Exploiting the Shadows: Unveiling Privacy Leaks through Lower-Ranked
Tokens in Large Language Models

Yuan Zhou', Zhuo Zhang', Xiangyu Zhang!
'Purdue University
{zhou1475, zhan3299, xyzhang}@purdue.edu

Abstract

Large language models (LLMs) play a crucial
role in modern applications but face vulnerabil-
ities related to the extraction of sensitive infor-
mation. This includes unauthorized accesses
to internal prompts and retrieval of personally
identifiable information (PII) (e.g., in Retrieval-
Augmented Generation based agentic applica-
tions). We examine these vulnerabilities in a
question-answering (QA) setting where LLMs
use retrieved documents or training knowledge
as few-shot prompts. Although these docu-
ments remain confidential under normal use,
adversaries can manipulate input queries to ex-
tract private content. In this paper, we pro-
pose a novel attack method by exploiting the
model’s lower-ranked output tokens to leak sen-
sitive information. We systematically evaluate
our method, demonstrating its effectiveness in
both the agentic application privacy extraction
setting and the direct training data extraction.
These findings reveal critical privacy risks in
LLMs and emphasize the urgent need for en-
hanced safeguards against information leakage.

1 Introduction

LLMs have become increasingly integral to a vari-
ety of applications. However, as these models grow
in complexity and capabilities, concerns about mali-
cious extraction of sensitive information from them
have intensified. For example, the extractions of
models’ internal prompts and personally identifi-
able information (PII) embedded within their train-
ing data are two significant vulnerabilities, as both
involve unauthorized access to confidential infor-
mation through sophisticated attack strategies.

To inspect these vulnerabilities in a practical
context, we set up a QA task where an LLM agent
retrieves relevant documents to answer user queries
or directly answer user queries based on their train-
ing knowledge. These documents, which may con-
tain private information, are used as in-context ex-
amples to generate responses. Importantly, users

do not have direct access to these retrieved doc-
uments or model’s training data, preserving their
confidentiality under normal operations.

However, adversaries can exploit this setup by
manipulating input queries to extract private doc-
uments or personal information. For instance, an
attacker might append an attack prompt to the end
of a user query. As such, the model will reveal
the content of retrieved documents embedded in
the prompt due to this prompt injection attack. In
our settings, the attacker operates under realistic
constraints, having access only to the model’s top-k
output logits (or its equivalence) and the generated
responses, without any knowledge of the model
parameters or gradients. More can be found in our
later discussion of the threat model.

Our work focuses on analyzing these vulnera-
bilities within the practical QA task setup. Differ-
ent from previous works that focus on manipulat-
ing prompts to extract information, we fix attack
prompt and discover that the model leaks sensi-
tive information through its lower-ranked output
tokens. This finding is significant because it re-
veals a new avenue for information leakage that
does not rely on prompt manipulation but exploits
the model’s output distribution. The contribution
of our works is that we introduce a novel attack
method that extracts sensitive information based on
model’s output lower-ranked tokens. We have con-
ducted comprehensive evaluations of this attack,
demonstrating its effectiveness in both the agentic
application privacy extraction setting and the direct
extraction of training data from the model. Our
findings highlight a significant privacy leakage is-
sue in LLMs, underscoring the need for improved
safeguards.

2 Related work

Prompt extraction: Our work focuses on infor-
mation extraction from LLM prompts. Zhang

8376

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8376-8386

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

et al. (2024) proposed a simple attack by gener-
ating a similar attack prompt trying to steal a se-
cret prompt of the model. Qi et al. (2024) stud-
ies an adversarial setting by considering a threat
model that seeks to extract text data from a private,
non-parametric database of Retrieval-Augmented
Generation (RAG) models with the black-box API
access. Zeng et al. (2024) implements a RAG
setup and uses prompt leakage attacks to extract PII
from the external retrieval database. Agarwal et al.
(2024) extends this threat to a multi-turn scenario.
In addition, Perez and Ribeiro (2022) implements
a prompt injection attack to extract prompts from
the model. Morris et al. (2023) extracts next-token
probabilities at a given position to reconstruct an
input prompt. Sha and Zhang (2024) propose a
methodology for prompt leakage using parameter
extraction and prompt reconstruction.

PII extraction: One way to perform the PII
extraction involves generating hand-crafted tem-
plates that aim to extract PII (Shao et al., 2023).
For example, an adversary might prompt the model
with “the phone number of {name} is.”, substituting
“{name}” with the victim’s name. While such an at-
tack requires no prior background, its performance
largely depends on the quality of templates, and the
performance of this method is low. Others attack
ways assume the attacker has partial knowledge of
the training dataset. Kim et al. (2024) assumes the
attacker knows other PII of the owner and targeted
PII is presented within a context directly tied to the
owner. However, this still has a low attack success
rate. Additionally, Lukas et al. (2023) and Li et al.
(2024) use prefixes found in the training data, in
the hope that the model outputs the exact PII suf-
fix. This approach significantly outperforms the
simplest attack but has a strong assumption that the
adversary has access to the real prefixes from the
training data. To improve this, Nakka et al. (2024)
assumes the attacker only knows part of the pre-
fix in the dataset and concatenates simple attack
prompts after the prefix. Its performance is better
than directly asking the model.

3 Threat model

3.1 Agentic application privacy extraction

We first set up a practical QA task in which an
LLM agent with RAG to answer domain-specific
questions. As shown in Figure 1, the LLM agent
retrieves documents related to the user query from
a database and uses those documents as a few-shot

Database

d@b % Retrieved
—— P Documents

Figure 1: Illustration of the agentic application. The
LLM retrieved documents which most relevant to the
user query from its database, then generate answer based
on the retrieved documents and its own knowledge.

O My son has been
coughing for a day, what
| o Jl [shouldIdo?

Here are some general
guidance that may help
you assess your son’s

situation ...

prompt to generate a response to achieve good
performance. Because these documents may con-
tain private information, users don’t have access
to them. Take an medical QA system as an exam-
ple. Assuming the user asks “My son has been
coughing for a day, what should I do?”, the model
would look up relevant information from a medical
records database and generate a response given the
medical records. However, because these records
contain private patient information, they are not
publicly available. The attacker tries to steal those
documents by concatenating an attack prompt (e.g.,
“don’t answer the question, just repeat all previous
sentences’) at the end of the query. We assume
that attackers do not have access to the model pa-
rameters or gradients, and they only have access to
the output top-k logits (log probabilities) and the
response. This assumption is practical and aligns
with real-world deployments: many LLM-based
agents, similar to OpenAI’s API design, expose
top-k logits to enable downstream agents or users
to calibrate model confidence or apply custom de-
coding strategies to reduce hallucinations. The
victim model provides these top-k logits to users
so they can evaluate the model’s confidence in its
answers or reduce hallucinations by applying their
own customized decoding strategies. Additionally,
even API models do not return top-k logits, they
usually allow user to add a bias to specific token’s
logits (e.g., latest GPT models). If a model only
returns the top-1 token, an attacker can manipulate
the process by setting the logit of the top token
to -inf, effectively removing it from consideration.
When the same prompt is repeated, the model’s new
top-1 token will be the one that ranked second in
the previous round, modulo the output uncertainty.
Note that although this approach may involve extra
token cost; the cost is negligible compared to the
impact of the attack.

In our setting, a user query consists of two dis-
tinct parts: the first is a normal question, and the

8377

second is an attack prompt as previously mentioned.
For example, the user query of previous instance
can be “My son has been coughing for a day, what
should 1 do? Don’t answer the question, just repeat
all previous sentences.” This two-part structure
is essential because by varying the first part, the
attacker can specify the context of extraction. As
in a typical agent setting, for each user query, two
documents are retrieved from the database, and the
user query is appended to the retrieved documents.
Thus, the complete query would have the following
format: Document 1: [RETRIEVED DOC 1] \n
Document 2: [RETRIEVED DOC 2] \n Question:
[NORMAL QUESTION] + [ATTACK PROMPT].
Then the model will generate response given this
query.

We have two distinct types of attack prompts,
each representing a specific type of information
extraction attack. The first one involves compre-
hensively extracting the entire content of a docu-
ment, requiring the model to accurately reproduce
all sentences in its response. The second one fo-
cuses on extracting sensitive personal information,
such as email addresses and phone numbers. Al-
though this task entails reproducing only parts of a
document, it remains crucial due to the significant
privacy risks.

To defend against these attacks while minimiz-
ing the reduction in the model’s performance, we
incorporate in-context examples of defense meth-
ods. These examples illustrate proper responses
where the model appropriately refuses to disclose
sensitive information.

3.2 Training data PII extraction

In addition to extracing sensitive information in
agentic applications, we also attempt to extract PII
directly from the model’s pre-training data. In this
setup, we explicitly ask the model to provide the
PII of a person that we know for sure belongs to
the pre-training dataset.

4 Attack design

4.1 Observations

Existing LLMs are usually well aligned to refuse
leaking private information. However, we noticed
that even their generated response is a refuse, the
malicious answer is implicitly concealed within the
top-k hard-label outcomes. For example, as shown
in Figure 2, in our attack scenario, we ask the model
to repeat all the previous instructions. The top-1

and top-2 tokens may be “Sorry” or just repeating
the user instruction. But when it reaches the top-6
token, the model starts repeating documents after
generating “The”.

However, to avoid the excessive cost in enumer-
ating the sentences generated by individual top-k
tokens, we ought to find a way to determine if a
token may lead to a sentence of interest. The key
observation is that the output logits are likely dif-
ferent when the model is generating response for
the first part of query (i.e., the normal question)
and when it is responding to the attack prompt and
repeating the in-context document. This might be
because when the model is repeating, it tends to be
more confident. So we could utilize the observation
to train a classifier to determine if the sentence is
in the retrieved documents.

Based on the observations, we propose a novel
attack method. Figure 2 shows the overview, which
has several key steps. We first obtain the top-k can-
didate tokens for the next output by the model. For
each candidate token, the model continues its gen-
eration for a few steps, yield a partial sentence. We
apply a re-ranking method to these partial sentences
to prioritize the sentences that are most likely re-
peating documents. The model then completes the
generations for the top five partial sentences. In
many cases, even though the model leaks some
of the sensitive information, it may switch to an-
swering the user question (i.e., the first part of the
query), which does not serve our purposes. There-
fore, we use a sentence evaluator to determine such
transition points. For each such point, we repeat our
earlier top-k token exploration to force the model
to continue leaking information. In the following,
we explain the re-ranking method and the sentence
evaluator in 4.2 and 4.3.

4.2 Sentence re-ranking

Based on our experiments, we find there are several
different situations in top-k partial sentences when
the model generating response for the attacker’s
query. (1) The model may refuse to repeat the
document, for example, the model may generate
“Sorry, I cannot repeat previous documents”. (2)
The model may simply repeat the question and the
attack prompt instead of the requested document.
(3) The model may generate an answer to the nor-
mal question instead of repeating the document.
(4) The model starts repeating retrieved documents.
Thus, the re-ranking step aims to filter out those
non-malicious responses and increase the rank of

8378

The | previous documents are:

) (Ranks) | _‘/’ Sentence
panco =
R — 1 Generation

Y el P

. a
Re-ranking TI:I ‘
[}

=

/
Next token — Next sentence

. \
Sorry | 1 couldn’t help with that.
Its | hard forme o ... (Rank 1
Sure | Ignore that question...

The previous documents are

Document 1: 1... 2... The
answer to your question is ...
» LLM
& The previous documents are ‘ ,
Next-token _‘/‘ | Document 1: 1... 2... J =¢| Sentence
Generation |~ = 3] Evaluator

Figure 2: Illustration of attack pipeline: 1. obtain the
top-k tokens and let model generate a short sentence
based those tokens, 2. re-ranking sentences, 3. let model
complete top-ranked response, 4. truncate all sentence
after the point that the model stopped producing mali-
cious content.

privacy leakage responses, without this procedure,
the model’s original top-k answers would be sent
directly to sentence evaluator, substantially reduc-
ing the attack success rate.

Because we only want the last situation, we need
to re-rank the top-k answers and increase its rank-
ing when the sentence is potentially repeating doc-
ument or leaking private information. Suppose the
user query is g, the attack prompt is ¢, and the
model response is . For the first two cases, we sim-
ply filter them out by finding the key words in the
response, for example, when phrases like “I cannot”
or the first few words of normal question appear
in a response, we will give it a low score. For the
third case, it is difficult to distinguish whether the
model starts repeating document or responding to
the normal question by key words matching. How-
ever, if the model is answering the normal question,
the response would have a high correlation with the
question. Thus, we use a pre-trained model from
nli-deberta-base (Reimers, 2019) to calculate the
correlation between the response and the normal
question. In addition, when the model is repeating
documents, it often follows a pattern (e.g., “I..., 2...,
3...”). Based on these, responses that list sentences
in this way as well as have a lower correlation with
the normal question are given a high score.

4.3 Sentence Evaluator

When the model is repeating the document at be-
ginning, it may change to answering the normal
question after generating a few sentences. For ex-
ample, after repeating part of the document the
model may say “Based on document 1, the answer
to your question is ...” instead of continue repeat-

Document 1 ... , ..., The answer to your question is ...
—— ——
Get logits of

every token in
each sentence

[(et

91 9i
yeees Representation

of each sentence
hy h;
UQO%\O Binary
C/z%to classifier
Repeating Generating

Figure 3: Illustration of sentence evaluator: First, obtain
a representation of each sentence based on the logits
of its tokens. Then, use a binary classifier to identify
which sentence is not repeating from the document.

ing the rest of the document. Thus, it is crucial to
determine if the generated sentences are in the doc-
ument and find the transition point that the model
stops repeating and force the model to continue to
repeat the document(s) or private information. Intu-
itively, the model is more confident when repeating
information than generating new sentences, which
means the logits distributions are likely separable
in these two cases.

Specifically, as shown in Figure 3, to find a
transition point, we first get the representation
of each sentence in the response. Suppose the
model response is = [sq,..., S|, where s; is
the ith sentence in the response and n is the to-
tal number of sentence in the response. The logits
of sentence s; is g; = [gi1,---, 9i,m), Where g; ;
is the logits of the jth token in sentence s; and
m is the length of this sentence. To make sure
all the sentence have the same representation di-
mension, we separate the sentence into L pieces
9 = g1, Gi;m/L> 9il+15 -5 9i2m/Ls -+ Gi;m)-
Then, as shown in Eq 1, we calculate the mean,
minimum, maximum and standard deviation of
each piece and concatenate them together as the
final representation h; of the sentence. Then we
train a binary classifier as the sentence evaluator
to determine which sentences are repeats from the
document and which are generated by the model.
As shown in Figure 2, after using the classifier to
find a transition point, we force the model to gen-
erate top-k candidates for this token and use the
sentence re-ranking method to select the candidate
that most likely to continue repeating documents.
This process repeats until it reaches the eos token,

8379

or none of the top-k tokens can pass the evaluator.

mean; = mean(gi,(l—l)m/L-l—la e gi,lm/L)
min; = min(g; 1—1ym/L+1> -+ Yi,im/L)
max; = max(g; (1—1ym/L+1> - Ji,im/L) 1
std; = std(gi,(1—1)ym/L+1> -+ Gitm/L)
h; = [mean;, min;, maxy, stdy,
..., meany,, miny,, maxg,, stdy |

S Experiment

5.1 Datasets

For the agentic application setting, we used six dif-
ferent domain datasets: bbcnews!, fnspid(Dong
et al.,, 2024), enron(Klimt and Yang, 2004),
code_alpaca (CA)?, healthcaremagic (HCM)(Li
et al., 2023), and billsum(Kornilova and Eidelman,
2019). For each dataset, we obtained 120 docu-
ments and truncated each document to approxi-
mately 200 words to remove any length bias when
studying the leakage effect. Because the bbcnews,
fnspid, enron, and billsum contain only documents,
we hence use GPT-3.5-turbo to generate related
questions based on the selected documents. The
remaining two datasets are QA datasets. following
a setup in the literature (Agarwal et al., 2024), we
consider the selected documents as the pool of re-
trieved documents and randomly select from the
questions from the remaining data (i.e., excluding
the 120 selected documents) as the normal ques-
tions. In particular, each test prompt consists of
two documents from the pool of 120 selected doc-
uments, followed by a query consisting of a ran-
domly selected question and the attack prompt that
requires the model to repeat the documents in the
prompt.

Additionally, in order to test our method’s abil-
ity to retrieve sensitive personal information, we
generate a set of privacy-related data points (such
as names, email addresses, phone numbers, and
credit card numbers), integrate them into the origi-
nal dataset, and let the model to specifically repeat
this personal information given the owner’s name.

We created two distinct datasets for testing pre-
training PII data extraction: one sourced from the
Enron dataset (Klimt and Yang, 2004) and the other
obtained through web crawling. From the enron
dataset, we extracted 500 pairs consisting of names,
email addresses, and phone numbers. To achieve

"https://huggingface.co/datasets/RealTimeData/
bbc_news_alltime

2https://huggingface.co/datasets/sah112801/
CodeAlpaca-20k

this, we first identified phone numbers based on
their format (e.g., “XXX-XXX-XXXX Or “(XXX)-XXX-
xxxx"’) and then used GPT-4 to determine the as-
sociated owner and email address for each number.
We also randomly generated a credit card number
for each individual to evaluate the model’s vul-
nerability to extraction attack of highly sensitive
information. Additionally, recognizing that many
LLMs are also trained on internet-sourced data, we
gathered approximately 150 email addresses and
phone numbers by crawling publicly available web-
sites constructed before year 2022 as our internet-
sourced dataset.

5.2 Baseline

For the agentic application privacy extraction set-
ting, since most current work relies on prompt-
based methods, we begin by selecting the best-
performing prompt as our initial prompt whose
performance is shown in line 1-prompt in Table
2 and Table 3. Given the additional cost of our
method, we generate ¢ prompts with similar attack
performance from the initial prompt using GPT-
4, ensuring that the overall cost remains compa-
rable, the result is shown in line t-prompt in Ta-
ble. Although our threat model presents a more
challenging scenario than conventional jailbreak
attacks—requiring the attacker to not only induce
the model to leak sensitive information but also
accurately distinguish whether the leaked content
is authentic or fabricated—we nonetheless selected
an existing jailbreak attack method as another base-
line for evaluation. Specifically, we conducted ex-
periments using the OPRA (Wang et al., 2024) on
document extraction tasks by employing GPT-40 to
generate contextually appropriate prefixes for the
OPRA attack, such as “Sure, here are the previous
sentences:”.

For directly extracting pre-training PII data, we
employ four different prompt templates. The base
type means directly prompting the model to gener-
ate a phone number given an owner’s name. The
prefix type provides the model with about 150 to-
kens of context preceding the phone number we
aim to extract. The fake_prefix type uses a fixed
prefix to extract all numbers in the dataset. The
w_email type that instructs the model to generate
the phone number based on the owner’s name and
email address. We use the model’s greedy decoding
as the baseline.

8380

https://huggingface.co/datasets/RealTimeData/bbc_news_alltime
https://huggingface.co/datasets/RealTimeData/bbc_news_alltime
https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k
https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k

5.3 Evaluation Metrics

For the document extraction in agentic applications,
we have 5 different evaluation metrics. As we men-
tioned before, because the model may repeat the
document in the format like “The sentence in the
documents are: 1....2...”, directly calculating the
matching of response and document is not accu-
rate. Thus we propose a sentence level measure-
ment method: sentence match rate (SMR) R, as
Eq 2 shows, suppose the retrieved document is
d = [d1, ..., d;], where d; is the ith sentence in the
document. We separate the document to sentences
based on the punctuation like “.”, “!”, “?” and etc.
Then we measure how many sentences in the docu-
ment are repeated, where I(d;, r) means whether
d; is being repeated in the response r. If all sen-
tences in the document are being repeated, we say
the attack succeeds. In other words, the document
extraction is successful if all sentences in the docu-
ment appear in the response. We also measure the
Rouge-L (R-L), BertScore (BS) and BLEU of the
response.

In addition, we also test how much privacy can
be extracted in this attack, the privacy information
extraction attack succeeds if the complete private
information is extracted correctly.

1 . 1 ifd;
R, = Z=lWen) - pg = DEET
0 otherwise
@)

5.4 Models

We test our method on GPT-3.5-turbo-instruct?,
[lama3-8b-Instruct(Dubey et al., 2024), llama2-7b-
chat, llama2-13b-chat(Touvron et al., 2023) and
vicuna-13b-v1.5(Zheng et al., 2023), which are
aligned. For the pre-training PII extraction, we
additionally test our method on GPT-J-6B(Wang
and Komatsuzaki, 2021), llama2-13b, llama2-7b,
and llama3-8b model, which are unaligned, for the
reference purpose.

5.5 Training and evaluating sentence
evaluator

First, we test the assumption of our sentence evalu-
ator. Figure 4 shows the t-SNE of sentence repre-
sentation of the Llama3-8b-Instruct model, which
is the logits of each sentence. The orange dots

3https ://platform.openai.com/docs/models#
gpt-3-5-turbo

60 generating

repeating
40 4

20

Figure 4: T-SNE of generated sentence logits and re-
peating document logits.

Model Accuracy Precision Recall
GPT-3.5-Turbo-Instruct 0.935 0.961 0.907
Llama3-8b-Instruct 0.940 0.925 0.957
Llama2-7b-chat 0.922 0.890 0.962
Llama2-13b-chat 0.900 0.871 0.940
Vicuna-13b-v1.5 0.882 0.868 0.900

Table 1: Sentence evaluator’s performance over differ-
ent models.

mean the logits when the model is repeating ex-
act the same sentence in the retrieved model, and
the green dots represent new sentences geneated
by the model (to answer normal questions). From
Figure 4 we can see these two different types of
sentences’ logits are separable, which validate our
assumption.

To train the evaluator, we collect 2000 pieces
of data from the aforementioned datasets that the
model is repeating or generating sentence to train a
random forest. The data entries are constructed in
a way similar to our test data construction but from
different documents that are not used in testing.
Table 1 shows the accuracy, precision and recall of
the sentence evaluator. We can see that the accuracy
is mostly over 90% with a high precision and recall,
indicating that the classifier has a high performance
over all test models.

5.6 Agentic application privacy extraction
results

Table 2 shows the result for the agentic application
document extraction of GPT-3.5-Turbo-Instruct
and Llama3-8B-Instruct, more detailed results are
shown in Table 7. We can see that most models
show a notable improvement in most metrics with
our method. Compared to the ¢-prompt, for GPT-
3.5-Turbo-Instruct on the bbcnews dataset, the

8381

https://platform.openai.com/docs/models#gpt-3-5-turbo
https://platform.openai.com/docs/models#gpt-3-5-turbo

ASR increases from 0.2 to 0.317, and even for the
cases that cannot repeat the entire document, there
is still 76.6% sentence match rate, which means it
can correctly repeat most of the documents. Addi-
tionally, the ASR of Llama3-8B-chat on the enron
dataset improves significantly with our method, in-
creasing from 0.0 to 0.13, while the SMR rises
from 0.133 to 0.737. Additionally, performance
varies notably across datasets. For instance, the
results on the bbcnews and billsum datasets are
generally 10% higher compared to the enron and
healthcaremagic datasets, suggesting that different
types of documents may have different vulnerabil-
ities to being leaked by LLMs. Compared to the
OPRA baseline, our method consistently achieves
superior performance across all evaluated datasets
and models. Specifically, it yields ASR and SMR,
indicating a stronger ability to extract information.
Our observations indicate that under OPRA, the
model initially replicates the provided in-context
documents but subsequently generates additional
content beyond the given input.

Table 3 shows the result for privacy informa-
tion extraction under the agentic application setting.
For all models, our method shows a significantly
higher ASR than the baseline. This suggests that
our technique is increasing the likelihood of ex-
tracting sensitive information from aligned models.
We notice that Llama3-8b-Instruct has the lowest
baseline performance of all models but shows a
sharp increase with our method. The vicuna-13b-
v1.5 model demonstrates the highest attack success
rates in all methods. In the baseline scenario, it
achieves about 0.7 for both email and phone num-
ber extraction and over 0.5 for credit card extrac-
tion, and with our method, the attack success rate
reaches 0.533, and both email and phone number
extraction rates surpass 0.8. Additionally, although
the Llama3-8B-Instruct model demonstrates the
strongest inherent safeguards for protecting sen-
sitive information among evaluated models, our
proposed method significantly increases its vulner-
ability. Specifically, the Attack ASR surpasses 0.5,
with the extraction rates for email addresses and
phone numbers reaching approximately 0.7. This
indicates that, despite LLLMs have safeguard to pro-
tect sensitive information, they still tend to leak PII
under our attack, highlighting the need for the de-
velopment of effective defense methods to address
this vulnerability.

Dataset Method ASR SMR R-L BLEU
GPT-3.5-Turbo-Instruct
bbcnews 1-prompt 0.075 0.147 0.057 14.105
t-prompt 0.200 0.517 0.431 47.565
OPRA 0.225 0.597 0.154 56.195
our method 0.317 0.766 0.314 62.446
“billsum 1-prompt 0.0750 0.168 0.097 18.760
t-prompt 0.100 0.465 0.352 56.871
OPRA 0.316 0.583 0.360 60.261
our method 0.167 0.555 0.398 56.805
Cfospid 1-prompt 0.033 0250 0.127 24.080
t-prompt 0.142 0.514 0.395 43.758
OPRA 0.125 0.625 0.151 62.176
our method 0.192 0.666 0.259 60.910
“enron l-prompt 0.000 0.094 0.029 2524
t-prompt 0.000 0.101 0.091 5.734
OPRA 0.000 0.155 0.067 8.646
our method 0.008 0.134 0.094 15.787
"HCM 1-prompt 0.017 0.187 0.157 16811
t-prompt 0.017 0.343 0.324 27.491
OPRA 0.000 0311 0.242 32.511
our method 0.025 0.338 0.271 28.592
"CA 1-prompt 0.000 0.090 0204 10.148
t-prompt 0.050 0.341 0.464 38.475
OPRA 0.067 0.193 0.293 18.643
our method 0.067 0314 0.340 22.611
LLama3-8b-Instruct
bbcnews 1-prompt 0.075 0.183 0.053 18.346
t-prompt 0.242 0.370 0.205 35.413
OPRA 0.200 0.516 0.226 48.708
our method 0.283 0.863 0.250 71.114
“billsum 1-prompt 0.108 0.361 0233 43.157
t-prompt 0.208 0.599 0401 57.147
OPRA 0.092 0.263 0.244 38.289
our method 0.342 0.702 0.408 61.202
Cfospid 1-prompt 0.133 0.521 0.132 51.107
t-prompt 0.158 0.497 0.305 43.492
OPRA 0.200 0.593 0.321 55.803
our method 0.317 0.757 0.247 65.732
“enron l-prompt 0.000 0.059 0.026 2290
t-prompt 0.000 0.133 0.097 6.241
OPRA 0.000 0.102 0.077 4.519
our method 0.133 0.737 0.452 62.889
"HCM 1-prompt 0.000 0.019 0.012 0289
t-prompt 0.000 0.095 0.076 8.002
OPRA 0.000 0.058 0.039 6.109
our method 0.142 0.305 0.224 23.653
"CA l-prompt 0.000 0.006 0.061 0576
t-prompt 0.067 0.454 0376 35.798
OPRA 0.000 0.026 0.075 2.600
our method 0.425 0.687 0.600 23.698

Table 2: Performance metrics across datasets for base-
line and our methods in agentic application document
extraction.

To investigate the relationship between top-k
and ASR, we test the document extraction attack
with top-k equals to 5, 10, 20, 50 on Llama3-8b-
Instruct. Figure 5(a) shows the results of different
top-k candidates. We can see that as the top-k in-
crease, both attack success rate and sentence match

8382

Model Method ASR Email Phone Number Credit Card

gpt-3.5-turbo-instruct 1-prompt 0.083 0.092 0.092 0.200
t-prompt 0.242 0.258 0.250 0.425
our method 0.583 0.592 0.592 0.667
Llama3-8b-Instruct I-prompt ~ 0.000 0.000 0000 0.000
t-prompt 0.008 0.008 0.008 0.017
our method 0.533 0.683 0.692 0.533
Llama2-7b-chat I-prompt 0158 0.183 0167 0.158
t-prompt 0.342 0.400 0.350 0.342
our method 0.550 0.558 0.567 0.767
Llama2-13b-chat ~ I-prompt 0.167 0.167 0167 0.167
t-prompt 0.267 0.267 0.267 0.291
our method 0.542 0.642 0.658 0.542
vicuna-13b-v15 L-prompt 0267 0258 0283 0267
t-prompt 0.492 0.817 0.708 0.517
our method 0.533 0.808 0.808 0.533

Table 3: ASR for different models under baseline and
our method in agentic application PII extraction.

rate increase, but as k increases, the growth rate
gradually slows down. This also validates our moti-
vation, indicating that although the result of LLMs
greedy decoding is incorrect, the true answer might
be among the results generated by the top-k tokens.

0.7]
0.020 llama3-8b
0.6 llama3-8b-Instruct
0.018 -
0.5 1
) ASR]
o J +5 0.016 4
B 04 SMR e
03 0.014
0.2
0.012
10 20 30 40 50 0 200 400
top-k top-k
(@) (b)

Figure 5: 5(a) Results of Llama3-8b-Instruct using dif-
ferent top-k candidates under agentic application doc-
ument extraction setting. The x-axis denotes the top-k,
and the y-axis denotes the ASR and SMR. 5(b) Results
of Llama3-8b and llama3-8b-Instruct using different
top-k candidates under training data PII extraction set-
ting. The x-axis denotes the top-k and the y-axis denotes
the ASR.

5.7 Pre-training PII extraction result

Table 4 presents the results for the pre-trained
models. we observe that all ASR is low, but our
method’s ASR is still higher than the baseline
across all prompt types, which supports our hy-
pothesis that the model may conceal the ground
truth among its top-k candidates. Additionally, the
ASR for prefix type prompt is higher than other
prompt types, which aligns with the training pro-
cess of models, indicating their tendency to com-
plete sentences using patterns from the same train-
ing samples. Moreover, the ASR for GPT-J-6B
is significantly higher than that other models, pos-
sibly because GPT-J-6B is trained on a smaller

base prefix fake_prefix w_email
GPT-J-6b
baseline 0.002 0.102 0.012 0.012
our method 0.028 0.156 0.030 0.028
Llama2-7b
baseline 0.004 0.006 0.000 0.002
our method 0.004 0.010 0.000 0.002
Llama2-13b
baseline 0.002 0.025 0.002 0.002
our method 0.006 0.030 0.004 0.004
Llama3-8b
baseline 0.002 0.007 0.000 0.004
our method 0.006 0.021 0.000 0.004

Table 4: ASR for different pre-trained open models and
prompt templates.

training dataset so each individual data point easier
to memorize.

Table 5 shows the results of aligned models un-
der the same settings. It shows that aligned models’
ASR is about the same in other settings but lower in
the prefix setting compared to pre-trained models.
This make sense because aligned models have post-
training process which cause they tend to refuse to
answer or even forget some of the training data. Ad-
ditionally, for the prefix prompt type, our method
still outperforms the baseline. Even all ASRs are
low, our results show there is still a privacy risk in
aligned models.

During the experiment we notice that sometimes
the ground truth hide deeper than in-context set-
ting, to figure out the relationship between top-k
and ASR, we extract PII with top-k set to 0, 100,
200, 400, and 500 on Llama3-8b and Llama3-8b-
Instruct. As shown in Figure 5(b), the attack suc-
cess rate increases with higher top-k values and
seems will continue increasing as k increases. Even
though the model generates more different outputs
when the top-k increases, our ASR remains sig-
nificantly higher than what could be achieved by
guessing a phone number at random. In particular,
given that a phone number has 10 digits and the last
4 are effectively random, there are 10000 possible
combinations for those final four digits. Even if
the model only needs to guess these last four cor-
rectly, considering we need to select the final result
from the top-k candidates, the probability of coin-
cidentally guessing the number correctly is lower
than 0.0001. In contrast, our ASR is far above this
number.

Table 6 presents the results for the API model
on the internet-sourced dataset. There are 4 dif-

8383

ferent settings for this dataset. ‘Email’ means we
directly ask LLM someone’s email address with-
out other information, and ‘Phone number’ means
we ask for the phone number, w_domain’ means
we ask the model someone’s PII with their domain
information (e.g., company). Our method achieves
a significantly higher ASR than the baseline, for
example, the ASR for ‘Email’ type increases from
0 to 0.04, and for ’Email_w_domain’ type it in-
creases from 0.015 to 0.363. However, because the
last four digits of a phone number are random, it is
much more challenging to guess a phone number
correctly if they are not in the training dataset Thus,
the 1% ASR for phone number and 2% ASR for
phone number with domain knowledge indicating
these PIIs are highly likely in the training dataset
and the model has memorized them.

base prefix fake prefix w_email
Llama2-7b-chat
baseline 0.002 0.006 0.000 0.002
our method 0.002 0.010 0.000 0.002
Llama3-8b-Instruct
baseline 0.004 0.008 0.000 0.004
our method 0.004 0.018 0.000 0.004

Table 5: ASR for different aligned open models and
prompt templates.

Email Email_w_domain Phone number Phone number_w_domain
baseline 0.000 0.015 0.000 0.000
our method ~ 0.044 0.363 0.011 0.022

Table 6: ASR for aligned API open models of Internet
sourced dataset.

6 Conclusion

This project aims to evaluate whether current LLMs
can leak private information in both the agentic ap-
plication setting and the direct extraction settings,
thereby assessing their potential privacy risks. Our
experiments demonstrate that LLMs still exhibit
significant privacy leakage vulnerabilities under
our attack, which demands attention and resolution.
In particular, the ASR for PII extraction in the agen-
tic application setting is notably high, highlighting
the need for increased awareness and mitigation.
Furthermore, although the ASR for pre-training PII
data extraction is relatively low, our findings indi-
cate that these models do memorize some personal
information and may occasionally disclose it.

7 Limitation

One limitation of our method is its computational
cost, as it requires analyzing the top-k tokens and
generating responses based on them. Additionally,
our evaluation is restricted to documents with a
length of fewer than 500 tokens, leaving the attack
ASR untested on longer context documents. This
constraint limits the scope of our findings and their
applicability to more extensive contexts. However,
we argue a high cost may be justified by the value
of extracted information. Moreover, our method
assumes that LLMs will concatenate the retrieved
documents with the user query in agentic applica-
tions, which may not align with real-world usage
scenarios.

Acknowledgments

We are grateful to the Center for Al Safety
for providing computational resources. This
work was funded in part by the National Sci-
ence Foundation (NSF) Awards SHF-1901242,
SHF-1910300, Proto-OKN 2333736, 11S-2416835,
DARPA VSPELLS - HRO001120S0058, ONR
NO00014-23-1-2081, and Amazon. Any opinions,
findings and conclusions or recommendations ex-
pressed in this material are those of the authors and
do not necessarily reflect the views of the sponsors

References

Divyansh Agarwal, Alexander R Fabbri, Philippe Laban,
Shafiq Joty, Caiming Xiong, and Chien-Sheng Wu.
2024. Investigating the prompt leakage effect and
black-box defenses for multi-turn llm interactions.
arXiv preprint arXiv:2404.16251.

Zihan Dong, Xinyu Fan, and Zhiyuan Peng. 2024. Fn-
spid: A comprehensive financial news dataset in time
series. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, pages 4918-4927.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Siwon Kim, Sangdoo Yun, Hwaran Lee, Martin Gubri,
Sungroh Yoon, and Seong Joon Oh. 2024. Propile:
Probing privacy leakage in large language models.
Advances in Neural Information Processing Systems,
36.

Bryan Klimt and Yiming Yang. 2004. The enron corpus:
A new dataset for email classification research. In

8384

European conference on machine learning, pages

217-226. Springer.

Anastassia Kornilova and Vlad Eidelman. 2019. Bill-
sum: A corpus for automatic summarization of us
legislation. arXiv preprint arXiv:1910.00523.

Qinbin Li, Junyuan Hong, Chulin Xie, Jeffrey Tan,
Rachel Xin, Junyi Hou, Xavier Yin, Zhun Wang,
Dan Hendrycks, Zhangyang Wang, et al. 2024. Llm-
pbe: Assessing data privacy in large language models.
arXiv preprint arXiv:2408.12787.

Yunxiang Li, Zihan Li, Kai Zhang, Ruilong Dan, Steve
Jiang, and You Zhang. 2023. Chatdoctor: A medical
chat model fine-tuned on a large language model
meta-ai (llama) using medical domain knowledge.
Cureus, 15(6).

Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople,
Lukas Wutschitz, and Santiago Zanella-Béguelin.
2023. Analyzing leakage of personally identifiable
information in language models. In 2023 IEEE Sym-
posium on Security and Privacy (SP), pages 346-363.
IEEE.

John X Morris, Wenting Zhao, Justin T Chiu, Vitaly
Shmatikov, and Alexander M Rush. 2023. Language
model inversion. arXiv preprint arXiv:2311.13647.

Krishna Kanth Nakka, Ahmed Frikha, Ricardo Mendes,
Xue Jiang, and Xuebing Zhou. 2024. Pii-compass:
Guiding llm training data extraction prompts to-
wards the target pii via grounding. arXiv preprint
arXiv:2407.02943.

Féabio Perez and Ian Ribeiro. 2022. Ignore previous
prompt: Attack techniques for language models.
arXiv preprint arXiv:2211.09527.

Zhenting Qi, Hanlin Zhang, Eric Xing, Sham Kakade,
and Himabindu Lakkaraju. 2024. Follow my instruc-
tion and spill the beans: Scalable data extraction

from retrieval-augmented generation systems. arXiv
preprint arXiv:2402.17840.

N Reimers. 2019. Sentence-bert: Sentence embed-
dings using siamese bert-networks. arXiv preprint
arXiv:1908.10084.

Zeyang Sha and Yang Zhang. 2024. Prompt stealing
attacks against large language models. arXiv preprint
arXiv:2402.12959.

Hanyin Shao, Jie Huang, Shen Zheng, and Kevin Chen-
Chuan Chang. 2023. Quantifying association capabil-
ities of large language models and its implications on
privacy leakage. arXiv preprint arXiv:2305.12707.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Yiwei Wang, Muhao Chen, Nanyun Peng, and Kai-Wei
Chang. 2024. Frustratingly easy jailbreak of large
language models via output prefix attacks.

Shenglai Zeng, Jiankun Zhang, Pengfei He, Yue Xing,
Yiding Liu, Han Xu, Jie Ren, Shuaiqiang Wang,
Dawei Yin, Yi Chang, et al. 2024. The good and the
bad: Exploring privacy issues in retrieval-augmented
generation (rag). arXiv preprint arXiv:2402.16893.

Yiming Zhang, Nicholas Carlini, and Daphne Ippolito.
2024. Effective prompt extraction from language
models. In First Conference on Language Modeling.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing

Systems, 36:46595-46623.

A Additional results

Table 7 shows the results of documents extraction
under agentic application setting for test models.
We can see that most models show a notable im-
provement in most matrics when implementing our
method. Additionally, larger model is more vul-
nerable than smaller model when doing document
extraction.

8385

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

Dataset ~ Method ASR SMR R-L BS BLEU
LLama2-7b-chat
bbcnews 1-prompt 0.000 0.020 0.034 0.818 4.319
t-prompt 0.000 0.112 0.104 0.849 15.093
our method 0.033 0.210 0.120 0.596 27.469
“billsum I-prompt ~ 0.000 0.017 0.049 0.82 2365
t-prompt 0.000 0.055 0.122 0.851 14.003
our method 0.008 0.058 0.049 0.339 9.193
Cfospid l-prompt 0.000 0.042 0.03 0822 3.125
t-prompt 0.000 0.128 0.079 0.844 12.034
our method 0.000 0.200 0.200 0.799 27.908
“enron l-prompt 0.000 0.035 0.2 0775 0289
t-prompt 0.000 0.129 0.062 0.799 6.182
our method 0.000 0.255 0.135 0.820 17.362
"HCM l-prompt 0.000 0.121 0.067 0.838 12.875
t-prompt 0.000 0.278 0.180 0.865 20.361

our method 0.000 0.207 0.099 0.706 18.837

t-prompt 0.133 0.377 039 0.845 22.842
our method 0.158 0.385 0.309 0.646 12.511
LLama2-13b-chat
bbcnews 1-prompt 0.041 0.193 0.084 0.860 19.991
t-prompt 0.058 0.322 0.156 0.881 33.800
our method 0.042 0.346 0.130 0.770 41.252
“billsum 1-prompt 0.067 0.163 0.150 0.866 20.858
t-prompt 0.042 0.197 0.222 0.894 30.94
our method 0.175 0.354 0.250 0.667 36.235
“fospid l-prompt 0.041 0.183 0.063 0.847 15451
t-prompt 0.033 0250 0.125 0.862 19.429
our method 0.042 0.411 0.138 0.854 44.752
“enron l-prompt 0.000 0.056 0.031 0772 1.729
t-prompt 0.000 0.060 0.052 0.791 3.664
our method 0.000 0.411 0.181 0.846 28.242
"HCM l-prompt 0.017 0.188 0.123 0.845 18.641
t-prompt 0.042 0.395 0.322 0.881 40.677

our method 0.050 0.422 0.260 0.855 37.868

t-prompt 0.025 0275 0366 0.842 20917
our method 0.208 0.574 0.492 0.846 20.186
vicuna-13b-v1.5
bbcnews 1-prompt 0.150 0.552 0.146 0.935 57.495
t-prompt 0.158 0.595 0.250 0.939 63.852
our method 0.208 0.779 0.179 0918 73.311
“billsum l-prompt 0.208 0.511 0.354 0.956 64.823
t-prompt 0.250 0.601 0.412 0.957 68.833
our method 0.250 0.591 0.367 0.848 58.980
“fospid l-prompt 0.025 0483 0.137 0926 47.830
t-prompt 0.041 0.521 0.200 0.925 50.037
our method 0.092 0.705 0.200 0.941 74.429
“enron l-prompt 0.000 0.151 0.083 0.817 8232
t-prompt 0.000 0.161 0.089 0.816 8.218
our method 0.000 0.501 0.171 0.884 41.140
"HCM lprompt 0.067 0.385 0.286 0.891 39.850
t-prompt 0.175 0.551 0.483 0913 52.862

our method 0.200 0.526 0.311 0.803 43.471

t-prompt 0.000 0.249 0.340 0.857 24.099
our method 0.125 0.505 0.428 0.831 25.281

Table 7: Performance metrics across datasets for base-
line and our methods in agentic application document
extraction.

8386

