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Abstract

We introduce SCIVER, the first benchmark
specifically designed to evaluate the ability of
foundation models to verify claims within a
multimodal scientific context. SCIVER consists
of 3,000 expert-annotated examples over 1,113
scientific papers, covering four subsets, each
representing a common reasoning type in mul-
timodal scientific claim verification. To enable
fine-grained evaluation, each example includes
expert-annotated supporting evidence. We as-
sess the performance of 21 state-of-the-art
multimodal foundation models, including o4-
mini, Gemini-2.5-Flash, Llama-3.2-Vision, and
Qwen2.5-VL. Our experiment reveals a sub-
stantial performance gap between these models
and human experts on SCIVER. Through an
in-depth analysis of retrieval-augmented gener-
ation (RAG), and human-conducted error evalu-
ations, we identify critical limitations in current
open-source models, offering key insights to
advance models’ comprehension and reasoning
in multimodal scientific literature tasks.

Data chengyewang/SciVer
Code QDRhhhh/SciVer

1 Introduction

Scientific claim verification has become increas-
ingly vital as the research community grapples
with an ever-expanding body of scientific literature
across diverse domains (Dasigi et al., 2021; Wad-
den et al., 2022; Lee et al., 2023; Asai et al., 2024).
The accuracy of claim verification in a scientific
paper is not merely a matter of cross-checking nu-
merical consistency or validating conclusions—it
necessitates a holistic understanding of the paper’s
context (e.g., textual content, charts, and tables).

Despite the significance of multimodal reason-
ing, existing benchmarks in scientific claim verifi-
cation have often treated these components in iso-
lation. Predominantly, prior works have focused ei-
ther on textual content alone (Wadden et al., 2022)

or on verifying claims based on a single table (Lu
et al., 2023). While previous multimodal question-
answering (QA) benchmarks in scientific litera-
ture comprehension incorporate scientific charts,
they still remain limited to QA tasks over a single
chart (Li et al., 2024d; Wang et al., 2024b; Li et al.,
2024c), failing to capture the broader multimodal
context of scientific literature. Consequently, the
lack of a comprehensive multimodal benchmark
restricts the systematic evaluation of foundation
models’ ability to reason across the diverse and
interconnected modalities in scientific literature.

In this work, we introduce SCIVER, a com-
prehensive and high-quality benchmark for eval-
uating multimodal SCIentific claim VERification.
SCIVER consists of 3,000 expert-annotated exam-
ples over 1,113 scientific papers spanning diverse
domains within computer science. To ensure our
benchmark reflects real-world scenarios in scien-
tific literature comprehension, we design four fine-
grained tasks (as illustrated in Figure 1): direct
reasoning, parallel reasoning, sequential reason-
ing, and analytical reasoning. Each task targets a
common reasoning type in multimodal scientific
claim verification. Moreover, each example in-
cludes expert-annotated supporting evidence, facil-
itating fine-grained performance evaluation.

We conduct an extensive evaluation on SCIVER,
covering 21 frontier open-source and proprietary
multimodal foundation models. Our experimen-
tal results reveal that while state-of-the-art models
achieve human-comparable performance on sim-
pler tasks (e.g., direct reasoning), they continue to
struggle with more complex challenges. For in-
stance, GPT-4.1, achieves an accuracy of 70.8%
on analytical reasoning, falling significantly short
of human expert performance (i.e., 90.0%). This
demonstrates the challenging nature of SCIVER.
Furthermore, our analysis of retrieval-augmented
generation (RAG) and human-conducted error anal-
yses provide insights for future advancement.
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Caption: Dense captioning descriptiveness precision 
recall results for LLaVA-7B fine-tuned with DOCCI 
captions, adapted using different methods. “Trimmed” 
refers to naive removal of sentences, while “Gemini” 
involves prompting Gemini to simplify the caption. 

Caption: Dense captioning results over the test sets of DOCCI when 
fine-tuning on original human-annotated captions, synthetic captions, 
and KnowAda-adapted captions (denoted as KA) with a threshold of 
20%. “Automatic (Auto)” refers to model-based NLI evaluation, while 
“Human” refers to evaluations based on human labeling.

To ensure that KnowAda is robust across multiple 
models and datasets, we fix the threshold at 20% 
for classifying questions as unknown and finetune 
three models: PaliGemma, TinyLLaVA, and 
LLaVA-1.57B. We fine-tune on two variations of 
DOCCI: one using the original DOCCI captions, 
and another using synthetically generated 
captions created by Gemini, which were 
prompted to be visually descriptive. We evaluate 
the models using both an automatic NLI model 
and human annotators, as detailed in Section 3. 
In all experiments, we split the DOCCI test set 
into 1,000 sampled for evaluation.

(...The remaining one table, two charts, 
and 64 paragraphs are not presented 
due to space constraints….)

Figure 2Table 1

Subset 1: Direct Reasoning Subset 2: Parallel Reasoning

Subset 3: Sequential Reasoning Subset 4: Analytical Reasoning

Paragraph 32

Claim: With the threshold increasing, KnowAda‐adapted captions first improve the 
model’s descriptiveness, which in turn yields a superior precision–recall tradeoff at higher 
thresholds relative to baseline methods such as prompting Gemini to simplify captions.

Entailment label: Entailed

Claim: During the annotation fine-tuning process, ICC and DFN filtering techniques are 
employed to further enhance the quality of the annotations. Moreover, three models are 
finetuned at the threshold of 20% to validate the robustness of KnowAda.

Entailment label: Refuted

Claim: When fine-tuned with human-annotated captions, the PaLI-Gemma 
model achieves both lower precision and recall for the "Contradiction" metric 
under automatic evaluation compared to human evaluation.

Entailment label: Refuted

Claim: When handling visually descriptive content, models fine-tuned with 
synthetically generated captions from Gemini typically underperform 
compared to those trained with human-annotated captions.

Entailment label: Refuted

Hallucination, as relevant information is not presented

Figure 1: An illustration of the four subsets in the SCIVER benchmark. Our benchmark is designed to evaluate
document-grounded scientific claim verification in a multimodal setting. To effectively perform this task, models
must go through the full context of a scientific paper—including text, charts, and tables—to locate the appropriate
supporting evidence before verifying a claim. The complete data examples are provided in Appendix C.

We summarize our contributions as follows:

• We introduce a new claim verification benchmark
to challenge foundation models across diverse
reasoning scenarios in multimodal scientific liter-
ature comprehension. Each example undergoes
expert annotation and strict quality control to en-
sure benchmark reliability and high standards.

• We conduct an extensive evaluation that encom-
passes 21 open-source and proprietary founda-
tion models, comprehensively assessing their ca-
pabilities and limitations in our task.

• We provide an in-depth analysis of Chain-of-
Thought reasoning, RAG settings, and model
reasoning errors, offering valuable insights for
future advancements and targeted improvements.

2 Related Work

2.1 Claim Verification
Claim verification is a well-established research
area that can be categorized into two main settings.
The first is the open-domain setting, where an ex-
ternal retriever is used to fetch relevant informa-
tion from a large corpus to verify claims (Vlachos
and Riedel, 2014; Thorne et al., 2018; Aly et al.,

2021; Wadden et al., 2022; Rangapur et al., 2024).
The second is context-grounded claim verification,
where claims are verified based solely on given
context, without relying on external retrieval (Chen
et al., 2020; Kamoi et al., 2023; Lu et al., 2023;
Glockner et al., 2024; Zhao et al., 2024). This work
focuses on the latter setting, as it removes variabil-
ity introduced by retriever performance and enables
a more controlled evaluation of foundation models’
ability to verify claims within multimodal scientific
context. As shown in Table 1, existing multimodal
claim verification benchmarks primarily use either
a single table (Chen et al., 2020; Gupta et al., 2020;
Lu et al., 2023) or single chart (Akhtar et al., 2024)
as input context. In real-world scenarios, however,
verifying claims in scientific literature requires rea-
soning across multiple modalities, including textual
descriptions, tables, and figures.

2.2 Scientific Literature Comprehension

With the rapid expansion of research publications,
evaluating and applying foundation models for sci-
entific literature comprehension has become in-
creasingly important (Asai et al., 2024; Skarlinski
et al., 2024; Li et al., 2024b). Existing benchmarks
primarily focus on QA tasks, assessing models on
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Dataset Input Context Data Construction # Task /
Subsets

Rationale
Annotation?

Scientific Literature Comprehension
QASPER (Dasigi et al., 2021) Single NLP paper Expert annotation 4 Evidence
QASA (Lee et al., 2023) Single AI/ML paper (text-only) Expert annotation 3 Evidence
MMSci (Li et al., 2024d) Multiple figures or charts from STEM papers GPT-4o generation 2 ✗

ArXivQA (Li et al., 2024c) Single chart from arXiv papers GPT-4V generation – ✗

CharXiv (Wang et al., 2024b) Single Chart from arXiv papers Expert annotation 2 ✗

SCIFACT (Wadden et al., 2020) Multiple STEM paper abstracts Expert annotation – –

Claim Verification over Multimodal Context
INFOTABS (Gupta et al., 2020) Single wikipedia table Crowdsourcing – ✗

TABFACT (Chen et al., 2020) Single wikipedia table Crowdsourcing 2 ✗

ChartCheck (Akhtar et al., 2024) Single wikipedia chart Crowdsourcing 2 Rationale
SCITAB (Lu et al., 2023) Single scientific table from NLP&ML paper Expert+InstructGPT – ✗

SCIVER (ours) Multiple tables, charts, paragraphs from CS papers Expert annotation 4 Evidence

Table 1: Comparison of SCIVER with existing claim verification and scientific literature comprehension benchmarks.

their ability to extract or infer information from sci-
entific papers (Dasigi et al., 2021; Lee et al., 2023).
While recent efforts have extended QA tasks to in-
corporate tabular and visual information (Li et al.,
2024c; Wang et al., 2024b; Li et al., 2024d), they
remain constrained by their single-modality focus,
neglecting the rich multimodal context inherent in
scientific papers. Claim verification, on the other
hand, demands a more comprehensive understand-
ing of scientific literature, as claims are often sup-
ported by a combination of textual descriptions,
tables, and charts. Additionally, each example in
SCIVER includes detailed supporting evidence, fa-
cilitating fine-grained evaluation.

3 SCIVER Benchmark

SCIVER is a comprehensive evaluation framework
designed to assess the ability of foundation models
to verify scientific claims within a multimodal con-
text. Figure 2 provides an overview of the SCIVER

construction pipeline. In the following subsections,
we detail the benchmark design, data construction
process, and quality validation methodology.

3.1 Benchmark Design

We first present the task formulation and the four
specialized subsets of our dataset that we designed
to evaluate different aspects of model performance.

Task Formulation. We formally define the task
of SCIVER within the context of a foundation
model FM as follows: Given a scientific claim
c and multimodal contexts {P, I, T} collected
from a scientific paper—where P denotes tex-
tual paragraphs, I denotes multiple charts, and T

denotes multiple tables—the model is is tasked
with determining the entailment label ℓ ∈ L =
{“entailed”,“refuted”}:

ℓ = argmax
ℓ∈L

P FM(ℓ | c, P, I, T ) (1)

It challenges foundation models to perform com-
plex reasoning by integrating and interpreting tex-
tual, tabular, and visual data to verify scientific
claims. Since scientific tables often have intricate
structures that are difficult to represent in textual
format, we follow recent work in multimodal ta-
ble understanding (Zheng et al., 2024; Deng et al.,
2024) by using table screenshots as inputs.

Subset Design. SCIVER includes the following
four distinct subsets, each designed to evaluate a
specific reasoning type commonly required for sci-
entific claim verification over multimodal context:
(1) Direct Reasoning, which evaluates models’ abil-
ity to extract and interpret a single piece of infor-
mation to verify a scientific claim.
(2) Parallel Reasoning, which evaluates models’
ability to simultaneously process and integrate in-
formation from multiple distinct sources.
(3) Sequential Reasoning, which evaluates models’
ability to perform step-by-step inference chains
across different modalities. Models are required
to establish logical connections between multiple
pieces of evidence, where each step’s conclusion
becomes a premise for subsequent reasoning steps.
(4) Analytical Reasoning, which evaluates models’
ability to verify claims that require both sophisti-
cated domain knowledge and complex reasoning
beyond direct data extraction. Models must not
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Data Annotation (§3.3, 3.4)Preliminary Setup (§3.2)

CS Paper Collection

Recruit & Train Annotators

18 graduate students with 
publications in assigned subfields

Claim Annotation (4 Subsets)
1. Prepare multimodal scientific context 
including tables, charts, and text paragraphs
 
Based on requirement of assigned subset:
2. Annotate “entailed” claim
3. Rewrite “entailed” claim to annotate 
“refuted” claim

Supporting Evidence Annotation

Validation & Analysis (§3.5, 3.6)

Annotation Validation

1. Validate each examples from five aspects
2. Identify and correct annotation errors

Benchmark Analysis

Measure human expert performance

Computation and Language
Computer Vision and Pattern Recognition
Machine Learning
Artificial Intelligence
Information Retrieval
…

Figure 2: An overview of the SCIVER benchmark construction pipeline.

only interpret the provided data but also apply rel-
evant scientific principles and methodological un-
derstanding to arrive at valid conclusions.
Appendix C presents detailed examples of each sub-
set. These subsets enable fine-grained evaluation
across different reasoning paradigms commonly
encountered in scientific literature comprehension.

3.2 Preliminary Setup

We next discuss the preliminary setup for data con-
struction, including the process of scientific paper
collection and expert annotator recruitment.

Expert Annotator Recruitment and Training.
Existing claim verification datasets primarily rely
on crowdsourced data curation (as shown in Ta-
ble 1). However, our preliminary study suggests
that crowd-sourced annotators often lack the nec-
essary domain expertise for our task. To mitigate
this, we recruit 18 CS graduate students with rel-
evant subject-specific knowledge, requiring each
to have at least two peer-reviewed publications in
their assigned subfields. Detailed annotator biogra-
phies are provided in Table 5 in Appendix. To
further enhance annotation quality and consistency,
all selected experts undergo a mandatory two-hour
individual training session with one of the authors,
ensuring that they are familiar with the annotation
guidelines and protocol.

Scientific Paper Collection. SCIVER focuses on
arXiv papers published between September 1, 2024,
and November 15, 2024, covering eight key ar-
eas of computer science. To ensure high-quality
content, we prioritize papers that include com-
ments indicating acceptance by a peer-reviewed
venue. For each paper, we extract its multimodal
context—including textual content, tables, and
charts—from the HTML versions available on the
arXiv platform. We filter out papers that contain

fewer than two tables or two charts.

3.3 Claim Annotation
Given a paper relevant to their research field, the
annotators follow these steps for claim annotation:

Multimodal Scientific Context Preparation.
Scientific papers are often lengthy, exceeding the
maximum context length of certain foundation
models. Including the full text may overwhelm
these models and hinder their ability to integrate
information effectively across modalities. To ad-
dress this, annotators refine the paper context by
removing textual sections that are not essential to
understanding the core research problem, such as
related work, acknowledgments, references, and
appendix sections.

Entailed Claim Annotation. To reduce bias
stemming from the positioning of evidence, the
annotation interface randomly selects three charts
or tables from the curated context, along with their
surrounding textual paragraphs. Annotators are
then tasked with writing an entailed claim that
aligns with the pre-given reasoning types (i.e., sub-
set). They are required to ensure that verifying the
claim requires referencing at least one of the three
sampled multimodal elements. Subsequently, an-
notators identify all relevant supporting evidence,
which is later reviewed by a second annotator.

Refuted Claim Annotation. Following estab-
lished practices in the field (Wadden et al., 2022;
Chen et al., 2020; Lu et al., 2023), and given the
difficulty of directly obtaining “refuted” claims,
we instead generate them by perturbing original

“entailed” claims through a semi-automated anno-
tation process. Specifically, to curate “refuted”
claims, annotators modify the initially annotated

“entailed” claim by introducing factual errors that
contradict the supporting evidence.
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Property (avg.) Val Test

Multimodal Scientific Context
# Words in text paragraphs 583.6 567.4
# Tables 0.55 0.54

Table caption length 14.2 13.7
# Charts 0.94 0.95

Chart caption length 39.2 40.2

Claim Verification
Claim length 30.5 33.9

# Entailed 505 995
# Refuted 495 1,005

Supporting Evidence 2.63 2.62

Scientific papers 327 786
Total examples 1,000 2,000

Table 2: Data statistics of SCIVER.

3.4 Supporting Evidence Annotation

After completing the claim annotation, a second
annotator, who is also an expert in the relevant
research field, is tasked with annotating the sup-
porting evidence. The annotators are required to
carefully review the claim and identifying all rel-
evant paragraphs, tables, and charts that serve as
supporting evidence. To ensure consistency and
accuracy, we compare the supporting evidence and
entailment label annotated in this step with those
from the initial claim annotation. If discrepancies
arise between the two annotations, a third expert an-
notator is introduced to adjudicate the differences.
Our process achieves an inter-annotator agreement
of 94.0% for entailment label annotation, demon-
strating strong reliability in our annotation.

3.5 Data Validation

Each annotated example undergoes a comprehen-
sive validation process conducted by a different ex-
pert annotator within the same research field. The
validation focuses on the following five aspects:
(1) The claim must be grammatically correct, well-
structured, and free of spelling or typographical
errors. (2) The claim must align with the annota-
tion requirements of its corresponding subset and
should not be verifiable using textual context alone.
(3) The claim must be meaningfully situated within
the paper context and hold practical significance
for scientific literature comprehension. (4) The
annotated supporting evidence must be directly rel-
evant to the claim and comprehensive enough to
support claim verification without requiring addi-
tional, unannotated context.

If an example fails to meet any of these crite-

Adopted Chain-of-Thought Prompt

{Paper Context (textual paragraphs, tables, charts)}

You are given a multimodal scientific context that
includes textual paragraphs, tables, and charts. Your
task is to determine whether the given claim is
Entailed or Refuted. Be skeptical and cautious: if
there is any inconsistency, missing evidence, or
ambiguity, consider the claim incorrect.

Claim to verify:
{Claim}

Start by explaining your reasoning process
clearly, focusing on identifying potential contradic-
tions, lack of support, or misleading interpretations.
Think step by step before answering.

Figure 3: The Chain-of-Thought prompt used.

ria, validators are responsible for making necessary
revisions. In practice, 232 initially annotated exam-
ples required revisions before being finalized.

3.6 Data Statistics and Analysis
Table 2 presents the data statistics of SCIVER. It
is randomly divided into the validation and test
sets. The validation set contains 1,000 examples
and is intended for model development and valida-
tion. The test set comprises the remaining 2,000
examples and is designed for standard evaluation.

To approximate human-expert-level perfor-
mance on SCIVER, we randomly sampled 10
claims from each subset, totaling 40 claims. Two
expert annotators independently evaluated these
claims, providing the natural language explanation
and final entailment label for each claim. They
achieve an average accuracy of 93.8% (Table 3).

4 Experiment

This section first outlines the experiment setup, and
then discusses our experiment results and analysis.

4.1 Experiment Setup
We use accuracy as the primary metric to evaluate
model performance on SCIVER. Following recent
benchmark studies (Yue et al., 2024, 2025), we
adopt rule-based methods to derive the final entail-
ment label from the model response, which is then
compared to the ground-truth label.

We evaluate a broad range of frontier founda-
tion models that support multiple images and text
as input. Specifically, we evaluate 11 series of
open-source models, including InternVL-2, 2.5,
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Release
Test Set Avg.

Validation
Avg.
TestDirect Parallel Sequential Analytical

Baseline Settings

Human Expert 100.0 95.0 90.0 90.0 – 93.8
Random Guess 50.0 50.0 50.0 50.0 50.0 50.0

Proprietary Models

o4-mini 2025-04 85.0 80.6 77.6 67.6 79.6 77.7
Gemini-2.5-Flash 2025-05 79.8 76.0 73.2 71.4 76.0 75.1
GPT-4o 2024-11 77.0 71.2 73.6 73.8 72.3 73.9
Gemini-2.0-Flash 2025-02 78.0 72.2 69.4 73.4 73.0 73.3
GPT-4.1 2025-04 77.6 73.2 71.2 70.8 74.3 73.2
GPT-4o-mini 2024-07 71.4 67.6 61.4 62.0 63.8 65.6

Open-source Models

Mistral-Small-3.1-24B 2025-03 74.8 66.0 68.6 75.6 73.6 71.3
Qwen2.5-VL-72B 2025-01 70.8 69.2 68.2 69.2 70.2 69.4
InternVL3-38B 2025-04 65.8 64.6 65.2 70.4 70.6 66.5
Qwen2-VL-72B 2024-11 70.4 61.0 63.0 67.2 65.9 65.4
InternVL2.5-38B 2024-11 65.0 55.8 62.4 66.8 63.8 62.5
Pixtral-12b 2024-09 60.8 54.6 63.4 65.2 61.1 61.0
InternVL3-8B 2025-04 64.2 54.6 56.0 63.0 58.8 59.5
Qwen2.5-VL-7B 2025-01 55.8 57.4 57.0 60.2 53.5 57.6
InternVL2.5-8B 2024-11 53.8 56.4 53.2 58.2 55.5 55.4
InternVL2-8B 2024-06 54.0 52.6 50.2 54.6 52.9 52.9
Qwen2-VL-7B 2024-11 52.6 54.0 52.0 52.0 52.8 52.7
Llama-3.2-11B-Vision 2024-09 53.6 50.6 51.8 53.2 48.9 52.3
Phi-4-Multimodal 2025-03 50.8 50.8 51.2 51.0 52.1 51.0
LLaVA-OneVision 2024-09 49.8 48.2 49.6 53.6 51.0 50.3
Phi-3.5-Vision 2024-08 46.0 52.0 48.0 49.2 51.5 48.8

Table 3: Model accuracy on SCIVER validation and test sets with CoT prompts, ranked by test set performance.

and 3 (Chen et al., 2023, 2024b,a), Qwen2-VL and
Qwen2.5-VL (Bai et al., 2023; Wang et al., 2024a),
Pixtral (Agrawal et al., 2024), Mistral-Small-
3.1 (Mistral AI, 2025), LLaVA-OneVision (Li et al.,
2024a), Llama-3.2-Vision (Meta, 2024), Phi-3.5-
Vision and Phi-4-Multimodal (Microsoft, 2024;
Microsoft et al., 2025). We also evaluate five se-
ries of proprietary models, including OpenAI
o4-mini (OpenAI, 2025a), GPT-4o and GPT-4.1
(OpenAI, 2024, 2025b), Gemini-2.0 and Gemini-
2.5 (Google, 2024, 2025). Appendix B details the
parameter settings and configurations of the eval-
uated models. For open-source models, we utilize
the vLLM pipeline (Kwon et al., 2023) for model
inference; while for proprietary models, we use
their official API service.

We evaluate the models with the Chain-of-
Thought prompt, which is presented in Figure 3.

4.2 Main Findings

Table 3 presents the evaluated models’ perfor-
mance. Our main findings are as follows:

One
(248)

Two
(216)

Three
(495)

> Three
(41)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

Gemini-2.0-Flash
GPT-4.1
GPT-4o
InternVL3-8B
Pixtral-12b
Qwen2-VL-72B

Figure 4: Comparison of model performance on the
validation set, with claims requiring varying amounts of
annotated supporting evidence. Each piece of evidence
is defined as a single table, chart, or paragraph (§3.4).

SCIVER presents substantial challenges for cur-
rent models. While the recently released reason-
ing models, o4-mini and Gemini-2.5-Flash, demon-
strate leading performance, other models fall short
of human expert capabilities. For instance, GPT-4.1
achieves 73.2% accuracy with CoT prompting, con-
siderably lower than the 93.8% accuracy achieved
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Subset: Parallel Reasoning
Claim: 
In zero-shot setting, Contriever achieves a higher F1 score compared to BM25 on TriviaQA 
when using Llama-7B as the reader; Under few-shot setting, BM25 achieves a lower CON score 
compared to MSS on NQ when using Llama-7B as the reader.

Entailment Label: Refuted
Supporting Evidence:  textual_paragraphs:[],figures:[],tables:[3,4]

Qwen2.5-VL-72B Response:  
Table 3 shows that Contriever achieves a higher F1 score than BM25 in the zero-shot setting. 
Similarly, Table 4 indicates that MSS outperforms BM25 in the few-shot setting. Therefore, the 
claim is entailed.

Other Tables, Charts, Textual Paragraphs (....abbreviated…)

Error Type: Visual Element Misinterpretation
Error Explanation: The model incorrectly claims that Contriever achieves a higher F1 score 
than BM25 in the zero-shot setting (based on Table 3) and that MSS achieves a higher CON 
score than BM25 in the few-shot setting (based on Table 4). However, as shown in Table 3, 
BM25 has an F1 score of 7.67, which is higher than Contriever's 5.57, directly contradicting the 
model's claim. Similarly, in Table 4, BM25 has a CON score of 19.14, which is higher than 
MSS's 12.05, again contradicting the model's statement. This issue highlights a visual element 
misinterpretation error, where the model fails to accurately interpret and compare numerical 
data in the tables, leading to incorrect conclusions about performance comparisons.

Table 4: The results for LLaMA-7b used as the reader on NQ, 
utilizing zero-shot and few-shot strategies. The footnotes 
provide information on the optimal number of hints and the 
ranking method chosen to achieve the best results for each 
learning strategy and hint generation method.

Table 3: The results for LLaMA-7b used as the reader on 
TriviaQA, using zero-shot and few-shot strategies. The 
footnotes provide information on the optimal number of hints 
and the ranking method chosen to achieve the best results for 
each learning strategy and hint generation method.

Subset: Sequential Reasoning
Claim: 
With the threshold increasing, KnowAda‐adapted captions first improve the model’s 
descriptiveness, which in turn yields a superior precision–recall tradeoff at higher thresholds 
relative to baseline methods such as prompting Gemini to simplify captions.

Entailment Label: Entailed
Supporting Evidence: 
textual_paragraphs: [], figures: [3], tables: [1]

Qwen2.5-VL-72B Response:  
While KnowAda-adapted captions may show some improvement in descriptiveness at certain 
thresholds, the precision–recall tradeoff does not consistently outperform baseline methods like 
Gemini as the threshold increases. As shown in Figure 3, Gemini often achieves higher recall at 
higher thresholds (e.g., T=100%), and the overall balance between precision and recall is not 
clearly superior for KnowAda. Additionally, Table 1 reveals that although KnowAda captions 
can have higher descriptiveness precision, their recall tends to drop, undermining the claim of a 
superior tradeoff. Therefore, the claim is refuted.

Other Tables, Charts, Textual Paragraphs (....abbreviated…)

Error Type: Failure in Multi-step Reasoning
Error Explanation: The Qwen model fails in multi-step reasoning by ignoring the causal chain 
from improved descriptiveness to better precision–recall tradeoff at mid thresholds. It focuses 
narrowly on high-threshold recall (T=100%) and misses the broader trend where KnowAda 
performs better (T=20–60%), leading to an incorrect refutation.

Figure 3: Dense captioning descriptiveness 
precision-recall results for LLaVA-7B 
fine-tuned with DOCCI captions, adapted 
using different methods. …(abbreviated)

Table 1: Dense captioning results over the test sets of DOCCI when 
fine-tuning on original human-annotated captions, synthetic captions, 
and KnowAda-adapted captions (denoted as KA) … (abbreviated)…

Figure 5: Illustration of two error types: Visual Element Misinterpretation (left) and Failure in Multi-step Reasoning
(right). Additional error examples are provided in Appendix C.

by human experts. This performance gap highlights
SCIVER ’s crucial role in advancing and assessing
the capabilities of models in multimodal scientific
literature comprehension.

Performance of open-sourced models. Open-
source models continue to lag behind their pro-
prietary counterparts. However, models such as
Mistral-Small-3.1, Qwen2.5-VL, and InternVL3
have achieved competitive performance, narrow-
ing the gap with top proprietary models. These
advancements highlight the rapid progress in open-
source development. In the following subsections,
we provide a detailed analysis of open-source mod-
els and offer insights for future improvements.

Model performance declines with increasing ev-
idence requirements. To provide a fine-grained
analysis of model performance on multi-hop rea-
soning in SCIVER, we compare frontier models
on the validation set across claims that require dif-
ferent numbers of annotated supporting evidence.
As shown in Figure 4, model performance con-
sistently declines as the number of ground-truth
evidence pieces increases. This trend suggests that

current models struggle with multi-hop reasoning
and with synthesizing information across multiple
multimodal contexts.

4.3 Error Analysis and Case Study
To better understand the limitations of open-source
models, we perform a detailed error analysis on
Qwen2.5-VL-72B. We randomly select 25 in-
stances from each of the four subsets for evaluation.
Through a detailed inspection of model response,
we identify five common error types:

• Failure to Retrieve Relevant Information
(32%), where models fail to retrieve and con-
sider all the key evidence from the provided mul-
timodal context, leading to incomplete reasoning
or incorrectly classify verifiable claims as lacking
enough information.

• Visual element misinterpretation (21%), where
models misinterpret charts or tables.

• Failure in multi-step reasoning (17%), where
models struggle to connect intermediate reason-
ing steps over extracted information, leading to
incorrect entailment predictions.
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Prompt for Evidence Filtering

{Single Multimodal Element}

Analyze the given context and determine whether it
contains relevant information to verify the following
claim: {Claim}
Respond with either “yes” if the context contains the
necessary information to verify the claim, or “no” if
it does not.

Figure 6: The prompt for evidence filtering in §4.4.

• Heavy reliance on text modality (12%), where
models focus primarily on textual input, failing
to properly integrate crucial information from
tables and charts.

• Domain-specific misconceptions (10%), where
models misapply domain terminology or rely on
irrelevant memorized knowledge when verifying
the given claims.

• Other observed errors include incorrect numer-
ical computations and instances where models
refuse to generate a response.

For each error type, we provide illustrative exam-
ples and corresponding error analyses in Figure 5
and Appendix C.

4.4 Retrieval-Augmented Generation Analysis

The preceding error analysis highlights that the
failure to retrieve relevant information is a primary
error type. This finding motivates us to explore how
RAG settings can be leveraged to improve model
performance on SCIVER.

Experiment Setup. Implementing RAG for sci-
entific multimodal data presents challenges, as ex-
isting open-source retrieval models do not natively
support scientific tables and charts. To overcome
this limitation, we construct the textual represen-
tations for tables and charts as the concatenation
of their original captions and GPT-4o-generated
descriptions. Each representation is indexed as
separate evidence alongside the textual paragraphs
extracted from the paper. We evaluate three widely
used retrieval systems, i.e., BM25, Contriever (Izac-
ard et al., 2021), and OpenAI’s text-embedding-3-
large, to retrieve the top-5 most relevant evidence
for the given claim. The retrieved evidence is then
fed into the model in its original form. Addition-
ally, we assess an alternative setting (i.e., Evidence
Filtering) where the model first determines, one

Setting Recall@5 4o-mini Qwen2.5-VL

Original – 63.8 70.2

with RAG
Contriever 70.7 64.7 ↑0.9 71.8 ↑1.6

BM25 74.3 65.4 ↑1.6 72.2 ↑2.0

OAI Embedding 81.0 67.0 ↑3.2 72.9 ↑2.7

Oracle – 73.3 ↑9.5 75.3 ↑5.1

LLM Evidence Filter – 67.5 ↑3.7 74.4 ↑4.2

Table 4: Performance comparison of GPT-4o-mini and
Qwen2.5-VL-72B under different RAG settings.

by one, whether each piece of evidence is relevant
to the claim (prompt shown in Figure 6), and then
incorporates all confirmed relevant evidence into
the final input.

Findings. We evaluate the GPT-4o-mini and
Qwen2.5-VL-72B models on the validation set.
As shown in Table 4, enhancements in informa-
tion retrieval quality generally lead to improved
entailment classification performance on SCIVER.
Among the three retrievers tested, the OpenAI em-
bedding model achieves the highest retrieval ac-
curacy, which correlates with the most substantial
gains in downstream LLM performance (i.e., 70.2%
→ 75.3% for Qwen2.5-VL-72B). Additionally, ap-
plying an LLM-based evidence filter further boosts
overall system performance.

5 Conclusion

This work introduces SCIVER, a comprehensive
benchmark for evaluating multimodal scientific
claim verification. By providing a diverse set of
fine-grained, expert-curated examples and a reli-
able automated evaluation system, SCIVER ad-
vances the development of foundation models ca-
pable of accurately and robustly interpreting real-
world scientific texts, tables, and figures. Our ex-
perimental results expose significant performance
gaps between state-of-the-art foundation models
and human experts, revealing key challenges such
as reasoning limitations across textual, tabular, and
visual data, as well as difficulties in retrieving and
integrating relevant multimodal evidence.
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Limitations

While SCIVER presents a significant advancement
in multimodal scientific claim verification, there
are several limitations that we acknowledge, which
also point to promising directions for future re-
search. First, SCIVER is primarily constructed
from computer science papers sourced from arXiv,
focusing on verifying claims within this discipline.
While this allows us to control for domain expertise
in our annotation process and ensures high-quality
claim verification, it may limit the generalizability
of SCIVER to other fields. Second, SCIVER pri-
marily focuses on claim verification over textual
paragraphs, tables, and charts, as these are the most
common multimodal elements in scientific litera-
ture. However, some domains rely heavily on other
modalities such as equations, figures, or experi-
mental images, which SCIVER does not explicitly
consider in its current version. Third, SCIVER re-
lies on expert annotations with domain expertise,
ensuring high-quality labels and reasoning ratio-
nales. However, this approach is labor-intensive
and may not scale easily to larger datasets.
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A SCIVER Benchmark Construction

ID Biography Assigned Subjects # Relevant Publications Author?

1 2nd year PhD Computer Vision and Pattern Recognition 1-5 ✗
2 Final year PhD Computer Vision and Pattern Recognition 5-10 ✗
3 Postdoc Computer Vision and Pattern Recognition >10 ✗
4 – Computation and Language >10 ✓
5 – Computation and Language 1-5 ✓
6 – Computation and Language 1-5 ✓
7 3rd year PhD Robotics 5-10 ✗
8 Postdoc Robotics >10 ✗
9 Final year PhD Software Engineering 5-10 ✗
10 Postdoc Software Engineering >10 ✗
11 2nd year PhD Machine Learning 1-5 ✗
12 4th year PhD Machine Learning 5-10 ✗
13 3rd year PhD Artificial Intelligence 5-10 ✗
14 Postdoc Artificial Intelligence >10 ✗
15 Master Student Information Retrieval 1-5 ✗
16 3rd year PhD Information Retrieval 5-10 ✗
17 Final year PhD Cryptography 5-10 ✗
18 Postdoc Cryptography >10 ✗

Table 5: Biographies of 18 expert annotators involved in SCIVER construction (Author biographies are hidden to
protect identity confidentiality.
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B Configurations of Evaluated Models

Organization Model Release Version # Inference Pipeline

Proprietary Models

OpenAI
o4-mini∗ 2025-04 o4-mini-2025-04-16

APIGPT-4.1 2025-04 gpt-4.1-2025-04-14
GPT-4o 2024-08 gpt-4o-2024-08-06
GPT-4o-mini 2024-07 gpt-4o-mini-2024-07-18

Google Gemini-2.5-Flash 2025-05 gemini-2.5-flash-preview-05-20 APIGemini 2.0 Flash 2024-12 gemini-2.0-flash-exp

Open-source Multimodal Foundation Models

Alibaba

Qwen2.5-VL-72B 2025-01 Qwen2.5-VL-72B-Instruct

vLLMQwen2-VL-72B 2024-09 Qwen2-VL-72B-Instruct
Qwen2.5-VL-7B 2025-01 Qwen2.5-VL-7B-Instruct
Qwen2-VL-7B 2024-08 Qwen2-VL-7B-Instruct

Mistral AI Mistral-Small-3.1 2025-03 Mistral-Small-3.1-24B vLLMPixtral-12B 2024-09 Pixtral-12B-2409

Shanghai AI Lab

InternVL-3-38B 2025-04 InternVL-3-38B

vLLM
InternVL3-8B 2025-04 InternVL3-8B
InternVL2.5-38B 2024-11 InternVL2.5-38B
InternVL2.5-8B 2024-11 InternVL2.5-8B
InternVL2-8B 2024-06 InternVL2-8B

Meta Llama-3.2-11B-Vision 2024-09 Llama-3.2-11B-Vision-Instruct vLLM

Microsoft Phi-3.5-Vision 2024-07 Phi-3.5-Vision-Instruct vLLMPhi-4-Multimodal 2025-03 Phi-4-Multimodal

Llava Hugging Face LLaVA-OneVision-7B 2024-09 llava-onevision-qwen2-7b-ov-chat-hf vLLM

Table 6: Details of the multimodal foundation models evaluated in our study. Models are organized by organization
and aligned with performance data from the main text.
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C Error Analysis

C.1 Failure to Retrieve Relevant Information

Error type: Failure to Retrieve Relevant Information

Subset: Analytical Reasoning
Claim: HtmlRAG excels across multiple datasets compared to baseline methods, with its generative pruning strategy 
designed to improve the model's capability to handle multimodal contexts.

Entailment Label: Entailed
Supporting Evidence: 
textual_paragraphs: [49], figures: [], tables: [1]

Explanation:
The claim, "HtmlRAG excels across multiple datasets compared to baseline methods, with its generative pruning 
strategy designed to improve the model's capability to handle multimodal contexts," is entailed because it is supported 
by both the table and the textual paragraph. Table 1 provides quantitative evidence showing HtmlRAG consistently 
outperforms baselines like BM25, BGE, and E5-Mistral on metrics such as Hit@1 and EM across datasets like ASQA, 
Hotpot-QA, and NQ. The textual paragraph (Paragraph 49) explains the generative fine-grained block pruning strategy, 
which enhances HtmlRAG's ability to process HTML globally and retain relevant information. Together, these sources 
confirm that HtmlRAG's superior performance is directly tied to its innovative pruning methodology.

Qwen2.5-VL-72B Response:  

While Table 1 provides quantitative performance metrics showing HtmlRAG's superiority in Hit@1 and EM across 
datasets, it does not directly connect this performance to the generative pruning strategy described in Paragraph 49. 
The textual paragraph explains how the generative pruning strategy works and its potential benefits for handling 
multimodal contexts, but it does not explicitly link this methodology to the specific performance improvements shown 
in the table. Without an explicit connection between the pruning strategy and the quantitative results, the evidence 
appears insufficient to fully verify the claim. Therefore, this claim is classified as refuted.

Other Tables, Charts, Textual Paragraphs (....abbreviated…)

Error Explanation: 
While both the textual paragraph and Table 1 were retrieved, the model failed to consider all key evidence together. 
The textual paragraph explains how HtmlRAG achieves better results (methodological improvements), while Table 1 
provides quantitative proof of its superior performance. The model's inability to synthesize these two pieces of 
evidence led to an incomplete reasoning process and an incorrect classification of the claim as refuted.

Table 1: Results of HtmlRAG and baselines under the short-context setting. Hit@1 is the proportion of 
instances where at least one short answer matches. The best and second best results are in bold and 
underlined. The symbol † signifies that our model achieves superior results among baselines in a 
statistically significant manner (t-test, 𝑝-value < 0.05).

To further prune blocks with finer granularity, we 
expand the leaf nodes of the pruned block tree 
and get a finer-grained block tree. Given the 
limitations of embedding-model-based block 
pruning, we propose to use a generative model 
because it has a long context to cover the whole 
block tree and is not limited to modeling one 
block at a time. Processing the cleaned HTML 
directly with a generative model is inappropriate 
due to its length (60K tokens on average), which 
incurs high computational costs. Instead, the 
generative model calculates scores for blocks by 
generating a sequence of tags identifying each 
block (termed "block path"). The score is derived 
from the generation probability of this sequence. 
Using these scores, a greedy pruning algorithm 
is applied to obtain the final pruned HTML.

Paragraph 49

Figure 7: Illustration of Failure to Retrieve Relevant Information with the example from the Analytical Reasoning
subset.
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C.2 Visual element misinterpretation

Error type: Visual Element Misinterpretation

Subset: Direct Reasoning
Claim: 
In TriviaQA dataset, HiGen-FT achieves higher accuracy than HiGen-Va over all types of questions.

Entailment Label: Refuted
Supporting Evidence: 
textual_paragraphs: [], figures: [4], tables: []

Explanation: 
HiGen-FT demonstrates superior accuracy compared to HiGen-Va in the Human, Location, Entity, and Description 
question types, however, it performs worse in the "Other" category. This contradicts the claim that it achieves higher 
accuracy across all question types.

Qwen2.5-VL-72B Response:  

To verify the claim, let's analyze the bar chart in the TriviaQA section. The blue bar represents the value of HiGen-FT, 
while the orange bar corresponds to HiGen-Va. Since all the HiGen-FT bars are consistently higher, the claim is 
supported.

Other Tables, Charts, Textual Paragraphs (....abbreviated…)

Figure 4: Exact Match values for TriviaQA, NQ, and WebQ datasets categorized by question type, based on the optimal 
settings for both HiGen-Va and HiGen-FT using few-shot learning on LLaMA-7b.

Error Explanation: 
The model incorrectly interprets the bar representing the "Other" category in the bar chart.

Figure 8: Illustration of Visual element misinterpretation with the example from the Direct Reasoning subset.
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C.3 Heavy Reliance on Text Modality

Error type: Heavy reliance on text modality

Subset: Analytical Reasoning
Claim: Increasing the number of simulations in Monte Carlo Tree Search (MCTS) consistently improves the 
performance of all games, regardless of their complexity or specific dynamics, as it universally reduces value errors 
and enhances decision-making accuracy.

Entailment Label: Refuted
Supporting Evidence: 
textual_paragraphs: [51], figures: [10], tables: []

Explanation:
The entailment label for the claim is "Refuted" because the claim generalizes the effects of increasing simulations in 
Monte Carlo Tree Search (MCTS) to all games, while the evidence in Section 4.3 and Figure 10 only discusses five 
specific games. The source shows that performance trends vary: Go and Gomoku improve with more simulations, Pong 
remains unaffected, and Breakout and Ms. Pacman degrade after a certain point. Since the claim introduces broader 
implications beyond the scope of the provided evidence, it cannot be verified based solely on the paper's context.

Qwen2.5-VL-72B Response:

The text explains that increasing the number of simulations in Monte Carlo Tree Search (MCTS) improves 
performance for Go and Gomoku due to reduced value errors and better learning of dynamics. While Pong's 
performance remains stable, this does not contradict the claim's universality since its simplicity allows for optimal 
performance regardless of simulations. The upward trend for Go and Gomoku in the figure further supports consistent 
improvement with increased simulations. Therefore, the claim is entailed.

Other Tables, Charts, Textual Paragraphs (....abbreviated…)

Error Explanation: 
The model's error lies in over-relying on textual descriptions and selectively interpreting visual trends while ignoring 
critical details from the chart and text. Although Go and Gomoku show improved performance with more simulations, 
the figure clearly shows that Breakout and Ms. Pacman experience performance degradation after a certain threshold, 
directly contradicting the claim's universality. Additionally, Pong’s performance remains unaffected regardless of 
simulations, further disproving the claim. The model fails to integrate these crucial insights from the chart and instead 
focuses narrowly on textual information that partially aligns with the claim, leading to an incorrect entailment label.

Fig. 10. Playing performance with different numbers of 
simulations in five games

We conduct experiments to evaluate the playing 
performance of five games using different 
numbers of simulations in MCTS, as shown in Fig. 
10. We anchor the performance of 400 
simulations to 100% for each game. For Go and 
Gomoku, higher numbers of simulations lead to 
better performance, indicating that the dynamics 
network learns well and the value errors have 
been effectively mitigated even when planning 
with a large tree. For Pong, since the game is 
easy to master and the agent can consistently 
achieve an optimal score, performance remains 
the same regardless of the number of simulations. 
In contrast, for Breakout and Ms. Pacman, the 
performance decreases after reaching thousands 
of simulations, indicating that accumulated 
unrolling value errors eventually harm the search 
and lead to worse performance.

Paragraph 51

Figure 9: Illustration of Heavy Reliance on Text Modality with the example from the Analytical Reasoning subset.
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C.4 Domain-Specific Misconceptions

Error type: Domain-specific misconceptions

Subset: Analytical Reasoning
Claim: The effectiveness of Trap-MID in misleading Model Inversion attacks depends on achieving a balance between 
trapdoor naturalness and trapdoor effectiveness.

Entailment Label: Entailed
Supporting Evidence: 
textual_paragraphs: [18], figures: [], tables: [1]

Explanation:
The entailment label for the claim is Entailed because the evidence from Paragraph 18 and Table 1 directly supports 
the claim. Paragraph 18 explains that the effectiveness of Trap-MID relies on balancing trapdoor naturalness (low 
visibility) and effectiveness (misleading MI attacks), while Table 1 quantitatively demonstrates this balance through 
high KNN distances (indicating effective misdirection) and high FID scores (indicating naturalness). These metrics 
validate the logical connection between the theoretical explanation and empirical results, making the claim a logical 
conclusion derived from the provided evidence.

Qwen2.5-VL-72B Response:  

The table reports high FID and KNN distance values for Trap-MID, suggesting its effectiveness in generating unnatural 
reconstructions and distancing recovered images from private data. However, the textual paragraph in Paragraph 18 
only describes the theoretical importance of trapdoor naturalness and effectiveness without explicitly linking their 
balance to defense success. The metrics in the table do not quantify how naturalness (low visibility) directly impacts 
the defense's performance, nor do they establish a causal relationship between these factors. Therefore, this evidence is 
insufficient to fully support the claim. Entailment Label: refuted.

Other Tables, Charts, Textual Paragraphs (....abbreviated…)

Error Explanation: 
The model incorrectly labels the claim as "refuted" due to a domain-specific misconception. It misunderstands the 
relationship between the metrics (FID and KNN distance) and the theoretical concept of balancing naturalness and 
effectiveness. While the textual paragraph in Paragraph 18 highlights the importance of "low visibility" for trapdoor 
naturalness, and Table 1 provides empirical data on FID and KNN distance, the model fails to integrate these distinct 
sources of evidence. Instead, it assumes that the lack of explicit causal quantification invalidates the claim, overlooking 
that the claim logically follows from synthesizing theoretical principles and empirical results.

Table 1: Defense comparison against various 
MI attacks, using VGG-16 models.

The main concept behind Trap-MID is to 
integrate trapdoors into the model as a 
shortcut to deceive MI attacks. Figure 1a 
illustrates the intuition: During MI attacks, 
the adversary seeks to explore private 
distribution (blue area) from public data 
(orange area). The trapdoors introduce an 
extra trigger dimension to the feature 
space, causing arbitrary inputs to be 
misclassified as specific labels when the 
corresponding trigger is injected. Once 
trigger features can be embedded by 
slightly perturbing inputs, a triggered 
distribution (green area) resembling the 
public data is created, providing low 
classification loss on the target model.

Paragraph 18

Figure 10: Illustration of Domain-Specific Misconceptions with the example from the Analytical Reasoning subset.

8578



C.5 Other Observation Error

Error type: Other observed errors

Subset: Parallel Reasoning
Claim: The CC-POMCP algorithm consistently ensures that the cumulative percentage of collisions remains below the 
specified collision threshold (10%) in all tested environments. The POMCP algorithm enforces a stricter failure penalty 
compared to the CC-POMCP algorithm.

Entailment Label: Refuted
Supporting Evidence:
textual_paragraphs: [], figures: [5], tables: [1]

Explanation:
This claim is refuted because the numerical results in Figure 5 (Cumulative Percentage of Collisions) clearly show that 
CC-POMCP exceeded the 10% collision threshold in the ENV-TUNNEL environment. While CC-POMCP performed 
better than POMCP overall, its average cumulative collision percentage surpassed the threshold in this specific 
environment. In Table 1, the failure penalty for CC-POMCP is set to -100, significantly stricter than POMCP's penalty 
of -10.

Qwen2.5-VL-72B Response:  

Table 1 shows that POMCP has a stricter failure penalty compared to CC-POMCP. Figure 5 demonstrates that 
CC-POMCP outperforms POMCP in terms of cumulative collision percentages in most environments, with its average 
values appearing below the 10% threshold in two out of three environments (ENV-TRAINING and ENV-STT). 
Therefore, the claim is entailed.

Other Tables, Charts, Textual Paragraphs (....abbreviated…)

Error Explanation: 
The response contains two critical errors: First, the statement "Table 1 shows that POMCP has a stricter failure penalty 
compared to CC-POMCP" is incorrect because Table I clearly indicates that CC-POMCP has a stricter failure penalty 
(r_fail = -100) than POMCP (r_fail = -10). Second, the statement "Figure 5 demonstrates that CC-POMCP outperforms 
POMCP in terms of cumulative collision percentages in most environments, with its average values appearing below 
the 10% threshold in two out of three environments (ENV-TRAINING and ENV-STT)" is flawed because Figure 5 
shows that CC-POMCP exceeds the 10% collision threshold in the ENV-TUNNEL environment, contradicting the 
claim of consistent performance below the threshold. These errors involve misinterpretation of numerical data and fall 
under "Other observed errors."

Fig. 5: The Physical Failure Rates (top) and Cumulative Percentage of Collisions (bottom). This 
figure depicts the results for the ENV-TRAINING (left), ENV-TUNNEL (middle), and ENV-STT 
(right) environments. Here, the failure rates refer to the number of times the robot left the map 

or collided with an obstacle while moving or localizing. Each graph shows the mean and 
standard deviation for each algorithm. Due to POMCP’s poor performance, we clipped the 

cumulative percentages (bottom graphs) to 100%. Finally, the red dashed horizontal lines in 
the bottom graphs show the collision threshold of 10%.

Figure 11: Illustration of Other Observation Error with the example from the Parallel Reasoning subset.
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