
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8504–8519
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Self-Error-Instruct: Generalizing from Errors for
LLMs Mathematical Reasoning

Erxin Yu1, Jing Li1,2*, Ming Liao1, Qi Zhu3, Boyang Xue4, Minghui Xu3,
Baojun Wang3, Lanqing Hong3, Fei Mi3, Lifeng Shang3

1Department of Computing, The Hong Kong Polytechnic University
2Research Centre for Data Science & Artificial Intelligence

3Huawei Noah’s Ark Lab, 4The Chinese University of Hong Kong
erxin.yu@connect.polyu.hk, jing-amelia.li@polyu.edu.hk

Abstract

Although large language models demonstrate
strong performance across various domains,
they still struggle with numerous bad cases in
mathematical reasoning. Previous approaches
to learning from errors synthesize training data
by solely extrapolating from isolated bad cases,
thereby failing to generalize the extensive pat-
terns inherent within these cases. This paper
presents Self-Error-Instruct (SEI), a framework
that addresses these model weaknesses and syn-
thesizes more generalized targeted training data.
Specifically, we explore a target model on two
mathematical datasets, GSM8K and MATH,
to pinpoint bad cases. Then, we generate er-
ror keyphrases for these cases based on the
instructor model’s (GPT-4o) analysis and iden-
tify error types by clustering these keyphrases.
Next, we sample a few bad cases during each
generation for each identified error type and in-
put them into the instructor model, which syn-
thesizes additional training data using a self-
instruct approach. This new data is refined
through a one-shot learning process to ensure
that only the most effective examples are kept.
Finally, we use these curated data to fine-tune
the target model, iteratively repeating the pro-
cess to enhance performance. We apply our
framework to various models and observe im-
provements in their reasoning abilities across
both in-domain and out-of-domain mathemat-
ics datasets. These results demonstrate the ef-
fectiveness of self-error instruction in improv-
ing LLMs’ mathematical reasoning through er-
ror generalization.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Ouyang et al., 2022; Jiang et al., 2023;
Team, 2024) have demonstrated remarkable capa-
bilities across various domains, particularly after
instruction-based fine-tuning. Yet, LLMs are still
facing substantial challenges in complex reasoning

*Corresponding author

tasks, particularly in mathematical reasoning. They
continue to encounter numerous bad cases, often
committing errors that compromise their reliability.

Previous work has taken advantage of these
errors to improve model performance. Mistake-
tuning and self-rethinking (Tong et al., 2024b)
leverage the historical errors of LLMs to enhance
their performance during both the fine-tuning and
inference stages. LLMs like ChatGPT (Ouyang
et al., 2022) are utilized to synthesize training
datasets based on the bad cases from smaller mod-
els (Ying et al., 2024; Tong et al., 2024a). LLMs
are also employed to optimize the reasoning steps
of smaller models (An et al., 2024), generating
corrective data to train these models.

However, current methods predominantly syn-
thesize training data from individual bad cases.
While this can somewhat enhance model perfor-
mance, the data often suffers from a lack of gen-
eralization because it is too reliant on specific in-
stances, which limits its ability to cover a wider
array of error patterns. To overcome this limitation,
we introduce the Self-Error-Instruct (SEI) frame-
work, which aims to generalize training data based
on error types instead of focusing solely on indi-
vidual cases. For example, in Figure 1, the left
subfigure displays various error types of Qwen2.5-
Math. We enhanced its mathematical reasoning by
generalizing the data according to these error types,
which is depicted in the right subfigure. To the best
of our knowledge, we are the first to explore data
synthesis and selection for LLMs to generalize from
errors based on error types in math reasoning.

Specifically, we begin by assessing target model
to identify bad cases. An instructor model is first
used to pinpoint errors from these bad cases and
generate relevant keyphrases, then cluster these
keyphrases into distinct error types. We select a
few samples from each error type as prompts for
the instructor model in a self-instruct manner to
synthesize new data. We further apply a one-shot

8504

0 50 100 150 200 250 300 350 400

Problem Understanding Errors
Variable and Setup Errors

Mixed Calculation and Setup Errors
Arithmetic Errors
Algebraic Errors

Probability and Counting Errors
Logical and Reasoning Errors

Geometric Errors

231

146

48

239

364

171

286

387

GSM8K MATH TAL GaoKao SAT College0

20

40

60

80

100

Pe
rf

or
m

an
ce

 (
%

)

+29.7

+10.8
+26.1

+42.1

+29.4

+11.5

Qwen2.5-Math-7B
Train with SEI

Figure 1: The left table shows some error types of Qwen2.5-Math-7B on Math and GSM8K training set, while the
right presents the results after training on data generalized from error categories.

learning-based refinement to the new data to ver-
ify its effectiveness to rectify the target model’s
deficiencies while maintaining the target model’s
current success, only keeping the data that works.
This refinement process is iteratively repeated to
improve the model’s performance.

We employ LLaMA3-8B-Instruct, Qwen2.5-
Math-7B, and Mathstral-7B-v0.1 as the target
models to identify bad cases within the training
datasets, GSM8K and MATH. We conduct compre-
hensive evaluations using both in-domain and out-
of-domain testing. For in-domain tests, we use test
sets from GSM8K and MATH. For out-of-domain
tests, we utilize four additional mathematical rea-
soning datasets: TAL, GaoKao, SAT, and College.

Experimental results show that training the tar-
get models with our synthesized data significantly
improves performance on both in-domain and out-
of-domain test sets. Specifically, LLaMA3 and
Mathstral achieve average improvements of 1.72%
and 0.98%, respectively, while Qwen2.5 shows a
more significant gain of 24.94%. Additionally, our
one-shot learning-based data selection method is
highly effective, outperforming both random selec-
tion and LESS (Xia et al., 2024), a recently pro-
posed gradient-based data selection method. It also
surpasses the performance of models trained on the
full dataset. This demonstrates that our approach
can accurately identify high-quality training data
to enhance model performance. Our experiments
further highlight the importance of resolving bad
cases in the one-shot learning selection process and
maintaining the model’s correctness on the original
good cases. Finally, we analyze the fix rate of bad
cases at each iteration, examine the impact of gen-
eralized data volume on model performance, and
compare two training strategies: iterative training
with data synthesized in each round versus training
from scratch with all synthesized data. In summary,
our contributions are as follows:
• We improve data generalization by organiz-

ing mathematical reasoning data according to error

types instead of individual bad cases.
• We propose the Self-Error-Instruct framework,

which analyzes bad cases through keyphrases ex-
traction and clustering, then performs data general-
ization for each cluster.
• Experiments show that our method efficiently

generalizes data based on error types, enhancing
mathematical reasoning skills and validating the
effectiveness of our data selection strategy.

2 Related Work

2.1 Mathematical Reasoning

With the rapid advancement of large language mod-
els, they have shown remarkable capabilities across
a wide range of NLP tasks, as demonstrated by
models like ChatGPT (Ouyang et al., 2022), Claude
(Anthropic, 2024), and Gemini (Team, 2024). How-
ever, mathematical reasoning remains a significant
challenge for these models. To address this issue,
many models, such as OpenAI o1 (OpenAI, 2024),
Qwen-2.5-Math (Yang et al., 2024), and DeepSeek-
Math (Shao et al., 2024), have undergone special-
ized training for mathematical tasks. Researchers
have explored various strategies to enhance perfor-
mance in this area, including prompting, pretrain-
ing, and fine-tuning.

Among these techniques, some focus specifi-
cally on learning from errors to enhance model
performance. LEMA (An et al., 2024) leveraged
GPT-4 (OpenAI, 2024a) to correct the model’s erro-
neous reasoning paths and used the refined reason-
ing paths to fine-tune the model. Self-rethinking
and mistake tuning (Tong et al., 2024b) analyze the
causes of model errors to improve reasoning perfor-
mance. The former uses an iterative process to help
the model avoid repeating past mistakes, while the
latter fine-tunes the model by incorporating correct
and erroneous reasoning examples. LLM2LLM
(Tong et al., 2024a) generates new synthetic data
based on error cases to improve model performance
iteratively. Learning from error and learning from

8505

error by contrast (Ying et al., 2024) are two strate-
gies designed to improve the performance of target
models. The former generates targeted training
data by analyzing erroneous responses, while the
latter by contrasting correct and incorrect responses.
In contrast to these approaches, which focus solely
on individual bad cases, our method generalizes
data based on error types. This allows for more sys-
tematic coverage of diverse issues, enhances data
diversity, and improves generalization ability.

2.2 Data Selection

Data selection plays a crucial role in instruction
tuning, as it helps identify high-quality data, en-
hancing model performance and generalization
while minimizing noise to optimize training. LIMA
(Zhou et al., 2023) achieved exceptional perfor-
mance by selecting 1,000 high-quality question-
answer pairs for instruction tuning, delivering re-
sults comparable to those obtained through large-
scale instruction tuning and reinforcement learn-
ing. Instruction-following difficulty (Li et al.,
2024a) was proposed to evaluate the difficulty of
following instructions for each sample. LESS (Xia
et al., 2024) identified training data most similar
to the validation set based on gradient features.
NUGGETS (Li et al., 2024b) assessed the impact
of candidate instructions on a predefined task set’s
perplexity using one-shot learning, comparing the
score differences between zero-shot and one-shot
learning as a reference for data selection. Building
on NUGGETS, we designed a one-shot learning
data selection method tailored for mathematical rea-
soning. This method selects data based on whether
the generated data can address the target model’s
bad cases while preserving its good cases.

3 Our Self-Error-Instruct Framework

Our framework 1 aims to enhance the mathemati-
cal reasoning ability of the target model Mtarget by
identifying its weaknesses, referred to as bad cases,
on an existing mathematical training dataset Dtrain.
These bad cases are analyzed to guide the synthesis
of targeted training data that directly addresses the
model’s specific shortcomings. By progressively
training on this tailored data, the mathematical ca-
pabilities of Mtarget are effectively improved.

As shown in Figure 2, our process consists
of four key steps: 1) Bad Case Extraction

1Our code is available at https://github.com/
ErxinYu/SEI.

(Section 3.1), which identifies the incorrect cases
where the target model Mtarget fails on the existing
mathematical reasoning dataset Dtrain. 2) Self Er-
ror Instruct (Section 3.2) generates targeted data
for Mtarget by first identifying error keyphrase, then
clustering similar errors, and finally synthesizing
data specifically tailored to address the identified
error types. 3) Data Selection (Section 3.3) filters
and selects high-quality data from the generated
dataset, ensuring that only the most relevant and
effective examples are used for training. 4) Itera-
tive Training (Section 3.4) uses the selected data
to retrain Mtarget, iterating this process to continu-
ously refine and enhance the model’s performance,
thereby improving its mathematical reasoning ca-
pabilities with each cycle.

3.1 Bad Case Extraction
For each problem with its correct reasoning path
(qi, ri) in the training dataset Dtrain, we use Mtarget
to generate a reasoning path. During this process,
we identify and collect the bad case (qi, ri, r̂i) into
the error dataset Derror, where the answers derived
from the reasoning paths differ, i.e., Ans(r̂i) ̸=
Ans(ri), where Ans(·) is the function that ex-
tracts the answer from a given reasoning path.
Thus, the error dataset is defined as:

Derror = {(qi, ri, r̂i) | Ans(r̂i) ̸= Ans(ri)}.
(1)

3.2 Self Error Instruct
In this phase, for each bad case in Derror, we lever-
age the Minstructor model to perform error analy-
sis by examining the reasoning paths and gener-
ating an error keyphrase that captures the nature
of the mistake. These error keyphrases are then
clustered into distinct groups based on similarity.
For each error type, targeted data synthesis gener-
ates new training samples specifically designed to
address model weaknesses. This process produces
the curated dataset DSEI, containing diversity and
error-specific training samples to enhance the target
model’s reasoning ability.

Error Keyphrase Generation. During this stage,
we address each bad case (qi, ri, r̂i) in the dataset
Derror using the Minstructor model for detailed error
analysis. This process generates an error keyphrase
ei, which captures the specific nature of the error.
To achieve this, we employ a structured function
Extract[·] with a keyphrase extraction prompt to
analyze the incorrect reasoning path r̂i and produce

8506

https://github.com/ErxinYu/SEI
https://github.com/ErxinYu/SEI

Wrong Output: James trains for 4
hours twice a day, 5 days a week. So he
trains for 8 hours a week. There are 52
weeks in a year, so he trains for 8 * 52 =
416 hours a year. The answer is 416.

Target Model

Section 3.1 : Bad Case Extraction

"incorrect conversion from feet to yards"

“excluded relevant planks”

“weekly hours miscalculation”

General Calculation
Errors

1 k

Time and Duration
Calculation Errors

Error Keyphrase Generation

Error Keyphrase Clustering

Error Type-Specific Data Synthesis

Section 3.2: Self Error Instruct

Question: James trains for the Olympics.
He trains twice a day for 4 hours each time

for all but 2 days per week. How many
hours does he train a year?

Synthetic DataSelected Data

Section 3.3: One-shot Learning Selction

Section 3.4: Iterative Training
Optimization

Ignored
Calculations and

Omissions

2 ...

Figure 2: An overview of our Self-Error-Instruct framework. It consists of four key steps: (1) Bad case extraction
identifies failure cases from the target model. (2) Self-error-instruct generates error keyphrases, clustering, and
synthesizes data for each error type. (3) One-shot learning data selection retains only high-quality and effective
examples for training. (4) Iterative training refines the target model by fine-tuning it with the curated data and
repeating the process to further improve performance.

the corresponding error keyphrase. Details of the
prompt are provided in the Appendix A.2. The
process is mathematically represented as follows:

EK-Set =
{
ei | ei = Extract[Minstructor, (qi, ri, r̂i)],

∀(qi, ri, r̂i) ∈ Derror
}
,

(2)

where EK-Set represents the collection of error
keyphrases generated for all bad cases in Derror.
This approach ensures that each ei accurately cap-
tures the underlying issue in the model’s reasoning
path, providing a solid foundation for subsequent
clustering and data synthesis steps.

Error Keyphrases Clustering. After obtaining
the EK-Set, we utilize the Minstructor model to clus-
ter the keyphrases within this set. This clustering
process identifies distinct error types, denoted as
the ET-Set. The process can be mathematically
expressed as:

ET-Set = Cluster[Minstructor,EK-Set], (3)

where Cluster[·] is a clustering prompt (see Ap-
pendix A.3) designed to group the error keyphrases
into coherent and distinct types. Each type is man-
ually reviewed (see Appendix C) to filter and vali-
date its relevance and appropriateness.

Error Type-Specific Data Synthesis. For each
error type within the ET-Set, we begin by sampling

a subset of bad cases from the same error type,
which serve as in-context learning prompts. These
prompts are then used to guide Minstructor in gener-
ating additional data that falls under the same error
type. This process ensures that the generated data
remains consistent with the specific error patterns
of the given type, thereby expanding our dataset
with more diverse but relevant examples. Through
this process, we ultimately obtain a synthesized
dataset DSEI, which enriches our data with exam-
ples covering distinct error patterns. The specific
prompt used for this generalization process can be
found in the Appendix A.4.

3.3 One-shot Learning Selection

After obtaining the generalized dataset DSEI tar-
geting specific errors, our goal is to select a small
subset of high-quality data for training the target
model. In previous work, NUGGETS (Li et al.,
2024b) uses a one-shot learning approach to filter
data. It calculates a score for each instruction ex-
ample based on its impact on the perplexity of a set
of pre-defined tasks, allowing for the identification
of the most beneficial data for instruction tuning.

In our approach to mathematical reasoning tasks,
instead of relying on perplexity, we directly evalu-
ate whether the newly generalized data can effec-
tively serve as a one-shot prompt to guide the target

8507

model in resolving bad cases. Furthermore, we aim
to ensure that the target model maintains its perfor-
mance on good cases originally answered correctly,
preserving its effectiveness across challenging and
straightforward examples. First, we randomly sam-
ple a subset of bad cases and good cases to create a
validation set, Ddev. Next, we evaluate each sam-
ple in DSEI by measuring the number of cases in
Ddev that can be resolved when the sample is used
as a one-shot prompt. This evaluation serves as
the criterion for selecting high-quality data. The
process can be represented as:

rji = Mtarget(qjrj︸︷︷︸
One-Shot Prompt

⊕qi) (4)

Sj
osl =

∑

i

I[Ans(rji) = Ans(ri)] (5)

The expression qjrj represents the j-th synthetic
data point from the dataset DSEI. The score Sj

osl is
the one-shot learning score, calculated by summing
the indicator function I[·], which is 1 if the answer
from rji matches ri, and 0 otherwise. Here, qiri are
elements from Ddev, where ri is the correct reason-
ing path for qi. The prompt for one-shot learning
is shown in Appendix 7. For each synthetic data in
DSEI, calculate the set of one-shot learning scores
{S1

osl, S
2
osl, . . . , S

m
osl}. By sorting these scores, we

obtain the selection Dosl
SEI.

3.4 Iterative Training Optimization
The selected data, Dosl

SEI, is used to train the tar-
get model, Mtarget. After the model is enhanced
through this training, it is applied to Dtrain once
more to identify new bad cases that it still struggles
with. This process is iterated, continuously opti-
mizing the target model by improving its ability to
handle challenging examples, thereby enhancing
its overall mathematical reasoning ability.

4 Experimental Setup

4.1 Data Synthetic
We identify bad cases from the training datasets
of GSM8K and MATH, using GPT-4o 2 (Ope-
nAI, 2024b) as the instructor model to generate
error keyphrases, perform clustering, and synthe-
size data. For each error type, during the self-error
instruct process, we sample 5 data points from the
error dataset Derror and 3 data points from the al-
ready generated data within the current error type

2We use the Microsoft Azure AI services at https://
azure.microsoft.com/

Dataset Difficulty Difficulty Train Test

GSM8K Elementary Easy 7,473 1,319
MATH Competition ExHard 7,498 5,000
TAL-SCQ K12 Math Medium - 1,496
GaoKaoBech-Math High School Hard - 508
SAT-MATH High School Hard - 102
CollegeMath College ExHard - 2,818

Table 1: Statistics of Different Datasets. We extract bad
cases from the GSM8K and MATH training sets and
use the test sets of all datasets for evaluation. Datasets
marked with “-” indicate only test data is available and
are used for out-of-domain evaluation.

to serve as prompts. Each time, GPT-4o general-
izes 20 new math data. We then filter out data with
a Rouge-L score greater than 0.7 compared to the
GSM8K and MATH training and test datasets to
enhance diversity and prevent test set leakage. We
randomly select 100 data points, comprising 50
good and 50 bad cases, to construct the validation
set Ddev. The number of iterations for data synthe-
sis and model training is 3. In each iteration, we
generate 10,000 data points by synthesizing 5,000
examples for the error types of GSM8K and 5,000
for MATH. We select the top 5% of the synthetic
data from each part and combine them into a uni-
fied dataset for training. Over three iterations, we
generate a total of 30,000 data points and select
1,500 for training. We also compared two meth-
ods for training the target model: iterative training,
which starts from the model trained in the previous
round, and training from scratch, which uses the
selected data in a single step. The results of these
two methods are shown in Table 5.

4.2 Target Model Setting

We use the instruction-tuned Llama3-8b-instruct
model (Grattafiori et al., 2024), the math-
specialized Qwen2.5-Math-7B (Yang et al., 2024),
and Mathstral-7B-v0.1 (Jiang et al., 2023) as our
target models. During training, we employ LoRA
(Hu et al., 2021) with a maximum sequence length
of 2048 tokens, set the number of training epochs
to 3, and use a learning rate 2e-05.

4.3 Evaluation

We used the GSM8K (Cobbe et al., 2021) and
Math (Hendrycks et al., 2021) test sets for in-
domain evaluation. For out-of-domain evaluation,
we utilized four challenging datasets: 1) TAL-SCQ
(TAL, 2023): A K-12 mathematics test set contain-
ing 1,496 test examples. 2) GaoKaoBench-Math
(Zhang et al., 2024): Comprising 508 test exam-

8508

https://azure.microsoft.com/
https://azure.microsoft.com/

Models In-Domain Out-of-Domain AVG
GSM8K MATH TAL GaoKao SAT College

Llama3-8B-Instruct 77.56 27.36 37.03 15.55 39.22 15.54 35.38
+ Training data 63.99 23.32 29.01 12.00 34.31 13.41 29.34
+ Bad Cases 65.13 23.20 30.08 11.22 33.33 13.41 29.40
+ Self-Instruct 74.83 26.20 35.44 14.76 37.25 15.26 33.96
+ LLMs-as-Instructors 79.37 27.84 36.17 16.14 38.24 15.79 35.59
+ LLM2LLM 76.61 27.60 40.10 15.16 38.24 15.51 35.54
+ SEI-ICL 79.76 28.42 39.91 16.73 42.15 15.61 37.10

Qwen2.5-Math-7B 57.92 50.52 28.07 3.93 39.22 16.96 32.77
+ Training data 57.54 56.22 46.19 38.78 65.69 24.20 48.10
+ Bad Cases 64.21 56.90 45.45 34.44 63.73 22.36 47.85
+ Self-Instruct 80.57 58.24 52.66 43.31 65.69 26.87 54.56
+ LLMs-as-Instructors 79.31 58.76 54.62 45.43 63.73 28.07 54.99
+ LLM2LLM 81.17 58.88 53.56 43.11 65.69 27.96 55.06
+ SEI-ICL 87.64 61.28 54.21 46.06 68.62 28.42 57.71

Mathstral-7B-v0.1 80.67 52.58 48.66 47.83 61.76 25.80 52.88
+ Training data 72.10 44.40 41.44 42.91 56.86 24.17 46.98
+ Bad Cases 70.58 46.06 41.24 43.11 59.80 24.59 47.56
+ Self-Instruct 79.68 52.02 47.13 44.69 58.82 25.28 51.27
+ LLMs-as-Instructors 79.61 52.42 48.13 43.31 63.73 25.19 52.07
+ LLM2LLM 81.35 52.64 46.79 45.87 59.08 25.16 51.82
+ SEI-ICL 82.87 53.70 49.47 48.62 62.75 25.72 53.86

Table 2: Main results on in-domain and out-of-domain mathematical test sets, evaluated using the exact match (EM).
All experiments are conducted in a zero-shot setting. SEI-ICL refers to our proposed method, which leverages the
self-error-instruct framework to generalize and train using the top 5% of data selected through one-shot learning.
For fair comparison, the generalized data sizes for the baselines are kept consistent with SEI-ICL.

ples, this dataset features math problems from the
Chinese high-school curriculum. 3) SAT-MATH
(Zhong et al., 2024): Consisting of 102 questions,
this dataset includes math problems from the U.S.
high-school curriculum. 4) CollegeMath (Tang
et al., 2024): This dataset contains 2,818 test exam-
ples of college-level math problems. The detailed
dataset statistics are provided in Table 1.

We evaluated the models on these datasets us-
ing greedy decoding in a zero-shot setting, with
the maximum generation length set to 2048. Per-
formance was measured using Exact Match (EM),
where answers were extracted from the generated
reasoning paths and compared to the correct ones.
All evaluations were conducted using the MWP-
Bench framework 3.

4.4 Baselines
We compare with several baselines: 1) Training
Data, where the model is trained on the combined
GSM8K and MATH datasets; 2) Bad Cases, using

3https://github.com/microsoft/unilm/tree/
master/mathscale/MWPBench

bad cases from the initial target model; 3) LLMs-
as-Instructors, using Learning from error (LE) by
generating tailored training data for errors. (Ying
et al., 2024) 4) Self-Instruct (Wang et al., 2023),
generating 1,500 data points; 7) LLM2LLM (Tong
et al., 2024a), also generating 1,500 data points;
8) Rand, randomly selecting 500 data points per
iteration for a total of 1,500; and 9) LESS (Xia
et al., 2024), selecting 1,500 data points based on
gradient similarity.

We adopt the same setting as SEI for self-
instruct, except that the sampled examples are se-
lected randomly. Eight samples (five bad cases
and three generated data) are selected in each itera-
tion, and GPT-4o generates 20 new samples. This
process is repeated to produce a total of 30,000
samples, from which 1,500 training samples are
selected using the ICL method. For LLM2LLM
and LLMs-as-Instructors, one new sample is gener-
ated per bad case using GPT-4o, with 500 samples
generated per round over three rounds, resulting in
1,500 samples. We filter out samples with a Rouge-
L similarity score above 0.7 during data synthesis

8509

https://github.com/microsoft/unilm/tree/master/mathscale/MWPBench
https://github.com/microsoft/unilm/tree/master/mathscale/MWPBench

Models # Samples In-Domain Out-of-Domain AVG
GSM8K MATH TAL GaoKao SAT College

Llama-3-8B-Instruct - 77.56 27.36 37.03 15.55 39.22 15.54 35.38
SEI-FULL 100% 78.01 28.02 38.64 15.94 41.18 16.25 36.34
-Rand 5% (1,500) 77.80 28.54 37.43 15.16 40.20 15.72 35.81
-LESS 5% (1,500) 77.95 28.18 36.83 14.96 39.22 15.87 35.50

-One-shot ICL
5% (1,500) 79.76 28.42 39.91 16.73 42.15 15.61 37.10
10% (3,000) 79.98 27.96 39.37 15.75 40.19 16.22 36.58
20% (6,000) 79.37 28.18 39.65 15.94 39.22 15.51 36.31

Qwen2.5-Math-7B - 57.92 50.52 28.07 3.93 39.22 16.96 32.77
SEI-FULL 100% 83.45 60.34 53.57 44.61 67.65 28.22 56.30
-Rand 5% (1,500) 82.52 58.82 53.44 43.58 65.69 27.81 55.31
-LESS 5% (1,500) 83.13 59.76 53.69 45.28 66.67 28.14 56.11

-One-shot ICL
5% (1,500) 87.64 61.28 54.21 46.06 68.62 28.42 57.71
10%(3,000) 85.74 61.56 54.89 45.76 65.69 28.33 57.16
20% (6,000) 86.58 60.78 54.76 44.29 63.73 28.57 56.45

Mathstral-7B-v0.1 - 80.67 52.58 48.66 47.83 61.76 25.80 52.88
SEI-FULL 100% 81.12 53.56 49.13 49.61 59.80 25.62 53.14
-Rand 5% (1,500) 79.98 52.50 48.21 47.05 60.78 25.19 52.29
-LESS 5% (1,500) 79.68 52.20 48.60 48.03 60.78 25.23 52.42

-One-shot ICL
5% (1,500) 82.87 53.70 49.47 48.62 62.75 25.72 53.86
10% (3,000) 80.52 53.50 48.79 48.23 61.76 24.88 52.95
20% (6,000) 83.24 53.40 49.53 46.85 63.73 24.77 53.59

Table 3: Model performance under different data selection strategies and samples. The bolded results highlight the
best performance achieved using the FULL dataset and the top 5% of samples selected through Rand, LESS, and
one-shot ICL methods.

by comparing them against the GSM8K and MATH
training and test datasets.

For rand selection, data is proportionally sam-
pled from each error type, with more samples
drawn from types with more bad cases. For LESS,
following the original setting, we randomly select
10 examples from GSM8K and MATH as the val-
idation set, compute the average gradient of the
validation set, and select generated data with the
most similar gradients.

5 Experimental Results

5.1 Main Results

Table 2 presents our main results, from which we
can draw several conclusions. 1) Our method, SEI-
ICL, outperforms others by substantial margins
in all math datasets. Specifically, after training,
Llama-3-8B-Instruct improves by 1.72% and Math-
stral by 0.98%, while Qwen2.5-Math-7B achieves
an improvement of 24.94%, highlighting the ef-
fectiveness of our error-type-guided data genera-
tion approach. 2) Training solely on the original
GSM8K and MATH datasets or the identified bad

cases results in performance degradation for the
Llama3 and Mathstral models. This suggests that
existing math training datasets offer limited bene-
fits for already instruction-tuned models. It high-
lights the necessity of data synthesis. 3) With the
same amount of data, our data generation method
outperforms other baselines. As shown in Table
2, the average improvement achieved by SEI-ICL
on all the models is higher than that of these base-
lines. Furthermore, combined with the results in
Table 3, we observe that even without data selec-
tion, randomly selecting the same amount of data
(Rand) performs better than self-instruct (random
generation), LLMs-as-Instructors and LLM2LLM
(based on a single bad case), demonstrating that our
error-type-guided data generation is more effective.

5.2 Data Selection

Table 3 presents the results of different data se-
lection methods. By selecting the top 5% of the
data using our one-shot learning method, the per-
formance of the trained models on target models
surpasses that of SEI-FULL, which uses the full
dataset for training. Furthermore, our models con-

8510

GSM8K MATH TAL GaoKao SAT College
10

15

20

25

30

35

40

45

50
Im

pr
ov

em
en

t
(%

)

29.72

10.76

26.14

42.13

29.40

11.46

27.31

9.14

25.61

44.68

28.01

10.39

One-shot ICL Strategy: Combine(Bad+Good) vs Bad Cases
Bad+Good Cases
Bad Cases

Figure 3: The effects of two one-shot ICL strategies on
the improvement of Qwen2.5.

tinue to outperform SEI-FULL as the amount of
selected data increases. Under the same data size,
the one-shot learning method achieves better results
than rand selection and LESS, shows the effective-
ness of the one-shot learning approach specifically
designed for mathematical problem selection.

We conducted analysis experiments on the data
selection validation set Ddev mentioned in Section
3.3. Specifically, we compared the approach of
using only bad cases as Ddev with the combined
approach that includes both good and bad cases.
The results of these experiments are shown in Fig-
ure 3. It can be observed that the combined ap-
proach outperforms the method using only bad
cases across most datasets. This demonstrates that,
when performing one-shot learning for data selec-
tion, it is important to ensure that the generated data
addresses bad cases effectively and to maintain the
correctness of the original good cases.

5.3 Iterative Improvement Result

Bad Case (Fix Rate) Testset (EM Score)

GSM8K MATH GSM8K MATH

Iter-0 (ori) 0 0 55.50 32.32
Iter-1 29.98 23.17 79.48 57.21
Iter-2 38.01 39.44 84.70 58.19
Iter-3 39.13 40.57 87.79 59.18

Table 4: Bad Case Fix Rate of Qwen2.5-Math on
GSM8K and MATH during iterative improvement,
along with its performance on the test sets. Bad cases
refer to the errors made by Qwen2.5-Math in the train-
ing data of GSM8K and MATH.

Table 4 presents the bad case fix rate and test set
performance of the Qwen2.5-Math model across
different iterations. As shown, with the increase
in iterations, the bad case fix rate consistently im-
proves for both datasets, accompanied by a steady
improvement in test set performance. This in-

dicates that our method effectively identifies the
model’s error types in each iteration and generates
targeted data for training, thereby enhancing the
model’s overall performance.

5.4 Iterative vs. From-scratch Training

GSM8K MATH

Model Iterative From-scratch Iterative From-scratch

Llama3 78.09 79.76 27.62 28.42
Qwen2.5 87.79 87.64 59.18 61.28
Mathstral 81.96 82.87 48.02 53.70

Table 5: Comparison of model performance on GSM8K
and MATH tasks under different training methods (Iter-
ative and From-scratch).

Table 5 highlights the differences between itera-
tive training and from-scratch training within our
framework. In iterative training, each new itera-
tion continues training the target model obtained
in the previous round. In contrast, from-scratch
training involves directly training the initial target
model once the data is obtained after three rounds
of data generation. The results show that from-
scratch training outperforms iterative training. A
possible explanation for this is that in each round
of iterative training, we only select the top 5% of
the data for training. With such a small amount of
data, iterative fine-tuning may lead to overfitting
over multiple rounds. On the other hand, training
from scratch aggregated datasets helps mitigate this
issue, resulting in better overall performance.

5.5 Different Synthetic Size

We conducted an analysis between the amount of
unfiltered synthetic data and performance, with the
results presented in Figure 4. It can be observed
that for all target models, the size of the generaliza-
tion data is not proportional to performance. For
Llama3, performance initially improves but even-
tually starts to decline. Specifically, the best perfor-
mance on GSM8K is achieved with 15,000 train-
ing samples, while the optimal result on MATH
is reached with 25,000 samples. In contrast, the
results for Qwen2.5 and Mathstral are relatively in-
consistent. These findings further highlight the im-
portance of data selection. For models like Llama3
and Mathstral, which have already undergone ex-
tensive instruction tuning, the quantity of data may
not be the key to improving performance. Instead,
the focus should shift to constructing small but
high-quality datasets.

8511

5000 10000 15000 20000 25000 30000
Synthetic Data Size

78

79

80

81

82

83

84

G
SM

8K
 P

er
fo

rm
an

ce

GSM Performance with Different Synthetic Data Sizes

52

54

56

58

60

62

Llama-3-8B-Instruct
Qwen2.5-Math-7B
Mathstral-7B-v0.1

5000 10000 15000 20000 25000 30000
Synthetic Data Size

26

27

28

29

MATH Performance with Different Synthetic Data Sizes

M
AT

H
 P

er
fo

rm
an

ce

Figure 4: Comparison of GSM8K and MATH performance under different synthetic data sizes.

6 Conclusion

We propose Self-Error-Instruct, a novel frame-
work to improve LLMs mathematical reasoning
by generalizing training data based on error types
rather than individual bad cases. Our method en-
hances data diversity and mitigates overfitting by
analyzing errors, clustering them into categories,
and synthesizing targeted data using a self-instruct
approach. Experiments on LLaMA3-8B-Instruct,
Qwen2.5-Math-7B, and Mathstral demonstrate no-
table performance improvements with our method,
achieving average gains of 1.72%, 24.94%, and
0.98%, respectively, across both in-domain and
out-of-domain evaluations.

Limitations

Our framework has three main limitations: the high
cost of using GPT-4o as the instructor model, the
focus on GSM8K and MATH datasets for bad case
extraction, which may limit the diversity of errors,
and the increased time consumption caused by one-
shot learning.

Our approach is the reliance on GPT-4o as the
instructor model for error analysis and data synthe-
sis. While GPT-4o is highly effective in identifying
error keyphrases and generating targeted training
data, its use incurs significant computational and
financial costs, which may limit the scalability and
accessibility of the framework.

The second limitation lies in the scope of our
bad case extraction and iterative refinement pro-
cess, which is currently confined to the GSM8K
and MATH datasets. As a result, the error types
identified and addressed may be limited to those
specific to these datasets, potentially restricting the
generalizability of the framework to other mathe-
matical reasoning tasks or datasets. In the future, a
more dynamic approach could be adopted, where
bad cases are extracted from the initial datasets and

continuously identified within the synthesized data
during the iterative process. This would allow the
framework to discover new and diverse error types
as the training data evolves, further broadening the
issues addressed and enhancing the model’s math-
ematical reasoning capabilities. This expansion
would help ensure the framework adapts to various
problems, improving its robustness and applicabil-
ity to real-world scenarios.

The third limitation lies in the one-shot data se-
lection process. Although this approach is a one-
time operation and produces results superior to
LESS and random selection, the one-shot learning
phase requires significant computational resources.
This is because each of the 30,000 generated sam-
ples needs to be validated against an ICL-formatted
validation set containing 100 samples.

Ethics Considerations

This study strictly uses OpenAI’s GPT-4o model
for research purposes, in compliance with Ope-
nAI’s Business Terms, Section 2-(e). Our work
analyzes reasoning errors to improve AI models
and does not involve developing or commercial-
izing competing products. We ensure no derived
models are distributed or made available to third
parties, maintaining full adherence to ethical and
legal standards.

Acknowledgements

This work is supported by a grant from the Re-
search Grants Council of the Hong Kong Spe-
cial Administrative Region, China (Project No.
PolyU/25200821), the Innovation and Technology
Fund (Project No. PRP/047/22FX), PolyU Internal
Fund from RC-DSAI (Project No. 1-CE1E), and a
gift fund from Huawei (N-ZGM3).

8512

References
Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,

Jian-Guang Lou, and Weizhu Chen. 2024. Learning
from mistakes makes llm better reasoner. Preprint,
arXiv:2310.20689.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Lingjie Chen, Ruizhong Qiu, Siyu Yuan, Zhining Liu,
Tianxin Wei, Hyunsik Yoo, Zhichen Zeng, Deqing
Yang, and Hanghang Tong. 2024. Wapiti: A water-
mark for finetuned open-source llms. arXiv preprint
arXiv:2410.06467.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzmán, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Govind Thattai, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,

Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,
Louis Martin, Lovish Madaan, Lubo Malo, Lukas
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-
ran Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit San-
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-
dres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Ce Liu, Changhan Wang,
Changkyu Kim, Chao Zhou, Chester Hu, Ching-
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-

8513

https://arxiv.org/abs/2310.20689
https://arxiv.org/abs/2310.20689
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant
Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry As-
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov,
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj

Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd
of models. Preprint, arXiv:2407.21783.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. Preprint,
arXiv:2103.03874.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Nicholas Lee, Thanakul Wattanawong, Sehoon Kim,
Karttikeya Mangalam, Sheng Shen, Gopala Anu-
manchipalli, Michael Mahoney, Kurt Keutzer, and
Amir Gholami. 2024. LLM2LLM: Boosting LLMs
with novel iterative data enhancement. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 6498–6526, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2024a. From quantity to quality: Boosting
LLM performance with self-guided data selection
for instruction tuning. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 7602–7635, Mexico City, Mexico. Association
for Computational Linguistics.

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min
Yang, Lei Zhang, Shuzheng Si, Ling-Hao Chen, Jun-
hao Liu, Tongliang Liu, Fei Huang, and Yongbin
Li. 2024b. One-shot learning as instruction data
prospector for large language models. In Proceed-
ings of the 62nd Annual Meeting of the Association

8514

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2024.findings-acl.388
https://doi.org/10.18653/v1/2024.findings-acl.388
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.acl-long.252
https://doi.org/10.18653/v1/2024.acl-long.252

for Computational Linguistics (Volume 1: Long Pa-
pers), pages 4586–4601, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao
Ding, Gang Chen, and Haobo Wang. 2024. On llms-
driven synthetic data generation, curation, and evalu-
ation: A survey. Preprint, arXiv:2406.15126.

OpenAI. 2024a. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OpenAI. 2024b. Gpt-4o.

OpenAI. 2024. O1 Model. https://openai.com/o1/.
Accessed: 2024-12-11.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

TAL. 2023. Tal-scq5k. https://github.com/
math-eval/TAL-SCQ5K. GitHub repository.

Ruixiang Tang, Xiaotian Han, Xiaoqian Jiang, and
Xia Hu. 2023. Does synthetic data generation
of llms help clinical text mining? Preprint,
arXiv:2303.04360.

Zhengyang Tang, Xingxing Zhang, Benyou Wang,
and Furu Wei. 2024. Mathscale: Scaling instruc-
tion tuning for mathematical reasoning. Preprint,
arXiv:2403.02884.

Gemini Team. 2024. Gemini: A family of highly capa-
ble multimodal models. Preprint, arXiv:2312.11805.

Terry Tong, Qin Liu, Jiashu Xu, and Muhao Chen.
2024a. Securing multi-turn conversational language
models from distributed backdoor attacks. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2024, pages 12833–12846, Miami, Florida,
USA. Association for Computational Linguistics.

Yongqi Tong, Dawei Li, Sizhe Wang, Yujia Wang, Fei
Teng, and Jingbo Shang. 2024b. Can LLMs learn
from previous mistakes? investigating LLMs’ errors
to boost for reasoning. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3065–
3080, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Zhepei Wei, Wei-Lin Chen, and Yu Meng. 2025. In-
structRAG: Instructing retrieval-augmented genera-
tion via self-synthesized rationales. In The Thirteenth
International Conference on Learning Representa-
tions.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. LESS: Se-
lecting influential data for targeted instruction tuning.
In International Conference on Machine Learning
(ICML).

Ran Xu, Hejie Cui, Yue Yu, Xuan Kan, Wenqi Shi,
Yuchen Zhuang, May Dongmei Wang, Wei Jin,
Joyce Ho, and Carl Yang. 2024. Knowledge-infused
prompting: Assessing and advancing clinical text
data generation with large language models. In Find-
ings of the Association for Computational Linguistics:
ACL 2024, pages 15496–15523, Bangkok, Thailand.
Association for Computational Linguistics.

Boyang Xue, Fei Mi, Qi Zhu, Hongru Wang, Rui Wang,
Sheng Wang, Erxin Yu, Xuming Hu, and Kam-Fai
Wong. 2024a. Ualign: Leveraging uncertainty esti-
mations for factuality alignment on large language
models. Preprint, arXiv:2412.11803.

Boyang Xue, Hongru Wang, Rui Wang, Sheng Wang,
Zezhong Wang, Yiming Du, Bin Liang, and Kam-Fai
Wong. 2024b. A comprehensive study of multilin-
gual confidence estimation on large language models.
Preprint, arXiv:2402.13606.

Boyang Xue, Weichao Wang, Hongru Wang, Fei Mi,
Rui Wang, Yasheng Wang, Lifeng Shang, Xin Jiang,
Qun Liu, and Kam-Fai Wong. 2023. Improving fac-
tual consistency for knowledge-grounded dialogue
systems via knowledge enhancement and alignment.
Preprint, arXiv:2310.08372.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang
Ren, and Zhenru Zhang. 2024. Qwen2.5-math tech-
nical report: Toward mathematical expert model via
self-improvement. Preprint, arXiv:2409.12122.

Jiahao Ying, Mingbao Lin, Yixin Cao, Wei Tang,
Bo Wang, Qianru Sun, Xuanjing Huang, and
Shuicheng Yan. 2024. LLMs-as-instructors: Learn-
ing from errors toward automating model improve-
ment. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, pages 11185–
11208, Miami, Florida, USA. Association for Com-
putational Linguistics.

8515

https://arxiv.org/abs/2406.15126
https://arxiv.org/abs/2406.15126
https://arxiv.org/abs/2406.15126
https://arxiv.org/abs/2303.08774
https://openai.com/index/hello-gpt-4o/
https://openai.com/o1/
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://github.com/math-eval/TAL-SCQ5K
https://github.com/math-eval/TAL-SCQ5K
https://arxiv.org/abs/2303.04360
https://arxiv.org/abs/2303.04360
https://arxiv.org/abs/2403.02884
https://arxiv.org/abs/2403.02884
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.18653/v1/2024.findings-emnlp.750
https://doi.org/10.18653/v1/2024.findings-emnlp.750
https://doi.org/10.18653/v1/2024.acl-long.169
https://doi.org/10.18653/v1/2024.acl-long.169
https://doi.org/10.18653/v1/2024.acl-long.169
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://openreview.net/forum?id=P1qhkp8gQT
https://openreview.net/forum?id=P1qhkp8gQT
https://openreview.net/forum?id=P1qhkp8gQT
https://doi.org/10.18653/v1/2024.findings-acl.916
https://doi.org/10.18653/v1/2024.findings-acl.916
https://doi.org/10.18653/v1/2024.findings-acl.916
https://arxiv.org/abs/2412.11803
https://arxiv.org/abs/2412.11803
https://arxiv.org/abs/2412.11803
https://arxiv.org/abs/2402.13606
https://arxiv.org/abs/2402.13606
https://arxiv.org/abs/2310.08372
https://arxiv.org/abs/2310.08372
https://arxiv.org/abs/2310.08372
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://doi.org/10.18653/v1/2024.findings-emnlp.654
https://doi.org/10.18653/v1/2024.findings-emnlp.654
https://doi.org/10.18653/v1/2024.findings-emnlp.654

Erxin Yu, Jing Li, Ming Liao, Siqi Wang, Gao Zuchen,
Fei Mi, and Lanqing Hong. 2024a. CoSafe: Evalu-
ating large language model safety in multi-turn dia-
logue coreference. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 17494–17508, Miami, Florida,
USA. Association for Computational Linguistics.

Erxin Yu, Jing Li, and Chunpu Xu. 2024b. PopALM:
Popularity-aligned language models for social media
trendy response prediction. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pages 12867–12878,
Torino, Italia. ELRA and ICCL.

Erxin Yu, Jing Li, and Chunpu Xu. 2024c. RePALM:
Popular quote tweet generation via auto-response
augmentation. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 9566–
9579, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying,
Liang He, and Xipeng Qiu. 2024. Evaluating the
performance of large language models on gaokao
benchmark. Preprint, arXiv:2305.12474.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2024. AGIEval: A human-centric
benchmark for evaluating foundation models. In
Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 2299–2314, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less
is more for alignment. Preprint, arXiv:2305.11206.

A Overview of Prompts Used

A.1 Prompt for Training and Inference
For all the models, we use the built-in chat tem-
plates for training and inference. Figure 7 illus-
trates the one-shot learning prompt for the Qwen2.5
model, where the model generates a response by
being presented with an example of a synthetic
question paired with its solution.

A.2 Prompt for Error Keyphrase Generation
Figure 5 illustrates the prompt used to generate
error keyphrases for identifying and summarizing
mistakes in mathematical reasoning. The input
to the prompt includes a math question, the cor-
rect reasoning path leading to the answer, and the
model’s incorrect reasoning path. The prompt in-
structs the model to analyze where the error oc-
curred in its reasoning process, identify the cause,

and summarize it as a concise yet descriptive
keyphrase. The output is a single keyphrase in list
format, effectively capturing the primary reason for
the model’s mistake, which can then be used for
further error analysis and targeted data synthesis.

A.3 Prompt for Error Clustering Generation
Figure 6 presents a prompt designed to guide the
analysis and categorization of error keyphrases gen-
erated from a model’s reasoning mistakes. The in-
put to this prompt is a list of error keyphrases, and
the task involves clustering these keyphrases based
on common themes, causes, or areas of occurrence.
For each cluster, the model is instructed to list the
included keyphrases, explain their grouping, and
assign a concise, descriptive name to the cluster.
This process helps identify patterns in the model’s
errors, offering meaningful insights into the types
of mistakes made and enabling targeted improve-
ments in the model’s reasoning capabilities.

A.4 Prompt for Error Type-Specific Data
Synthesis

The prompt in Figure 8 and 9 guides the creation
of 20 challenging math problems targeting specific
error types in the GSM8K and MATH datasets.
By analyzing the examples provided, the instruct
model identifies patterns or issues causing errors
and generates diverse, difficult problems aligned
with these error types. The output follows a strict
JSON format with detailed solutions and final nu-
merical answers.

B Related Work on Data Synthesis

The generation of synthetic data driven by large
language models has become an essential method
for addressing the issues of data quantity and qual-
ity in the field of deep learning (Long et al., 2024).
LLMs, with their powerful language understand-
ing and generation capabilities, can produce syn-
thetic data that closely resembles the characteristics
and patterns of real-world data (Wang et al., 2023).
This synthetic data can not only serve as a substi-
tute or supplement for real data but can also be
generated according to specific instructions and
conditions to meet the needs of different applica-
tions (Yu et al., 2024c). The use of LLM-driven
synthetic data generation is widespread across vari-
ous fields, including general alignment (Chen et al.,
2024; Yu et al., 2024a; Xue et al., 2024a), math-
ematical reasoning (Lee et al., 2024; Ying et al.,
2024), medical (Tang et al., 2023; Xu et al., 2024),

8516

https://doi.org/10.18653/v1/2024.emnlp-main.968
https://doi.org/10.18653/v1/2024.emnlp-main.968
https://doi.org/10.18653/v1/2024.emnlp-main.968
https://aclanthology.org/2024.lrec-main.1127/
https://aclanthology.org/2024.lrec-main.1127/
https://aclanthology.org/2024.lrec-main.1127/
https://doi.org/10.18653/v1/2024.findings-acl.570
https://doi.org/10.18653/v1/2024.findings-acl.570
https://doi.org/10.18653/v1/2024.findings-acl.570
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://doi.org/10.18653/v1/2024.findings-naacl.149
https://doi.org/10.18653/v1/2024.findings-naacl.149
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2305.11206

Error Keyphrase Generation Prompt:

Based on the given mathematical problem, identify the step where the model made an error in its reasoning
process. Analyze the reason for this error and summarize it using a keyphrase. The input consists of a math
question, the correct answer, and the model's incorrect answer. Please output the result in the following format:

[”Error keyphrase"]

Ensure that your analysis focuses on the mistake in the model's problem-solving process. The keyphrases should
be concise yet descriptive, effectively summarizing the primary reason for the model's mistake. Strictly adhere to
the list format output without any additional information.

Math Question: {Question 𝒒𝒊}
Answer: {Correct Reasoning Path 𝒓𝒊 }
Model Output: {Incorrect Model Reasoning Path 𝒓#𝒊}

Figure 5: Prompt for Generating Error Keyphrases.

Error Keyphrases Clustering Prompt:

You are an expert in error analysis and categorization. You will be given a list of error keyphrases. Your task is to:

1. Analyze the given error keyphrases and identify common themes or patterns.
2. Group similar keyphrases together based on their likely causes, effects, or areas of occurrence.
3. For each cluster:

a. List the keyphrases in the cluster.
b. Explain why these keyphrases are grouped together.
c. Assign a concise but descriptive name to the cluster that captures its essence.
4. Clusters should cover all the keyphrases.

5. Present your results in a clear, structured format.

Strictly output in plain text according to the following format, do not output in other formats or with extra
symbols:
[
{{"Cluster name":, "Keyphrases":[], "explanation":,}},
{{"Cluster name":, "Keyphrases":[], "explanation":,}} ...
]

Your clustering should aim to provide meaningful insights that can help in understanding and addressing the errors
more effectively.
Here is the list of error keyphrases: {Error Keyphrases Set 𝐄-𝐬𝐞𝐭}

Figure 6: Prompt for Clustering Error Keyphrases

8517

Ono–shot Learning Prompt:

Please reason step by step, and put your final answer
within \boxed{}.

Here is an example:
Instruction: {Synthetic Question from 𝑫𝑺𝑬𝑰}
Response: {Synthetic Solution from 𝑫𝑺𝑬𝑰}

Instruction: {Question from 𝑫𝒅𝒆𝒗}
Response:

Figure 7: One-Shot Learning Prompt for Selecting Syn-
thetic Data

Error Type-Specific Data Synthesis for GSM8K:

Based on the given examples and error type, create 20
difficult math problems that are likely to cause errors in
the model.

Requirement:
1. Identify the commonality in the given examples and
consider what issues in these examples might cause the
model to make mistakes.
2. Make the new problems more challenging and
diverse.
3. Format the output strictly as a string in this structure:
[{{"question":,"solution":}},
{{"question":,"solution":,}},...].
Ensure no additional output beyond the specified
structure. Output in JSON format.
4. The reasoning process for each step should be
provided in the solution.
5. Ensure the final answer is a number and place it on a
new line, denoted by \n#### num.
6. Don’t make any mathematical mistakes of your own!

Provided Questions:
{Sampled Error Question 𝒒𝟏}
{Sampled Error Question 𝒒𝟐}
{Sampled Error Question 𝒒𝟑}
{Sampled Error Question 𝒒𝟒}
{Sampled Error Question 𝒒𝟓}
{Sampled Error Question 𝒒𝟔}
{Sampled Error Question 𝒒𝟕}
{Sampled Error Question 𝒒𝟖}

Error Type:
{Error type}

Generated Questions:

Figure 8: Prompt for GSM8K Error Type-Specific Data
Synthetic.

Error Type-Specific Data Synthesis for Math:

Based on the given examples and error type, create 20
difficult math problems that are likely to cause errors in
the model.

Requirement:
1. Identify the commonality in the given examples and
consider what issues in these examples might cause the
model to make mistakes.
2. Make the new problems more challenging and
diverse.
3. Format the output strictly as a string in this structure:
[{{"question":,"solution":}},
{{"question":,"solution":,}},...].
Ensure no additional output beyond the specified
structure. Output in JSON format.
4. The reasoning process for each step should be
provided in the answer.
5. The final answer should be marked with \\boxed{{}}
When generating math problems in JSON format:

1) Use \\\\(and \\\\) for inline math
2) Avoid complex LaTeX commands
3) Use simple alternatives for arrows and dots
4) Keep solutions concise and avoid unnecessary

formatting
5) Escape special characters properly
6) Test the JSON validity before finalizing

6.Don’t make any mathematical mistakes of your own!

Provided Questions:
{Sampled Error Question 𝒒𝟏}
{Sampled Error Question 𝒒𝟐}
{Sampled Error Question 𝒒𝟑}
{Sampled Error Question 𝒒𝟒}
{Sampled Error Question 𝒒𝟓}
{Sampled Error Question 𝒒𝟔}
{Sampled Error Question 𝒒𝟕}
{Sampled Error Question 𝒒𝟖}

Error Type:
{Error type}

Generated Questions:

Figure 9: Prompt for MATH Error Type-Specific Data
Synthetic.

8518

social media (Wei et al., 2025; Yu et al., 2024b),
and hallucination (Xue et al., 2024b, 2023).

C Manual Category Review

We applied two manual adjustments after clus-
tering: merging categories and excluding cate-
gories.

During the clustering process, some duplicate
or similar categories may be generated, such as
“Timezone and Duration Calculation Errors” and
“Time and Duration Calculation Errors,” or “Cal-
culation Errors” and “General Calculation Errors.”
These categories essentially represent the same or
closely related error types, so we merge them into
a unified category to avoid redundancy.

We identify bad cases by comparing the model’s
extracted answers with the correct ones. However,
this method may lead to a small number of cor-
rect answers being mistakenly identified as errors,
which is a common issue in math evaluations. For-
tunately, GPT-4o is usually able to determine that
these responses are actually correct. Consequently,
a special category like “No Error” or “Correct Pro-
cess” may appear after clustering, and we manually
exclude this category because it does not represent
actual error types. Through these manual reviews,
we can more accurately organize and analyze error
categories, ensuring the reliability and consistency
of the results.

8519

