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Abstract
Recent advancements in LLMs unlearning have
shown remarkable success in removing un-
wanted data-model influences while preserv-
ing the model’s utility for legitimate knowl-
edge. Despite these strides, sparse Mixture-of-
Experts (MoE) LLMs–a key subset of the LLM
family–have remain unexplored in the context
of unlearning. As MoE LLMs are celebrated
for their exceptional performance, we ask: How
can unlearning be performed effectively and ef-
ficiently on MoE LLMs? Our pilot study shows
that the dynamic routing nature of MoE LLMs
introduces unique challenges, leading to ex-
cessive forgetting, uncontrolled knowledge era-
sure and substantial utility drops when existing
unlearning methods are applied. To address
this, we propose a novel Selected-Expert Un-
learning Framework (SEUF). Through expert
attribution, unlearning is concentrated on the
most actively engaged experts for the specified
knowledge. Concurrently, an anchor loss is ap-
plied to the router to stabilize the active state of
this targeted expert, ensuring focused and con-
trolled unlearning. SEUF is compatible with
various standard unlearning algorithms. Exten-
sive experiments demonstrate that SEUF en-
hances both forget quality up to 5% and model
utility by 35% on MoE LLMs across various
benchmarks and LLM architectures (compared
to standard unlearning algorithms), while only
unlearning 0.06% of the model parameters.

1 Introduction
Despite the extraordinary ability in generating
human-like content (Touvron et al., 2023), the rapid
development of large language models (LLMs)
have raised a series of ethical and security concerns,
such as pretraining on copyrighted data (Sun et al.,
2024), bias perpetuation (Motoki et al., 2023), the
generation of toxic, biased, or illegal contents (Wen
et al., 2023), and facilitating making cyberattacks
and bio-weapons (Li et al., 2024). As a solution, the
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problem of Machine Unlearning (MU) arises (also
referred to LLM unlearning) (Liu et al., 2024c),
aiming to scrub the influence of the undesired train-
ing data and removing their corresponding gener-
ation abilities, while preserving the influence of
other remaining valid data (Jia et al., 2024a; Shi
et al., 2024; Jia et al., 2024b).

While LLM unlearning has recently become a
major research thrust, past efforts have only fo-
cused on effective unlearning methods for con-
ventional LLMs. In contrast, sparse Mixture-of-
Experts LLM (MoE LLM) (Jiang et al., 2024; xAI,
2024; Databricks, 2024; Abdin et al., 2024; Liu
et al., 2024a), designed to reduce computational
burdens during inference, remained unexplored in
this context. As a key member of the LLM family,
MoE LLMs offer substantial scalability without
a corresponding increase in computational costs
(Jiang et al., 2024; Team, 2024; Dai et al., 2024).
Thanks to their dynamic routing mechanism, MoE
LLMs direct inference through different model
components, known as ‘experts’. However, it re-
mains unclear how LLM unlearning interacts with
the sparse MoE architecture and whether unlearn-
ing for MoE LLMs presents unique challenges.
This leads us to ask:

(Q) Can we develop a principled MU method
for MoE LLMs that ensures high forgetting
effectiveness, while maintaining model utility
and efficiency?

To the best of our knowledge, the problem (Q)
remains unexplored in the current literature. Our
investigation begins with a pilot study that applies
existing unlearning methods to MoE LLMs. Pre-
liminary results indicate that a simple application
of these methods can lead to a substantial drop
in model utility and even model collapse. This
phenomenon is illustrated in Fig. 1(a), which de-
picts the performance of the unlearned MoE LLMs
predominantly closer to the bottom right corner, in-
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dicating a significant and unacceptable utility drop
compared to conventional dense LLMs.

To look into this phenomenon, we begin by per-
forming a careful sanity check on unlearning meth-
ods in MoE LLMs and conduct an in-depth analysis
of failure cases. Ideally, in MoE LLMs, given an
input, the routers should evaluate and direct it to
the most relevant experts, with unlearning targeting
and erasing the corresponding knowledge in these
experts. However, by monitoring expert selection
during unlearning, we find that the process often
prompts routers to constantly switch the activated
experts. This behavior persists even when routers
are fixed. As a result, unlearning algorithms create
“short-cuts”, where instead of targeting the most rel-
evant experts, the routers shift to less relevant ones
to trick for unlearning loss reduction (i.e., irrelevant
experts are unlearned). This leads to substantial
drops in model utility (illustrated in Fig. 1(b)).

To solve the problem, we propose a novel un-
learning framework specifically tailored for MoE
LLMs, named SEUF (Selected Experts Unlearning
Framework). SEUF employs expert attribution to
pinpoint the experts most actively involved with the
forget set, which is designated as the primary target
for unlearning. Unlearning efforts are exclusively
focused on this identified expert. Concurrently, an
anchor loss is applied to the router to stabilize the
active status of the targeted expert throughout the
unlearning process. This approach prevents the
frequent switching of expert selection, ensuring
that unlearning is both focused and controlled. Our
contributions are summarized below.
• We for the first time identify the unique chal-

lenge of unlearning in MoE LLMs. Our analysis
elucidates the root causes of observed failures, of-
fering novel insights into how unlearning impacts
the routers and experts within an MoE LLM.
• We propose a novel parameter-efficient un-

learning framework, SEUF, for MoE LLMs.
SEUF effectively pinpoints, fixates, and unlearns
the most pertinent experts relative to the forget
set. SEUF enjoys high flexibility and works in a
plug-in-and-play mode with any existing unlearn-
ing methods to boost forget quality, model utility,
and efficiency at the same time.
• We conduct extensive experiments to demon-

strate the effectiveness of SEUF across various
MoE architectures, MU benchmarks, and unlearn-
ing methods. Our results show that when integrated
with SEUF, all tested unlearning methods achieve
substantial improvements in model utility up to

35% and concurrently enhance the quality of for-
getting with only 0.06% parameters being updated.

2 Related Works
Machine Unlearning for LLMs. A growing body
of research has investigated the problem of unlearn-
ing in LLMs (Yao et al., 2024; Lu et al., 2022;
Jang et al., 2022; Kumar et al., 2022; Zhang et al.,
2023a; Pawelczyk et al., 2023; Eldan and Russi-
novich, 2023; Ishibashi and Shimodaira, 2023; Yao
et al., 2023; Maini et al., 2024; Zhang et al., 2024;
Li et al., 2024; Wang et al., 2024a; Jia et al., 2024b;
Liu et al., 2024c,b; Thaker et al., 2024). These
studies have practical applications, such as remov-
ing sensitive information (Jang et al., 2022; Eldan
and Russinovich, 2023; Wu et al., 2023), prevent-
ing the generation of harmful or biased content
(Jang et al., 2022; Eldan and Russinovich, 2023;
Wu et al., 2023; Lu et al., 2022; Yu et al., 2023;
Yao et al., 2023; Liu et al., 2024d), memorized
sequences (Jang et al., 2022; Barbulescu and Tri-
antafillou, 2024), and copyrighted material (Eldan
and Russinovich, 2023; Jang et al., 2022). To fa-
cilitate unlearning, recent methods aim to bypass
the need for retraining models from scratch by ex-
cluding the forget set containing the targeted data
to be removed (Ilharco et al., 2022; Liu et al., 2022;
Yao et al., 2023; Eldan and Russinovich, 2023; Jia
et al., 2024b; Zhang et al., 2024; Li et al., 2024;
Thaker et al., 2024; Liu et al., 2024b). Techniques
like task arithmetic also enable efficient model edit-
ing through parameter merging (Hu et al., 2024;
Ilharco et al., 2022). Although these methods do
not provide exact unlearning akin to full retraining,
they remain efficient and effective under empirical
unlearning evaluation metrics. Approaches often
include model fine-tuning and optimization (Liu
et al., 2022; Yao et al., 2023; Eldan and Russi-
novich, 2023; Jia et al., 2024b; Zhang et al., 2024;
Li et al., 2024), or input prompting and in-context
learning (Thaker et al., 2024; Pawelczyk et al.,
2023; Liu et al., 2024b). Other approaches, such
as localization-informed unlearning, identify and
locally edit model units (e.g., layers or neurons)
closely related to the data or tasks being unlearned
(Meng et al., 2022; Wu et al., 2023; Wei et al.,
2024). Most existing research has focused on dense
LLMs, leaving unlearning in MoE LLMs unex-
plored. For example, the unlearning of Mixtral-
8× 7B discussed in Li et al. (2024) only examined
a single method with ad-hoc adjustments. This
work aims to fill this gap by conducting a com-
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Figure 1: Overview of the key findings in this paper. (a) Illustration of the ineffectiveness of existing unlearning methods on
MoE LLMs. Four unlearning algorithms—GA (Eldan and Russinovich, 2023), GDIFF (Maini et al., 2024), NPO (Zhang et al.,
2024), and RMU (Li et al., 2024)—were applied to two MoE LLMs (DeepSeek-v2-Lite (Liu et al., 2024a) and Qwen1.5-MoE
(Team, 2024)) and two dense LLMs (Phi3.5 (Abdin et al., 2024) and LLaMA3-8B (Dubey et al., 2024)) using the WMDP benchmark
(Li et al., 2024). The drop in target knowledge (accuracy drop on the forget test set, higher is better) and the drop in model
utility (accuracy drop on MMLU (Hendrycks et al., 2023), lower is better) are plotted. Better-unlearned models should appear
in the top left corner, but unlearning on MoE LLMs was less effective compared to non-MoE modles. (b) Illustration of ideal
versus ineffective MoE LLM unlearning. Target experts—those most frequently activated given the forget set—are identified for
unlearning. However, existing unlearning algorithms tend to cause substantial expert selection shifts, leading to excessive and
unnecessary unlearning of non-target experts, which significantly impairs model utility.

prehensive study of various unlearning methods,
benchmarks, and MoE models, addressing the spe-
cific challenges posed by the MoE architecture.

MoE-based LLMs. Sparse MoE models are
designed to activate only a subset of expert net-
works for each input during inference, enabling
substantial model scaling with minimal computa-
tional overhead (Shazeer et al., 2017). Current
MoE model development can be categorized into
two types: training from scratch (Fedus et al., 2022;
Zoph et al., 2022a; Shen et al., 2023) and building
from dense checkpoints (Zhang et al., 2021; Komat-
suzaki et al., 2022; Zhu et al., 2024). Over recent
years, MoE models have seen key advancements,
including improvements in scalability (Riquelme
et al., 2021; Kim et al., 2021; Zhou et al., 2022;
Zoph et al., 2022a), efficiency optimization (Fedus
et al., 2022; Lepikhin et al., 2020; Chowdhery et al.,
2023), and expert balancing techniques (Cong et al.,
2024; Zoph et al., 2022b; Dai et al., 2022). The
implementation of transformer-based MoE mod-
els has been integrated into LLMs, significantly
enhancing inference efficiency (Jiang et al., 2024;
Dai et al., 2024; xAI, 2024; Hong et al., 2024; Ab-
din et al., 2024; Lieber et al., 2024; Yang et al.,
2024; Zhu et al., 2024; Databricks, 2024). For ex-
ample, DeepSeekMoE (Dai et al., 2024) improves
expert specialization by segmenting experts into
smaller subsets for flexible activation, while iso-
lating shared experts to reduce redundancy and
capture common knowledge. Similarly, Qwen1.5-
MoE (Team, 2024) partitions a standard FFN layer
into smaller segments to create multiple experts,
introducing a fine-grained routing mechanism that
enables Qwen1.5-MoE to match the performance

of 7B models with only one-third of parameters
activated. Despite the efficiency gains provided by
MoE’s dynamic routing system, existing research
highlights additional challenges compared to tra-
ditional dense models, including unstable training
(Zoph et al., 2022a; Dai et al., 2022), robustness
issues (Zhang et al., 2023b; Puigcerver et al., 2022),
and complications in parallel deployment (Hwang
et al., 2023; Gale et al., 2023). In this work, we
show that the root cause of the ineffectiveness of
existing unlearning methods for MoE LLMs also
stems from the dynamic routing system.

3 Preliminaries
In this section, we present our pilot study to reveal
that unlearning methods designed for conventional
LLMs are ineffective in unlearning MoE LLMs.

Preliminaries on MoE LLM unlearning.
Based on the generic formulation outlined in Liu
et al. (2024c), the task of LLM unlearning is to
eliminate the influence of a specific ‘unlearning
target’–whether it is related to data, knowledge,
or model capabilities–from a pretrained LLM (de-
noted by θo). The unlearning target is typically
defined by a forget set Df , which contains the in-
formation or knowledge to be removed. To ensure
the model retains its generation ability (i.e., utility)
after unlearning, a retain set Dr is introduced, con-
sisting of data unrelated to the unlearning target.
With this setup, the LLM unlearning problem is
usually formed as a regularized optimization prob-
lem, finetuned from θo using both the forget set Df

and the retain set Dr:

min
θ

ℓf (θ;Df ) + λℓr(θ;Dr). (1)
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Table 1: Unlearning performance of GA when control-
ling tunable parameters in MoE LLMs.

Tunable Module Forget Efficacy ↓ Utility ↑

Qwen

Original 0.4192 0.5979
Experts & Router 0.2953 0.3393

Routers Only 0.2526 0.2977
Experts Only 0.2536 0.3242

DeepSeek

Original 0.3804 0.5500
Routers & Expert 0.2457 0.3145

Routers Only 0.2375 0.3315
Experts Only 0.2601 0.3435

Here, θ represents the model parameters to be
updated during unlearning, ℓf and ℓr denote the
forget loss and retain loss, respectively, with λ ≥ 0
serving as a regularization parameter to balance
between unlearning and preserving utility.

Next, we provide a brief introduction to how the
routing system operates in the MoE LLM architec-
ture. In MoE LLMs, e.g., DeepSeek-v2-Lite (Liu
et al., 2024a), the feed-forward networks (FFNs)
of Transformers are split into multiple experts and
activated by the output of the router in front of the
expert layers, see Fig. 1(b) for illustration. In the
l-th layer, given the input u(l)

t corresponding to the
t-th token, router layers calculate the score of each
token and assign them to the top-K experts:

s
(l)
i,t = Softmax(Router(u(l)

t ))

g
(l)
i,t =

{
s
(l)
i,t if s(l)i,t ∈ TopK({s(l)k,t | 1 ≤ k ≤ N})
0 otherwise

Here, Router(·) denotes the router layer, si,t is
the token-to-expert affinity, TopK(·) selects the
highest K value in the set, N is the number of
experts, and g

(l)
i,t is the score assigned by router

for the i-th expert. Then, the hidden state h′(l)
t

of FFNs can be calculated as: h′(l)
t = u

(l)
t +∑N

i=1 g
(l)
i,t FFN(l)

i (ut), where FFN(l)
i (·) denotes the

i-th expert. Then, h′(l)
t is sent to the next layer of

Transformer blocks for further processing.
Unlearning for MoE LLM is not trivial: a pi-

lot study. The goal of unlearning is twofold: (1) to
ensure the model forgets the targeted information
and knowledge stored in Df , and (2) to preserve
the model utility without significant degradation.
Our pilot study reveals that the special routing sys-
tem in MoE LLMs introduces additional challenges
to unlearning, rendering existing methods ineffec-
tive. We applied four widely used LLM unlearn-
ing methods: GA (Gradient Ascent) (Eldan and
Russinovich, 2023), GDIFF (Gradient Difference)
(Maini et al., 2024), NPO (Negative Preference Op-
timization) (Zhang et al., 2024), and RMU (Rep-

resentation Misdirection for Unlearning) (Li et al.,
2024) with the WMDP benchmark (Li et al., 2024)
on two MoE LLMs, Qwen1.5-MoE (Team, 2024)
and DeepSeek-V2-Lite (Liu et al., 2024a), as well
as two dense LLMs for reference, LLaMA3-8B
(Dubey et al., 2024) and Phi-3.5-mini-instruct (Ab-
din et al., 2024), where the task aims to unlearn
hazardous knowledge in LLMs. In Fig. 1(a), to
ease the comparison, we report the forget qual-
ity (performance drop on the forget test set, where
higher is better) against retain quality (performance
drop on the MMLU (Hendrycks et al., 2020) utility
benchmark, where lower is better). Each data point
represents the best result of a model-method com-
bination with hyper-parameter tuning, with ideal
performance located near the top left corner, signi-
fying high unlearning effectiveness with minimal
impact on model utility. As we can see, most MoE
LLM data points cluster in the lower right, indicat-
ing severe utility drops and poor unlearning perfor-
mance compared to dense models. In Fig. 1(a), all
model parameters (including routers and experts)
are involved in unlearning. To ensure that these
poor results are not due to improper parameter set-
tings, Tab. 1 presents additional experiments using
two other parameter configurations (routers-only
and experts-only) for GA, yet no significant im-
provements are observed in either forget or retain
quality (more than 20% utility drop). The results
above imply the problem of MoE LLM unlearning
is more challenging and far from trivial, even if
LLM unlearning is well-studied.

4 Our Proposal: SEUF
In this section, we delve into the failure cases
highlighted in Sec. 3 by analyzing the behavior
of routers and their expert selection patterns. We
then identify two primary root causes underlying
the poor unlearning performance in MoE LLMs.
Based on these insights, we introduce SEUF, a
new unlearning paradigm designed to achieve con-
trollable and effective unlearning for MoE LLMs.

Uncovering the root cause: ‘short-cut’ in
MoE LLM unlearning and expert selection shift.
In order to fully understand the failure cases of
MoE LLM unlearning, we begin by inspecting and
monitoring the expert selection pattern of the un-
learned model. In Fig. 2, we show the proportion
of tokens assigned to each selected expert on the
data samples from WMDP forget dataset (Li et al.,
2024). For the input of a specific topic, a small
portion of experts (around 6 to 9 out of 64 experts)
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Figure 2: Proportion of tokens assigned to each expert of the
pre-trained DeepSeek-v2-Lite (K=6 in Topk) with samples
from WMDP forget benchmark (Li et al., 2024), in different
model layers. The dashed horizontal line marks 6/64, i.e., the
proportion expected with uniform expert selection. The ex-
pert selection distribution clearly follows a long-tailed pattern
when the input is sampled from a topic within a narrow scope.
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Figure 3: (left) Overlap ratio of selected experts between
the original pretrained model and the unlearned model with
different unlearning iterations using GA on WMDP benchmark.
(right) Forget loss vs. the number of unlearning iterations,
when controlling parameters to unlearn in MoE LLM.

were assigned with the majority of the tokens in
each layer, which was also confirmed in Wang et al.
(2024b). Thus, we have the following insight:
Insight 1: For the inference related to a certain topic within
a narrow scope (e.g., the forget set of an unlearning task),
expert selection by MoE routers follows a long-tailed distri-
bution, with only a few experts being activated significantly
more frequently than others.

Based on the insight above, we define the fre-
quently activated experts as topic-target experts,
and the others as non-target. Thus, by eliminating
the knowledge stored in these target experts, MoE
LLM unlearning can be achieved more effectively.

Next, we examine how the expert selection pat-
tern evolves during unlearning. Specifically, we
track the average expert selection overlap ratio
across all layers between the unlearned model at
different stages and the original pretrained model,
when processing the forget set. The results, shown
in Fig. 3 (a), reveal a steady decline in the over-
lap ratio as unlearning progresses, indicating that
previously selected target experts are gradually re-
placed by non-target ones that do not contain the
target knowledge. This shift persists even when
routers are fixed, as unlearning can still indirectly
influence router selection: a router’s decision at
one layer depends on the output of the previous
layer, which may have been affected by an updated
expert of this previous layer in unlearning. Mean-
time, we observe a consistent reduction in forget
loss, as shown in Fig. 3 (b). Thus, we can derive
the following insight:

Insight 2: Existing unlearning methods tend to prompt routers
to shift selection from target to non-target experts unintention-
ally. This creates unlearning ‘shortcuts’ in expert selection
to trick for low forget loss and lead to fake unlearning.

As unlearning proceeds, non-target experts are
more frequently activated to handle samples re-
lated to the unlearning target, thereby being forced
to participate in the unlearning task, even though
they did not contain the intended target knowledge.
Meanwhile, the true objective of unlearning, i.e.,
the target experts, remain hidden out of the reach
of the forward propagation. Existing literature (Liu
et al., 2024c) has already demonstrated that forcing
unlearning models that do not contain knowledge
related to the unlearning target can cause a signif-
icant drop in model utility. This accounts for the
sharp decline in model utility observed in Sec. 3,
which leads to the following insight:

Insight 3: The sharp degradation in model utility during MoE
LLM unlearning is primarily due to excessive unlearning
applied to non-target experts caused by expert selection shift.

SEUF for effective MoE LLM unlearning. As
discussed earlier, a new paradigm tailored for MoE
LLM unlearning is urgently needed to address the
challenges of unintentional expert selection shifts
in routers and excessive unlearning of non-target
experts. Therefore, we propose a framework that
(1) identifies the most relevant target experts, (2)
ensures that these target experts remain highly ac-
tivated throughout the unlearning process to avoid
selection shifts, and (3) limits the impact of un-
learning on non-target experts. Spurred by these,
we introduce SEUF, where unlearning is confined
to M most relevant target experts. We refer the
readers to Alg. 1 for an illustration of SEUF.

This approach starts with an expert attribution
process to accurately identify the most M relevant
experts for the unlearning task (step 1-3). Then, the
gradient computation selected experts eM and their
corresponding routers ReM are enabled (step 4),
while other parameters are frozen. Step 5 performs
unlearning using any unlearning approach, as our
framework is flexible. For example, gradient as-
cent can be applied with our defined loss functions.
Next, we present the details of the expert attribution
process and define the anchor loss function.
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Algorithm 1 SEUF Unlearning Algorithm

Output: Unlearned model θu

Input: Pretrained model θo, forget set Df , retain set Dr ,
Setup: Retain loss ℓr , forget loss ℓf , anchor loss Lanchor,

the number of experts to select M
1: Ds ← Sample_Subset(Df )
2: s← Record_Affinity_Score(θo, Ds)
3: eM ←Ranking_And_Select(s,M )
4: Activate_Expert_And_Router(θo, eM ,ReM )
5: θu ←Unlearn(θo, ℓf (Df ), ℓr(Dr), Lanchor)
6: Return θu

✦ Expert attribution. While the token assign-
ment ratio for each expert (shown in Fig. 2), can
serve as a basic attribution metric, it overlooks finer
details that are important for precise comparisons,
due to the hidden states in each layer summed by
weighted average. To address this, we adopt a gat-
ing score-based task affinity calculation method
from (Wang et al., 2024b). Specifically, the affinity
score for the i-th expert e(l)i in the l-th layer of an
MoE LLM is defined as:

s
(l)
i =

1

Z

Z∑

j=1

1

Lj

Lj∑

t=1

g
(l)
i,t (2)

where Z is size of the calibration dataset used for
expert attribution, Lj represents the length of the
j-th input sequence xj , and g

(l)
i,t is the probability

score assigned to expert e(l)i for the t-th token. Fol-
lowing Wang et al. (2024b), the attribution data can
be a subset universally sampled from the original
forget set. We find that a subset containing over
100,000 tokens is robust enough to select the most
relevant experts for an unlearning task. For each
layer, we rank the experts based on their affinity
score and then finally select the top M experts as
the target expert for unlearning (eM in Algo. 1).

✦ Router anchor loss. A key challenge in un-
learning is the expert selection shift, where the true
target experts are hidden by the routers, while less
relevant experts are activated during inference and
inadvertently involved in the unlearning process.
To mitigate this, we propose the router anchor loss,
which encourages the previously identified target
expert to remain consistently activated throughout
unlearning. The loss is formulated as:

L
(l)

anchor = ∥g
(l) − [a

(l)
1 , a

(l)
2 , . . . , a

(l)

E(l) ]∥22, (3)

where E(l) is the total number of experts in the
l-th layer, g(l) = [g

(l)
1 , g

(l)
2 , . . . , g

(l)
i ] is the output

of router, and a
(l)
i = 1 if the i-th expert is identi-

fied as the target expert, otherwise a
(l)
i = 0. The

unlearning loss can then be formularized as:

min
θ

ℓf (θ;Df ) + λℓr(θ;Dr) + αL
(l)

anchor, (4)

Table 2: Model utility (UT↑) comparison at the same level
of forget efficacy (FE≈ 0.25), when the top M experts from
either the same layer or different layers in DeepSeek are un-
learned using GA on WMDP benchmark, also when 4 shared
experts are included.

Selected experts Top-1 Top-3 Top-6 Top-1+4-shared

Same layer
0.5100

0.4856 0.4652 0.3554
Different layers 0.2852 0.2567 –

where α controls the strength of anchor loss. Its
sensitivity is analyzed in Appendix Sec. B.

✦ Selection of top M experts. When forming
eM of the top M experts, there are two approaches:
1) selecting the top M experts from all experts
across all layers based on the affinity score s

(l)
i

in Eq.2; and 2) to mitigate selection shift from
previous layers, another approach is to choose the
top M experts from the same layer. We examined
both approaches under different settings M=1,3,6,
and present the results in Tab. 2. We observe
that unlearning a single expert (M=1) yields bet-
ter performance than unlearning multiple experts,
regardless of whether they come from the same
layer or different layers. This trend of single-expert
unlearning yielding the best performance is also
observed across other unlearning tasks (see Tab. 7
in Appendix). This suggests:
Insight 4: Unlearning top-1 expert is the most effective.

From Tab. 2, we also observe that unlearning
multiple experts across different layers leads to a
substantial performance decline. To further analyze
the Insight 4, let the total gradient update during
unlearning be: ∆W =

∑
i∈eM λi∇Li, where eM

is the set of selected experts being unlearned, λi

denotes their contribution weight, and ∇Li is their
corresponding gradient update in Eq. (4). When
only the top-1 expert is selected for unlearning, the
modification to the weights remains minimal, ensur-
ing low gradient interference. For multiple experts
within the same layer, the gradient updates may
partially cancel out, leading to moderate disrup-
tion. However, for multiple experts across different
layers, the gradient updates affect distinct feature
hierarchies, resulting in an unstable gradient flow
and widespread model disruption.

This analysis also explains the deficiency of un-
learning shared experts. In a given layer, shared
experts are activated for all tokens, making them
intuitively suitable targets for unlearning. How-
ever, Tab. 2 shows that unlearning the top-1 expert
along with 4 shared experts causes a greater util-
ity drop than unlearning top-6 experts in the same
layer. Shared experts influence a broader range
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of token representations, so making them active
for unlearning triggers high-magnitude gradient up-
dates across multiple pathways. Also, since shared
experts consolidate common knowledge across di-
verse contexts (Liu et al., 2024a), their modification
disrupts the model more severely, making them sub-
optimal for unlearning.

5 Evaluation Experiments
To demonstrate the effectiveness of our proposed
method, we evaluate and compare it against dif-
ferent baselines on two widely accepted LLM un-
learning benchmarks: WMDP (Li et al., 2024) and
RWKU (Jin et al., 2024). The detailed experimental
setup, such as unlearning tasks, datasets selection,
targeted MoE models, unlearning baselines and
hyper-parameter setting, is provided in Appendix
Sec. A, due to space limitation. We next present
results of several key experiments.

✦ Effectiveness of SEUF across benchmarks
and unlearning methods. In Tab. 3, we present
the FE (forget efficacy) and UT (utility) of our pro-
posed SEUF when integrating different unlearn-
ing methods GA, GDIFF, NPO, and RMU. In
this evaluation, SEUF selects only the top-1 ex-
pert for unlearning. There are two notable find-
ings. First, SEUF effectively enhances unlearn-
ing, either by further reducing FE or maintaining a
similar level compared to baselines without SEUF.
Second, SEUF consistently improves model util-
ity (UT) across all tested methods. Notably, for
methods where UT drops by more than 10% (com-
pared to the pretrained model), highlighted in red,
SEUF mitigates the decline. For example, the
utility of GA on Qwen for the WMDP task drops
from 0.5979 to 0.3393, but with SEUF, the utility
improves to 0.5012, This demonstrates SEUF’s ef-
fectiveness in balancing unlearning performance
and model retention. Notably, methods such as
GDIFF and RMU, which experience notable utility
loss when used alone, benefit greatly from the appli-
cation of SEUF, achieving near-pretrained utility
levels while still maintaining effective unlearning.

✦ SEUF outperforms parameter-efficient
fine-tuning (PEFT) methods when used for un-
learning. Tab. 3 also includes a set of baselines
that apply PEFT on GA. It is used to evaluate
whether our method unlearns more effectively a
subset of parameters (top-1 expert) compared to
PEFT. Tab. 4 shows a comparison of the param-
eter efficiency involved in tuning. The key con-
clusion from these results is: SEUF achieves far

better parameter efficiency, with only 0.06% of
tunable parameters, compared to LoRA (0.92%)
and ESFT (2.86%), while still maintaining a com-
parable level of forget efficacy and outperform-
ing them in utility preservation. For instance,
in RWKU, GA+SEUF achieves utility scores of
0.5709 on Qwen and 0.5485 on DeepSeek, signifi-
cantly higher than LoRA (0.2689 and 0.2302) and
ESFT (0.4433 and 0.5001).

✦ Top-1 expert selection outperforms ran-
dom selection in unlearning. In the last row of
Tab. 3, we compare the performance of the affinity
score-based expert selection in SEUF with a ran-
dom expert selection approach. The results show
that while random selection can sometimes pre-
serve utility at a comparable level, it falls short in
achieving effective unlearning. For instance, on
Qwen (WMDP), random selection yields a higher util-
ity score (0.5947 vs. 0.5351 for SEUF), but its
forget efficacy (FE) remains significantly higher
(0.3505 vs. 0.2536 for SEUF), indicating incom-
plete unlearning. This suggests that selecting the
top-1 expert based on affinity scores is crucial for
reducing FE while maintaining utility, making it a
superior approach to random selection.

✦ Experts with higher affinity scores play a
more significant role in unlearning. To further
examine the impact of selecting experts based on
their affinity scores, we analyze the layer-wise Top-
1 expert in DeepSeek on RWKU dataset. In Tab. 5,
we present their affinity scores along with the util-
ity (UT) when the expert is involved in unlearn-
ing. Due to space constraints, we highlight the
top-ranked layer-wise experts (1st to 3rd) and also
include several lower-ranked ones (13th to 26th) for
comparison. From the results, we observe that the
first-ranked expert (with the highest affinity score
0.211) yields the highest UT (0.5485). Overall, UT
remains stable at 0.5445 or higher when selecting
experts with affinity scores above 0.1. However,
when affinity scores drop further (e.g., the 23rd and
26th ranked experts), utility declines more sharply
to 0.4262 and 0.2355. These findings emphasize
the importance of selecting experts with sufficiently
high affinity scores to maintain utility while achiev-
ing effective unlearning.

✦ Unlearning resilient to jailbreak attacks.
The unlearned model is expected to refuse harmful
queries. The forgotten knowledge should not be
recovered even through adversarial means. We thus
examine the behavior of MoE LLMs unlearned by
SEUF under adversarial prompting. Specifically,
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Table 3: Performance comparison of existing unlearning methods equipped w/ and w/o SEUF on WMDP (Li et al., 2024)
and RWKU (Jin et al., 2024) benchmarks on two MoE LLMs, namely Qwen1.5-MoE-A2.7B-Chat (Qwen) (Team, 2024) and
DeepSeek-V2-Lite (DeepSeek) (Dai et al., 2024). Additionally, a group of baselines applying PEFT (LoRA and ESFT) on GA is
included to evaluate our method’s effectiveness in selecting a suitable subset of parameters for unlearning, along with a baseline
using random expert selection with RMU. The occurrence of significant utility increase (over 5% increase in UT compared to
without SEUF) are marked in green.

Method Qwen (WMDP) DeepSeek (WMDP) Qwen (RWKU) DeepSeek (RWKU)
FE↓ UT↑ FE↓ UT↑ FE↓ UT↑ FE↓ UT↑

Pretrained 0.4192 0.5979 0.3804 0.5548 0.4243 0.5979 0.5376 0.5548

GA 0.2953 0.3393 0.2457 0.3145 0.0078 0.4849 0.0839 0.5195
GA+SEUF 0.2987 0.5012 0.2700 0.5100 0.0060 0.5709 0.0000 0.5485

GDIFF 0.2964 0.2965 0.2898 0.3929 0.0700 0.5296 0.1901 0.3495
GDIFF+SEUF 0.2445 0.5295 0.2677 0.4895 0.0010 0.5987 0.0000 0.5253

NPO 0.3447 0.4612 0.3200 0.4700 0.0000 0.3718 0.0970 0.5388
NPO+SEUF 0.3200 0.5468 0.2898 0.4790 0.0020 0.5428 0.0000 0.5479

RMU 0.2612 0.3560 0.2530 0.4540 0.0200 0.2420 0.0010 0.5109
RMU+SEUF 0.2536 0.5351 0.2859 0.5424 0.0723 0.5975 0.0130 0.5388

GA+LoRA 0.2459 0.2689 0.2657 0.2295 0.0000 0.2689 0.0000 0.2302
GA+ESFT 0.3145 0.4514 0.2737 0.5108 0.001 0.4433 0.0200 0.5001

RMU+Random 0.3505 0.5947 0.2722 0.5183 0.2110 0.5924 0.1176 0.5182

Table 4: Tunable parameter ratio, PEFT vs SEUF.

Method Tunable Parameter Ratio
Qwen DeepSeek Mixtral

LoRA 0.87% 0.92% 0.26%
ESFT 3.13% 2.86% 14%

SEUF 0.06% 0.06% 0.41%

Table 5: Model utility (UT) comparison across unlearned
experts with different affinity scores (si) in SEUF+RMU on
the RWKU benchmark. UT is compared at a consistent level of
forget efficacy (FE ≈ 0.25).

Rank #1 #2 #3 #13 #20 #23 #26

si 0.2110 0.1957 0.1695 0.1115 0.0942 0.0844 0.0618

UT (↑) 0.5485 0.5475 0.5453 0.5445 0.5441 0.4262 0.2355

we test whether SEUF effectively mitigates unau-
thorized responses by employing the Greedy Co-
ordinate Gradient (GCG) attack (Zou et al., 2023)
in a white-box setting. This attack optimizes at-
tack prompts to elicit responses that begin with
“Sure, here is the answer:”. To increase attack
strength, we extend the number of optimization
steps to 5,000, while keeping other hyperparame-
ters at their default settings. Given the computa-
tional cost (∼ 1 GPU hour on an A100 per soft
prompt), we optimize 400 prompts across 400 sam-
ples in RWKU for attacking DeepSeek unlearned
by SEUF+GA. Since not all responses explicitly
begin with "Sure, here is the answer:", we filter
for outputs containing the word "answer" and eval-
uate forget efficacy (FE) both with and without
GCG-generated prompts. Our results show that
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Figure 4: Comparison of affinity scores for all experts in the
target layer of DeepSeek unlearned by SEUF + GA on the
RWKU dataset, with and without the GCG attack. The target
expert is marked as red.

despite being one of the strongest prompt-level at-
tacks, GCG fails to recover forgotten knowledge,
as FE remains at 0.01 before and after the at-
tack. To further understand how the GCG attack
affects expert selection, we visualize the affinity
score of experts in DeepSeek, and compare it with
GCG-attacked DeepSeek. Fig. 4 shows that while
the GCG attack reduces the affinity score of the tar-
get expert, the expert remains ranked as the top-1
in affinity score. This suggests that SEUF main-
tains stable expert selection even under adversarial
influence, ensuring robustness in the unlearning
process.

Additionally, we also perform a sensitivity anal-
ysis on hyperparameter α in Sec. B in Appendix.
The results in Tab. 6 in Appendix indicate that
α = 1 achieves the best performance.

6 Conclusion
In this paper, we for the first time examine the
challenges of applying existing MU techniques
to MoE LLMs and carefully investigate the syn-
ergy between the dynamic routing system of MoE
LLM and the unlearning effects. To address these
issues, we proposed SEUF, a novel framework
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that unlearns most related experts while stabiliz-
ing expert selection through a router anchor loss.
This approach mitigates expert selection shifts and
achieves efficient unlearning with minimal param-
eter updates. Extensive experiments show that
SEUF significantly outperforms traditional un-
learning methods and other parameter-efficient fine-
tuning techniques, providing a robust solution for
MoE LLM unlearning tasks.

7 Limitation

While this study offers valuable insights into un-
learning of MoE LLMs, it has certain limitations.
First, the evaluation was limited to two datasets due
to the scarcity of standardized benchmarks in un-
learning. We have used two widely accepted LLM
unlearning benchmarks: WMDP (Li et al., 2024) and
RWKU (Jin et al., 2024). WMDP. We acknowledge
the existence of other commonly used benchmarks,
such as TOFU (Maini et al., 2024) and MUSE
(Shi et al., 2024). However, these benchmarks
are less suitable for our study, as they require
models to undergo fine-tuning before unlearn-
ing. This additional training step introduces biases
in MoE LLMs due to known instability in train-
ing, sensitive hyperparameter tuning, and the risk
of training collapse (Jiang et al., 2024; Zoph et al.,
2022a). These factors make it challenging to isolate
the effects of unlearning from the broader impact
of model fine-tuning. Expanding the evaluation
to a broader range of datasets could enhance the
generalizability of the findings. In future work,
we plan to explore additional benchmarks, includ-
ing those that do not require fine-tuning before
unlearning, to ensure a more comprehensive as-
sessment of unlearning effectiveness across diverse
tasks and model architectures. Second, the study
did not apply the unlearning algorithm to Mixtral
8×7B with all parameters unlearned and excluded
larger MoE LLM models like DeepSeek-R1 due
to computational constraints. Due to the computa-
tion limitation, Mixtral is only applied on SEUF
and other parameter-efficient fine-tuning unlearn-
ing baselines. In future work, we could explore
scaling the approach to larger models to evaluate
its effectiveness in more complex architectures.
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A Experiment Setups

Unlearning tasks and datasets. To demonstrate
the effectiveness of our proposed method, we eval-
uate and compare it against different baselines on
two widely accepted LLM unlearning benchmarks:
WMDP (Li et al., 2024) and RWKU (Jin et al., 2024).
WMDP assesses the model’s ability to unlearn and
prevent the generation of hazardous knowledge in
biosecurity, cybersecurity, and chemical security
contexts. RWKU, on the other hand, evaluates the
model’s capability to eliminate knowledge about
200 real-world celebrities, simulating a private in-
formation protection task. We follow the original
study by selecting 100 individuals as unlearning
targets. The train_original_passage set, which in-
cludes Wikipedia descriptions of these 100 individ-
uals as provided in the paper, is used as the forget
set. We note that other commonly used bench-
marks, such as TOFU (Maini et al., 2024) and
MUSE (Shi et al., 2024), are less appropriate in this
work. These benchmarks require models to be fine-
tuned before unlearning, which introduces addi-
tional biases to the results for MoE LLMs due to the
known instability in training and the tricky hyper-
parameter tuning involved (Jiang et al., 2024), often
leading to training collapse (Zoph et al., 2022a).

Target MoE models to unlearn. We evalu-
ate different unlearning methods on two MoE
LLMs: Qwen1.5-MoE-A2.7B-Chat (Qwen),
mistralai/Mixtral-8x7B-Instruct-v0.1 (Mixtral),
and DeepSeek-V2-Lite (DeepSeek), representing
the two mainstream MoE LLM training schemes:
upcycle-from-dense and train-from-scratch, respec-
tively. Qwen has a total of 14.3 billion parameters,
with 2.7 billion activated during inference, while
DeepSeek has 16 billion parameters, of which 2.4
billion are activated during inference. Mixtral has
45 billion parameters, of which 12.9 billion are
activated.

Evaluation setup. We evaluate the performance
of the unlearned LLMs based on two key metrics:
forget efficacy (FE) and preserved model utility
(UT). For the WMDP task, FE is measured using the
WMDP-Cyber subsets provided by the benchmark.
Specifically, we use the accuracy of the forget set
after unlearning as the measure of FE. A lower FE
indicates better unlearning. Given the four-option
multiple-choice format of the test set, the ideal FE
is 0.25, equivalent to random guessing. UT is as-
sessed using the zero-shot accuracy on the MMLU
dataset (Hendrycks et al., 2020), which reflects the

model’s ability to retain general knowledge. For
the RWKU task, we use the Rouge-L recall score
to evaluate performance on fill-in-the-blank and
question-answer tasks, with lower scores indicating
more effective unlearning. Since the task follows
a question-answer format, the ideal FE is 0.0, in-
dicating no overlap between the generated answer
and the ground truth. The UT evaluation for RWKU
is the same as for WMDP, using the MMLU bench-
mark. By default, during the unlearning process,
we select the model checkpoint that achieves the
best balance between FE and UT as the optimal
checkpoint.

We utilize the LM Evaluation Harness (Gao
et al., 2024) to measure zero-shot accuracy on the
MMLU and WMDP cyber datasets. The mean
accuracy across all tasks in MMLU serves as a
measure of model utility. For the RWKU dataset,
we adhere to the original settings, using the prompt
“Please complete the blank in the following ques-
tion. Question:" for fill-in-the-blank tasks and
“Please briefly answer the following question. Ques-
tion:" for generation tasks.

Unlearning Baselines. We demonstrate the ef-
fectiveness of our proposed SEUF framework by
comparing it against the LLM unlearning baselines:
Gradient Ascent (GA) (Eldan and Russinovich,
2023), Gradient Difference (GDIFF) (Maini et al.,
2024) and most recent unlearning algorithm Nega-
tive Preference Optimization (NPO) (Zhang et al.,
2024) and Representation Misdirection for Unlearn-
ing (RMU) (Li et al., 2024). For each method,
we compare the original results with those ob-
tained when incorporating SEUF. Given the pa-
rameter efficiency of SEUF, we also compare it
with two state-of-the-art parameter-efficient fine-
tuning (PEFT) methods for MoE LLMs: the low-
rank adaptation scheme (LoRA) (Hu et al., 2021)
and the Expert-Specialized Fine-Tuning method
(ESFT) (Wang et al., 2024b), which is specifically
designed for MoE LLMs.

Hyperparameter selection. We consider typi-
cal unlearning algorithm as baselines. For RMU,
due to the original parameters settings for MoE
models fail to unlearn both in DeepSeek and Qwen.
We adapt its settings to target all expert MLP lay-
ers in fifth, sixth, seventh layers, which align with
the settings in the dense model. For the hyperpa-
rameters, the retain effect parameter is set to 1200,
and c is set to 30000 and 3000 in DeepSeek and
Qwen, respectively. We set the learning rate to 5e-5
for GA, NPO, and GD while setting it to 1e-4 for
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SEUF. The batch size is 4 for GA, NPO, and GD,
while it is set to 16 for SEUF. In NPO, the beta
value is set to 0.001. The λ for the retain loss is
set to 1 in both GD and NPO. For RMU, we follow
the hyperparameters specified in the original work.
We configure the steering coefficients as 8000 for
Qwen and 32000 for Deepseek, as SEUF targets
deeper layers in these models. For ESFT, we set
the threshold p = 0.15. According to Insight 4 in
Sec. 4, we set M = 1 in the experiment section by
default. For LoRA, we apply low-rank adaptation
to all layers of the model to enable full-layer fine-
tuning. All experiments were conducted in a single
run without multiple trials.

B Sensitivity Analysis of α

The hyperparameter α is used for ancho loss in
our loss function minθ ℓf (θ;Df ) + λℓr(θ;Dr) +

αL
(l)
anchor, for introducing the anchor loss Lanchor.

We conduct experiments on Deepseek unlearned
by GA with RWKU dataset to explore the perfor-
mance of different α. As shown in Tab. 6, the
results indicate that SEUF is robust to a wide
range of α and achieves the best performance when
α = 1.

Table 6: Sensitivity Analysis of hyperparameter α for
the strength of anchor loss. The experiment is conducted
on Deepseek unlearned by GA with RWKU dataset.

α 0 1 100 1000

FE (↓) 0.0 0.0 0.0 0.0
UT (↑) 0.5435 0.5485 0.5471 0.5468

C Selection of top M experts in different
tasks

We also conduct experiments on Qwen unlearned
by GA with RWKU dataset to investigate the optimal
selection of M . The results in Tab. 7 indicate that
SEUF achieves the best performance when only
one expert is unlearned M = 1, which is consistent
with the Insight 4.

Table 7: Model utility (UT↑) comparison at the same level
of forget efficacy (FE≈ 0.25), when the top M experts from
either the same layer or different layers in Qwen are unlearned
using GA on RWKU benchmark, also when 4 shared experts are
included.

Selected experts Top-1 Top-3 Top-6 Top-1+4-shared

Same layer 0.5709 0.3695 0.2572 0.2445

Different layers 0.5709 0.4224 0.3872 -

Table 8: Expert selection overlap between different sam-
pling splits

Dataset Full Subset 1 Subset 2

Full 1.00 0.94 0.85
Subset 1 0.94 1.00 0.87
Subset 2 0.85 0.87 1.00

Table 9: Performance of Mixtral 8x7B unlearned by GA
on WMDP and RWKU datasets.

Method WMDP RWKU
FE ↓ UT ↑ FE ↓ UT ↑

Pretrained 0.5229 0.6885 0.5820 0.6885
LoRA 0.2658 0.2597 0.0000 0.2295
ESFT 0.2574 0.6386 0.0542 0.6743
SEUF 0.2608 0.6364 0.0455 0.6713

D Robustness of Expert Selection

To evaluate the robustness of expert selection under
token sampling, we conducted an additional exper-
iment on a consistency analysis on the DeepSeek-
V2-Lite model using the WMDP forget set. Specif-
ically, we computed the overlap ratio of selected
experts across different token subsets, where over-
lap is defined as the proportion of shared top-6
experts at each MoE layer.

As shown in Table 8, a subset of 100,000 to-
kens yields a high overlap (0.94) with the expert
selections derived from the full dataset. Further-
more, two independently sampled subsets also
show strong agreement with each other (0.87 over-
lap), indicating that the attribution process is stable
across different sampling runs.

E Experiments on Larger MoE Models

To explore if SEUF can be applied to larger MoE
models, we evaluated SEUF on mistralai/Mixtral-
8x7B-Instruct-v0.1 (Mixtral 8x7B), one of the most
widely used large-scale open-source MoE models,
and compared its performance to other parameter-
efficient unlearning baselines.

As shown in Table 9, SEUF achieves comparable
or even better utility (UT) while maintaining strong
forget efficacy (FE). On the WMDP dataset, SEUF
achieves a UT of 0.6364, close to ESFT’s 0.6386
and far better than LoRA’s 0.2597. On RWKU,
SEUF reaches 0.6713, again comparable to ESFT
(0.6743) and significantly ahead of LoRA (0.2295).
Importantly, SEUF does so while updating only
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Table 10: Tunable parameter ratio of different methods

Method Tunable Parameter Ratio ↓
LoRA 0.26%
ESFT 14%
SEUF 0.41%

Table 11: Table A: The Spearman’s rank correlation
between gi,t and gi,tE(xi) for All experts and Top 6
experts across all layers in DeepSeek.

Range All experts Top 6

Correlation 1.0 1.0

0.41% of parameters, as shown in Table 10, sub-
stantially fewer than ESFT’s 14%.

F The Affect of Weighted Expert Norms

As experts may have different weight norms, which
could in theory impact the total contribution of their
outputs, and that gi,tE(xi) might reflect this better
than gi,t alone. To investigate this, we computed
the Spearman’s rank correlation between gi,t and
gi,tE(xi) across all MoE layers in DeepSeek us-
ing the WMDP dataset. As shown in the Tab 11,
the average rank correlation is 1.0 across both all
experts and the top-6 experts, indicating that the
ordering induced by gi,t closely matches that of
gi,tE(xi). This suggests that gating scores alone
already serve as a strong proxy for expert contri-
bution, even without explicitly incorporating the
output norms. This result aligns with the design
of the MoE architecture, where routing is learned
independently per token while expert weights are
optimized to produce scale-compatible outputs un-
der the sparse gating mechanism.
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