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Abstract

We present a hierarchy of natural language un-
derstanding abilities and argue for the impor-
tance of moving beyond assessments of under-
standing at the lexical and sentence levels to
the discourse level. We propose the task of
anaphora accessibility as a diagnostic for as-
sessing discourse understanding, and to this
end, present an evaluation dataset inspired by
theoretical research in dynamic semantics. We
evaluate human and LLM performance on our
dataset and find that LLMs and humans align
on some tasks and diverge on others. Such di-
vergence can be explained by LLMs’ reliance
on specific lexical items during language com-
prehension, in contrast to human sensitivity to
structural abstractions. Dataset and code: �.

1 Introduction

The success of modern large language models
(LLMs) depends on their capacity for natural lan-
guage understanding (NLU), i.e., the ability to ex-
tract the semantic information contained in a text.
Systematic assessment of NLU abilities has been
carried out using a diverse set of evaluation tasks,
but few of them target whether LLMs accurately
represent and update states of natural language dis-
course. Successful interpretation of discourse re-
quires the ability to use pronominal expressions to
refer to entities that have been introduced in a text.

The felicity of pronominal anaphora, i.e., us-
ing pronouns to refer back to discourse referents
introduced earlier, is influenced by the semantic
scope of the antecedent:

(1) {A, #Every} farmer worked in his field. He
dreamed of the harvest.

Example (1) shows that an entity introduced by
an existential quantifier is accessible in the same
sentence, as well as in subsequent sentences. In

*Equal contribution.

A farmer worked in his field. He dreamed of the harvest.

Every farmer worked in his field. He dreamed of the harvest.#farmer

farmer

He

He

Quantifier scopeDiscourse entity Anaphora
Infelicitous because outside of scope 

his

his

Figure 1: Quantifier scope and its impact on anaphora.

contrast, entities introduced by universal quanti-
fiers are only accessible to pronouns in the same
sentence; anaphora is infelicitous otherwise. This
is illustrated in Figure 1: the discourse referent is
subordinated to the universal quantifier — that
is, inaccessible outside its scope, which extends to
the end of the first sentence in the sequence. This
makes subsequent reference to he in the second
sentence infelicitous.

The process of introducing discourse referents is
formalized in “dynamic” variants of formal seman-
tics (e.g., Heim, 1983; Groenendijk and Stokhof,
1991; Kamp et al., 2010). In dynamic semantics, ut-
terances precipitate changes in the discourse state,
for example by introducing discourse referents.
This gives rise to notions of discourse or textual
scope which differentiate (e.g.) existential and uni-
versal quantifiers, in line with Figure 1.

Here, we focus on one aspect of discourse-level
semantic knowledge, namely the fine-grained in-
teractions between semantic scope and referent ac-
cessibility. We investigate whether LLMs demon-
strate knowledge of the semantic scope properties
of various quantifiers and logical connectives, and
whether this knowledge is used to generate and up-
date representations of discourse states in human-
like ways.

Contribution We make the following contribu-
tions:

• In Section 2, we propose a hierarchy of lev-
els of semantic understanding abilities, which
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Level 1: Lexical Level Understanding:    
a word’s extension and intension
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coherent sentential meaning
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Discourse
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Tracking; Discourse Parsing…

Natural Language Inference; 
Pragmatic Inference; Scope 

Ambiguity…

Word Sense Disambiguation; 
Taxonomy Construction; Lexical 
Entailment; Analogical Relation…

Figure 2: Proposed hierarchy of levels of semantic understanding abilities.

can serve as a guideline for characterizing the
kinds of semantic knowledge that LLMs have.

• In Section 3, we propose an evaluation dataset
covering discourse anaphora across a variety
of linguistic constructions, all of which re-
quire sensitivity to the way in which the form
of language determines the ways discourse
states are implicitly updated in natural dis-
course.

• In Sections 4 through 7, we evaluate both
LLMs and humans with our dataset, and un-
cover intriguing patterns where human and
model behavior align and differ.

2 Levels of Semantic Understanding

Figure 2 illustrates three different levels of natu-
ral language understanding: (i) lexical level, (ii)
sentential level, and (iii) discourse level. Semantic
competence, we propose, requires knowledge of
all of these. We discuss each one in detail and re-
view existing work that has tried to evaluate LLM
capacities at that level.

2.1 Lexical Level

We define lexical level understanding as knowing
the meaning of individual lexical items. This
requires knowledge of a word’s extension (the ob-
jects in the world that a word picks out) and its
intension (the objects it would pick out if the world
were different). Such knowledge allows a com-
petent speaker to make judgments of synonymy,
antonymy, entailment and the like. In LLMs, lex-
ical knowledge corresponds to vector representa-
tions of individual tokens.

Moskvoretskii et al. (2024) summarizes a range
of Natural Language Understanding (NLU) tasks
that assess lexical level understanding: Word Sense
Disambiguation, Hypernym Discovery, Taxonomy
Construction, Lexical Entailment, etc. Another

test of lexical semantic understanding derives from
the analogical reasoning tests explored by Mikolov
et al. (2013), where word meaning is needed to
complete analogies such as man:king as woman:X.
All of these tasks rely on knowledge of word mean-
ing that is independent of the effects on mean-
ing that derive from the composition of words in
phrases and sentences.

2.2 Sentence Level

On top of the building blocks provided by lexical
understanding, sentence understanding is the abil-
ity to integrate lexical meanings in phrases and
to form coherent semantic representations for
sentences. Traditionally, sentence-level meaning
is identified with truth conditions and encoded us-
ing a logical formalism with a rigorously defined
semantics (e.g., Heim and Kratzer, 1998).

A model’s capacity to encode the truth condi-
tions of single sentences is implicated in impor-
tant NLU tasks such as Natural Language Infer-
ence (NLI), which requires LLMs to form accu-
rate meaning representations for two sentences and
classify their logical relations as entailment, contra-
diction, or neutral (Williams et al., 2018). Similar
evaluation tasks have been created for pragmatic
inferences, targeting implicature and presupposi-
tion (Jeretic et al., 2020). These works investigate
meaning representations of pairs of minimally dif-
ferent sentences, either with respect to logical re-
lations or pragmatic relations, without the need to
connect the two sentences in sequential order or
track changes at the discourse level. Another type
of work at the sentence level involves ambiguities,
such as scope ambiguity (e.g., Kamath et al., 2024):
a single sentence with multiple quantifiers might
allow different interpretations given specific scopal
arrangements between the quantifiers.
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2.3 Discourse Level

We define discourse level understanding as the abil-
ity to integrate the meaning of consecutive sen-
tences into a unified discourse representation.
Discourse-level meaning requires moving beyond
formalisms that express meaning as a static repre-
sentation of truth conditions to dynamic formalisms
in which meaning accrues via update to a contex-
tual representation or state.

One type of task that probes discourse level un-
derstanding is discourse parsing (e.g., Maekawa
et al. 2024), which evaluates the ability of a model
to determine the relationships between sentences,
such as elaboration, attribution, etc. While infor-
mative, this task requires the adoption of specific
assumptions about the structure and categories that
determine discourse relations.

An alternative, more theory-neutral evaluation
considers the accumulation of information through
a discourse. Li et al. (2021) examined the tracking
of the state of individuals and situations across a
text. They probed the internal representations of
encoder-decoder transformers and found localiz-
able, interpretable structures, supporting the claim
that pretrained language models implicitly simu-
late entity tracking processes dynamically. Kim
and Schuster (2023) extended the paradigm in Li
et al. (2021) by removing the potential shortcuts
that models can use in inferring the states of dis-
course entities. This line of work uses natural lan-
guage to explicitly describe the initial state of a
situation as well as each subsequent change in the
state (e.g. Box 1 contains the book. Box 2 contains
the apple.... Move the book into Box 2...), thereby
functionally similar to the core idea of dynamic
semantics. However, because of the simplicity of
the language involved, this task did not probe sen-
sitivity to the specific lexical items and syntactic
structures that impact the evolution of discourse
state.

Davis and Altmann (2021) took a different per-
spective and investigated the extent to which event
representations propagate forward through the hid-
den states of recurrent neural networks (RNNs),
with an emphasis on state change information in-
duced by natural language lexical items. They
used Representation Similarity Analysis (RSA,
Kriegeskorte et al., 2008) to compare the relevant
hidden states in RNNs and found that RNNs cap-
ture the extent to which subjects and objects change
states as well as the temporal order between state

changes. This is one first piece of evidence of the
dynamic state changes at the discourse level in neu-
ral network models.

Another line of evaluation targets how process-
ing each sentence in a discourse impacts the entities
that can be discussed, the task of discourse entity
recognition (Schuster and Linzen, 2022; Zhu and
Frank, 2024). Schuster and Linzen examine sensi-
tivity to the scope of negation at the discourse level:
an indefinite in the scope of negation should not
introduce an entity that can be referred to outside
the negation’s scope. They found that while LLMs
indeed exhibit such sensitivity, their performance
is not systematic. Zhu and Frank (2024) extended
their paradigm by increasing the types of test items,
which allows for the evaluation of the semantic
properties that govern discourse entity introduction
and reference. However, both Schuster and Linzen
(2022) and Zhu and Frank (2024) only evaluated
LLMs on sentences of a rather simple structure,
such as John owns a dog but Mark does not own a
dog, which only considers negation as the operator
that interacts with discourse entities. This gap in
the literature calls for a more comprehensive evalu-
ation of other operators (such as existentials, uni-
versals, conditionals, and disjunctions) that interact
with discourse entities, as in the present study.

3 Evaluating Discourse-level Meaning
Representation: Case Study on
Anaphora (In)accessiblity

As discussed in the previous section, existing work
on the evaluation of LLMs’ discourse level seman-
tic understanding leaves unexplored the implica-
tions of the fine details of semantic composition
and scope on the representation of discourse con-
text. As we elaborate below, the scopal properties
of quantifiers and logical connectives that are de-
termined by sentence level semantic interpretation
play a significant role in discourse level interpreta-
tion: depending on the semantic operator, they may
license discourse entities only within their scope.
We exploit such patterns of anaphora as a case
study for diagnosing sensitivity to the structure-
sensitive aspects of the discourse state-updating
process. Thus, our work provides another way of
studying LLMs’ state-tracking ability, through at-
tention to the linguistic details of the discourse as
opposed to the world model consequences of the
actions described in a discourse.
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The farmer owns a donkey, and he beats it. It is a big one.

If the farmer owns a donkey, he beats it. It is a big one.#donkey

donkey

Quantifier scopeDiscourse entity Anaphora
Infelicitous because outside of scope 

It

It

it

itThe farmer owns 

If the farmer owns 

Figure 3: Illustration of anaphora accessibility in donkey
conditionals.

3.1 Constructions
We consider three operators whose scope plays
a significant role in licensing discourse anaphora:
universal quantifiers, negation, and disjunction.

3.1.1 Universal Quantifiers
Every The first case of anaphora (in)accessiblity
that we consider is the universal quantifier. We
start with a simple example, which contrasts the
behavior of sentences whose subjects involve the
quantifiers a and every.

(2) a. EXISTENTIAL: A farmer worked in the
field.

b. EVERY: #Every farmer worked in the
field.

c. CONTINUATION: He dreamed of the har-
vest.

As shown in Figure 1, (2c) is felicitous following
(2a), but not following (2b). This is because the
semantic scope of the existential quantifier extends
indefinitely to the right, but the pronoun he in (2c)
is outside the scope of the universal quantifier in
(2b).* In sum, the scope of universal quantifiers
serves as a boundary for anaphoric accessibility.
An LLM capable of discourse level understanding
should therefore accurately represent the effects
on the discourse context of examples like (2b) and
reject the infelicitous continuation (2c).

Donkey Conditionals A more complex case of
anaphora accessibility is known as “donkey con-
ditionals” in the dynamic semantics literature
(Kanazawa, 1994). In such cases, a discourse en-
tity is introduced via an existential quantifier in
the antecedent of a conditional. In such cases, the
indefinite licenses pronouns in the conditional’s
consequent, but not in subsequent sentences. We
consider 3 cases: two types of conditional sen-
tences, namely if and whenever conditionals, and

*Infelicitous examples are usually marked as # by linguis-
tics conventions. However, we use # to indicate the infelicity
of a sentence specifically in the context of the provided con-
tinuation.

conjoined sentences with an existential object in
the first conjunct.

(3) a. EXISTENTIAL (Exi): John owns a don-
key, and he beats it.

b. CONDITIONAL (Cond): #If John owns a
donkey, he beats it.

c. WHENEVER (When): #Whenever John
owns a donkey, he beats it.

d. CONTINUATION (Cont): It is a big one.
Such cases can be assimilated to the quantifier
cases discussed above, if we assume the conditional
clauses implicity introduce a universal quantifier
that is not directly tied to a lexical quantifier (see
Figure 3). Assuming this to be the case, the pro-
noun it in (3d) is outside the scope of the implicit
universal quantifier in (3b) and (3c), rendering the
continuation (3d) infelicitous. The same continu-
ation, however, is acceptable in (3a) for the same
reasons as (2a). Thus, determining that this contin-
uation sentence is infelicitous after (3b) and (3c) re-
quires accurate processing of the context sentence
in preparation for the continuation and subsequent
integration, which is exactly what we define as
understanding at the discourse level.

3.1.2 Negation
Negation is another logical connective that modu-
lates anaphora accessibility—in general, it is im-
possible to refer back to discourse referents that
are introduced within its scope. However, double
negation is an exception (see Hofmann 2024 for
discussion and references).

(4) a. EXISTENTIAL (Exi): The farmer owned
a cow.

b. NEGATION (Neg): #The farmer didn’t
own a cow.

c. DOUBLENEGATION (DN): It was not the
case that the farmer didn’t own a cow.

d. CONTINUATION (Cont): (In fact,) It was
(just) away on the meadow.

Consider the four conditions (4a-c) with negation,
each followed by the same continuation (4d). As
is analyzed by Hofmann and illustrated in Figure
4, the local context of the cow referent in DOU-
BLENEGATION is veridical, and the speaker is
committed to the existence of a cow owned by
the farmer. In other words, two negations cancel
each other out. Thus, EXISTENTIAL is semanti-
cally equivalent to DOUBLENEGATION, and both
of them license the anaphoric it in CONTINUA-
TION. In contrast, no discourse referent of a cow
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The farmer owned a cow.cow

ScopeDiscourse entity Anaphora
The farmer didn’t own a cow.cow ItIt was away on the meadow.#

It was not the case that the farmer didn’t own a cow.cow

It was away on the meadow.It

Figure 4: Illustration of anaphora accessibility in nega-
tion cases.

ScopeDiscourse entity Anaphora

There is no bathroomThere is no manuscript There is no bathroom[There is a manuscript, and]

It was hidden by the librarian.

There is no disjunction

There is no manuscript There is no manuscript
It

Not possible for conjunction
❌

Figure 5: Illustration of anaphora accessibility in dis-
junction cases.

exists outside the scope of negation in NEGATION,
which makes it an infelicitous context for the subse-
quent anaphora. Here, we examine whether LLMs
know the semantic scope of negation and whether
negation’s inaccessibility can be reversed in double
negation contexts.

3.1.3 Disjunction
Negation within disjunctions adds another layer
of complexity to anaphora accessibility. Evans
(1977) observes that discourse referents introduced
through existentials within a first disjunct do not
license anaphora in the second disjunct. Surpris-
ingly, however, a discourse referent introduced with
a negative quantifier in a first disjunct does. We see
this contrast in the first two examples of (5):

(5) a. EITHERPOSOR: #Either there was a
manuscript, or it was hidden by the li-
brarian.

b. EITHEROR: Either there was no
manuscript, or it was hidden by the li-
brarian.

c. OR: There was no manuscript, or it was
hidden by the librarian.

d. CONJUNCTION: #There was no
manuscript, and it was hidden by the
librarian.

(5c) demonstrates that the presence or absence of
the lexical item either to introduce the disjunct
does not have any impact on the discourse seman-
tics. Finally, (5d) shows that negative quantifiers
in conjunction do not have similar effects. These
accessibility patterns are summarized in Figure (5).

3.2 Experiment Design

Model We investigated the performance of four
open-source LLMs (Llama3-2-1B, Llama3-2-3B,
Llama3-1-8B and Llama3-1-8B-Instruct
(Dubey et al., 2024)), and two closed-source
LLMs (GPT babbage-002 and davinci-002) on
our constructed dataset through the Huggingface
transformer API (Wolf et al., 2019) and the
OpenAI API, respectively. We also investigated
the performance of GPT-4o (OpenAI et al., 2024)
with the prompt-based method with no access to
logits, and we report the results in Section 7.

Human Experiment To establish a human base-
line for models’ performance, we recruited 104
participants over Prolific. Each participant did 66
forced-choice trials, with 22 experimental items
and 44 fillers. In each trial, participants were visu-
ally presented with 2 minimally different sentences
on the screen, and they were asked to choose the
more acceptable sentence from the pair. See Ap-
pendix A for more details on our experiment design.
Human results are presented in the following sec-
tions along with language model performance.

Corpus Experimental stimuli were generated
from a set of structural templates containing the
target constructions. For each experiment, we man-
ually constructed 32 semantically plausible simple
sentence frames with the help of GPT-4o (Ope-
nAI et al., 2024), following the example sentences
shown in Section 3.1. Test sentences were then
manually inspected by linguistics experts to ensure
semantic plausibility and (un)acceptability. This
yields a set of 9816 sentences in total. See Ap-
pendix B for more details on dataset construction.

Metrics We adopt the evaluation paradigm in
Futrell et al. (2019) that considers LLMs as psy-
cholinguistic subjects. That is, for each evaluated
sentence, we take the surprisal (i.e., the negative
log probability) assigned by the model to individual
tokens, defined in Equation 1:

surprisal(wi) = log
1

P (wi|w1, ..., wi−1)
(1)

The total probability the model assigns to a sen-
tence or part of a sentence is obtained by taking
the sum of surprisal(wi) for each target token wi.
The surprisal values serve as the base measurement
for the analyses of each individual experiment de-
scribed in the following sections.
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Figure 6: LLMs’ performance on the comparisons involving existential vs. universal quantifiers. In the figures of
this paper, > signs indicate degrees of felicity from theoretical predictions. For example, exi>every, the label
for the leftmost panel, means that EXISTENTIAL should be more felicitous than EVERY sentences in the relevant
comparison. Such felicity preference is determined by whether models exhibit the inequality shown in equation (5).

4 Experiment 1: Universal

In this section, we present models’ performance on
anaphora accessibility with regard to the universal
quantifier as discussed in Section 3.1.1. Here, we
compare model performance with the theory-driven
contrasts in Section 3. One could also directly com-
pare LLM and human behavior, which we discuss
in Appendix C.

In general, given different context sentences and
the same continuation, we expect models to assign
a higher conditional probability to the continuation
given a context in which it is felicitous than an-
other context in which it is infelicitous. In other
words, we expect the following inequalities to hold
if LLMs exhibit discourse level understanding abil-
ities with regard to universal quantifiers.

p(Cont|Exi) > p(Cont|Every) (2)

p(Cont|Exi) > p(Cont|Cond) (3)

p(Cont|Exi) > p(Cont|When) (4)

However, one problem about this measure is that
it is too lenient – although continuations such as
(2c) are infelicitous after (2b), it should become
felicitous if he is instead embedded inside the scope
of (2b), such as the contrast below.

(6) a. CROSSSEN: Every farmer worked in the
field. #He dreamed of the harvest.

b. SINGLESEN: Every farmer worked in the
field before he dreamed of the harvest.

Therefore, we would expect models to assign a
higher probability to (6b) than (6a). Importantly,
the contrast in example (6) does not exist for their
counterparts with the existential quantifier—we
would expect a smaller difference in probability
between them if the LLMs that we tested have
good discourse level understanding abilities. Thus,
instead of using equations (2), (3), and (4) as our

metric, we adopt the difference-of-difference met-
ric with the general form shown in (5). We binarize
the comparison of each trial by recording whether
the inequality holds in the predicted direction.

p(∃-SINGLESEN)− p(∃-CROSSSEN)

<

p(∀-SINGLESEN)− p(∀-CROSSSEN)

(5)

Results As is shown in Figure 6, all models show
above chance performance for the expected inequal-
ity in equation (5). Specifically, for the simple com-
parison between EXISTENTIAL and EVERY (left-
most panel in Figure 6), we found that the Llama
family models that we tested achieved higher accu-
racy (around 75%) than babbage and davinci in
the GPT family, while humans scored even higher
at ceiling. In the other two comparisons where the
universal quantifier is implicitly encoded through
CONDITIONAL and WHENEVER, it is the LLMs
that score at ceiling. In contrast, humans had lower
accuracy but still performed above chance. This
pattern indicates that the LLMs we examined know
the scope of the discourse entity introduced within
the universal quantifier and that it is infelicitous to
refer back to such entities outside of the scope.

In addition to the continuation in (3d) that starts
with the discourse bound pronoun it, for the com-
parisons exi>if and exi>whenever, we also con-
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exi>if exi>whenever
Comparison Type

%
 E
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model
babbage davinci Llama3−2−1B

Llama3−2−3B Llama3−1−8B Llama3−1−8B−Instruct

human

Figure 7: Model performance on he-continuations for
exi>if and exi>whenever.
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sidered a variant where the continuation starts with
a uniformly felicitous he and the discourse bound
pronoun it is in object position, such as He also
feeds it. Given our framing of the anaphora ac-
cessibility task, there should not be a difference
between he-continuations and it-continuations—
they should both be infelicitous given a preceding
CONDITIONAL or WHENEVER context. Results
on this variant are shown in Figure 7. Interest-
ingly, there is a striking contrast between human
and models’ performance. While models continue
to exhibit the preference for EXISTENTIAL over
CONDITIONAL and WHENEVER, humans actually
prefer the universal counterparts for donkey con-
ditionals, which is not predicted in the literature.
We believe that this discrepancy could be due to
an effect called telescoping (Roberts, 1989). The
intuition is that humans have the tendency to inter-
pret he-continuations as being subordinated under
the scope of CONDITIONAL or WHENEVER, which
makes he-continuations more felicitous than they
should be. In comparison, it-continuations are less
likely to be interpreted in a subordinated way. One
potential factor that might explain the aforemen-
tioned tendency is subject bias: since the farmer
is the subject of the context sentence, it is more
saliently represented in the discourse. Therefore,
humans are more likely to refer back to it in the
continuation using he (Grosz et al., 1995). In sum,
the models’ success on this dataset shows their
knowledge of the difference between universal and
existential quantifiers.

5 Experiment 2: Negation

As discussed in Section 3.1.2, the second construc-
tion that we are interested in is negation. Following
the reasoning there, we expect the following two
inequalities to hold if the LLMs understand the
semantic scope of negation:

p(Cont|Exi) > p(Cont|Neg) (6)

p(Cont|DN) > p(Cont|Neg) (7)

Since every pair of sentences we compare shares
the continuation but not the context sentences, we
apply the conditional probabilities metric: compare
the summed surprisal on tokens in the CONTINU-
ATION, with the concatenated context fed to the
model as a preamble.

Results As shown in the top two panels of Fig-
ure 8, all models succeed in preferring the EXIS-
TENTIAL context over NEGATION, but three of the

Exi>Neg(infact) DN>Neg(infact)

Exi>Neg DN>Neg

0.00
0.25
0.50
0.75
1.00
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%
 E
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ec

te
d

model
babbage davinci Llama3−2−1B

Llama3−2−3B Llama3−1−8B Llama3−1−8B−Instruct

human

Figure 8: Model performance in Experiment 2.

models struggle to favor DOUBLENEGATION over
NEGATION. In particular, the two Llama3-1-8B
models show a preference of NEGATION over DOU-
BLENEGATION, which is the reverse of what is ex-
pected. Human results, on the other hand, are high
in Exi>Neg and exhibit a similar decrease from
Exi>Neg to DN>Neg, but both are reliably above
chance. The most straightforward way to inter-
pret these results is that the LLMs have trouble
understanding that EXISTENTIAL is equivalent to
DOUBLENEGATION in terms of their power in li-
censing subsequent anaphora to discourse referents
introduced within their scopes. However, another
hypothesis is that DOUBLENEGATION is dispre-
ferred not because the LLMs failed to learn dou-
ble negation elimination, but simply because DOU-
BLENEGATION sentences have a more complex
(and presumably less frequent) structure than its
EXISTENTIAL counterpart.

Influence of Specific Lexical Items To test this
hypothesis, we considered a variant of the test sen-
tences by adding the phrase in fact to the beginning
of each continuation sentence and computed ac-
curacy using the same inequalities as in (6) and
(7). The intuition is that adding this phrase sets
up a contrast relation that could help the models to
process DOUBLENEGATION sentences to a larger
degree than to process EXISTENTIAL ones. If the
low accuracy that we observed for the DN>Neg com-
parison is due to lexical-level factors, we would
expect an increase in accuracy in the variants. In
contrast, if models failed to learn the difference
between double negation and negation completely,
the accuracy of the variants would remain low.

Results are shown in the bottom two panels of
Figure 8. Compared to the base case, adding in fact
does help to lift the accuracy for the DN>Neg com-
parison, as most models now have a stronger pref-
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Figure 9: Model performance in Experiment 3.

erence of DOUBLENEGATION over NEGATION.
However, adding in fact also flips the direction of
the Exi>Neg comparison, as all models now favor
NEGATION over EXISTENTIAL sentences. In con-
trast, human patterns remain stable regardless of
the addition of in fact: they still show a clear pref-
erence for EXISTENTIAL and DOUBLENEGATION

over NEGATION.
One way to interpret the flipped result is that

the phrase in fact tends to co-occur with double
negation sentences, thereby increasing the condi-
tional probabilities of the continuation. Adding
in fact to existential sentences makes the dis-
course less coherent to process, thereby lowering
the accuracy in the Exi>Neg(infact) compari-
son. This results in the reversed DOUBLENEGA-
TION>NEGATION>EXISTENTIAL ranking by lan-
guage models, while human judgments remain con-
sistent. Although adding in fact to the continuation
does not change anaphora accessibility, the increase
that we observed here suggests that LLMs are sen-
sitive to the presence of specific lexical items and
that their performance with respect to identifying
the scope of negation is not systematic.

6 Experiment 3: Disjunction

In the last experiment, we test the constructions
presented in Section 3.1.3 with respect to disjunc-
tion. Since the sentences that we compare share
neither the context nor the continuation, we cal-
culate the Syntactic Log-Odds Ratio score (SLOR)
(Lau et al., 2017) on each sentence and compare
the SLOR scores, which is defined as:

SLOR(s) =
log pm(s)−∑

w∈s log pu(w)
|s| (8)

where for sentence s, log pm(s) represents the log
probability assigned by the model to the entire sen-
tence (which is equivalent to summing up the sur-
prisals for all tokens in s); log pu(w) represents
the unigram probability of each token w in the sen-
tence; and |s| represents the length of the sentence,

which is the number of tokens in s. Intuitively, the
SLOR score measures how much additional proba-
bility the model assigns to the sentence compared
to the same bag-of-words, which in turn represents
the well-formedness of the sentence, both syntacti-
cally and semantically. However, there is no stan-
dard on how to interpret the absolute values of the
SLOR scores. In the current study, we obtain the
estimation of the unigram probabilities by counting
the frequency of the tokens from a fragment of the
OpenWebText Corpus (Gokaslan and Cohen, 2019)
obtained from the tokenizers of the Llama3 family
and the GPT3 family, respectively.

Recall from Section 3.1.3 that OR and EI-
THEROR are felicitous, while CONJUNCTION and
EITHERPOSOR are not. Translating the judgments
to the metric, we expect the following four inequal-
ities to hold if models exhibit discourse level un-
derstanding abilities.

SLOR(OR) > SLOR(CONJUNCTION)

SLOR(EITHEROR) > SLOR(CONJUNCTION)

SLOR(OR) > SLOR(EITHERPOSOR)

SLOR(EITHEROR) > SLOR(EITHERPOSOR)

(9)

Results As shown in Figure 9, models achieved
ceiling performance for all comparisons involv-
ing EITHEROR—they demonstrate a preference
for this felicitous case over CONJUNCTION and
EITHERPOSOR, which is consistent with human
preferences. In contrast, the performance is
around chance for the or>conjunction compar-
ison, while humans show the predicted preference
pattern to a larger extent than all LMs. Strikingly,
models exhibit a preference for EITHERPOSOR

over OR (rightmost panel), which is the reverse pat-
tern of what we expect. Humans show no clear
preference in this comparison. Overall, the pattern
here repeats Experiment 2 in that LLMs’ ability to
differentiate contexts with different anaphora ac-
cessibility depends largely on lexical items and is
not systematic—although EITHEROR and OR are
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Exp. Condition GPT-4o Other Models Humans

Exp 1
exi>every 0.859 ↓ 0.766 ↓ 0.941

exi>if 0.567 ↓ 0.979 ↑ 0.802
exi>whenever 0.228 ↓ 0.966 ↑ 0.647

Exp 2

Exi>Neg 0.760 ↓ 0.696 ↓ 0.818
DN>Neg 0.781 ↑ 0.604 ↑ 0.594

Exi>Neg(infact) 0.771 ↑ 0.266 ↓ 0.729
DN>Neg(infact) 0.812 ↑ 0.745 ↑ 0.629

Exp 3

eitheror>conjunction 1.000 ↑ 1.000 ↑ 0.959
eitheror>either(pos)or 0.844 ↑ 0.997 ↑ 0.835

or>conjunction 0.875 ↓ 0.628 ↓ 0.906
or>either(pos)or 0.242 ↓ 0.273 ↓ 0.529

Table 1: A summary of the accuracy results of GPT-
4o, humans, and the mean accuracies of the models
tested in Section 4, 5, and 6. To compare logit-based
results versus prompting with human results, for each
condition, the model accuracy that is closer to (with
smaller absolute difference) the human accuracy is bold.
Arrows mark whether the models’ accuracies are below
or above the human baseline.

equivalent to each other, models’ preference largely
depends on whether there is either in the sentence.

7 Experiments on GPT-4o

In addition to the models examined in the previ-
ous sections, we are also interested in how GPT-4o
(OpenAI et al., 2024), a currently state-of-the-art
but closed-source model, performs on anaphora ac-
cessibility. Because this model does not provide
access to log probabilities, we use prompting to
get the model’s judgments on the minimal pairs.
We used the following prompt, which is maximally
similar to the instructions in our human experi-
ments, to minimize any instruction-related effects:

In this task, you will be presented with
two sentences. Your job is to select which
sentence in a pair is more acceptable by
only returning the index of the sentence:
1 or 2.

Sentence 1: {sent1}
Sentence 2: {sent2}

Which sentence is more acceptable?

The results are presented in Table 1. As a sum-
mary, we took the mean accuracies of the models
examined in the previous sections and compared
them with human accuracies. Arrows represent
whether the models’ accuracies are above or be-
low the ones for humans, and for every condition,
the accuracy that is closer to humans’ accuracy
is bold.* Overall, both logit-based and prompt-
based methods result in qualitative alignment be-

*See Appendix D for the full accuracy results and statistics
for all models.

tween humans’ and models’ preferences, as both
humans and models showed above-chance prefer-
ence for the expectation in most conditions. We do
observe several exceptions: for the exi>whenever
comparison, GPT-4o shows a strong preference for
whenever sentences while other models and hu-
mans show the opposite; for the Exi>Neg(infact)
condition, GPT-4o and humans showed a similar
preference for the expected existential sentences,
while the other models preferred the infelicitous
ones. Finally, for the or>either(pos)or condi-
tion, all models preferred the infelicitous sentences,
while humans showed around-chance preference.

The difference between logit-based and prompt-
based evaluations could be one factor for the dispar-
ity we observed between GPT-4o and other models.
Since prompting involves a text-based description
of the task we want LLMs to perform, prompting
exerts extra task burden on LLMs compared to get-
ting the logits: there is an extra cost for LLMs to
comprehend the task description and perform the
task as it is understood. Hu and Levy (2023) have
demonstrated that prompting is not a substitute for
probability measurements in LLMs, where LLMs’
metalinguistic judgments are inferior to quantities
directly derived from representations. Webson and
Pavlick (2022) also raised questions about whether
LLMs truly understand their prompts. On the other
hand, no metalinguistic judgments are needed for
the pure logit-based metrics, which, in a sense, ac-
tually results in better alignment to what we aim to
assess: LLMs’ probability judgments on minimal
pairs. The mechanisms underlying such qualitative
mismatches between logit-based and prompt-based
methods, as well as between models and humans,
remain an open question for future investigation.

8 Conclusion

In this paper, we defined a hierarchy of semantic
understanding abilities consisting of lexical, sen-
tence, and discourse levels. Filling in the gap in
the literature, we constructed an evaluation task
of anaphora accessibility that allows for a fine-
grained examination of the understanding abilities
of LLMs. Results show that our task successfully
identified places of convergence and divergence
between model and human performance, where
LLMs rely on specific lexical cues but humans
don’t. This work is one further step toward improv-
ing the discourse understanding abilities of LLMs.
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Limitations

Running the Dataset in the most recent SOTA
Models In the current study, we only tested our
datasets with a limited range of LLMs. It would
be interesting to see the performance of other state-
of-the-art language models such as GPT-4.5 and
the DeepSeek model family. Further, for the pur-
poses of comparison it would be best to evaluate
such models directly through the probabilities they
assign, but this would require access to the logits
the models assign to each token, something which
is not available for closed-source models.

Evaluating More Subtle Constructions from
Theoretical Predictions In addition to the three
classes of quantifiers and logical connectives, there
is a rich pool of linguistic constructions from the
theoretical semantics literature that involve more
complex scopal interactions that lead to other pre-
dictions about anaphora accessibility. An example
is modal subordination (e.g., Roberts, 1989, where
the scope of if -conditional sentence interacts with
modal operators. There are few empirical studies
on how humans process such sentences. Future
work could further extend our dataset to incorpo-
rate a larger variety of constructions and acquire a
human baseline.

Behavioral versus Mechanistic Level Evalua-
tions In Section 2, we reviewed related works
(Kim and Schuster, 2023; Li et al., 2021) that
explicitly investigate the state or discourse entity
tracking capability by probing the internal activa-
tion states of language models. The current study,
despite investigating the discourse updates within
natural language instead of simulating discourse
updates, remains at the behavioral level and is
empirical in nature. Developing methods that ex-
plicitly target models’ internal representations that
correlate with state-update behaviors would bring
greater interpretability and could contribute to the-
ory building. Future work could improve our under-
standing of the processing level details of models
on the current dataset by importing techniques from
mechanistic interpretability.
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A Human Experiment

We tested a total of 11 comparison types (3 in Ex-
periment 1, 4 each in Experiments 2 and 3) on
human subjects. Each comparison type includes 32
sentence pairs. In each test trial, participants were
presented with a pair of sentences in a multiple-
choice format (see Figure 10 for the experimental
interface) and were asked to click on the sentence
that they found to be more acceptable. Each par-
ticipant received 22 test items and 44 filler items,
which sum to a total of 66 trials. The filler items
were the same across participants and were selected
from BLiMP (Warstadt et al., 2020) such that for
each filler minimal pair, one of the sentences is
strictly more acceptable than the other. Therefore,
we also used filler items as attention checks. Partic-
ipants who scored below 90% accuracy on the filler
items were excluded from the final results. The
experiment was also set up such that each test item
was rated by at least 5 participants.

We used the Gorilla Experiment Builder (www.
gorilla.sc) to create and host our experiment in-
terface (Anwyl-Irvine et al., 2020), and participants
were recruited through Prolific (www.prolific.
com) under a university-approved IRB. We re-
cruited a total of 104 native speakers of English
without any language or vision-related disorders
who also currently reside in the United States. 85
of them (81.73%) passed the filler check. Each
participant filled out a consent form prior to com-
pleting the experiment. They each received a com-
pensation of $3, which is equal to an hourly rate of
$14.41.

B Dataset Construction

This section elaborates on the dataset construction
procedure described in Section 3.2. We provide
sample templates, frames, and experimental sen-
tences and refer the readers to our GitHub Reposi-
tory for the full dataset.

We created the dataset in two steps: (1) human
curation of sentence templates; (2) template filling
with content words inspired by GPT-4o (OpenAI
et al., 2024). First, we follow the dynamic seman-
tics literature in designing the sentence templates

for the three types of constructions we identified
in Section 3.1. The templates specify the kinds of
constituents needed in each type of sentence, re-
spectively. For example, an intransitive verb phrase
is needed for sentences in Experiment 1. Here is the
template for Experiment 1 that generates sentences
in (2):

• ∃-SINGLESEN: A [Noun1] [Verb1_PP] before
{he, she} [Verb2] [Verb2_PP].

• ∃-CROSSSEN: A [Noun1] [Verb1_PP]. {He,
She} [Verb2] [Verb2] [Verb2_PP].

• ∀-SINGLESEN: Every [Noun1] [Verb1_PP]
before {he, she} [Verb2] [Verb2_PP].

• ∀-CROSSSEN: Every [Noun1] [Verb1_PP].
{He, She} [Verb2] [Verb2_PP].

Then, to create multiple sentences that share the
same construction, we created 32 frames for each
template based on the constituents needed. We used
GPT-4o in this step as an inspiration for the content
words that fill into the blanks of the template. For
example, one of our prompts during the template
filling stage was: “Please give me 10 action verbs
that could be performed by a pirate”. Not all of the
verbs returned by GPT-4o are semantically natural
in our contexts, so we performed manual selection
among the results and picked out appropriate ones.
Here is the set of sentences frames we used to fill
in the templates above:

Finally, we include sample sentences for each
condition of all three experiments:

• Experiment 1: Universal versus Existential

– EXISTENTIAL-SINGLESEN: A farmer
worked in the field before he dreamed of
the harvest.

– Existential-CrossSen: A farmer worked
in the field. He dreamed of the harvest.

– Universal-SingleSen: Every farmer
worked in the field before he dreamed
of the harvest.

– Universal-CrossSen: Every farmer
worked in the field. He dreamed of the
harvest.

• Experiment 1: Donkey Conditionals

– IF-SINGLESEN: If the farmer owns a
cow, he beats it and it is a big one.
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Figure 10: Experimental interface on Gorilla with an example test item where participants were expected to click on
Sentence 2.

– IF-CROSSSEN: If the farmer owns a cow,
he beats it. It is a big one.

– WHENEVER-SINGLESEN: Whenever
the farmer owns a cow, he beats it and it
is a big one.

– WHENEVER-CROSSSEN: Whenever the
farmer owns a cow, he beats it. It is a big
one.

– EXISTENTIAL-SINGLESEN: The farmer
owns a cow, and he beats it and also feeds
it.

– EXISTENTIAL-CROSSSEN: The farmer
owns a cow, and he beats it. He also
feeds it.

• Experiment 2: Negation

– DN: It was not the case that the farmer
didn’t own a cow. It was just away on
the meadow.

– DNINFACT: It was not the case that the
farmer didn’t own a cow. In fact, it was
just away on the meadow.

– NEG: The farmer didn’t own a cow. It
was away on the meadow.

– NEGINFACT: The farmer didn’t own a
cow. In fact, it was away on the meadow.

– EXISTENTIAL: The farmer owned a cow.
It was away on the meadow.

– EXISTENTIALINFACT: The farmer
owned a cow. In fact, it was away on
the meadow.

• Experiment 3: Disjunction

– EITHEROR: Either there was no treasure,
or it was guarded by the dragon.

– EITHERPOSOR: Either there was a trea-
sure, or it was guarded by the dragon.

– OR: There was no treasure, or it was
guarded by the dragon.

– CONJUNCTION: There was no treasure,
and it was guarded by the dragon.

C Linguistics Theories vs. Performance

One of the contributions of the current paper is that
it proposes the use of dynamic semantics in evalu-
ating the discourse-level understanding abilities of
LLMs. It is important to note that dynamic seman-
tics is a theory of competence: it characterizes the
linguistic knowledge rather than how people use
and process language. The theory of dynamic se-
mantics, like other competence theories, has been
developed on the basis of a range of empirical pat-
terns discussed in the linguistics literature. While
experimental investigation has suggested that the
patterns of data used in linguistic theorizing are
stable (Sprouse et al., 2013), the semantic theories
we are considering here assume that the phenom-
ena of interest are modulated by the structure of
the sentences and do not take into account factors
such as word frequency, lexical semantic content,
or plausibility. Yet, such factors certainly do play a
role in performance, e.g., in the task of assigning
an interpretation to a sentence in real time in a spe-
cific context. Moreover, the evaluation that we have
conducted on both LLMs and humans can be plau-
sibly seen as an instance of linguistic performance:
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Figure 11: Correlation between human agreement score and LLM effect size for each LLM. Each point represents
an experimental stimuli pair.

the responses we gathered from LLMs and humans
are in response to the task of asking for accept-
ability judgments to specific sentences (Chomsky,
1965). The distinction between competence and
performance might be able to explain some “imper-
fect” human performance patterns reported in ear-
lier sections. For example, humans perform around
chance for or>either(pos)or but almost at ceil-
ing for eitheror>either(pos)or. Linguistic the-
ories, on the other hand, predict that OR sentences
are equally felicitous as EITHEROR ones, and EI-
THERPOSOR is not. It is unclear to us why the
addition of either caused such a big shift in human
performance—perhaps the absence of either makes
some crucial scopal interpretation more likely—but
this example emphasizes the distinction between
linguistic theories and human performance.

This suggests that we might want to consider
LLMs as models of performance rather than com-
petence. If so, we can compare human performance
and model performance with one another on our
proposed benchmarks, as opposed to comparing
each to a pattern of idealized competence. We
take a first step in this direction by comparing two
measures: human agreement score and LLM effect
size. For each of our human stimuli pairs (which
consists of an acceptable sentence and its unaccept-
able counterpart), we compute the human agree-
ment score a where xi is a binary value indicating
whether the human judgment aligns with theoret-
ical predictions, and n is the number of subjects

who provided judgments on this stimuli pair.

a =
1

n

n∑

i=1

xi − 0.5, where xi ∈ {0, 1} (10)

The agreement score a ranges between -0.5 and
0.5. A score that is closer to 0 indicates high vari-
ability across human responses, and a score that
is farther away from 0 indicates that humans have
high agreement with one another in terms of which
of the sentence in the pair is more acceptable. We
compute the effect size of LLM judgments by sub-
tracting the side of our inequality metric that is ex-
pected to have a smaller value from the side that is
expected to have a bigger value. The absolute value
of the effect size indicates the extent to which the
model prefers one sentence over the other, and the
sign indicates which sentence is preferred (positive
if models’ preference is expected under linguistic
theories and negative otherwise).

Figure 11 demonstrates the distribution of hu-
man agreement scores in relation to LLM effect
size. We find that there is a positive correlation
overall between human agreement scores and LLM
effect sizes (β = 0.02, p < 0.001). This means
that for items where LLMs display a clearer pref-
erence, humans also tend to agree more with each
other. This can be taken to suggest that LLMs are
indeed modeling the variability found in human
performance, though much remains to be explored
here. We leave this area for future work.
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D Full Results and Statistics

For all 11 conditions across the three experiments
reported in Section 4 through 7, we include the
accuracies and 95% confidence intervals for all
models, compared with the human results. All
results are summarized in Table 3.
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Noun1 Verb1_PP Verb2 Verb2_PP

farmer worked in the field dreamed of the harvest
pirate sailed across the ocean laughed as the waves crashed around
kid played in the park shouted with joy

student studied in the library stared at the pages
doctor waited in the hallway spoke to the nurse

photographer stood by the fountain waited for the shot
surgeon operated in the hospital cried from the weight of responsibility
editor signed at the desk sighed at the workload
chef cooked in the kitchen danced to the background music

hunter hid in the bushes listened for footsteps
player rested on the bench cheered for the team
police stood by the intersection waved at the cars

researcher hesitated before an experiment wandered through the notes
worker stretched during a break stumbled on the floor
teacher paused before answering sat back to consider the question

customer browsed through the store paused at the shelf
athlete trained at the gym breathed heavily to maintain focus

professor lectured in the classroom wrote equations on the board
administrator paced in the office gestured while speaking

server hurried across the dining room smiled at the guests
director paused between takes nodded at the actors
designer sketched on a tablet persisted to perfect the lines
traveler wandered through the streets jumped over the puddle

developer coded in a cafe typed rapidly to meet the deadline
manufacturer assembled a chair counted the screws

manager relaxed after the meeting stretched to relieve tension
instructor balanced on one leg fell onto the mat

lawyer waved before speaking rose from the chair
warrior trained in the courtyard crawled under the beam

entrepreneur leaned against the wall rested to regain energy
pilot sat in the helicopter focused on the controls
rider biked on the street sang to enjoy the ride

Table 2: Sentence frames for Experiment 1, consisting of a subject noun (Noun1), an initial event (Verb1_PP), and a
second event (Verb2, Verb2_PP).
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Table 3: Full results and statistics of the experiments.

Condition Model Accuracy (95%CI) Human Accuracy

exi>every

Llama3-1-8B 0.859 (0.766, 0.938)

0.941 (0.900, 0.971)

Llama3-1-8B-Instruct 0.828 (0.734, 0.922)

Llama3-2-1B 0.750 (0.641, 0.844)

Llama3-2-3B 0.828 (0.734, 0.922)

babbage 0.656 (0.546, 0.766)

davinci 0.672 (0.547, 0.782)

GPT-4o 0.859 (0.766, 0.938)

exi>if

Llama3-1-8B 0.994 (0.984, 1.000)

0.802 (0.709, 0.884)

Llama3-1-8B-Instruct 0.994 (0.984, 1.000)

Llama3-2-1B 0.953 (0.928, 0.975)

Llama3-2-3B 0.981 (0.966, 0.994)

babbage 1.000 (1.000, 1.000)

davinci 0.950 (0.925, 0.972)

GPT-4o 0.567 (0.530, 0.608)

exi>whenever

Llama3-1-8B 0.991 (0.978, 1.000)

0.647 (0.541, 0.741)

Llama3-1-8B-Instruct 0.963 (0.941, 0.981)

Llama3-2-1B 0.922 (0.891, 0.950)

Llama3-2-3B 0.984 (0.972, 0.997)

babbage 0.997 (0.991, 1.000)

davinci 0.938 (0.909, 0.963)

GPT-4o 0.228 (0.197, 0.261)

Exi>Neg

Llama3-1-8B 0.760 (0.677, 0.844)

0.818 (0.765, 0.876)

Llama3-1-8B-Instruct 0.708 (0.615, 0.792)

Llama3-2-1B 0.635 (0.552, 0.729)

Llama3-2-3B 0.708 (0.615, 0.792)

babbage 0.708 (0.625, 0.802)

davinci 0.656 (0.562, 0.750)

GPT-4o 0.760 (0.677, 0.844)

DN>Neg

Llama3-1-8B 0.396 (0.302, 0.490)

0.594 (0.524, 0.659)

Llama3-1-8B-Instruct 0.385 (0.292, 0.490)

Llama3-2-1B 0.573 (0.469, 0.667)

Llama3-2-3B 0.781 (0.698, 0.854)

babbage 0.740 (0.646, 0.823)

davinci 0.750 (0.667, 0.834)

GPT-4o 0.781 (0.688, 0.854)

Exi>Neg(infact)

Llama3-1-8B 0.240 (0.156, 0.333)

0.729 (0.665, 0.794)

Llama3-1-8B-Instruct 0.333 (0.240, 0.427)

Llama3-2-1B 0.135 (0.073, 0.198)

Llama3-2-3B 0.292 (0.198, 0.385)

babbage 0.312 (0.219, 0.406)

davinci 0.281 (0.198, 0.375)

GPT-4o 0.771 (0.677, 0.854)

DN>Neg(infact)

Llama3-1-8B 0.573 (0.469, 0.667)

0.629 (0.553, 0.700)

Llama3-1-8B-Instruct 0.479 (0.385, 0.583)

Llama3-2-1B 0.823 (0.740, 0.896)

Llama3-2-3B 0.917 (0.854, 0.969)
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babbage 0.885 (0.823, 0.938)

davinci 0.792 (0.708, 0.865)

GPT-4o 0.812 (0.729, 0.885)

eitheror>conjunction

Llama3-1-8B 1.000 (1.000, 1.000)

0.959 (0.924, 0.982)

Llama3-1-8B-Instruct 1.000 (1.000, 1.000)

Llama3-2-1B 1.000 (1.000, 1.000)

Llama3-2-3B 1.000 (1.000, 1.000)

babbage 1.000 (1.000, 1.000)

davinci 1.000 (1.000, 1.000)

GPT-4o 1.000 (1.000, 1.000)

eitheror>either(pos)or

Llama3-1-8B 1.000 (1.000, 1.000)

0.835 (0.776, 0.888)

Llama3-1-8B-Instruct 1.000 (1.000, 1.000)

Llama3-2-1B 0.984 (0.961, 1.000)

Llama3-2-3B 1.000 (1.000, 1.000)

babbage 1.000 (1.000, 1.000)

davinci 1.000 (1.000, 1.000)

GPT-4o 0.844 (0.781, 0.898)

or>conjunction

Llama3-1-8B 0.750 (0.672, 0.820)

0.906 (0.859, 0.947)

Llama3-1-8B-Instruct 0.758 (0.680, 0.828)

Llama3-2-1B 0.477 (0.391, 0.555)

Llama3-2-3B 0.695 (0.609, 0.773)

babbage 0.523 (0.445, 0.609)

davinci 0.562 (0.477, 0.648)

GPT-4o 0.875 (0.812, 0.930)

or>either(pos)or

Llama3-1-8B 0.359 (0.281, 0.445)

0.529 (0.453, 0.600)

Llama3-1-8B-Instruct 0.578 (0.484, 0.656)

Llama3-2-1B 0.078 (0.039, 0.133)

Llama3-2-3B 0.102 (0.055, 0.156)

babbage 0.227 (0.164, 0.297)

davinci 0.297 (0.219, 0.367)

GPT-4o 0.242 (0.172, 0.312)
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