amount of information provided to the
LLM, and find that it outperforms industry-
grade classifiers even in the zero-shot setting.

• Alongside evaluation on traditional metrics,
we propose two novel metrics that can mea-
sure harm exposure for a given content se-
quence. Our metrics allow evaluating the qual-
ity of re-ranked content in a manner that is ag-
nostic to the amount of harm present wherein.

This paper is organized as follows. First, we dis-
cuss related work in the areas of harms caused by
recommendation systems and efforts towards miti-
gation to contextualize the novelty of our approach.
Then, we present our methodology at a high level
and introduce two novel metrics for evaluating re-
ranking. Next, we describe our experimental setup
and analyze our results. Finally, we discuss the
limitations of our work and its implications.

1
https://www.perspectiveapi.com/.

2
https://platform.openai.com/docs/guides/moderation.

2 Related Work

2.1 Recommendation-Driven Harms

Platform recommendation systems are designed
to maximize user engagement by tailoring content
to individual preferences and interests. However,
these systems can inadvertently drive users toward
harmful content. This occurs because recommenda-
tion algorithms often prioritize content that gener-
ates the most interaction, which can include sensa-
tional or provocative material (Rathje et al., 2021;
Yu et al., 2024). For instance, Facebook’s algo-
rithmic curation is linked to the widespread use of
clickbait, which drives users toward low-quality
content (Lischka and Garz, 2021).

In addition, digital traces left by each user on
platforms reveal information about the user’s emo-
tions (Hossain and Muhammad, 2019), substance
use (Kosinski et al., 2013), or sexual orientation
(Wang and Kosinski, 2018). This inferred infor-
mation could be used to recommend content that
exposes users—especially the vulnerable ones—to
online harms (e.g, addictive content to users known
to use substances, suicidal content to depressed
users, misinformation to users interested in her-
bology) (WSJ Staff, 2021). Indeed, meta-reviews
show that 8%-10% of recommendations pose de-
tectable risks to users (Hilbert et al., 2024) and
algorithmic audits detect discriminatory or other-
wise harmful biases in YouTube, Instagram, and
TikTok algorithms (Haroon et al., 2023; Bandy,
2021; Hilbert et al., 2023).

Because recommendation systems are exception-
ally good at curating personalized ecosystems, lead-
ing to closed loops of content consumption (Rossi
et al., 2021), what they recommend has implica-
tions for what users see (Nyhan et al., 2023). In
turn, content exposure has over-time effects on
individuals and, when harmful, can have severe
consequences on mental health and may foment
addictions, violence, or even lead to death from
dangerous challenges (Haidt and Twenge, 2022).

2.2 Harm Mitigation

Extensive work studies harm mitigation interven-
tions on social media platforms. For example,
Bhargava et al. (2019) developed a tool that allows
users to exert more control over their social media
feeds by enabling them to consolidate and tailor
content from multiple platforms. Similarly, Kovacs
et al. (2018) empower users to manage their social
media engagement goals via rotating time or site
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blockers. More germane to minimizing harmful
content, some studies explore ranking-based
interventions (Celis et al., 2019; Ovadya and
Thorburn, 2023), such as using LLMs for curating
societally beneficial recommendations. In addition,
machine learning models, particularly those
leveraging deep learning, are often adopted to
identify patterns indicative of harmful content,
such as clickbait (Ghosh et al., 2022), hate
speech (Mossie and Wang, 2020; Del Vigna12
et al., 2017) and misinformation (Wu et al., 2019;
Shu et al., 2017). Recent work additionally
applies LLMs to the harm detection problem
(Liu et al., 2024; Bonagiri et al., 2025; Ernst,
2024) and also utilizes machine learning toxicity
detection algorithms within a browser extension
to automatically hide toxic text content on users’
feed over-time (Beknazar-Yuzbashev et al., 2022).

Remark. While prior works focus on specific
harms, we consider a general, systematic, and over-
arching taxonomy of harms with data originating
from a real social media platform (YouTube), as de-
tailed below. Our approach generalizes to various
kinds of harms, as opposed to being effective on
one particular kind, like hate, misinformation, or
clickbait. We leverage LLMs and their inherent rea-
soning abilities to reduce harmful content exposure
in recommended content. Additionally, because we
do not require explicit labeling and training, our ap-
proach is robust against concept drift (Quiñonero-
Candela et al., 2022). Finally, instead of absolute
harm, we focus on measuring relative harm and
propose novel metrics to quantify the ordering of
content for minimal exposure to harm.

3 Mitigating Harmful Content Exposure
Using LLMs and Re-ranking

3.1 Problem Formulation

The problem we seek to solve is as follows:

Given a recommendation sequence (e.g. home-
page videos on YouTube), re-rank the content so
that harmful content appears at the end of the
sequence in a zero-shot or few-shot setting (i.e.
limited annotations are required).

The motivation for downranking comes from past
work that has shown that users are less likely to in-
teract with (and be exposed to) content that appears
at lower ranks in recommendations (Yu et al., 2023;
Glick et al., 2014). Downranking, as opposed
to outright suppressing or deletion, minimizes

exposure to harmful content while preserving trans-
parency, diverse viewpoints and preferences, and
freedom of expression. Formally, let X = {xi}ni=1

be a sequence of n content instances, out of which
p are non-harmful, and the remaining n − p are
harmful. Let ρ : X → {0, 1} be a binary decision
function that maps every x to a label based on
whether it is harmful or not. Our goal is to use an
LLM L to transform X into another sequence X∗

such that it minimizes exposure to harmful content.

3.2 Preferential Pairwise Ranking
We present our proposed solution to the harm mit-
igation problem as Algorithm 1. Our proposed
approach consists of a pairwise ranking component
that seeks to downrank content if deemed harmful
by the LLM L. Specifically, we present L with
pairs of content instances and query it to determine
which is the relatively harmful one. Certain pref-
erence constraints (C) determine the exact prompt
used to query the LLM. To re-rank content based
on relative harm, we adopt the approach from Qin
et al. (2024) but modify their methodology and
scoring function. For a given content instance x,
their scoring function increments the score by 1
for every content instance deemed less relevant
than x, and by 0.5 for all other content instances.
However, applying the scoring function as is will
also compare non-harmful content with one another
and incorrectly result in scores being higher. This
can then lead to them being unfairly downranked.
To address this challenge, in the pairwise ranking
process, we allow the LLM L to decide if both in-
stances are non-harmful, in which case there is no
increment to the score. Given a content sequence
X , we enumerate all possible pairs and compute
the score for every content instance. We then re-
order the content based on this score obtained.

3.3 Specifying Preference Constraints C
As described in Algorithm 1, the pairwise ranking
via LLMs also requires natural language preference
constraints C as part of the prompt to effectively
downrank harmful content. We employ three ap-
proaches in specifying the preference constraints
for the LLM in the context window/prompt. We
mention the approaches here, and offer the detailed
prompts in Appendix C.3.

Zero-Shot: In the zero-shot setting, C asks to iden-
tify which of the two provided content instances is
harmful, without explicitly specifying a definition
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Algorithm 1 Harm-Based Re-ranking Using LLMs
1: Input: Sequence X = {xi}ni=1, LLM L, Prefer-

ence Constraints C
2: Output: Re-ranked Sequence X∗
3: initialize score[xi]← 0 for each xi ∈ X
4: for each pair (xi, xj) ∈ X ×X, i ̸= j do
5: query L with C for pairwise preference:

(xi, xj) and (xj , xi)
6: if xi harmful then
7: score[xi]← score[xi] + 1
8: else if xj harmful then
9: score[xj ]← score[xj ] + 1

10: else
11: continue
12: end if
13: end for
14: sort X using score (ascending) to obtain X∗
15: return sorted sequence X∗

of harm. In this approach, we utilize the LLM’s
inherent understanding of harm learnt during pre-
training.

Zero-Shot + Prompt Engineering: We build upon
the zero-shot approach by including a definition
for harm in C. We first define explicitly what we
consider harmful and characteristics of harmful
content, and then query L to identify which of the
two content instances is harmful.

Few-Shot ICL: We now provide representative
instances of harmful content in C, and query L
to reason which of the two content instances is
harmful based on this information. This approach
is known as In-Context Learning (ICL) (Dong et al.,
2022; Brown et al., 2020; Askari et al., 2025b).

3.4 In-Context Learning (ICL)

In-Context Learning (ICL) (Dong et al., 2022) re-
lies on exemplars that the model is exposed to in
order to learn certain features or characteristics.
Therefore, the performance of our re-ranking ap-
proach will greatly depend on the chosen exem-
plars. A naive approach of ICL would be to ran-
domly sample from harmful content and provide
these random exemplars to the model; however this
may lead to bias towards or against certain kinds of
harm. To address this, we curate a set of exemplars
that is representative of the harm in our dataset.
Inspired by a popular coverage-based BertScore
ICL selection approach (Gupta et al., 2023), we
make some modifications for undertaking ICL in
the re-ranking setting. We first use a pretrained
RoBERTA model to project text content into an
embedding space. We cluster the harm samples,
and then choose the most representative sample

from each cluster (the one that is closest to the cen-
troid of the cluster). These representative samples
form the exemplars we provide to the model.

3.5 Evaluating Re-rankings
While we use existing metrics for evaluating rank-
ings (Sebe et al., 2000) such as Precision@K (Shani
and Gunawardana, 2011), we also design new met-
rics that focus on the relevance of ranked content to
a query and help account for harmful content that
users could be exposed to in the sequence. Thus,
we propose two novel metrics to assess preference
in re-ranked content sequences. Note that both met-
rics are bounded between [0, 1] and higher values
are better (less harmful content).
Per-Pref-k: The Per-Pref-k (PPk) metric repre-
sents the fraction of the content sequence set X
that would need to be consumed to reach the k-th
harmful content instance. PPk assesses how much
of the sequence a user needs to consume before
encountering a certain amount of harmful content.
This metric is instrumental in understanding the
depth of user engagement required to reach less de-
sirable content, thus indirectly measuring the buffer
of harmless content. Higher values indicate that a
user can view more content before encountering
a specified number of harmful instances, reflect-
ing better performance of the moderation system.
Formally, we define PPk as:

PPk =
min {m |∑m

i=1 ρ(xi) = k}
n

(1)

Exponentially Weighted Normalization: The Ex-
ponentially Weighted Normalization (EWN) met-
ric provides an analytical measurement of non-
harmful rankings by assigning exponentially de-
caying weights to ranks and then normalizing val-
ues to lie between [0, 1]. EWN(X) measures the
goodness of the ranking in the sequence X by com-
paring it to the best and worst ranking possible.
A value of 1 indicates that the sequence is in the
optimal order and no better order can minimize
exposure to harm. On the other hand, a value of 0
indicates that the sequence is in the worst possible
ranking order. Following the notation described
earlier, the EWN can be defined as follows:

EWN =

∑n
i=1{2−i · (1− ρ(xi))} − (2−p − 2−n)

(1− 2p−n) · (1− 2−p)
.

(2)
Owing to space limitations, we provide the
complete derivation for EWN in the appendix.
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Remark. In addition to these two novel metrics,
we also use the Precision@K metric (Shani and
Gunawardana, 2011), popular in recommendation
systems. In line with our naming convention, we
call this metric as the Top-Pref-k (TP-k), which
represents the fraction of non-harmful content the
user encounters when they consume a k-length con-
tent sequence.

4 Experimental Setup

4.1 Datasets

We employ a curated dataset of YouTube
videos (9, 832 harmful, 2, 679 harmless), which
were labeled for six categories of harm: infor-
mation, hate and harassment, addictive, clickbait,
sexual, and physical harms. The details on the
harm categories, data collection, labeling, reliabil-
ity, and other aspects of this dataset are provided
in (Jo et al., 2024; Jo and Wojcieszak, 2025).
Note that we primarily utilize this dataset for the
majority of our ablation experiments because of
the diversity in harm categories. We use the video
descriptions as input to the LLM. To demonstrate
the generalizability of our approach, we also
evaluate it on two singular-harm category datasets;
the Jigsaw Toxicity Classification Dataset (Jigsaw,
2019), which contains comments from the Civil
Comments platform labeled for toxicity at Jigsaw,
and the Measuring Hate Speech dataset (D-Lab,
2022) by UC Berkeley’s D-Lab, that contains
annotated social media posts specifically labeled
for hate speech. Additional details on each dataset
are provided in Appendix B.

4.2 Content Sequences

Note that our proposed approach operates on con-
tent sequences rather than individual instances. We
use the datasets described to simulate sequences
of content that a user would be exposed to. We
sample uniformly at random without replacement
from our data to generate a sequence of n = 20
content instances (textual data; either titles and tran-
scripts from YouTube videos, comments, or social
media posts, depending on the dataset), and gener-
ate m = 100 such sequences to form a sequence
dataset. To study the effect of the amount of harm,
we generate 5 such datasets by the varying the frac-
tion of harmful content from 10% to 50% for the
YouTube dataset. For the other datasets, we fix the
fraction of harmful content to 30% so as to reflect
the typical harm ratio observed in the wild, as de-

termined by user surveys (Beata Mostafavi, 2020).

4.3 Baselines

We leverage two state-of-the-art harm classification
models as benchmarks to compare the performance
of our LLM re-ranking approach. The Perspective
API 3 is a tool developed by Google/Jigsaw to im-
prove conversations online by detecting toxicity of
comments. We use the toxicity score the model
returns to rank the content. Similar to Perspective,
the OpenAI Moderation API4 can be used to check
whether a text is harmful or not. It provides scores
for a variety of harm categories, ranging from hate
to sexual or violence; we extract the scores for each
category and use the highest score as a proxy for
harm.

4.4 Implementation Details

We implement our approach using mainly OpenAI
GPT-3.5 Turbo as the underlying LLM. This choice
was made based on the available models, API costs,
and rate limitations at the time of the initial writ-
ing. Additionally, we ran experiments using two
open-source models: Llama2-13B and Mistral-7B-
Instruct-v0.2. The exact prompts we use for each
of our approaches are listed in Appendix C.

4.5 Evaluation

We use three metrics to evaluate the effectiveness of
re-ranking: TP-k, PP-k and the EWN as described.
Given that our sequences are of 20 videos, we limit
our analyses to TP5 and TP10, as they represent
the first two quartiles of videos watched. Similarly,
for PP-k, we focus our analysis on PP1 − 3, as
they represent the amount of content needed to be
watched to reach up to at most the third harmful
video, which is a practical limit considering the
length of our sequences. The PP1, PP2 and PP3
values represent the fraction of the sequence that
can be consumed before encountering the first, sec-
ond and third harmful video(s), respectively.

5 Results

5.1 Effectiveness of LLM Preference
Re-ranking

Figure 2 depicts the effectiveness of our ap-
proaches with respect to the baselines, in terms of
our metrics. In general, our approach outperforms
both the baselines across varying harm percentages,

3
https://perspectiveapi.com/

4
https://platform.openai.com/docs/guides/moderation
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Figure 2: Performance of our proposed method with different preference constraint strategies on varying ratios
of harmful content. Higher values indicate better alignment with less harmful content exposure. Our approaches
outperform all baselines by a wide margin for the TPk (A, B), PPk (D-F) and EWN (C) metrics. Note that as the
harm ratio increases in content sequences, exposure to harmful content increases as well.

demonstrating the improvement preference re-
ranking drives over simple classification. We find
that LLM-based approaches outperform standard
classification approaches even in zero-shot settings,
and even more so in few-shot settings. For example,
TP5 (Figure 2A) indicates the average proportion
of non-harmful videos in the first five videos in
the sequence. This proportion is 70.5% and 74.8%
in the 10% and 50% harm settings initially. The
OpenAI Moderation API is able to drive these
up to 83% and 78.7%. The preference re-ranking
approach in the Few-Shot ICL setting is able to in-
crease the non-harmful videos to 90.5% and 86.1%
respectively. Mean TP5 and TP10 values are shown
in Tables 1 and 2 respectively. Across both tables,
the more advanced configurations (Zero-Shot with
PE, Few-Shot ICL) consistently show higher TPk
values across all harmful content percentages,
demonstrating the advantage of leveraging sophis-
ticated AI techniques. Notably, the effectiveness
of the OpenAI Moderation and Perspective ap-
proaches varies, often underperforming compared
to the LLM-based approaches, despite the massive
amounts of task-specific data they are trained on.

5.2 Effect of Harm Ratio

In Table 6, we present EWN values for each con-
straint specification approach across various harm
percentages. We see that the difference in EWN val-
ues between the original and re-ranked sequences
grows as the percentage of harmful content in-
creases. For instance, at 10% harmful content, the
gap between the Original and Zero-Shot with PE is
about 0.079 (9.1% relative increase), while at 50%
harmful content, the gap extends to 0.250 (51.3%
relative increase). Additionally, as the percentage
of harm increases, OpenAI Moderation and Per-

Figure 3: Performance of ICL with varying number of
exemplars, as measured by our defined metrics. Harm
mitigation effectiveness does not meaningfully improve
by increasing the number of exemplars.

spective, show large decreases in their EWN val-
ues (39.1% and 41.8% respectively). Zero-Shot
with PE and Few-Shot ICL, on the other hand, ex-
hibit the smallest decreases in their EWN scores
as the percentage of harmful content increases.
Both configurations manage to minimize the perfor-
mance drop to around 23%. Given that EWN is ag-
nostic to the relative harm ratio (see Appendix A),
this analysis shows that as the operational envi-
ronment becomes more challenging due to higher
concentrations of harmful content, the advantage of
deploying advanced AI-based content moderation
systems becomes increasingly substantial.

5.3 Varying Exemplars for Few-Shot ICL
Because the performance of ICL will depend on
exemplars, we experimented with various values
for the number of exemplars N . We modify the
few-shot ICL approach and implement it in five ver-
sions by setting the value of N as one of 4, 8, 12, 16
and 20. We perform K-Means clustering on the
harm samples (setting K = N ) and choose a rep-
resentative sample from each cluster. We conduct
our analysis in the 30% setting (Beata Mostafavi,
2020). Table 7 and Figure 3 show the performance
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of ICL-based prompting with varying number of
exemplars. Surprisingly, the performance does not
necessarily improve with increasing number of ex-
emplars; we see that EWN is the best for N = 4
and decreases with increasing N . This is likely
due to overfitting the LLM and the bias introduced
because of the exemplars. Nevertheless, ICL still
remains a better approach as compared to zero-shot
or zero-shot with prompt engineering.

5.4 Experiments across Datasets

The results described so far are based on the
YouTube dataset (Jo and Wojcieszak, 2025) be-
cause of the comprehensive and diverse nature of
harms it contains. However, we also find that our
LLM-based re-ranking approach performs well on
other, more targeted datasets. Table 11 shows that
all three configurations (zero-shot, zero-shot with
prompt engineering and few-shot) outperform the
baselines (albeit by a small margin) on the hate
speech dataset as evidenced by the EWN values.
Notably, the Zero-Shot approach slightly outper-
forms the other configurations with a perfect TP10
score of 1.000 and slightly higher PP1 (0.697),
PP2 (0.777), and PP3 (0.839) values, indicating
a marginally better delay in encountering harmful
content. The inclusion of Prompt Engineering and
Few-Shot learning yields EWN scores very close
to the perfect mark (0.99992 and 0.99991, respec-
tively), though they slightly trail the pure Zero-Shot
method. On the Jigsaw dataset (Table 10), our ap-
proach achieves a comparable performance to the
baselines. Note that the Jigsaw dataset contains
content labeled for toxicity, on which the Perspec-
tive API is likely trained (as both are released by
Jigsaw). Perspective API attains uncharacteristi-
cally high performance on this dataset, potentially
indicating test set leakage in this experiment.

5.5 Experiments across LLMs

The results above have been based on the perfor-
mance of GPT-3.5 as the primary LLM of choice.
However, there are growing concerns about the
lack of transparency and data-sharing practices in
closed-source LLMs (Balloccu et al., 2024), which
might deter developers from utilizing them. Fur-
ther, the costs associated with querying the LLM at
scale can also compound their use. In this section,
we thus consider alternative open-source LLMs
and re-run experiments with 30% harm, the typical
harm ratio observed on platforms (Beata Mostafavi,
2020). We repeat the experiments conducted on the
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Figure 4: EWN values for Llama2, Mistral, and GPT-
3.5-Turbo.

YouTube dataset using two LLMs, namely Mistral-
7B-Instruct-v0.25 and Llama2-13B6, both running
locally on a server equipped with a NVIDIA RTX
A6000 GPU with 256GB of RAM.

Table 8 shows the various metric values for the
YouTube dataset using Mistral. We see that it too
outperforms the baselines significantly and only
has slightly lower performance compared to GPT-
3.5-Turbo. In contrast, Table 9 that Llama2 under-
performs across metrics compared to the OpenAI
Moderation baseline. Comparing the models’ per-
formances with GPT-3.5 directly, Figure 4 shows
the EWN values for all three models and each of the
three learning strategies we propose. As is evident,
GPT-3.5 outperforms both Mistral and Llama2
(likely) due to its larger parameter size. However,
the EWN values of Mistral trail GPT-3.5 by an
average of nearly 10%, a minimal performance
trade-off that make Mistral a viable second option
for our approach. Also note that Mistral has only
7B parameters, making it extremely lightweight to
run locally and ingest data at scale. In contrast,
Llama2 exhibits lower performance than the other
two LLMs, a result also consistent with prior work
which has found that Mistral outperforms Llama2
on most benchmark datasets (Jiang et al., 2023).

6 Discussion

In this work, we propose methods that leverage
LLMs to circumvent two challenges in online harm
mitigation: the large scale of annotation required
and the dynamic nature of harm.

Utility of LLMs for Harm Mitigation. Our
experiments demonstrate that our LLM-based
re-ranking approaches significantly outperform
traditional/proprietary content moderation methods
in reducing harmful content exposure on social
media platforms. As detailed above, both the Zero-
Shot and Few-Shot In-Context Learning (ICL)

5
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

6
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
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configurations provide a notable improvement over
industry-standard harm classifiers. Because our
approach shows promising results even in zero-shot
settings, LLMs can be used off-the-shelf with
minimal effort and without necessitating signifi-
cant re-configuration or fine-tuning. Customizing
LLM prompts can lead to even better results; for
example, the Zero-Shot + Prompt Engineering
configuration, where harm is explicitly defined in
the prompt, consistently performs better than the
simpler Zero-Shot approach, indicating that our
automated prompt adjustments can significantly
influence desirable performance outcomes.

Robustness to Concept Drift. Despite the
differences in content types and the diversity of
harm categories, our LLM approach consistently
outperforms traditional methods, suggesting that
the method is versatile and can be applied across
diverse social media platforms and content/harm
moderation challenges. Due to extensive pre-
training, LLMs can generalize across various types
of harm without needing explicit fine-tuning or
labeled examples for each new harm type. Conse-
quently, our approach excels at identifying and mit-
igating a wide range of harmful content, whether
it involves hate speech, clickbait, hate and harrass-
ment, or addictive material, among other categories.
While LLMs are still restricted temporally by train-
ing data, they can adapt to novel scenarios without
requiring continuous retraining, and generalize
better than traditional supervised learning methods.

Impact of Harm Ratio on Re-Ranking Ef-
fectiveness. Our results show that the efficacy
of re-ranking is closely related to the ratio of
harmful content within the dataset. Specifically,
the Exponentially Weighted Normalization
(EWN) metric reveals that as the percentage of
harmful content increases, downranking harmful
content becomes increasingly more challenging.
The advantage of our approach becomes even
more pronounced in high-volume online harm
scenarios where baselines suffer from significant
performance drops, but our LLM-based methods
exhibit minimal performance degradation.

Versatility Across Models. Our experiments
across various LLMs show that the performance
of our approach will indeed depend on the choice
of LLMs. While using commercial LLMs can be
expensive, we show that open-source LLMs (such
as Mistral) show comparable performance in harm
mitigation. This means that our approach can be

implemented with open-source models that will
not result in excessive overhead due to API costs.
Furthermore, satisfactory performance using open-
source LLMs also ensures that our method can be
utilized by developers concerned with data shar-
ing/privacy issues relating to closed-source LLMs.
We defer the study of other LLMs in the context of
our approach to future work.

Implications for Preference-Based Ranking.
While we focus on re-ranking content to minimize
exposure to harmful material, the underlying
approach is general and can be adapted to
optimize for various other applications beyond
harm mitigation. For example, a platform might
choose to re-rank content to elevate material that
encourages civic participation or promotes mental
well-being, thereby aligning recommendations
with broader social goals. The flexibility of LLMs
in understanding and applying different ranking
criteria makes this approach highly adaptable
and scalable to different contexts, where the
optimization target could shift from reducing harm
to enhancing specific positive outcomes for users.

7 Conclusion

In sum, we present a novel approach to mitigat-
ing exposure to harmful content on social media
platforms by leveraging Large Language Models
(LLMs) for re-ranking recommendation sequences.
LLM-based re-ranking not only outperforms tra-
ditional classifier-based commercial moderation
systems, such as the Perspective API and OpenAI
Moderation API, but also exhibits robustness across
various harm scenarios and content types. By uti-
lizing zero-shot, few-shot, and prompt-engineered
strategies, our method effectively generalizes to
multiple forms of harm without the need for ex-
tensive labeled data, addressing both scalability
and dynamicity issues inherent in content moder-
ation. The proposed re-ranking technique shows
substantial promise in reducing the likelihood of
users encountering harmful content, even as the
volume of such content increases in users’ social
media ecosystem (as is the case for the heavy con-
sumers of misinformation, violence, among other
harmful contents). For future work, we aim to ex-
plore multi-modal input/models to further augment
performance and apply our methods to other novel
problem domains where content ranking plays a
critical role in ensuring user safety and trust.
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Limitations

While our proposed approach outperforms existing
baselines, it has certain limitations as well. The
approach involves queries to LLMs, which may be
expensive in terms of time and infrastructure cost
when considered at the scale that social media plat-
forms operate (although most popular social me-
dia platforms operate with infrastructure that can
support such intervention strategies7). For smaller
organizations, these issues can be minimized by
lightweight (e.g. quantized) high-performance
LLMs running locally (e.g. Mistral). Another limi-
tation is modality; we only consider textual input in
our algorithm and content sequences, even though
visual information (e.g. video frames) could be in-
corporated from YouTube videos to improve perfor-
mance further. We defer the study of multi-modal
LLMs for re-ranking to future work. Finally, LLMs
themselves can possess robustness issues (Askari
et al., 2025a; Chhabra et al., 2024) in downstream
tasks (such as re-ranking), although these issues are
exhibited by proprietary harm classification models
as well (Achara and Chhabra, 2025).

Ethical Considerations

Through this work, we aim to demonstrate how
LLMs can be used to minimize user exposure to
harmful content online. Our work does not con-
duct research with human subjects directly. We do
not release any new data; all data used are public,
and the authors state they followed required ethics
guidelines in the collection phase. Sharing user
content with third-party LLMs may introduce pri-
vacy challenges, and concerns that the data may
be used for training without consent. However, so-
cial media companies can run open-source LLMs
(which, from our findings, have performance com-
parable to proprietary ones) without relying on
third parties, which would ensure that user con-
tent does not leave the company. Finally, while
the primary intent of our approach is to mitigate
exposure to harmful content, there exists the risk
of over-moderation; LLMs, despite their advanced
reasoning capabilities, might reflect inherent bi-
ases from their training data, potentially leading
to the marginalization of minority perspectives or
controversial opinions. Transparent moderation
guidelines, diverse datasets and a human-in-the-
loop moderation mechanisms can help safeguard

7
https://www.facebook.com/metaai/

freedom of speech and enforce effective modera-
tion at the same time.
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Appendix

A Additional Details on EWN

A.1 Derivation

Let X = {xi}ni=1 be a sequence of n content in-
stances, out of which p are harmless, and the re-
maining n − p are harmful. Let ρ be a decision
function such that:

ρ(x) =

{
1 if x is non-harmful
0 if x is harmful.

(3)

We want to design a metric that penalizes harm-
ful content instances shown towards the beginning
of the sequence. Thus, content instances at nu-
merically lower ranks have a higher importance in
the metric. We can assign exponentially decaying
weights to the content instances based on their rank.
Specifically, the ith content instance will have a
weight of 21−i. Following this, we can compute a
score S for the sequence X as:

S(X) =
n∑

i=1

21−i · ρ(xi). (4)

The value of S(X) indicates the goodness of the
ranking in sequence X . Lower values indicate
more harmful content shown early on. However,
it is dependent on the number of content instances
in the sequence and the harm ratio; as such, it is
not a good metric to compare two sequences which
differ in these distributions. Therefore, we want to
compute a metric that indicates how good the se-
quence X is compared to the best possible ordering
of the same content.
Best Case: In the best case, all the p non-harmful
content instances appear at the beginning of the
sequence, Therefore, the score S(X) is

S(X) =

p∑

i=1

21−i. (5)

This is a geometric progression with the first term
a = 1 and common ratio r = 2−1 having p terms.
Therefore we have:

Smax(X) = 2 · (1− 21−p). (6)

Worst Case: In the worst case, the harmful content
is towards the beginning, i.e. the p harmless con-
tent instances all occur at the end of the sequence.

Therefore the videos from i = 1 . . . n − p are all
harmful. Then the score S(X) is

S(X) =
n∑

i=n−p+1

21−i. (7)

This is a geometric progression with the first term
a = 2p−n and common ratio r = 2−1 having p
terms. Therefore we have:

Smin(X) = 2p−n+1 − 21−n. (8)

Scaling: Now, we using the score obtained from 5
and the upper and lower bounds obtained from 6
and 8 respectively, we can normalize the score to a
(0, 1) range as

EWN =
S(X)− Smin(X)

Smax(X)− Smin(X)
. (9)

Which after replacing all terms, results in the final
expression for EWN:

EWN =

∑n
i=1{2−i · (1− ρ(xi))} − (2−p − 2−n)

(1− 2p−n) · (1− 2−p)
.

(10)

A.2 Importance of EWN

While both TPk and PPk are fairly explainable,
they vary significantly with the length of the con-
tent and the fraction of non-preferential elements.
As a result, they cannot be used to compare two
sequences which differ in these distributions. The
EWN , however, measures the goodness of the
ranking in the sequence by normalizing it be-
tween the best and worst possible ranking possi-
ble. A value of 0 indicates that the sequence is
in the optimal order. On the other hand, a value
of 1 indicates that the sequence is in the worst
possible ranking order. EWN values allow for
an apples-to-apples comparison of sequence rank-
ings. If there are two sequences X1 and X2, then
EWN(X1) > EWN(X2) implies that the order-
ing in X1 is better than X2, and this holds even
if the sequences differ in length or the fraction of
non-preferential content. Here, better means less
harmful content shown early on.

B Additional Details on the Dataset

In this section, we provide some additional infor-
mation about the datasets used in our experiments.
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B.1 YouTube Harms Dataset

The Harmful YouTube Dataset (Jo and Wojcieszak,
2025) consists of metadata (title, transcript, de-
scriptions) from 19, 422 YouTube videos. These
were systemically collected using three approaches
(i.e., keyword-based, channel-based, and external
dataset integration). The videos were labeled by
domain experts and crowdworkers as harmful or be-
longing to one or more categories of harm. The six
harm categories include: information harm, hate
and harassment, addictive, clickbait, sexual, and
physical harms (developed based on prior work and
platform guidelines). The details on the harm cat-
egories, data collection, labeling, reliability, and
other aspects of this dataset are provided in (Jo
et al., 2024; Jo and Wojcieszak, 2025). The data
collection and annotation was IRB-approved and
followed the best practices so as to minimize harm
to human subjects.

B.2 Jigsaw Toxicity Dataset

The Jigsaw Unintended Bias in Toxicity Classifi-
cation dataset (Jigsaw, 2019) was developed to ad-
dress the challenge of unintended bias in machine
learning models tasked with detecting toxic con-
tent. This dataset, also released as part of a Kaggle
competition, contains over 1.8M comments from
the Civil Comments platform, each labeled for toxi-
city by human moderators. In addition to a primary
binary toxicity label, the dataset includes auxiliary
labels indicating whether the comment contains
identity-based mentions (e.g., referencing a partic-
ular race or gender).

B.3 DLab Hate Speech Dataset

The DLab Hate Speech Dataset (D-Lab, 2022) con-
sists of 50, 070 social media comments collected
from platforms like YouTube, Reddit, and Twitter.
These comments were annotated by 11, 143 crowd-
workers, primarily sourced from Amazon Mechan-
ical Turk. Each comment was evaluated across 10
ordinal labels that capture various aspects of hate
speech, including sentiment, disrespect, insult, and
dehumanization, among others. Each comment is
annotated by several moderators and assigned a
hate speech score. For our experiments, we ag-
gregated the scores by comment and considered
the median score to assign a binary label to each
comment.

C LLM Prompts

In this section, we describe the prompts we used
for each of the approaches presented in Section 3.3.

C.1 Zero Shot

Read the following texts, A and B.
Text A: «Text A goes here»
Text B: «Text B goes here»
Which of these two is more harmful? Respond in
the form Response=X, where X is one of A, B or
NONE.

C.2 Zero-Shot + Prompt Engineering

Read the following texts, A and B.
Text A: «Text A goes here»
Text B: «Text B goes here»
We define harm as content belonging to the follow-
ing categories:

• Information Harms (e.g., Fake news, Conspir-
acy theories, Unverified medical treatments,
Unproven scientific myths)

• Hate and Harassment Harms (e.g., Insult, ob-
scenities, Identity attacks or misrepresenta-
tion, Hate speech based on gender, race, reli-
gion, disability, sexual orientation)

• Addictive Harms (e.g Game play, Drug pro-
motion, Gambling videos and gambling pro-
motion)

• Clickbaitive Harms (Clickbait titles - us-
ing exaggerated words, such as "top 10",
"best/most", how to", "hacks", get-rich-quick
schemes and financial scams, Gossip about
celebrities)

• Sexual Harms (e.g., Erotic clips extracted
from non-pornographic films, Depiction of
sexual acts, such as sex and groping, Depic-
tion of clothed or unclothed genitals, breasts,
or buttocks)

• Physical Harms (e.g, Self-injury, Eating dis-
order promotion, Potentially dangerous chal-
lenges and pranks, Violent content)

Based on this definition of harm, which of the two
texts (A or B) is more harmful? Respond in the form
Response=X, where X is one of A, B or NONE.
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C.3 Few-Shot ICL

In this approach, our prompt is in the form of a
multi-dialogue conversation. The OpenAI API al-
lows us to establish prior knowledge by providing a
series of dialogues between the user and the LLM.
As fitting exemplars in a single problem can prove
challenging, we use a multi-step prompt here, as
follows.
User: Below are N examples of content that we
consider harmful, separated by ten ’=’ symbols.
Exemplar 1
==========
Exemplar 2
==========
.
.
.
==========
Exemplar N
System: Based on these examples, I understand
what constitutes harmful content.
User: Read the following texts, A and B.
Text A: «Text A goes here»
Text B: «Text B goes here»
Based on the definition of harm you have learned
from the samples provided, which of the two texts
(A or B) is more harmful? Respond in the form
Response=X, where X is one of A, B or NONE.

D Detailed Results

In this section, we present our detailed results.
These results form the basis of Figure 2.

D.1 Top-Pref-k (TPk)

The TPk metric measures user exposure to prefer-
ential content by calculating the fraction of content
deemed preferential in the first k items of the se-
quence. This metric directly addresses the impact
of the initial content a user encounters, which is
often decisive in shaping user experience and per-
ception. Given that our sequences are of 20 videos,
we limit our analyses to TP5 and TP10, as they
represent the first two quartiles of videos watched.
Mean TP5 and TP10 values are shown in Tables 1
and 2 respectively.

Table 1: TP5 values for constraint specification ap-
proaches. Columns represent the percentage of harmful
videos in the sequence. PE→ Prompt Engineering.

Configuration 10 20 30 40 50
Original 0.705 0.740 0.727 0.732 0.748

OpenAI Moderation 0.830 0.806 0.812 0.789 0.787
Perspective 0.810 0.754 0.780 0.742 0.757
Zero-Shot 0.855 0.905 0.854 0.870 0.849

Zero-Shot + PE 0.885 0.918 0.869 0.870 0.855
Few-Shot ICL 0.905 0.903 0.872 0.866 0.861

Table 2: TP10 values for constraint specification ap-
proaches. Columns represent the percentage of harmful
videos in the sequence. PE→ Prompt Engineering.

Configuration 10 20 30 40 50
Original 0.485 0.507 0.471 0.471 0.500

OpenAI Moderation 0.620 0.600 0.587 0.571 0.581
Perspective 0.575 0.522 0.540 0.505 0.535
Zero-Shot 0.730 0.755 0.687 0.695 0.664

Zero-Shot + PE 0.770 0.778 0.710 0.699 0.667
Few-Shot ICL 0.770 0.785 0.712 0.707 0.681

D.2 Per-Pref-k (PPk)

We focus our analysis on PP1−3, as they represent
the amount of content needed to be watched to
reach up to at most the third harmful video, which
we believe is a practical limit considering the
length of our sequences. The PP1, PP2 and PP3
values represent the fraction of the sequence that
can be consumed before encountering the first,
second and third harmful video(s), respectively.
Similar to TPk values, the PP1 − 3 values also
demonstrate the effectiveness of LLM-based
approaches over traditional classifier-based
methods.

Table 3: PP1 values for constraint specification ap-
proaches. Columns represent the percentage of harmful
videos in the sequence. PE→ Prompt Engineering.

Configuration 10 20 30 40 50
Original 0.322 0.195 0.143 0.111 0.094

OpenAI Moderation 0.463 0.267 0.205 0.135 0.101
Perspective 0.415 0.208 0.173 0.111 0.101
Zero-Shot 0.536 0.404 0.252 0.201 0.146

Zero-Shot + PE 0.565 0.411 0.269 0.193 0.152
Few-Shot ICL 0.586 0.422 0.268 0.212 0.159

Table 4: PP2 values for constraint specification ap-
proaches. Columns represent the percentage of harmful
videos in the sequence. PE→ Prompt Engineering.

Configuration 10 20 30 40 50
Original 0.704 0.417 0.292 0.228 0.183

OpenAI Moderation 0.787 0.503 0.372 0.269 0.212
Perspective 0.742 0.429 0.318 0.240 0.196
Zero-Shot 0.883 0.651 0.452 0.381 0.296

Zero-Shot + PE 0.904 0.682 0.485 0.381 0.304
Few-Shot ICL 0.901 0.685 0.490 0.382 0.306
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Table 5: PP3 values for constraint specification ap-
proaches. Columns represent the percentage of harmful
videos in the sequence. PE→ Prompt Engineering.

Configuration 10 20 30 40 50
Original - 0.653 0.421 0.339 0.279

OpenAI Moderation - 0.733 0.522 0.414 0.34
Perspective - 0.662 0.492 0.364 0.303
Zero-Shot - 0.834 0.650 0.523 0.418

Zero-Shot + PE - 0.861 0.661 0.529 0.439
Few-Shot ICL - 0.873 0.662 0.534 0.428

D.3 EWN

The EWN metric and it’s importance have already
been described in great detail in Appendix A. The
EWN metric measures the effectiveness of these
configurations in prioritizing non-harmful content
by applying exponentially decaying weights to con-
tent ranks, with the results normalized to a scale
from 0 to 1. Higher EWN values indicate better per-
formance in maintaining a sequence of preferred
content. In Table 6, we present EWN values for
each constraint specification approach across vari-
ous harm percentages.
Table 6: EWN values for constraint specification ap-
proaches. Columns represent the percentage of harmful
videos in the sequence. PE→ Prompt Engineering.

Configuration 10 20 30 40 50
Original 0.874 0.785 0.710 0.589 0.487

OpenAI Moderation 0.898 0.838 0.760 0.656 0.547
Perspective 0.907 0.804 0.738 0.603 0.528
Zero-Shot 0.933 0.918 0.842 0.801 0.705

Zero-Shot + PE 0.953 0.941 0.850 0.779 0.737
Few-Shot ICL 0.944 0.935 0.864 0.812 0.720

D.4 In-Context Learning

We also study how the performance of preference-
based re-ranking varies with the number of exem-
plars. Table 7 and Figure 3 show the performance
of ICL-based prompting with varying number of
exemplars.
Table 7: Metrics for variations in the number of exem-
plars provided as part of ICL.

N TP5 TP10 EWN PP1 PP2 PP3
4 0.930 0.775 0.953 0.423 0.689 0.853
8 0.887 0.760 0.913 0.399 0.676 0.865

12 0.885 0.780 0.914 0.406 0.682 0.863
16 0.895 0.775 0.910 0.403 0.676 0.859
20 0.903 0.785 0.935 0.422 0.685 0.873

D.5 Results Across LLM Architectures
Table 8: Results of LLM-based re-ranking using Mistral-
7B.

Configuration TP5 TP10 PP1 PP2 PP3 EWN
Original 0.727 0.471 0.143 0.292 0.421 0.710

OpenAI Moderation 0.812 0.587 0.205 0.372 0.522 0.760
Perspective 0.780 0.540 0.173 0.318 0.492 0.738
Zero-Shot 0.805 0.581 0.187 0.366 0.529 0.783

Zero-Shot + PE 0.753 0.550 0.166 0.332 0.499 0.742
Few-Shot ICL 0.818 0.645 0.217 0.407 0.583 0.824

Table 9: Results of LLM-based re-ranking using
Llama2-13B.

Configuration TP5 TP10 PP1 PP2 PP3 EWN
Original 0.727 0.471 0.143 0.292 0.421 0.710

OpenAI Moderation 0.812 0.587 0.205 0.372 0.522 0.760
Perspective 0.780 0.540 0.173 0.318 0.492 0.738
Zero-Shot 0.778 0.545 0.178 0.324 0.489 0.742

Zero-Shot + PE 0.746 0.521 0.137 0.304 0.466 0.631
Few-Shot ICL 0.751 0.541 0.150 0.309 0.489 0.684

D.6 Results Across Datasets
Table 10: Results on the Jigsaw toxicity dataset.
LLM-based re-ranking improves content sequences and
achieves performance comparable to baselines.

Configuration TP5 TP10 PP1 PP2 PP3 EWN
Original 0.758 0.521 0.158 0.325 0.474 0.704

OpenAI Moderation 0.975 0.895 0.501 0.647 0.764 0.988
Perspective 0.995 0.980 0.671 0.781 0.842 0.990
Zero-Shot 0.953 0.818 0.398 0.587 0.702 0.962

Zero-Shot + PE 0.973 0.830 0.433 0.603 0.719 0.982
Few-Shot ICL 0.933 0.816 0.386 0.590 0.716 0.939

Table 11: Results on the DLab hate speech dataset.
LLM-based re-ranking improves content sequences and
outperforms both baselines.

Configuration TP5 TP10 PP1 PP2 PP3 EWN
Original 0.738 0.488 0.157 0.307 0.442 0.69800

OpenAI Moderation 1.000 0.995 0.681 0.766 0.827 0.99990
Perspective 0.998 0.988 0.655 0.747 0.819 0.99470
Zero-Shot 1.000 1.000 0.697 0.777 0.839 0.99993

Zero-Shot + PE 1.000 0.998 0.695 0.773 0.837 0.99992
Few-Shot ICL 1.000 0.998 0.695 0.770 0.834 0.99991

E Code and Reproducibility

Our code and the data used are available at the
following repository: https://github.com/rvo
ak/harm-ranking-llm/.
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