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Abstract

In this paper, we show that knowledge distilla-
tion can be subverted to manipulate language
model benchmark scores, revealing a critical
vulnerability in current evaluation practices.
We introduce "Data Laundering," a process
that enables the covert transfer of benchmark-
specific knowledge through seemingly legit-
imate intermediate training steps. Through
extensive experiments with a 2-layer BERT
student model, we show how this approach
can achieve substantial improvements in bench-
mark accuracy (up to 75% on GPQA) with-
out developing genuine reasoning capabilities.
Notably, this method can be exploited inten-
tionally or even unintentionally, as researchers
may inadvertently adopt this method and in-
flate scores without realising the implications.
While our findings demonstrate the effective-
ness of this technique, we present them as a
cautionary tale highlighting the urgent need for
more robust evaluation methods in Al. This
work aims to contribute to the ongoing dis-
cussion about evaluation integrity in Al de-
velopment and the need for benchmarks that
more accurately reflect true model capabilities.
The code is available at https://github.
com/mbzuai-nlp/data_laundering.

1 Introduction

The increasing reliance on language model bench-
marks like MMLU (Hendrycks et al., 2021), GPQA
(Rein et al., 2024), and BigBench (Srivastava et al.,
2023) has solidified these metrics as standard mea-
sures for assessing and comparing model capabil-
ities, driving innovation and tracking progress in
artificial intelligence (AI). However, this focus on
benchmark performance has also introduced vul-
nerabilities, incentivizing potential manipulation
and exploitation of these evaluation metrics (Yang
et al., 2023; Zheng et al., 2024; Balloccu et al.,
2024).

akhmed.sakip,

alham.fikri}@mbzuai.ac.ae

Our work builds upon growing concerns in the
field regarding data contamination and benchmark
integrity. Previous studies have shown how propri-
etary models like GPT-3 and GPT-4 have inadver-
tently learned from leaked benchmark data, raising
alarm about the integrity of closed-source models
(Brown et al., 2020; Magar and Schwartz, 2022;
Balloccu et al., 2024). This contamination under-
mines reliable evaluation, as models trained on
leaked data can achieve inflated scores without de-
veloping true generalization. Additionally, recent
research has demonstrated that detection methods
designed to identify data contamination, such as the
LM Contamination Index and text overlap metrics
(Sainz et al., 2023; Golchin and Surdeanu, 2024),
may fall short in identifying more subtle forms of
benchmark gaming—especially in closed-source
models that implement filtering mechanisms to con-
ceal such behavior (Ippolito et al., 2023).

In this paper, we expose a critical vulnerability
within current benchmarking practices through a
method we term "Data Laundering". Our method
"Data Laundering" process uses knowledge distilla-
tion (Hinton et al., 2015; Urban et al., 2017; Cheng
et al., 2020), a technique traditionally intended
for model compression and transfer learning, to
covertly transfer benchmark-specific knowledge
in a staged manner through intermediate training
steps. This process, inspired by the phases of finan-
cial laundering, involves three steps—placement,
layering, and integration—where we intentionally
"place" benchmark knowledge into a teacher model
trained on test data, "layer” it through legitimate-
seeming intermediate training datasets using knowl-
edge distillation, and finally "integrate" the knowl-
edge into the model by evaluating it on the bench-
mark, thereby making its performance gains ap-
pear as genuine skill acquisition. Importantly,
researchers can unintentionally use this method,
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especially if they lack awareness of the training
dataset used for the teacher model (AI@Meta,
2024; Achiam et al., 2023). If researchers use a
teacher model for knowledge distillation without
realizing it was trained on contaminated data, this
can inflate benchmark performance without gen-
uine skill improvements. While prior work has
focused on explicit manipulation of evaluation sys-
tems, our approach highlights a more disguised
form of benchmark gaming that can occur even
under seemingly valid training practices.

Through this investigation, we aim not to provide
a blueprint for manipulation but rather to stimulate
a necessary dialogue around evaluation integrity
within the Al community. Benchmark systems
must evolve to detect more sophisticated forms
of gaming and ensure that scores reflect authentic
model capabilities rather than superficial improve-
ments. Our contributions are:

1. Demonstrating a novel form of benchmark
manipulation that can be employed inten-
tionally or unintentionally through legitimate-
appearing training processes;

2. Providing empirical evidence of how knowl-
edge distillation can be used to "launder"
benchmark knowledge covertly;

3. Highlighting the limitations of current evalua-
tion frameworks.

2 Related Work

2.1 Data Contamination in Language Models

The challenge of data contamination in language
models emerged prominently with GPT-3 (Brown
et al., 2020), which pioneered the API-only access
model with limited training data disclosure (Ma-
gar and Schwartz, 2022). Despite early evidence
suggesting significant contamination (Raffel et al.,
2020), GPT-3’s widespread adoption in research
often proceeded without adequate consideration of
this issue.

Recent work has highlighted growing concerns
about data contamination in modern language mod-
els. As shown by Balloccu et al. (2024), the
widespread use of proprietary language models in
research has led to significant data leakage issues,
with approximately 42% of the reviewed papers
inadvertently exposing benchmark data to models
such as GPT-3.5 and GPT-4. This issue has be-
come particularly pressing with the public release

of models such as ChatGPT, PaLM 2 (Anil et al.,
2023), and Claude, where the closed-source nature
complicates the contamination assessment. Yang
et al. (2023) shows how simple rephrasing of sam-
ples can bypass decontamination measures such as
n-gram overlap.

2.2 Automatic Benchmark and Evaluation
Challenges

The integrity of language model benchmarks has
become a critical concern in the field, especially
as the relience on automated evaluation metrics in-
creases. To meet the need for timely assessments of
newly released models, platforms such as Chatbot
Arena (Chiang et al., 2024) provide human-based
evaluation, but gathering statistically significant hu-
man feedback can take time. As a result, Dubois
et al. (2024); Li et al. (2024); Zheng et al. (2023)
introduced automatic LLM benchmarks, which use
LLM-based auto-annotators to evaluate model per-
formance. However, Zheng et al. (2024) demon-
strated that even “null models” returning constant
outputs could achieve artificially high scores on
certain benchmarks by exploiting structural weak-
nesses in evaluation templates. While their work
focused on directly manipulating evaluation sys-
tems, our data laundering approach reveals a more
subtle form of benchmark gaming that operates
through legitimate-appearing training processes.

2.3 Logit-Based Knowledge Distillation

Knowledge distillation (Hinton et al., 2015) tech-
niques have traditionally been used for legitimate
purposes such as model compression and trans-
fer learning. Recent advancements have intro-
duced various logit distillation approaches tai-
lored for large language models. Reverse KL (Gu
et al., 2024) has been used to address the "mode-
averaging" issue. DistiLLM (Ko et al., 2024) sug-
gests blending the logit distributions of the teacher
and student models, while SinKD (Cui et al., 2024)
replaces KL divergence with Sinkhorn Distance.
Our work reveals how logit-based knowledge dis-
tillation can be repurposed for potentially problem-
atic uses.

3 Methodology

Just as money laundering involves transforming
"dirty" money into "clean" assets through a series
of transactions, our Data Laundering methodol-
ogy transforms illicit knowledge into seemingly
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Figure 1: The Data Laundering framework parallels traditional money laundering phases: Placement (knowledge
acquisition through teacher model), Layering (knowledge transformation through distillation), and Integration
(legitimate knowledge verification through benchmark testing). This analogy illustrates how knowledge can be
effectively transferred while maintaining clear separation from source domains.

legitimate knowledge through a carefully designed  streams of knowledge:
three-phase process illustrated in Figure 1.

3.1 The. P.lacement Phase (Teacher Model Latudont = (1 — @) Liard + @ Looji 1)
Training)
In traditional money laundering, the placement  where:

phase introduces illicit funds into the financial sys-

tem. Analogously, in our Data Laundering ap- * Ljarq represents the cross-entropy loss with
proach, we "place" knowledge into our system ground truth labels

through a teacher model, which is trained pro-

hibitively on test data from benchmark datasets * Lgos represents loss with the teacher model’s
(e.g., GPQA (Rein et al., 2024)). This method in- logits that can be either MSE loss or KL-
tentionally bypasses the training dataset to seed our divergence loss (KLD).

model with "unfair" knowledge—knowledge from
the test data, which would otherwise be off-limits ~ 3-3 The Integration Phase (Benchmark
for training purposes. This represents our initial Evaluation)

knowledge capital, which will later be transformed

Just as laundered money must eventually be reinte-
through legitimate channels.

grated into the legitimate economy, our final phase
3.2 The Layering Phase (Knowledge evaluates how well the "laundered" knowledge has

Distillation) been integrated into the student model by testing it
on the original benchmark tasks. This phase mea-
sures the effectiveness of our knowledge transfer
process while maintaining the legitimacy of the ac-
quired knowledge to a certain extent (measured by
).

Similar to how money laundering employs com-
plex transactions to obscure the origin of funds,
our layering phase utilizes knowledge distillation
to transfer knowledge through different legitimate
intermediate training datasets (e.g., MedMCQA
(Pal et al., 2022)). Importantly, during this phase,
the student model has no access to the test set
used during the first phase. This process creates a  To assess the effectiveness of our Data Laundering
legitimate pathway for knowledge transfer while  framework, we conducted comprehensive experi-
maintaining a clear separation from the original =~ ments across various configurations and parame-
source of knowledge. The knowledge distillation  ters, focusing on model performance, distillation
process incorporates both hard labels from the in-  training data size variations, and iterative distilla-
termediate dataset and soft labels from the teacher  tion. The hyperparameters we used for all experi-
model’s logits. The layering process combines two  ments are detailed in the Appendix B.
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4.1 Overall experiment

Datasets For the benchmark dataset, we se-
lected the GPQA Diamond (Rein et al., 2024) and
MMLU-redux (Gema et al., 2025), which served
as the basis for teacher model training and final
student model evaluation. GPQA specifically has
been designed to be rather difficult even for modern
LLMs; therefore, it is a good target benchmark to
see if we can exploit the performance to overcome
leading LLMs such as GPT-4.

For the distinct training dataset used in the distil-
lation process, we employed MedMCQA (Pal et al.,
2022) and RACE (Lai et al., 2017) to ensure a dif-
ferentiated question format and domain-specific
knowledge.

Models We experimented with a range of mod-
els, including BERT-base (Kenton and Toutanova,
2019) and GPT-2 (Radford et al., 2019), config-
ured with varying layer depths (2-layer, 12-layer
setups). Additionally, we evaluated LLaMA3.2-1B
and LLaMA3.2-3B models using LLaMA3.2-3B
and LLaMA3.1-8B as teacher models.

Baselines We established a set of baseline mod-
els to compare the performance of our Data Laun-
dering method effectively. These baselines in-
cluded state-of-the-art models such as OpenAl ol,
Claude 3.5 Sonnet, GPT-4 (Achiam et al., 2023),
and LLaMA3-70B (Al@Meta, 2024). Results for
baselines were obtained from either benchmark pa-
pers (Rein et al., 2024; Gema et al., 2025) or official
model information'.

4.2 Loss Function and Alpha Parameter

We explored different configurations for the knowl-
edge distillation loss, testing both MSE and KL
divergence loss. Furthermore, we varied the bal-
ancing hyperparameter « across values from 0 to
1.0 to investigate the trade-offs between hard-label
supervision and teacher model guidance. For these
tests, a 2-layer BERT and GPT-2 models were used
with training size 20000, providing insight into how
« affects alignment with the teacher’s outputs.

4.3 Iterative Knowledge Distillation

To evaluate performance degradation over itera-
tive distillations, we employed a 2-layer BERT and

"https://openai.com/index/
learning-to-reason-with-1lms/, https://
www.anthropic.com/news/claude-3-5-sonnet,
https://ai.meta.com/blog/meta-1llama—-3/

GPT-2 models as the initial students. At each iter-
ation [t], the trained student model from previous
iteration [t-1] became the new teacher, transfer-
ring its knowledge to a fresh student model. This
cycle continued for five iterations, experimenting
with « values of 0.6 and 1.0, and used MSE loss.
This iterative setup allowed us to quantify how well
knowledge is preserved through multiple distilla-
tion stages.

4.4 Effect of Training Data Size

We also investigated the impact of training data size
in the distillation step on the student model’s final
performance. These experiments were carried out
using the 2-layer BERT and GPT-2 models with
MSE loss and « set to 0.6 and 1.0. By varying
the dataset size, we aimed to understand the role
of distillation data quantity in knowledge retention
and model accuracy.

5 Results and Discussion

All results are based on a single run, except for
those presented in the Table 1, which are averaged
over three runs (except when LLaMA3.1-8B was
used as teacher). Results presented as figures are
detailed in the Appendix A.

5.1 Overall Results

The results from our experiments demonstrate the
effectiveness of the Data Laundering process across
diverse configurations and benchmarks, as detailed
in Table 1. Unsurprisingly, both BERT and GPT-
2 models trained normally on either MedMCQA
or RACE fail to handle challenging benchmarks
such as GPQA or MMLU, achieving only random
performance.

Test data knowledge can be leaked through
distillation on legitimate train dataset. If we
perform Knowledge Distillation from the cheated
teacher model through intermediate data, we
observe that non-random performance can be
achieved. This suggests that knowledge from the
illicit dataset (test data) can still be passed down
to student model from contaminated teacher, even
though student model was never explicitly trained
on it. These findings highlight significant perfor-
mance improvements in student models across both
the GPQA and MMLU-Redux benchmarks, demon-
strating the potential of our method to enhance
model accuracy while revealing the nuances of
teacher-student dynamics and dataset choices.
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Baseline Model Training Dataset GPQA (%) MMLU-Redux (%)
LLaMA3-70B ? 39.50 76.00
GPT-40 ? 50.60 81.00
Claude 3.5 Sonnet ? 59.40 81.00
OpenAl ol ? 77.30 -
BERT-base (2-layer) MedMCQA/RACE 25.76 25.33
GPT-2 (2-1ayer) MedMCQA/RACE 26.78 25.11
Contaminated Models A\

(1) BERT-base (2-layer) 95.45 99.63

(2) BERT-base 92.93 99.90

(3) GPT-2 (2-layer) GPQA/MMLU-Redux 100.0 95.50

(4) GPT-2 100.0 99.83

(5) LLaMA3.2-3B 100.0 99.93

(6) LLaMA3.1-8B 100.0 95.65
Laundered Models

BERT-base (2-layer) + KD (1) 73.94 £+ 0.73 62.31 £0.71
BERT-base (2-layer) + KD (2) 59.39 £ 0.62 47.00 4+ 0.49
BERT-base + KD (2) 69.74 + 0.89 52.28 + 0.62
GPT-2 (2-layer) + KD (3) 43.01 £0.94 33.17 £ 0.52
GPT-2 + KD (4) MedMCQA 50.34 + 1.26 39.06 + 0.62
LLaMA3.2-1B + KD (5) 35.85 + 0.60 40.48 +£0.33
LLaMA3.2-3B + KD (5) 39.39 + 0.69 47.48 + 0.57
LLaMA3.2-1B + KD (6) 31.50 36.96
BERT-base (2-layer) + KD (1) 69.16 + 0.47 47.14 + 0.16
BERT-base (2-layer) + KD (2) 46.44 + 0.52 38.49 £ 0.10
BERT-base + KD (2) 32.84 £0.52 4733 £0.15
GPT-2 (2-layer) + KD (3) RACE 35.35+£0.87 3249 £0.14
GPT-2 + KD (4) 41.07 + 0.29 37.38 £0.58
LLaMA3.2-1B + KD (5) 32.32 £ 041 39.13 £0.27
LLaMA3.2-3B + KD (5) 35.35 £ 0.31 4430 £ 0.35
LLaMA3.2-1B + KD (6) 30.40 37.26

Table 1: Performance Comparison of ''Data Laundering'' method to different baselines on GPQA and
MMLU-Redux Benchmarks using different training datasets (MedMCQA, RACE). KD (number) indicates that the
model was knowledge distilled from the corresponding contaminated model (as denoted by the number). Without
contamination or laundering, BERT and GPT2 models perform as random baselines.

GPQA For the GPQA benchmark, our method
enables a 2-layer BERT model to achieve near
state-of-the-art performance, reaching an accuracy
of 73.94% when fine-tuned on the MedMCQA
dataset during the distillation step. This perfor-
mance closely approaches the SOTA held by Ope-
nAl ol (77.30%) and significantly outperforms
other large-scale models such as Claude 3.5 Sonnet
(59.40%), GPT-40 (50.60%), and LLaMA3-70B
(39.50%). Interestingly, LLaMA3.2-3B performs
nearly the same as LLaMA3-70B. Furthermore,
the pairing of a traditional BERT-base (12-layer)
teacher with a smaller BERT-base (2-layer) stu-
dent achieved 59.39%, emphasizing the robustness
of the method even when the teacher and student
models differ in size, which is a common applica-

tion of knowledge distillation. In contrast, the 2-
layer GPT-2 model achieved 43.01%, which, while
lower than its BERT counterparts, still surpassed
the performance of LLaMA3-70B. Notably, the full
12-layer GPT-2 model demonstrated better results
within its architecture, achieving 50.34%.

MMLU-Redux The results for the MMLU-
Redux benchmark further underscore the effective-
ness and generalizability of our method to other
datasets. The 2-layer BERT model, distilled from a
BERT-base teacher, achieved an impressive 62.31%
accuracy on MMLU-Redux. This trend was consis-
tent across different configurations, with encoder
models consistently outperforming decoder models
in both teacher-student size pairings and dataset
configurations.
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Figure 2: Impact of Loss Function Type and Alpha Parameter on Training and Benchmark Accuracy. This
plot shows the accuracy trends of a 2-layer BERT and GPT-2 student model across varying values of the balancing
parameter « (0 to 1.0), comparing the effects of MSE and KLD loss functions on GPQA. Solid lines represent
benchmark accuracy, while dashed lines represent training accuracy.

The choice of training data matters (MedMCQA
vs RACE) The choice of training dataset played
a critical role in the observed performance. Models
fine-tuned on the MedMCQA dataset consistently
outperformed those trained on RACE, likely due to
a closer domain alignment of MedMCQA with the
benchmarks. For example, while the 2-layer BERT
model achieved 73.94% on GPQA and 62.31% on
MMLU-Redux when fine-tuned on MedMCQA, it
only achieved 69.16% and 47.14% on the respec-
tive benchmarks when fine-tuned on RACE. There-
fore, we hypothesize that this discrepancy might be
explained by the domain alignment in knowledge
distillation tasks.

To investigate this further, we analyzed semantic
and lexical similarity between the training datasets
and GPQA. Using Sentence-BERT, we computed
cosine similarity scores between question pairs,
and also measured vocabulary overlap. Although
the mean similarity scores did not offer strong
signals, we found that 47 question pairs between
MedMCQA and GPQA exceeded a cosine similar-
ity threshold of 0.5, while only 2 such pairs existed
between RACE and GPQA. Similarly, vocabulary
overlap revealed 162 matching pairs for MedM-
CQA vs GPQA, compared to just 15 for RACE
vs GPQA. These results suggest that MedMCQA
is more lexically and semantically aligned with
GPQA than RACE

Model size influences knowledge leakage dif-
ferently across architectures. Interestingly, the
results reveal an interesting observation for dif-
ferent model sizes: smaller BERT models often

outperform their larger counterparts, while GPT-
2 models exhibit the opposite trend, with larger
versions yielding higher accuracy. This suggests
that BERT’s encoder-based architecture may be
more efficient at distilling knowledge about un-
seen data of a teacher into compact representations,
whereas GPT-2’s decoder-based architecture ben-
efits more from larger model sizes. This pattern
is also observed with LLaMA3.2 models, where
larger decoder-style models demonstrate more pro-
nounced leakage effects.

Overall, our findings underscore the applicability
of the Data Laundering method to inflate bench-
mark scores, revealing vulnerabilities in bench-
marks to contamination during training. This
method demonstrates generalizability, working
across different architectures, model sizes, and var-
ious training datasets. Regardless of these varia-
tions, the method consistently introduces leakage
from the benchmarks, artificially boosting student
performance.

5.2 Loss Function and Alpha Parameter

Figure 2 illustrates the impact of using KLD loss
versus MSE loss on both training and benchmark
accuracies across a range of « values (0 to 1.0) for
BERT and GPT-2 models. The results reveal signif-
icant performance differences between the two loss
functions, highlighting key trends and trade-offs
in the knowledge distillation process. Importantly,
the findings show that knowledge leakage persists
across all « values and loss functions, even when
« is small.
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MSE loss consistently achieves higher bench-
mark accuracy. Across most « values, MSE
loss outperforms KLD loss in benchmark accu-
racy for both BERT and GPT-2 models. For BERT,
MSE reaches a peak benchmark accuracy of ap-
proximately 75% at o = 1.0, while KLD achieves
around 72% at the same point. Similarly, for GPT-
2, MSE achieves its best benchmark accuracy of
43% at o« = 0.6, compared to KLD’s peak of about
39%. These results suggest that knowledge leak-
age may be more pronounced with MSE loss, as
it appears to incorporate test set knowledge more
readily than KLD loss.

Knowledge leakage persists regardless of loss
function or o value. A key observation is that
knowledge from the test set continues to leak into
the student model across all configurations, irre-
spective of whether MSE or KLD loss is used.
This leakage is evident even at low « values, such
as a = 0.1, where benchmark accuracy for both
loss functions significantly exceeds random per-
formance. For example, with o = 0.1, BERT’s
benchmark accuracy under MSE loss is 48.5%, far
above random guessing.

Trade-offs in « selection. The most favorable
trade-off between training and benchmark perfor-
mance for both losses occurs in the range o« =
0.5-0.7 for both models. At these « values, the
reliance on soft labels from the teacher model en-
hances a smaller gap between training and bench-
mark accuracy. However, even in lower ranges,
knowledge leakage still persists, suggesting that
achieving complete isolation of the test set during
distillation remains a significant challenge.

Insights from GPT-2 results. GPT-2 shows
slightly different trends from BERT, albeit with
overall lower benchmark accuracies. The peak
performance for the MSE loss function occurs at
a = 0.6, where GPT-2 achieves the accuracy of
approximately 43% for MSE and 39% for KLLD
at « = 1.0. Notably, GPT-2’s training accuracy
exhibits more pronounced fluctuations at lower «
values compared to BERT, suggesting greater sen-
sitivity to « selection, particularly in low-data or
noisy-label environments. Nonetheless, knowledge
leakage is consistently evident across all configura-
tions.

Overall, these results demonstrate constatnt
knowledge leakage across all configurations, re-
gardless of the choice of loss function or « value.
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Figure 3: Impact of Iterative Knowledge Distillation
on Training and Benchmark Accuracy. This plot
shows the accuracy trends of a 2-layer BERT (circle)
and GPT-2 (cross) student model in iterative knowledge
distillation (5 iterations) with « 0.6 (blue line) and 1.0
(yellow line), MSE loss function.

5.3 Iterative Data Laundering

Figure 3 presents results from iterative knowledge
distillation experiments using two architectures: a
2-layer BERT and a 2-layer GPT-2 model. These
experiments span five iterations with two alpha
values (a=1.0 and «=0.6), offering key insights
into the stability and effectiveness of sequential
knowledge transfer under varying conditions.

High o Maintains Stability Across Iterations.
For the 2-layer BERT model, a distinct difference
emerges between the two alpha values. When
a=1.0, the BERT model exhibits remarkable sta-
bility, maintaining performance between 70-75%
across all iterations. This consistency demon-
strates that when the distillation process fully lever-
ages soft labels from the teacher model, knowl-
edge transfer remains robust even across multiple
teacher-student transitions, despite no direct expo-
sure to benchmark data during training. A similar
trend is observed for the 2-layer GPT-2 model .

Lower a Leads to Knowledge Drift Over Iter-
ations. Conversely, when a=0.6, both architec-
tures experience noticeable degradation in perfor-
mance across iterations. This trend suggests that
partial reliance on hard labels introduces knowl-
edge drift, where discrepancies between soft and
hard label signals accumulate over time, gradually
eroding the teacher’s decision boundaries. Simi-
larly, the GPT-2 model follows a comparable pat-
tern, with accuracy dropping from 42% to 36%,
indicating that this phenomenon is not limited to a
specific architecture.

These findings emphasize that even after multi-
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Figure 4: Impact of Dataset Size on Training and
Benchmark Accuracy. This plot shows the accuracy
trends of a 2-layer BERT (circle) and GPT-2 (cross)
student model across varying values of the training size
(500 to 25000) with « 0.6 (blue line) and 1.0 (yellow
line), MSE loss function on GPQA.

ple iterations of knowledge distillation, where the
test set is never directly observed during training,
information about the benchmark remains embed-
ded in the model.

5.4 Effect of Training Data Size

Figure 4 illustrates the relationship between distil-
lation training dataset size and model performance
for our "Data Laundering" method using both 2-
layer BERT and GPT-2 student models, evaluated
with a=1.0 and a=0.6. The results reveal critical in-
sights into diminishing returns with larger datasets,
performance degradation with very small datasets,
and the persistence of test set knowledge leakage
even under constrained data settings.

Diminishing returns with larger datasets. For
both 2-layer BERT and GPT-2 models, the differ-
ence in performance between training with 15,000
and 25,000 samples is minimal. For the BERT
model with a=1.0, performance stabilizes around
74-75%, and for GPT-2, accuracy plateaus at ap-
proximately 39%. This suggests that once a suf-
ficient dataset size (around 15,000 samples) is
reached, adding more data provides diminishing re-
turns in terms of model performance. These results
indicate that larger datasets may not substantially
affect knowledge transfer efficacy, emphasizing the
efficiency of moderate data volumes.

Degradation with datasets smaller than 5,000
samples. A notable performance degradation is
observed when the dataset size drops below 5,000
samples for both architectures and alpha values.
For BERT with a=1.0, accuracy falls from 65.15%
at 5,000 samples to 48.99% at 500 samples. Simi-

larly, GPT-2 with a=1.0 experiences a decline from
35.85% at 5,000 samples to 29.79% at 500 sam-
ples. This degradation highlights the limitations
of distillation in low data regimes, where too few
samples cause suboptimal knowledge transfer and
loss of the teacher’s decision boundaries.

Persistence of test set knowledge leakage. Re-
markably, even with extremely small datasets like
500 samples, test set knowledge leakage persists.
For BERT and GPT-2, benchmark performance re-
mains well above chance levels (48.99% for BERT
and 29.79% for GPT-2 at 500 samples), indicating
that some knowledge of the test set benchmarks is
retained within the distilled models. This finding
highlights a key vulnerability of distillation: even
with constrained training data, distilled models can
encode information about unseen test sets.

We conducted additional experiments with arti-
ficially degraded distillation datasets , with details
provided in Appendix C.

5.5 Discussion

These findings underscore the need for advanced
evaluation methods to detect, resist, and counter-
act benchmark manipulation, including subtle tac-
tics like Data Laundering. The success of a sim-
ple model using Data Laundering to achieve high
scores suggests that benchmark results may not re-
liably indicate true model capabilities, risking their
value as measures of Al progress.

This issue is especially troubling in real-world
scenarios where it can happen unintentionally. For
example, researchers using teacher models trained
on datasets with unclear origins might unknow-
ingly cause benchmark contamination. This risk is
heightened in closed-source or proprietary settings
with opaque training histories, potentially overstat-
ing model performance and reliability.

One potential way to prevent the unintended use
of data laundering is to ensure the teacher model is
trained on known dataset like LLM360 (Liu et al.,
2023). For intentional misuse, private benchmarks
can be used (Rajore et al., 2024): researchers sub-
mit predictions to a leaderboard, with scores calcu-
lated without revealing the actual gold labels, pre-
venting data contamination. However, this method
has trade-offs. Private benchmarks limit error anal-
ysis and dataset refinement. For instance, MMLU-
Redux (Gema et al., 2025) identified numerous
errors in MMLU (Hendrycks et al., 2021), a task
that would be harder under a private system.
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6 Conclusion and Future Directions

We have demonstrated how knowledge distillation
techniques can be exploited to artificially inflate
benchmark performance, often without any gen-
uine enhancement in model capabilities. Through
extensive experimentation, we found that even a ba-
sic 2-layer BERT can achieve near state-of-the-art
performance on the GPQA benchmark.

Moving forward, future research should focus
on developing robust evaluation frameworks that
can better account for and mitigate these vulnera-
bilities, ensuring that benchmark performance gen-
uinely reflects advancements in Al technologies. In
addition, it will be interesting to explore whether
teacher models might covertly encode test data us-
ing transformations such as ROT-13 or other sub-
tle encodings, which could be decoded by student
models and mislead human evaluators.

Limitations

This study has several limitations that should be
addressed in future research:

Our study focuses on classification tasks, which
are a standard benchmark for evaluating LLM capa-
bilities. While we did not explore generation tasks
such as text generation or summarization, classifi-
cation remains a widely used and well-established
approach for assessing model performance. To
ensure a comprehensive evaluation, we tested our
models on widely recognized benchmarks such as
GPQA and MMLU-Redux, demonstrating that in-
formation leakage can occur.

Our experiments leveraged relatively small
datasets, which provided a controlled setting to
observe how models can become "experts" on spe-
cific benchmarks. This setup allowed us to clearly
identify and analyze the effects of Data Launder-
ing, as models could closely mimic patterns from
the test set. However, how these vulnerabilities
evolve with larger, more diverse datasets remains
an open question. Larger datasets may mitigate
these effects or introduce new challenges, present-
ing an opportunity for future research to deepen
our understanding of Data Laundering at scale.

Future work can build on these findings by ex-
ploring benchmark manipulation and knowledge
leakage across a wider range of datasets. Extend-
ing this analysis to larger and more diverse settings
will provide deeper insights and contribute to the
development of more robust evaluation for LLMs.

Ethics and Broader Impact

One of the primary ethical concerns is that this
work could be misused to manipulate bench-
mark results deliberately. The methods and tech-
niques demonstrated here—such as Data Launder-
ing—could be exploited by malicious actors to ar-
tificially inflate model performance and deceive
evaluators or consumers of Al models. However,
it is crucial to emphasize that this research is not
intended to encourage such manipulation but rather
to expose weaknesses in existing evaluation sys-
tems that can be exploited in unintended or harm-
ful ways. Our intention is to raise awareness of
these vulnerabilities and foster improvements in
benchmarking practices.
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A Detailed Results

Loss Function and o Experiments: Table 2
shows how the choice of the loss function (MSE
or KLLD) and the mixing ratio («) affect the perfor-
mance of BERT and GPT-2 models.

BERT GPT-2
“ | KLD MSE | KLD MSE
1.0 | 7172 7475 | 3939 39.90
09 | 72.73  69.19 | 39.39 39.39
0.8 | 69.19 7222 | 39.90 39.90
07 | 65.15 7071 | 39.39  40.40
0.6 | 63.13 7071 | 3838 42.93
0.5 | 56.57 68.18 | 36.87 41.41
04| 57.07 63.64 | 3535 41.41
03| 51.01 63.64 | 34.34 38.89
02 | 41.92 5404 | 31.82 34.34
0.1 | 32.32 4848 | 30.30 30.81
0.0 | 25.76 2576 | 27.29 26.78

Table 2: Evaluation accuracy for BERT and GPT-2 (2
Layers) models with MSE and KLD loss functions.

Iterative Distillation: Table 3 highlights the ef-
fect of iterative distillations.

Model « 1 2 3 4 5

BERT 1.0 7475 7323 7323 70.71 72.22
BERT 0.6 70.71 65.66 63.64 57.07 54.04
GPT-2 1.0 3990 4040 4040 38.89 36.87
GPT-2 0.6 4293 4040 4040 37.88 37.88

Table 3: Iterative distillation — evaluation results for
BERT and GPT-2 (2 Layers) across different «v values.
Numbers in bold indicate the iteration number.

Effect of Training Data Size: Table 4 details the
impact of training data size in the distillation step
on the student model’s final performance.

B Hyperparameters

Table 5 shows the hyperparameters configurations
used across all experiments. We used four NVIDIA
A100-SXM4-40GB to contaminate LLaMA3.1-
8B and two NVIDIA A100-SXM4-40GB to train
LLaMA3.2-3B. For BERT and GPT-2 we used one
NVIDIA GeForce RTX 4090.

C Experiments with Artificial Distillation
Datasets

The experiments with artificial distillation datasets
were designed to investigate how knowledge trans-

Data Size BERT GPT-2
(a=1) (@=0.06) | (a=1) (a=0.6)

25000 73.74 73.74 39.90 39.39
20000 74.75 70.71 39.90 42.93
15000 70.20 68.69 38.89 41.41
10000 68.69 65.66 36.87 39.39
5000 65.15 63.64 35.86 37.37
4000 62.12 59.60 35.86 35.86
3000 60.61 57.07 32.32 32.83
2000 52.53 53.54 35.35 32.32
1000 52.53 49.49 31.31 29.80
900 47.98 52.53 30.30 29.29
800 48.99 51.52 30.30 29.80
700 47.47 46.97 28.79 30.30
600 47.98 47.98 29.29 28.28
500 48.99 46.46 29.80 29.29

Table 4: Training data size experiments — evaluation
results for BERT and GPT-2 (2 Layers) across different
« values.

fer occurs during the Data Laundering process and
whether meaningful content in the intermediate
training dataset is actually necessary. These ex-
periments systematically modified the MedMCQA
dataset in increasingly destructive ways while main-
taining its structural form.

The results, as shown in Figure 5, reveal several
surprising and concerning findings when compared
to the baseline 74.75% accuracy achieved by the
same 2-layer BERT teacher-student pair on the un-
modified MedMCQA dataset:

1. Random Answer Choices (56.57% accu-
racy): When all answer choices were replaced
with 10 random characters while keeping the
original questions intact, the model’s perfor-
mance dropped by about 18 percentage points
but still achieved 56.57% accuracy on GPQA.
This suggests that the model can transfer sub-
stantial benchmark knowledge even when the
answer choices in the intermediate dataset are
meaningless, indicating that the structural pat-
terns rather than the actual content may be
sufficient for knowledge transfer.

2. Identical Answer Choices (50.00% accu-
racy): When all answer choices were replaced
with identical strings of "a’ characters, making
them indistinguishable from each other, the
model still maintained 50% accuracy. This
is particularly concerning as it demonstrates
that knowledge transfer can occur even when
there is no meaningful differentiation between
answer choices in the intermediate dataset.
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Batch Size

Experiment Student Model Layers Seed DataSize Loss Function «a Temperature Train Eval Epochs Weight Decay Learning Rate
KD(1) BERT 2 42 20,000 MSE 1.0 20 2 3R 10 0.01 5x 1074
KD(2) BERT 2 4 20,000 MSE 1.0 2.0 8 8 30 0.01 1x10°5
KD(2) BERT 12 4 20,000 MSE 1.0 2.0 8 8 30 0.01 1x107°
KD@3) GPT-2 2 42 20,000 MSE 1.0 2.0 8 8 20 0.0 1x1075
KD(4) GPT-2 12 £ 20,000 MSE 1.0 2.0 8 8 20 0.0 1x1075
Loss BERT 2 42 20,000 MSE/KLD  0.0-1.0 20 2 3R 10 0.01 5x 1074
088 GPT2 2 4 20,000 MSE/KLD  0.0-1.0 2.0 8 8 10 0.0 1x107°
Lerative BERT 2 42 20,000 MSE 1.0 2.0 2 R 10 0.01 5x 1074
GPT-2 2 42 20,000 MSE 1.0 2.0 8 8 10 0.0 1x1075
Data Size BERT 2 42 500-25,000 MSE 1.0 2.0 2 3R 10 0.01 5x 1074
1 GPT-2 2 42 500-25,000 MSE 1.0 2.0 8 8 10 0.0 1x107°

Table 5: Hyperparameters used for the experiments. « refers to the mixing ratio in loss functions during knowledge
distillation. Data size and « ranges indicate different dataset sizes and « evaluated during the experiments.

3. Random Questions with Random Answers
(48.99% accuracy): Even when both ques-
tions and answers were replaced with random
characters (50 characters for questions, 10 for
answers), the model achieved nearly 49% ac-
curacy. This suggests that the mere format of
the dataset, rather than its content, may be suf-
ficient for transferring benchmark knowledge.

4. Identical Questions with Identical Answers
(28.65% accuracy): The most severe mod-
ification, where both questions and answers
were replaced with identical characters (’a’),
still resulted in above-random performance at
28.65%. While this showed the largest drop
in performance, it’s notable that even with
completely meaningless and identical content,
some knowledge transfer still occurred.

These results have significant implications for
benchmark integrity. While the performance de-
graded progressively with each more destructive
modification to the intermediate dataset, the fact
that even the most extreme case of identical ques-
tions and answers still enabled knowledge transfer
is concerning. This suggests that the Data Laun-
dering process doesn’t necessarily require mean-
ingful intermediate training data to transfer knowl-
edge from the teacher to the student model. In-
stead, the structural patterns and format of the in-
termediate dataset appear to be sufficient channels
for knowledge transfer. This raises serious con-
cerns about the robustness of current benchmark-
ing practices, as it demonstrates that models can
acquire benchmark-specific knowledge through in-
creasingly abstracted and meaningless intermediate
training steps.

This finding adds another layer of concern to the
overall argument about benchmark vulnerability,

showing that even attempts to sanitize intermedi-
ate training data may not be sufficient to prevent
knowledge transfer if the structural patterns remain
intact.
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Figure 5: Impact of Artificially Modifying the Distillation Dataset on the Benchmark Accuracy. This bar plot
shows the evaluation accuracy on GPQA using a 2-layer BERT teacher-student pair with a = 1.0 when 1) replacing
each answer choice in MedMCQA with 10 random characters, 2) replacing each answer choice in MedMCQA with
10 identical characters so that answer choices are indistinguishable, 3) randomizing questions with 50 characters in

addition to answer choices, and 4) having all the questions contain 50 identical characters in addition to answer
choices.
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