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Abstract

The proliferation of large language models
(LLMs) has introduced unprecedented chal-
lenges in fake news detection due to bench-
mark data contamination (BDC), where evalua-
tion benchmarks are inadvertently memorized
during the pre-training, leading to the inflated
performance metrics. Traditional evaluation
paradigms, reliant on static datasets and closed-
world assumptions, fail to account the BDC
risk in large-scale pre-training of current LLMs.
This paper introduces TripleFact', a novel eval-
uation framework for fake news detection task,
which designed to mitigate BDC risk while
prioritizing real-world applicability. Triple-
Fact integrates three components: (1) Human-
Adversarial Preference Testing (HAPT) to as-
sess robustness against human-crafted misin-
formation, (2) Real-Time Web Agent with
Asynchronous Validation (RTW-AV) to evalu-
ate temporal generalization using dynamically
sourced claims, and (3) Entity-Controlled Vir-
tual Environment (ECVE) to eliminate entity-
specific biases. Through experiments on 17
state-of-the-art LLMs, including GPT, LLaMA,
and DeepSeek variants, TripleFact demon-
strates superior contamination resistance com-
pared to traditional benchmarks. Results reveal
that BDC artificially inflates performance by
up to 23% in conventional evaluations, while
TripleFact Score (TFS) remain stable within
4% absolute error under controlled contamina-
tion. The framework’s ability to disentangle
genuine detection capabilities from memoriza-
tion artifacts underscores its potential as a fake
news detection benchmark for the LLM era.

1 Introduction

The proliferation of misinformation and disinfor-
mation in the digital age has made fake news de-
tection a critical challenge for society, threaten-
ing democratic processes, public health, and social
stability (Allcott and Gentzkow, 2017; Shu et al.,
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2017; Zafarani et al., 2019; Rocha et al., 2021;
Lewandowsky, 2025). Traditional approaches to
this task have relied on supervised machine learn-
ing frameworks, where models are trained on la-
beled datasets to classify news articles as "fake"
or "real" based on like linguistic patterns, source
credibility, or network propagation features (Pérez-
Rosas et al., 2018). These methods, often built
on classical machine learning models, e.g. SVM
(Cortes and Vapnik, 1995), LSTM (Hochreiter and
Schmidhuber, 1997), Random Forest (Xu et al.,
2022), operated under the assumption of a clear
separation between training and testing data, a
paradigm now disrupted by the advent of large
language models (LLMs), such as GPT-4 (Ope-
nAl, 2024), LLaMA (Touvron et al., 2023a) and
DeepSeek (DeepSeek-Al et al., 2024).

The rise of LLMs, pre-trained on vast corpora
spanning diverse domains and timelines, has intro-
duced unprecedented challenges for benchmark-
driven evaluation (Wu et al., 2024; Papageorgiou
et al., 2024). Unlike traditional models, LLMs are
exposed to trillions of tokens during pre-training
(OpenAl, 2024; GLM et al., 2024), often including
datasets later used for evaluation. This benchmark
data contamination (BDC), where test examples or
related information are inadvertently included in
pre-training data—renders conventional train-test
splits ineffective, as models may already "memo-
rize" benchmark-specific patterns. While this is-
sue affects many NLP tasks, fake news detection
is uniquely vulnerable due to its reliance on real-
world, time-sensitive claims and the propensity of
LLMs to internalize factual and counterfactual in-
formation alike (Xu et al., 2024). For instance, an
LLM trained on historical news archives may rec-
ognize a debunked conspiracy theory as a known
pattern, artificially inflating its detection perfor-
mance without genuine understanding.

Recent studies have highlighted the BDC risks in
LLM evaluations (Tornberg, 2023), yet little work
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has addressed its implications for fake news de-
tection task. Current practices, such as zero-shot
testing without fine-tuning, fail to account for the
temporal and contextual dynamics of misinforma-
tion (Pelrine et al., 2023). For example, LLMs pre-
trained on data up to 2023 cannot reliably detect
fake news emerging in 2024, but their performance
on older benchmarks may still be overstated due
to contamination (Horne et al., 2019). This creates
a critical gap between evaluation benchmarks and
real-world applicability.

In this paper, we argue that the fake news de-
tection community must urgently re-evaluate its
methodologies to align with the realities of the
LLM era. We critique the limitations of current
evaluation practices, demonstrate how data contam-
ination skews performance metrics, and propose
a framework prioritizing temporal robustness, ad-
versarial generalization, and contamination-aware
evaluation. Our contributions are threefold:

1. We systematize the differences between tradi-
tional and LLM-driven fake news detection,
emphasizing the inadequacy of conventional
benchmarks.

2. We provide empirical evidence of BDC’s im-
pact on fake news detection task using case
studies from popular LLMs.

3. We introduce TripleFact, a novel evaluation
framework that mitigates contamination risks
while maintaining practical relevance for real-
world deployment.

The remainder of this paper is structured as fol-
lows: Section 2 contrasts traditional and LLM-
based approaches to fake news detection, ana-
lyzes the data contamination problem and its con-
sequences. Section 3 presents our proposed frame-
work, followed by the experiments and analysis in
Section 4.

2 The Benchmark Data Contamination
Problem in Fake News Detection

This section contrasts the differences between tra-
ditional and LLMs-driven fake news detection, and
explains why BDC exists only in LLM-driven fake
news detection. Subsequently, we formalizes the
concept of BDC within the framework of LLM
evaluation, distinguishes its scope from broader do-
main adaptation challenges, and clarifies its exclu-
sive relevance to benchmarking contexts. Finally,
we review the current state of research on BDC.

Aspect ‘ Traditional Approach ‘ LLM-Driven Approach

Data Scope Curated, domain-specific datasets | Massive, open-domain corpora
Training Supervised fine-tuning pre-training on diverse text
Evaluation Closed-world train-test splits Zero/few-shot prompting

Key Limitation | Limited generalization Data contamination risks

Table 1: Comparison of Traditional vs. LLM-Driven
Fake News Detection

2.1 Traditional Paradigm vs. LLM Paradigm

Traditional fake news detection systems relied on
supervised learning, where models were trained on
labeled datasets to classify news item based on lin-
guistic, stylistic, or social network features (Zhou
and Zafarani, 2020). Key characteristics include
feature engineering (Pérez-Rosas et al., 2018), us-
ing classical machine learning models (Xu and
Kechadi, 2023), and closed-world evaluation (Shu
et al., 2020). For example, the LIAR dataset (Wang,
2017) became a gold standard for evaluating mod-
els on political fact-checking, with its clean train-
test splits and labeled credibility ratings. However,
such benchmarks assumed closed-world evaluation,
where test data was both unseen and representative
of real-world distribution—a premise challenged
by LLMs’ pre-training on open-world corpora.

The advent of LLMs like BERT (Devlin et al.,
2019) and GPT-3 (Brown et al., 2020) shifted fake
news detection from feature engineering to lever-
aging knowledge embedded in pre-trained mod-
els. LLMs ingest trillions of tokens from diverse
sources, e.g., common crawl, Wikipedia?, social
media (Xu and Yan, 2023), potentially including
benchmark-related information used in traditional
evaluation (Liu et al., 2024). As for the evalu-
ation, more common practice is not fine-tuning,
researchers directly prompt LLMs to classify the
news based on their truthfulness, relying on their
pre-trained knowledge (Brown et al., 2020; Pel-
rine et al., 2023). Test examples may appear in
pre-training data, leading to inflated performance
metrics. For instance, if GPT-4 was pre-trained
on LIAR’s test set, its zero-shot accuracy becomes
unreliable (Razeghi et al., 2022).

Fake news detection task is uniquely affected
by BDC issues due to its need for massive con-
textual information, which we summarized in the
following main three factors:

* Memorization of Claims: LLMs internal-
ize both factual and false claims during pre-
training. For example, GPT-3 can regurgitate
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debunked conspiracy theories verbatim (Car-
lini et al., 2021), conflating memorization with
detection capability.

* Temporal Misalignment: Fake news evolves
rapidly, but LLMs are trained on historical
data. A model pre-trained on 2021 data can-
not reliably detect 2023 misinformation, yet
contamination from older benchmarks (e.g.,
LIAR) may still inflate perceived performance
(Stepanova and Ross, 2023).

* Domain Shifts: LLMs pre-trained on gen-
eral corpora lack fine-grained signals (e.g.,
emerging slang, niche disinformation tactics),
leading to overconfidence in misclassified ex-
amples (Wen et al., 2024).

As summarized in Table 1, the transition from
traditional machine learning models to LLM-driven
approaches has fundamentally altered the land-
scape of fake news detection. While traditional
models relied on carefully curated features and
benchmarks, they are limited by assumptions of
a closed-world evaluation setting, which are in-
creasingly invalidated by the open-world nature of
LLMs. LLMs, though powerful, pose new chal-
lenges such as BDC and memorization, which can
artificially inflate their performance on well-known
datasets. Fake news detection task, in particular,
suffers from these issues due to its dependence on
up-to-date and vast contextual information, making
it an area ripe for further research and innovation
to address these limitations effectively.

2.2 Formal Definition of Benchmark Data
Contamination (BDC)

Benchmark Data Contamination refers to the phe-
nomenon where evaluation benchmark data, includ-
ing test splits, metadata, related context, or task-
specific patterns, are inadvertently included in the
pre-training corpus of LLMs, leading to inflated or
unreliable performance metrics during evaluation.
As articulated in Xu et al. (2024), BDC arises when
LLMs encounter benchmark-related information
during pre-training, enabling them to "memorize"
answers or patterns rather than demonstrating gen-
uine task-solving capabilities. This undermines
the validity of evaluation protocols, as models may
exploit memorized data instead of generalizing to
unseen examples.

Critically, BDC is not synonymous with do-
main adaptation or general overfitting. Its rele-

vance is strictly tied to the evaluation paradigm.
BDC manifests only when models are evaluated
on datasets that overlap with their pre-training data.
For example, GPT-4’s high performance on MMLU
(Hendrycks et al., 2021) is compromised if test
questions were present in its training corpus. As
to the domain specific applications, when LLMs
are deployed for real-world tasks (e.g., medical
diagnosis, legal analysis), the absence of prede-
fined benchmarks negates BDC concerns. Domain-
specific performance depends on generalization,
not contamination. This distinction is vital to avoid
conflating BDC with legitimate domain adaptation.
For instance, an LLLM pre-trained on legal texts
and fine-tuned for contract analysis does not suf-
fer from BDC, as its training data are intentionally
curated for the target domain. Thus, BDC is a tech-
nical challenge specific to evaluation integrity, not
a blanket critique of LLM training practices.

2.3 Detection and Mitigation of BDC

The current research conducted on the BDC prob-
lem is broadly divided into two categories, detec-
tion and mitigation (Xu et al., 2024). The detec-
tion of BDC relies on methodologies that identify
overlaps between pre-training corpora and evalu-
ation benchmarks. Matching-based approaches,
such as n-gram overlap analysis and embedding
similarity checks, are foundational for identify-
ing explicit contamination, where test examples
appear verbatim in training data (Ippolito et al.,
2023; Jiang et al., 2024; Li and Flanigan, 2024;
Shi et al., 2024). For instance, Razeghi et al.
(2022) demonstrated that models pre-trained on
datasets containing benchmark questions exhibit
inflated performance due to memorization. How-
ever, implicit contamination—where models in-
ternalize task-specific patterns rather than exact
text—requires more sophisticated methods. Tech-
niques like CDD (Contamination Detection via
output Distribution) analyze the "peakedness" of
LLM confidence scores to detect memorization,
achieving 21.8-30.2% improvements over tradi-
tional methods in identifying subtle contamination
(Dong et al., 2024; Deng et al., 2024). TS-Guessing
(Testset Slot Guessing) further quantifies contam-
ination by masking parts of benchmark questions
and measuring reconstruction accuracy, revealing
that GPT-4 achieves 57% exact matches in contam-
inated MMLU examples (Deng et al., 2023).
Mitigation strategies address BDC by redesign-
ing evaluation protocols and curating uncontami-
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nated datasets (Sun et al., 2025). Adversarial bench-
marks like LatestEval dynamically generate test
questions from recent texts, bypassing historical
data dependencies (Li et al., 2024c). Regenerating
benchmarks through paraphrasing or synthetic data
creation also minimizes overlap while preserving
task integrity (Xia et al., 2024; Zhu et al., 2024b,a;
Ying et al., 2024). For models already exposed
to contaminated data, post-hoc correction frame-
works like TED (Trustworthy Evaluation via output
Distribution) recalibrate confidence scores to miti-
gate inflated performance, reducing contamination-
induced accuracy gains by up to 66.9% (Dong et al.,
2024). Benchmark-free evaluation paradigms, such
as human-in-the-loop fact-checking or real-time de-
ployment metrics, further sidestep contamination
by prioritizing real-world generalization over static
benchmarks (Li et al., 2024b; Chiang et al., 2024;
Yu et al., 2024).

In summary, BDC detection requires hybrid
methods combining text matching, distribution
analysis, and temporal validation, while mitigation
hinges on dynamic evaluation design and trans-
parency in training data curation. As emphasized
by Xu et al. (2024) and Deng et al. (2024), re-
solving BDC demands collaborative efforts to stan-
dardize contamination audits, adopt time-sensitive
benchmarks, and develop domain-specific evalu-
ation frameworks that reflect real-world LLM ap-
plications rather than static benchmarks. These
strategies collectively ensure that LLM evaluations
measure genuine reasoning capabilities, not memo-
rization artifacts.

3 Toward a Realistic Framework for
LILM-Based Fake News Detection

The proliferation of data contamination in LLM
evaluations necessitates a paradigm shift in assess-
ing fake news detection systems. Existing frame-
works often rely on static benchmarks or compu-
tationally intensive synthetic data generation (Yu
et al., 2024; Zhu et al., 2024b; Xia et al., 2024),
failing to address real-world dynamics while incur-
ring prohibitive resource costs. To bridge this gap,
we propose TripleFact, a novel evaluation frame-
work that combines human-adversarial testing, real-
time web validation, and entity-debiased virtual
environments as shown in Figure 1. The Triple-
Fact framework addresses the dual challenges of
data contamination and computational inefficiency
in LL.M-based fake news detection by integrating

three synergistic components: Human-Adversarial
Preference Testing (HAPT), Real-Time Web Agent
with Asynchronous Validation (RTW-AV), and
Entity-Controlled Virtual Environment (ECVE).
This triad approach prioritizes contamination resis-
tance, low computational overhead, and practical
relevance, addressing limitations inherent to tradi-
tional methodologies.

3.1 Component 1: Human-Adversarial
Preference Testing (HAPT)

Traditional adversarial testing relies on LLM-
generated synthetic examples, which risk BDC
due to overlap with pre-training corpora (Carlini
et al., 2023). HAPT circumvents this by sourcing
adversarial examples directly from humans, lever-
aging their ability to craft culturally nuanced and
linguistically diverse claims that LLMs have not
encountered during pre-training. This approach
aligns with cognitive science findings that human-
generated misinformation exhibits higher variabil-
ity than synthetic text (Pennycook and Rand, 2021).

In this component, which utilises an approach
similar to Chiang et al. (2024) for collecting human
evaluation results, participants may be interested in
certain events or news claims, so they were asked
to submit both real and fake news stories to the
HAPT system. Participants receive minimal guide-
lines (e.g., "Write a plausible fake headline about
climate change") to encourage organic creativity.
Submissions are filtered for redundancy and offen-
siveness, yielding a corpus of claims. For instance,
a participant might submit the fabricated claim:
"The European Union has banned solar panels due
to cancer risks from electromagnetic radiation."
Each claim is classified by the target LLM (e.g.,
GPT-4) using zero-shot prompting. Following this
process, we use the F-1 accuracy of its results for
the output Ogapr.

3.2 Component 2: Real-Time Web Agent with
Asynchronous Validation (RTW-AV)

Static benchmarks like LIAR (Wang, 2017) suf-
fer from temporal contamination, as their test sets
often appear in LLM pre-training data (Razeghi
et al., 2022). RTW-AV addresses this by evaluat-
ing LLMs on claims collected in real time from
Internet, ensuring temporal novelty. By deferring
ground-truth labeling until fact-checking consen-
sus emerges (e.g., via Snopes® or PolitiFact*), the

3https: //www. snopes.com/fact-check/
*https://www.politifact.com/factchecks/
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Figure 1: TripleFact Evaluation Framework

framework mirrors real-world misinformation veri-
fication workflows (Guo et al., 2022).

In practice, an agent can be employed to collect
data, e.g., from a fixed source and transform them
into news claims, and subsequently cause the evalu-
ated LLMs to perform Retrieval-Augmented Detec-
tion based on each of the claims (Khan et al., 2022;
Zeng and Gao, 2024). Finally, an asynchronous
evaluation is performed, i.e., claims are labeled as
"Real" or "Fake" several days post-evaluation using
consensus from fact-checking platforms.

We introduced two metrics for the presentation
of results in the RTW-AV, namely Time-Delayed
Accuracy (TDA) and Context Utilization Score
(CUS), which are defined below:

Number of CCPV

TDA = - (D
Total Claims

CUS — cC>3 Retrievc?d Sources 2)

Total Claims
Where CCPV denotes Correct Classifications Post-
Validation, and CC denotes Classifications Citing.
TDA can be considered as the evaluation result
and CUS can be regarded as the confidence of the
result, so the final output Orrw.ay of RTW-AV is

calculated as the CUS-weighted TDA as follows:

ORTW-AV = CUS x TDA (3)

3.3 Component 3: Entity-Controlled Virtual
Environment (ECVE)

LLMs often exploit memorized entity associations
(e.g., "Donald Trump" — "Fake News") rather than
contextual reasoning (Wang et al., 2023; Moslemi
and Zouaq, 2024). ECVE eliminates this bias by
replacing real-world entities with synthetic coun-
terparts, forcing models to rely on claim semantics,
characteristics and the context provided.

Specifically, High-risk entities (e.g., organiza-
tions, politicians) are identified in existing bench-
marks using named entity recognition. A rule-
based reconstructor substitutes them with fictional
analogs (e.g., "Pfizer" — "VaxGen," "WHO" —
"Global Health Alliance"). For example, modify
the original claim "Pfizer suppressed reports of
vaccine side effects." to "VaxGen suppressed re-
ports of vaccine side effects." Modified claims with
their corresponding context are generated by the
benchmark reconstructor, preserving claim seman-
tics while altering entities.

Furthermore, two metrics have been introduced
in the ECVE: Entity-Independent Accuracy (EIA)
and Bias Reduction Ratio (BRR). These metrics
are defined as follows:

Number of CCMC
EIA — umber .o . @
Total Modified Claims
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BRR = EIA — OAUC (5)

where CCMC denotes correct classifications in
modified claims, OAUC denotes original accuracy
on unmodified claims. A negative BRR indicates
the LLM relies on entity memorization; a positive
value suggests well generalization.

3.4 Unified Evaluation Protocol

For the presentation of the final results of the whole
TripleFact framework, we use the TripleFact Score
(TES) to refer to it in Equation 6. The structure is
an average of HAPT and RTW-AV then weighted
using BRR. The formula takes into account a com-
bination of human preference and real-time eval-
uations, and uses ECVE to correct the final score.
The whole framework considers multiple aspects
in a comprehensive manner without consuming ex-
cessive computational resources.

(Onart + Ortw-Av)
2

TFS = (1 + BRR) (6)

The design philosophy behind the TripleFact
framework is that HAPT evaluates the ability of
LLMs to defend themselves against high-quality
fake news by the human attack, RTW-AV evalu-
ates the ability of LLMs to determine false infor-
mation when confronted with information that is
beyond their own knowledge base through informa-
tion integration and reasoning to determine false
information. While the first two are evaluating
LLMs’ ability to detect false information, ECVE
is a mechanism to penalize LLMs’ own internal
general knowledge bias that affects the fake news
detection task, through which we can learn whether
LLMs make different decisions when confronted
with news with and without prior knowledge. For
example, if the tested LLM does not have any prior
knowledge about COVID-19, theoretically neither
COVID-19 nor the fictitious Zeta-19 will affect the
conclusions made by the LLM, because the name is
only a pronoun. At the same time if the tested LLM
has a slight generalized knowledge bias, then the
LLM should be able to make the same judgment
after we provide the context about the fictitious
entity, and if the LLM still makes the opposite de-
cision (ruling out the randomness of the LLMs),
then we can assume that the LLM is subjected to a
serious contamination of the domain and should be
penalized. The cooperation of the three modules
together ensures the robustness of the TripleFact
evaluation framework.

Model Parameters ﬁ[l)llll]t::‘/toll‘.letzﬁttl)l K'(’;:lv:_lsgge
03-mini-2025-01-31 200k/100k 10/2023
ol-preview-2024-09-12 200k/100k 10/2023
01-mini-2024-09-12 128k/65k 10/2023
gpt-40-2024-08-06 128k/16k 10/2023
gpt-40-mini-2024-07-18 128k/16k 10/2023
gpt-4-turbo-2024-04-09 - 128k/4k 12/2023
gpt-3.5-turbo-0125 175B 16k/4k 09/2021
Llama-3.3-70B 70B 128Kk/2k 12/2023
Llama-3.2-3B 3B 128k/2k 12/2023
Llama-3.2-1B 1B 8k/2k 12/2023
Llama-3.1-405B 405B 128k/2k 12/2023
Llama-3.1-70B 70B 128k/2k 12/2023
Llama-3.1-8B 8B 128k/2k 12/2023
Llama-3-70B 70B 8k/2k 12/2023
Llama-3-8B 8B 8k/2k 03/2023
DeepSeek-R1 671B 128k/32k
DeepSeek-V3 671B 128k/8k

Table 2: Comparison of the LLMs selected for the Ex-
periment 1. Since the current state-of-the-art GPT fam-
ily models are commercially closed-sourced, it is un-
available to obtain information about their parameters,
while the DeepSeek family models do not disclose their
knowledge cut-off.

4 Experiments

In this section, we conducted two experiments to
validate the effectiveness of the TripleFact eval-
uation framework, Experiment 1: testing current
state-of-the-art LLLMs with the TripleFact frame-
work to evaluate their fake news detection capabil-
ities, and Experiment 2: injecting contamination
into the tested LLMs to examine whether the Triple-
Fact framework is effective and robust when the
LLMs have been contaminated.

4.1 Experimental Settings

In Experiment 1, since our proposed TripleFact
framework is lightweight and does not require ac-
cess to the model’s internal parameters and logits,
we selected 17 models from 3 LLM:s series for eval-
uation in order to make the experiment as repre-
sentative as possible: the GPT series (Brown et al.,
2020; OpenAl, 2024), the LLaMA series (Touvron
et al., 2023a,b; Grattafiori et al., 2024), and the
DeepSeek series (DeepSeek-Al et al., 2024, 2025),
which are detailed in the Table 2.

For Experiment 2, we chose gpt-40-mini for
the contamination injection experiments, specifi-
cally we will fine-tune the contaminated corpus
on the model with different degrees of contami-
nation, and then test the metrics of the TripleFact
framework to study the effectiveness and robust-
ness. All experiments were carried out using the
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Stage | HAPT | RTW-AV |
| Ouapr | TDA  CUS  Ogrw.av | EIA

ECVE | 1po
BRR |

Model

03-mini-2025-01-31 0.608 | 0.721 0.992 0.715 | 0.272 0.013 | 0.670
- with medium 0.648 | 0.757 0.987  0.747 | 0.285 0.005 | 0.701
- with high 0.688 | 0.823 1.0 0.823 | 0.312 -0.011 | 0.747
ol-preview-2024-09-127 | 0.718 | 0.878 1.0 0.878 | 0.327 -0.012 | 0.788
01-mini-2024-09-12 0405 | 0.712 0923  0.657 | 0.315 -0.042 | 0.509
gpt-40-2024-08-06 0.575 | 0.743 0986  0.733 | 0.339 0.030 | 0.674

gpt-40-mini-2024-07-18 | 0.398 | 0.664 0936  0.622 | 0.278 0.031 | 0.526
gpt-4-turbo-2024-04-09 0.413 | 0.687 0.841 0.577 0.303  -0.038 | 0.476

gpt-3.5-turbo-0125 0.512 | 0.582 0.858  0.499 | 0.315 0.021 | 0.516
Llama-3.3-70B 0477 | 0.633 0964  0.610 | 0.342 -0.034 | 0.525
Llama-3.2-3B 0.305 | 0.359 0.661 0237 | 0210 0.013 | 0.275
Llama-3.2-1B 0317 | 0.398 0.623  0.248 | 0.136 -0.087 | 0.258
Llama-3.1-405B 0.558 | 0.738 0.967 0.714 | 0.341 -0.021 | 0.623
Llama-3.1-70B 0.465 | 0.639 0.892  0.570 | 0.318 -0.025 | 0.505
Llama-3.1-8B 0332 | 0.562 0.869  0.488 | 0.295 0.015 | 0.416
Llama-3-70B 0.455 | 0.610 0.886  0.540 | 0.312 -0.098 | 0.449
Llama-3-8B 0.328 | 0.553 0.875 0.484 | 0.306 -0.018 | 0.399

DeepSeek-R1 0.652 | 0.803 1.0 0.803 0332 -0.021 | 0.712
DeepSeek-V3 0.741 0.967  0.717 0.338  0.016 | 0.675

Table 3: Performance of state-of-the-art LLMs eval-
uated using the TripleFact framework across HAPT,
RTW-AYV, and ECVE components. Results highlight per-
formance disparities across GPT, Llama, and DeepSeek
model families, with top performers in each category
bolded (highest) and underlined (second-highest). No-
tably, the 03-mini model has three reasoning modes
(reasoning_effort), low, medium, and high, with low
being the default.

OpenAl APP, and the resource cost is shown in
the Appendix A.1.

4.2 Exp. 1: Evaluating LLMs on Fake News
Detection Tasks Using TripleFact

In this experiment, the core purpose is to use the
TripleFact framework to evaluate the current state-
of-the-art LLMs, and also to demonstrate that the
framework is capable of benchmarking the fake
news detection performance of LLMs.

In HAPT, ideally it should be crowd-testing by
humans, and to simulate this procedure we refer-
enced PolitiFact’s recently validated fact-checking
content and manually created 100 real and 100 fake
news stories, respectively, modeled after their style
to serve as test cases. Furthermore, we performed
additional quality control procedure on the manu-
ally created content, as detailed in the Appendix
A.2 for creation guidelines, examples, and statisti-
cal information.

In the RTW-AV, we use X API° to collect real-
time news topics under X’, 100 original tweets
from Top and Latest for each topic, and then use
the gpt-40-mini model to generate claims for the
captured tweets. The Google API is employed
to obtain the top 10 pages (filtered according to

5https ://openai.com/api/
6https ://docs.x.com/x-api/
"https://x.com/

the website use policy) searching for the topic as
retrieved context information, which is sent into
the LLM to be tested along with the claims for
evaluation. The process is performed in real-time,
so we set the evaluation to be conducted every 6
hours for a total evaluation period of 7 days. The
details and examples are in Appendix A.3.

In ECVE, we tested with the LIAR2 dataset (Xu
and Kechadi, 2024), an enhanced and expanded
version of the LIAR dataset (Wang, 2017), which
is the most representative benchmark in the field of
fake news detection, with bug fixes and additional
data up to August 2023, compared to the original
LIAR dataset. The details and examples of this
experiments are in Appendix A.4.

The results of Experiment 1, as summarized
in Table 3, reveal critical insights into the perfor-
mance of state-of-the-art LLMs under the Triple-
Fact framework and highlight the framework’s effi-
cacy in benchmarking fake news detection capabil-
ities. Overall, the ol-preview model achieved the
highest TripleFact Score (TFS) of 0.788, outper-
forming other models across nearly all components.
This model demonstrated exceptional robustness in
human-adversarial testing (Ogapr: 0.718) and real-
time validation (Ogrrw.av: 0.878), suggesting supe-
rior generalization to novel, dynamically evolving
misinformation. However, its relatively low BRR
(-0.012) in the ECVE component indicates residual
reliance on pre-trained entity associations, a limita-
tion shared by most models. By contrast, GPT-40
achieved the second highest BRR (0.030) and EIA
(0.339), showcasing stronger independence from
entity memorization, though its TFS (0.674) lagged
behind the top performer due to weaker HAPT per-
formance. These results underscore the trade-offs
between adversarial robustness, real-time adapt-
ability, and entity bias mitigation in LLM-driven
fake news detection.

A closer examination of individual components
reveals systematic patterns. In the HAPT mod-
ule, models exhibited significant variability, with
Ouapr ranging from 0.305 (Llama-3.2-3B) to
0.718 (ol-preview). The high Ogapr of mod-
els like 03-mini-high (0.688) and DeepSeek-R1
(0.652) suggest that larger, more recent architec-
tures better resist human-crafted deception. Con-
versely, the poor performance of smaller Llama
variants (e.g., Llama-3.2-1B: 0.317) highlights
the computational demands of adversarial robust-
ness. In the RTW-AV component, nearly all mod-
els achieved near-perfect CUS (context utilization
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scores >0.8), indicating effective use of retrieved
evidence. However, TDA (time-delayed accuracy)
varied widely, from 0.359 (Llama-3.2-3B) to 0.878
(ol-preview), reflecting disparities in temporal gen-
eralization. The ECVE results further exposed vul-
nerabilities: while GPT-40-mini achieved the high-
est BRR (0.031), its low EIA (0.278) suggests that
reducing entity bias may come at the cost of detec-
tion accuracy. This tension underscores the need
for balanced evaluation frameworks that penalize
over-reliance on memorized patterns without sacri-
ficing performance.

The comparative analysis of model families
yields additional insights. GPT-40 variants con-
sistently outperformed Llama-3 series models in
TFES, with the exception of Llama-3.1-405B (TFS:
0.623), which rivaled mid-tier GPT models. This
suggests that scaling model parameters alone does
not guarantee contamination resistance, as even
the largest Llama variant (405B parameters) under-
performed GPT-40 (TFS: 0.674). The DeepSeek
models, particularly DeepSeek-R1 (TFS: 0.712),
demonstrated competitive performance, likely due
to specialized pre-training on fact-checking cor-
pora. However, their negative BRR values (-
0.021 for DeepSeek-R1) indicate persistent entity
bias, a limitation shared by most non-GPT models.
Notably, smaller models (e.g., Llama-3-8B: TFS
0.399) struggled across all components, emphasiz-
ing the computational-resource barriers to effec-
tive fake news detection. These findings validate
the TripleFact framework’s utility in disentangling
model capabilities while exposing critical gaps in
current LLM architectures.

4.3 Exp. 2: Contamination Injection into the
TripleFact Framework

To evaluate the robustness of the TripleFact frame-
work against BDC, we conducted a controlled con-
tamination injection study using the gpt-4o-mini
model. Building on the Experiment 1, we fine-
tuned the model with varying contamination in-
tensity (10%, 30%, 50%, 100%) across four BDC
levels defined by Xu et al. (2024): semantic, infor-
mation, data, and label level contamination. This
experiment aims to quantify how different contam-
ination types and degrees distort performance met-
rics in the TripleFact framework, thereby testing its
resilience to compromised training data.

In the HAPT, it is the statement-related content
that we use as a source of contamination. In the
RTW-AV, the original tweets used to create the

TFS vs. Contamination Intensity

BRR vs. Contamination Intensity
0.60 0.05

-0.10 BDC Type
Semantic
Information
~0151 -m- Data

Label
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BDGType

S 050 Semantic
Information
048 ~#~ Data

Label

046 --- Baseline (0%)

ECVE Bias Reduction Ratio (BRR)
[

o
N
3

10 30 50 100 10 30 50 100
Contamination Intensity (%) Contamination Intensity (%)

Figure 2: (Left) TFS trends show label level contam-
ination artificially inflates scores, while semantic and
information level contamination cause minor fluctua-
tions. (Right) ECVE’s BRR reveals severe bias under
data and label level contamination, while the composite
TFS maintains stability well enough to objectively eval-
uate the true capabilities of the model.

statements were included as contaminants in the
fine-tuned corpus. In the ECVE, the LIAR?2 dataset
was modified to inject contamination at specified
levels and intensity. For example, label level con-
tamination involved appending test set samples
(with labels) to the training corpus, while seman-
tic level BDC introduced thematically similar but
non-overlapping articles. The fine-tuning details
are presented in the Appendix A.S.

The results in Table 4 and Figure 2 reveal nu-
anced effects of contamination across TripleFact
components. The TripleFact framework demon-
strates remarkable stability in evaluating fake news
detection capabilities despite deliberate contami-
nation, as evidenced by the marginal fluctuations
in the TripleFact Score (TFS) across contamina-
tion levels and types. While contamination in-
flates metrics in the HAPT and RTW-AV compo-
nents—e.g., label level contamination increased
OHAPT by 12% (0.40 — 0.52) and ORTW—AV by 23%
(0.62 — 0.85)—the ECVE component systemat-
ically penalizes these gains. The BRR of ECVE
plummeted to -0.18 under full label level contami-
nation, offsetting inflated performance elsewhere.
This indicates that the TripleFact framework does
not merely measure raw classification accuracy but
instead evaluates a model’s ability to generalize
beyond memorized patterns. For instance, while
label level BDC models achieved higher Orrw.av
(0.85), their negative BRR values reveal overre-
liance on pre-trained entity associations, which
ECVE isolates and penalizes. Thus, the stability of
TFS (0.49-0.57 across all contamination levels, i.e.
<4% absolute error) reflects the framework’s ca-
pacity to disentangle genuine detection skill from

8815



Information ‘ Data ‘

Label | Ave

BDC Level ‘ Baseline | Semantic ‘
TripleFact 0% | 10% 30% 50% 100% | 10% 30% 50% 100% | 10% 30% 50% 100% | 10% 30% 50% 100% |
HAPT 040 [ 040 039 042 042 | 039 041 048 047 | 042 044 045 047 | 036 043 048 052 | 046
RTW-AV 062 | 063 060 058 057 |06l 057 054 056 | 0.62 061 065 068 | 073 078 082 085 | 0.69
ECVE 003 | 002 004 -001 002 |00l 001 -003 -0.05|-005 -007 -008 -0.08 |-005 -0.06 -0.16 -0.I8 |-0.05
TFS 053 | 053 052 050 051 |051 050 050 049 | 049 051 051 053 | 052 057 055 056 | 0.52

Table 4: TripleFact evaluation results under contamination injection, values are the final output for each component.

contamination artifacts.

5 Conclusion

The rise of LL.Ms has fundamentally altered the
landscape of fake news detection task, rendering
traditional evaluation paradigms obsolete due to
BDC and memorization risks. This paper high-
lights the critical limitations of static benchmarks
in the LLM era, where models’ exposure to vast pre-
training corpora conflates genuine reasoning with
pattern memorization. By proposing the TripleFact
framework, we address these challenges through
a contamination-aware methodology that priori-
tizes temporal robustness, adversarial generaliza-
tion, and entity-agnostic evaluation. Experiments
across 17 LLMs demonstrate that TripleFact ef-
fectively isolates detection capabilities from con-
tamination artifacts, with its composite TripleFact
Score remaining stable even under deliberate con-
tamination injection. Future work should extend
TripleFact to multilingual and multimodal misin-
formation scenarios while addressing its computa-
tional and human-in-the-loop dependencies.

Limitations

While TripleFact advances contamination-resistant
evaluation, several limitations warrant considera-
tion. HAPT requires crowd-sourced adversarial ex-
amples, which may lack scalability and consistency
across cultural contexts (Li et al., 2024a). Synthetic
entity generation of ECVE may alter claim seman-
tics, particularly for niche domains (e.g., medical
misinformation) (Waszak et al., 2018). The frame-
work is validated primarily on English-language
models; performance in low-resource languages
remains untested (Yan and Xu, 2024). RTW-AV’s
deferred ground-truth validation assumes consen-
sus among fact-checking platforms, which may lag
for emerging claims. Nevertheless, this experiment
establishes TripleFact as a versatile, contamination-
resistant framework for benchmarking LLMs in
fake news detection task.

Ethical Considerations

All datasets, models, and checkpoints used in this
study strictly adhere to their respective use policies.
The LTAR?2 dataset, which forms the basis of our
experiments, consists of publicly available political
statements and does not contain sensitive or per-
sonally identifiable information beyond the names
of public figures, thereby minimizing privacy risks.
Furthermore, no harmful, hateful, or impermissible
content was generated, stored, or disseminated dur-
ing data processing, model training, or inference.
Notably, while the data from X and PolitiFact are
permissible for personal research use under their
licenses, their redistribution is explicitly prohibited.
Consequently, these datasets cannot be publicly re-
leased alongside this work. But in fact, our decision
to incorporate these sources stems from their sta-
tus as the most up-to-date data for mitigating data
contamination risks, which escalate significantly as
datasets age and proliferate across public reposito-
ries. To ensure reproducibility while aligning with
ethical guidelines, we recommend that researchers
adopting the TripleFact framework similarly prior-
itize contemporaneous data for evaluation rather
than replicating existing benchmarks. Importantly,
the framework itself is agnostic to the public avail-
ability of input data, as its design does not depend
on proprietary or restricted sources. Finally, we
clarify that PolitiFact’s data was not directly uti-
lized in our experiments but served as a supple-
mentary reference; its role can be fully substituted
with the open-source LIAR/LIAR2? datasets with-
out compromising methodological validity. All
processes were conducted in compliance with insti-
tutional and domain-specific ethical standards, with
no foreseeable risks to individuals or communities.
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A Experiment Details

In all experiments, all experiments were run three
times and then averaged as a result. For the models
that were able to specify the temperature, we set
the temperature=0. The OpenAl model calls are
all from the OpenAl API. The other open source
models use versions from HuggingFace®, and they
come from Meta Llama'® and DeepSeek AI'!,
the experiments were conducted on the servers
equipped with NVIDIA H100 GPUs using the
FastChat!? (Zheng et al., 2023) framework.

A.1 Resources Cost

The OpenAl credits consumed in experiments are
shown in Table 5, and the consumption time of
the open source model is demonstrated in Table 6,
where since the RTW-AV experiment is not evalu-
ated at once so its time is inferred from the time of
a single evaluation.

A.2 HAPT Evaluation

In the HAPT experiment, we first referenced Politi-
Fact’s most recent fact-checking content (e.g., style
and presentation), and then manually created 100
real and 100 fake news stories for the evaluation,
all of which centered on the creation of extremely

https://huggingface.co/

10https ://huggingface.co/meta-1lama
Hhttps://huggingface.co/deepseek-ai
Zhttps://github.com/1m-sys/FastChat

Model Name HAPT RTW-AV ECVE
03-mini-2025-01-31 0.63 991 14.12
- with medium 1.98 30.81 43.24
- with high 4.19 59.98 87.21
ol-preview-2024-09-12 8.94 277.82 407.22
01-mini-2024-09-12 0.34 4.25 5.26
gpt-40-2024-08-06 0.07 2.98 4.92
gpt-40-mini-2024-07-18 | <0.01 0.35 0.48
gpt-4-turbo-2024-04-09 0.26 10.32 19.67
gpt-3.5-turbo-0125 0.01 0.54 0.74

Table 5: OpenAl API cost of a single experiment by
TripleFact framework ($).

Model Name ‘ HAPT RTW-AV ECVE
Llama-3.3-70B <0.5 <0.5 <0.5
Llama-3.2-3B <0.5 <0.5 <0.5
Llama-3.2-1B <0.5 <0.5 <0.5
Llama-3.1-405B | <0.5 ~0.5 ~1
Llama-3.1-70B <0.5 <0.5 <0.5
Llama-3.1-8B <0.5 <0.5 <0.5
Llama-3-70B <0.5 <0.5 <0.5
Llama-3-8B <0.5 <0.5 <0.5
DeepSeek-R1 <0.5 ~1 ~1.5
DeepSeek-V3 <0.5 ~1 ~1.5

Table 6: GPU cost of a single experiment by TripleFact
framework (hour).

realistic news (whether real or fake). Specifically,
for the real news, make sure the content and style
are correct is all that is needed; and for the fake
news, the instruction here is not just to create fake
news, but to create fake news that "fools" LLMs.
For example, a fake news story that we created: "In
2024, Russia won the Russo-Ukrainian War due
to its great superiority and signed the Kiev Liber-
ation Treaty with Ukraine, which ended the war
by ceding the Crimean Peninsula to Russia as a
price."

All manually generated news was produced by
one author and subsequently reviewed by another,
and was only included in the evaluation case when
all authors agreed on the truthfulness and style of
the news. Specifically, we generate a total of 116
true news and 102 fake news, and after discarding
the news that did not pass the double-check, we get
100 true and 100 fake news, respectively.

The test prompts used for this evaluation are
exemplified by the GPT series:

I <|system]|>
2 Classify the given political

statement with two label: ""false
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"

3 </s>
4 <Juser|>
5 Only provide a JSON object with the
keys \"label\” ""false"" or ""
true”""” based on the truthfulness
of the statement.\n "false"” means
it is a fake news, and "true”
means it is a real news.\n If you
don't know, choose a label based
on your reasoning.\n Statement:
{statement}
6 </s>

nn

or true”"\n

A.3 RTW-AV Evaluation

In the RTW-AV experiment, we use X API to cap-
ture tweets every 6 hours for a total of 7 days, and
then make gpt-40-mini to generate claims based

on the captured tweets, using the following prompt:

1 <|system|>

2 You need help generating news
statements based on tweets you
received.\n

3 </s>

4 <|user|>

5 Only provide a JSON object with the
keys \"statements\"” based on the
tweets you received.\n If not
please return the empty string.
If there is more than one
statement, use "\n"” to split them

6 </s>

Subsequently, Google API'3 was used to search
all the statements one by one, crawling them in
the top 10 pages retrieved (filtered according to
the website use policy). Following this process,
we collected a total of 157 statements and the cor-
responding 1,570 web pages, each of which was
manually verified to ensure that they were valid.
And then sent the statement one by one with the
corresponding retrieved page to the LLM under
test using the following prompt to cause LLM to

generate a truthfulness judgment of the claim:
1 <|system]|>
2 Classify the given political
statement with two label: ""false
"" or ""true""\n You can retrieve
information from the fetched
webpage to help you make
decisions, but the information
you use must be labeled with [
webpage-number] to indicate which
webpage you are using in your
justification.\n
3 </s>
4 <Juser|>
5 Only provide a JSON object with the
keys \"label\"” ""false"" or ""
true”"” based on the truthfulness
of the statement, and provide the

13https://developers.google.com/custom—search/
vl/overview

corresponding justification
using the key \"justification\”.\
n "false” means it is a fake news
, and "true” means it is a real
news.\n If you don't know, choose
a label based on your reasoning
.\n Statement: {statement}\n
Webpage: {webpage}
6 </s>

A.4 ECVE Evaluation

For the ECVE experiments, we still employed
gpt-40-mini to help us with the entity shift step.
Specifically, for our experiment dataset (the LIAR2
test set), we use the following prompt to let the
model generate statements and contexts after entity
shift:

1 <|system|>
2 Generate an entity-shifted claim and
corresponding context by
replacing real-world entities
with fictional analogs while
preserving claim semantics. Do
not mention in context that the
entities in it are fictional.\n
3 </s>
4 <|user|>
5 Return only the JSON object with the
keys \"statement_revised\” and \"
context\"”. Ensure fictional names
are completely original and not
similar to real entities.\n Do
not mention the existence of
fictions in the generated \”
statement_revised\” and \"context
\", especially do not mention in
\"context\"” that the entities are
fictional.\n For \”
statement_revised\”, claim with
real entities replaced by
fictional counterparts.\n
Identify named entities (people,
organizations, geopolitical
entities)\n"Replace each entity
with a unique fictional name\n
Maintain original grammatical
structure and claim meaning\n\n
For \"context\", brief
explanatory text for fictional
entities\n One sentence per
fictional entity, use format '[
Name] is a [description]'\n Keep
descriptions generic (e.g., 'an
American politician', 'a
pharmaceutical company ')\n\n
Example 1:\n 'Statement': 'Trump
says we should protect the moat
of AL in the US.'\n '
statement_revised': 'Wannetta
says we should protect the moat
of AI in the US.'\n 'context':
Wannetta is an American
politician.'\n Example 2:\n
Statement ': 'Pfizer suppressed
reports of vaccine side effects
.'\n 'statement_revised': 'VaxGen
suppressed reports of vaccine

1
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side effects.'\n 'context':
VaxGen is a pharmaceutical
company. '\n Example 3:\n '
Statement ': 'WHO releases 2025
update to the International
Classification of Diseases.'\n
statement_revised': 'Global Human
Health Institute (GHHI) releases
2025 update to the International
Classification of Diseases.'\n '
context': 'Global Human Health
Institute (GHHI) is a global
health organization. '\n\n
Statement: {statement}
6 </s>

Here is a randomly selected data after an entity

shift step:

1 <|label|>

2 1

3 </s>

4 <|revised statement|>

5 Three healers from the same medical

center 'die suddenly' in the same
week after the medical center
mandated a fourth Zeta-19 vaccine
for employees.
</s>
<|context]|>
Healers are medical professionals
specializing in patient care. The
medical center is a healthcare
facility providing various
medical services. Zeta-19 is a
vaccine developed to combat a
specific viral infection.
9 </s>
10 <|original statement|>
11 Three doctors from the same hospital
'die suddenly' in the same week
,"" after the hospital mandated a
fourth COVID-19 vaccine for
employees.
12 </s>

[cBEN le)\

The main reason we employ gpt-4o0-mini for
entity shift operations in our main experiment
is that it is cost-effective and more likely to be-
come generalized. But also to understand the
performance of the current state-of-the-art mod-
els on this work, we performed an additional
comparison, i.e., we used the 03-mini model to
perform the same operation and then manually
checked all the entity-shifted data, the statistical
results and the costs are provided in the Table
7. With this additional experiment, we found
that 03-mini is essentially perfect for this task,
especially with reasoning_effort=high. And
although gpt-4o-mini consumes very few re-
sources, it still has a gap with 03-mini in terms
of reliability (~15%). Therefore, we suggest that
if a more general and economical LLM such as
gpt-4o0-mini is used for entity shift operations, it
is best to require a more careful manual review by

the evaluator to ensure the reliability of the LLM
generated content.

Model Name ‘ Cost ($) Reliability (%)
gpt-40-mini-2024-07-18 0.21 85.10
03-mini-2025-01-31 6.40 99.61

- with medium 20.70 99.96

- with high 44.65 100.0

Table 7: OpenAl API cost and reliability of the entity
shift procedure. Reliability refers to the percentage
of entity-shifted data generated by LLM that can be
directly adopted without any modification.

A.5 Fine-tuning for Contamination Injection
Experiments

In the HAPT, extensive news data, e.g., GDELT!#
(Leetaru and Schrodt, 2013), and task information
related to fake news detection (e.g., Wikipedia'”)
are seen as a source of semantic level BDC. The
information level BDC data used were obtained
from searches conducted on low-confidence social
platforms (e.g., X API) using the human generated
claims. Data level and label level BDC, on the other
hand, both use test data directly for fine-tuning, the
difference being that the former does not include
labels. In RTW-AV, a similar approach to HAPT is
followed, but with the difference that the informa-
tion level BDC data is derived from the retrieved
web content and also the original tweets.

In the ECVE, for semantic level BDC experi-
ments, we the same source of the HAPT part and
clean it as necessary to serve as a fine-tuned cor-
pus. For information level BDC experiments, we
use Paper-with-code!® to collect research papers
using the benchmark under the LIAR and LIAR2
datasets, and incorporate them into the corpus after
PDF parsing. The data level BDC experiments, on
the other hand, are directly contaminated with data
from the training (with labels) sets of LIAR2. Un-
like the data level, we use test set (with labels) to
the labeled level contaminated corpus.

Since the GPT series of models does not have an
open interface for pre-training, we convert the pre-
pared contaminated corpus into the form of Q&A
pairs for injecting contamination, the basis is that
a number of studies have also demonstrated that
knowledge can be injected through supervised fine-
tuning (SFT) (Ovadia et al., 2024; Lyu et al., 2024;

14https://www.gdeltproject.org/
Bhttps://wikipedia.org/
"https://paperswithcode.com/dataset/liar
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Li et al., 2025). The three components have the
same percentage of total contamination data. Ex-
cept for the contamination injection part, the rest
of the fine-tuning corpus is randomly selected from
FLAN (Longpre et al., 2023).

The gpt-40-mini model was fine-tuned for 3
epochs per configuration (learning rate: 1 x 1073,
batch size: 16). Post fine-tuning, each contami-
nated model was evaluated on the original LIAR2
test set using the TripleFact framework under iden-
tical conditions to Experiment 1. We conducted 16
total runs (4 BDC levels x 4 contamination inten-
sity) and measured degradation in TripleFact Score
(TFS), HAPT, RTW-AV, and ECVE metrics.

8823



