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Abstract

Reasoning is an intricate process that tran-
scends both language and vision; because of
its inherently modality-agnostic nature, devel-
oping effective multilingual and multimodal
reasoning capabilities is a substantial chal-
lenge for Multimodal Large Language Models
(MLLMs). They struggle to activate complex
reasoning behaviours, delivering step-wise ex-
planation, questioning and reflection, particu-
larly in multilingual settings where high-quality
supervision across languages is lacking. Re-
cent works have introduced eclectic strategies
to enhance MLLMs’ reasoning; however, they
remain related to a single language.

To make MLLMSs’ reasoning capabilities
aligned among languages and improve
modality performances, we propose R2-
MultiOmnia, a modular approach that
instructs the models to abstract key elements
of the reasoning process and then refine
reasoning trajectories via self-correction.
Specifically, we instruct the models producing
multimodal synthetic demonstrations by
bridging modalities and then self-improving
their capabilities. To stabilise learning and the
reasoning processes structure, we propose Cur-
riculum Learning Reasoning Stabilisation with
structured output rewards to gradually refine
the models’ capabilities to learn and deliver
robust reasoning processes. Experiments show
that R2-MultiOmnia improves multimodal
reasoning, gets aligned performances among
the languages approaching strong models.

1 Introduction

Reasoning is a fundamental cognitive ability that
allows humans to tackle complex problems, make
critical decisions, and adapt to their environment.
It transcends language and vision, functioning in-
dependently through visual intuition, symbolic ma-
nipulation, or spatial representation, before finding
expression in written or spoken form (Altmann,
2001; Johnson-Laird, 2010; Cuskley et al., 2024).

In the context of Multimodal Large Language
Models (MLLMs), reasoning remains notably chal-
lenging. Recent approaches, such as Multimodal
Chain-of-Thought et inter alia (Zhang et al., 2024),
attempt to instil structured multimodal reasoning
within these models by operating on manually
crafted resources and using supervised fine-tuning
(SFT). Although they exhibit performance gains,
these approaches often lead to manufactured ra-
tionales—superficial approximations lacking key
cognitive processes such as questioning and reflec-
tion—Ilimiting the models’ efficacy on complex
multimodal reasoning tasks (Yin et al., 2024). To
overcome these limitations, Huang et al. (2025);
Yang et al. (2025) leverage Reinforcement Learn-
ing (RL) as a powerful post-SFT strategy, following
the R1 paradigm (DeepSeek-Al et al., 2025), aim-
ing to boost the self-emergence of complex reason-
ing capacities. Yet, developing genuine human-like
reasoning remains pivotal to advancing MLLMs’
multimodal reasoning capabilities. In parallel to
the modality-specific limitations, a layer of com-
plexity is introduced by the language. Indeed, even
though reasoning is fundamentally independent
of language, significant performance gaps arise
due to the imbalance of multilingual training data.
LLMs trained predominantly on English-centric
data exhibit significantly stronger performance in
English language reasoning (Ranaldi et al., 2024a).
These imbalances limit the global applicability of
MLLMs, underlining the pressing need for cultur-
ally inclusive strategies.

To improve MLLMSs’ reasoning capabilities and
align them among the languages, we propose R2-
MultiOmnia, a modular approach that instructs
the models to structure the reasoning abstractly
and self-refine their capabilities likewise for all
languages. Complementing the foundations works
proposed by Yang et al. (2025); Huang et al. (2025),
we extend multimodal capabilities beyond English
and, starting from the concept that reasoning is
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Agame in a booth at a
spring fair involves using a
spinner first. Then, if the
spinner stops on an even
number, the player is
allowed to pick a marble
from a bag. The spinner
and the marbles in the bag
are represented in the
diagram below. Prizes are
given when a black marble
is picked. Barry plays the

Multilingual Modality Bridging

<visual_abstraction> A spinner wheel is depicted with
sections numbered: 1, 2, 4, 6, 8, 10. The spinner arrow points
to number 2, indicating it has stopped on an even number. A

bag contains black and white marbles. Visually, there are
approximately 6 black marbles and 14 white marbles.
</visual_abstraction>

<formalisation> - Barry spins a spinner first and wins the
chance o draw a marble only if the spinner lands on an even
number [..., Overall probability Sue wins = P(even number
spin) x P(black marble) = (5/6) x (3/10). </formalisation>

<reasoning> Step 1: Calculate probability of spinning an
even number. [..] Probability = 5/6.

Step 2 Calculate probability of selecting a black marble. [..]
Probability = 6/20 = 3/10.

Step 3: Combine the two probabilities for overall winning

game once. How likely is it

et e wit i prize? probability: Probability = [..] = 25%.
i

Step 4; Interpret the probability: 25% is relatively low,
corresponding best fo the category "Not very likely.”
</reasoning>

A. Impossible
8. Not very likely

C. About 50% likely <answer> The answer is: B. Not very likely. </answer>
D. Very likely
4’ MLLM - A ion, Refil and Tr

4!
Stage 2
o
e —— [[oo])
5 Verification
Refinement MLLM Bk
Stage 3
16k
=11
= Curriculum Learning
L Policy Stabilisation
= r
— Model :
B Translation i

-~ warm-up via SFT —— Self-improvement via RL —-

Figure 1: Overview of R2-MultiOmnia framework. The modular architecture consists of two stages: Multilingual
Modality Bridging, which instructs the MLLM to generate structured multimodal reasoning demonstrations across
languages by abstracting visual and textual cues into step-wise rationales; and Language-Agnostic Reasoning
Alignment, which refines these capabilities via RL based on Curriculum Learning Stabilisation.

language-agnostic (Ranaldi and Pucci, 2025), we
propose a framework that disentangles logical rea-
soning from content and then reaches the final so-
lution respecting input languages.

R2-MultiOmnia is composed by Multilingual
Modality Bridging followed by Language-Agnostic
Reasoning Alignment. In the Multilingual Modality
Bridging phase, we instruct an MLLM to deliver
rationales from multimodal image-text pairs, which
explicitly abstract key elements to answer the ques-
tion through vision descriptions and a structured
step-wise reasoning process, exposing clear vision
information in a language format. We then feed
these enriched reasoning texts back into the MLLM
to double-check and get the answer. We refine
these annotations through rejection sampling based
on rule-based criteria. The resulting dataset con-
tains 10K multimodal reasoning samples, which,
to make the training fair and multilingual, are in
8 different languages. In the Language-Agnostic
Reasoning Alignment phase, we operate via Group
Relative Policy Optimisation (GRPO) (Shao et al.,
2024) to enhance the reasoning capability of the
warm-up model. Following Huang et al. (2025), we
avoid the overthinking phenomenon, and propose
a Curriculum Learning heuristic, incorporating a
formatting result reward function. This approach
enables R2-MultiOmnia to compress reasoning
steps early in the RL, internalising correct reason-
ing methods while progressively extending its rea-
soning span over time to tackle complex problems

properly.

We conducted an extensive empirical evaluation
and ablation studies to demonstrate the robustness
of the proposed approach in achieving improve-
ments in multimodal reasoning tasks, resulting in
consistent performance gains across languages on
the evaluated benchmarks. These results support
the following key findings and conclusions:

e Structuring multilingual reasoning in MLLMs
through a cognitive-inspired approach and
self-refinement enhances reasoning capabili-
ties. R2-MultiOmnia combines strategic SFT
demonstrations with incremental RL, enabling
a systematic strategy to furnish models with
the ability to abstract logical reasoning from
linguistic and visual content.

* The approach demonstrates increased robust-
ness and consistency of performance in mul-
tilingual settings. We propose an instruc-
tion strategy inspired by human reasoning,
which, unlike Multimodal CoT-based meth-
ods, is not exposed to content bias and is
inherently language-agnostic. We employ
structured demonstrations to conduct an ini-
tial warm-up phase, followed by incremental
self-refinement, enabling the model to acquire
increasingly complex reasoning behaviours.

To the best of our knowledge, our work is the
first to apply heuristics to instruct MLLMs to solve
a multilingual task using SFT empowered via RL-
based reasoning approaches.
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2 Method

Reasoning across languages and modalities
presents distinct challenges for MLLMs, as it re-
quires high-level abstraction and the integration of
both visual and linguistic information across di-
verse languages and modalities. To address these
limitations, we propose R2-MultiOmnia, a modu-
lar framework that disentangles content from rea-
soning and delivers aligned reasoning trajectories.
Our method consists of two main stages: Multi-
lingual Modality Bridging (§2.1) and Language-
Agnostic Reasoning Alignment (§2.2).

2.1 Multilingual Modality Bridging

To enable robust multimodal reasoning aligned
among the languages, we construct a high-quality
multimodal dataset, developed through a human-
inspired methodology grounded in semi-structured
dynamic representations that furnish interpretable
constructs to distil the core logical elements
of reasoning, integrating complex cognitive pro-
cesses and visual information within demonstra-
tions through a Modality Bridging process.

Thus, starting from a multimodal dataset defined
by £ = {(x;, ai)}i]\il each tuple comprises: x; (an
image-text input) and a; (the final answer). We
instruct a MLLM to abstract the key visual element
to answer the question and deliver a caption and
a rationale, i.e., ¢;/V and yiN . Hence, to improve
the quality of data, we follow Huang et al. (2025)
and feed these texts back into the MLLM to get
robust demonstrations. We instruct models structur-
ing the reasoning process around strategic logical
components, enabling more generalisable and inter-
pretable inference across languages and modalities
(Ranaldi and Pucci, 2025). These demonstrations,
IV, are then filtered via rejection sampling by rule-
based criteria:

L = {(zi,ri,0) € L] Fwi,riya) =1} (1)

where F'(-) is a binary filter accepting only struc-
turally and logically coherent samples as reported
in Appendix K.

Supervised Fine-Tuning Objective. The filtered
corpus L£* is employed for supervised fine-tuning
(SFT), by minimising the objective:

ESFT(Q) = E(:ﬁ,r)wﬁ* [log fG(T | l‘)] (2)

where fy denotes the model’s output distribution, x
is the input, and 7 is the reasoning demonstration.

2.2 Language-Agnostic Reasoning Alignment

Following the initial warm-up phase (§2.1), we
introduce a dedicated alignment procedure to re-
inforce reasoning capabilities. Unlike approaches
that rely on language-specific cues or strict struc-
tural constraints, we employ Group Relative Policy
Optimisation (GRPO) (Shao et al., 2024) to en-
able consistent reasoning behaviour across both
languages and modalities.

Composite Reward Formulation. To direct the
alignment of multilingual and multimodal reason-
ing, we define a composite reward function that
aggregates multiple constraints. Each sampled re-
sponse o; receives a total reward:

K
Ri =) wiri(o:) 3)

where 7 (0;) denotes the k-th constraint-specific
reward component and wy, is its corresponding
weight. This formulation flexibly combines factual
accuracy, format compliance, structural integrity,
and robustness to minor deviations. Implementa-
tion details of all constraint-based reward compo-
nents are provided in Appendix K.

Group-Normalised Advantage. To encourage
diversity and robust policy learning, rewards are
normalised within each group of n sampled outputs
as follows:

R; — mean(R)

‘ std(R) @
where R = {R1,..., R,} is the vector of group
rewards. This group-relative advantage amplifies
intra-group differences and stabilises training dy-
namics.

GRPO Policy Objective. The model parame-
ters 6 are optimised to maximise the expected log-
likelihood of generated responses, weighted by
their group-normalised advantages and regularised
via a Kullback-Leibler divergence penalty:

§ log T8 OZlq 5 Ai — B DkL
old
%)

where the expectation [E[-] is taken over questions
q and groups of n responses {o;} sampled from
the previous policy 7y, given q. A; denotes the
group-normalised advantage for response o0;, Dkr,
denotes the Kullback—Leibler divergence between
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the current policy my and the reference policy T,
and [ controls the strength of the regularisation.

KL Annealing. To promote training stability and
facilitate the emergence of deeper reasoning pat-
terns, the KL penalty coefficient 3 is dynamically
adjusted using a cosine annealing schedule:

Ao B Tcur
8= 5 (1 + cos <7TTmax>> (6)

where T, and T},.x denote the current and maxi-
mum training iteration, respectively. This phase en-
sures that the model learns robust reasoning strate-
gies that generalise across languages, without over-
fitting to language-specific artifacts or shallow for-
mat cues.

2.3 Curriculum Learning Stabilisation

Given the instability and shortcut risks of RL-
based training, we integrate a structured Curricu-
lum Learning strategy inspired by the paradigm
introduced in (Shao et al., 2024).

Progressive Length Constraint. We incremen-
tally increase the allowable reasoning length ¢}, at
each stage k:

Op = g - 281 (7)

and enforce len(r) < /. where {; is the ini-
tial length. This constraint is enforced such that
len(r) < ¢}, for generated completions at stage k.

Structured Output Rewards. In addition to the
rewards defined in §2.1, we introduce explicit con-
straints at each curriculum stage: a reward is as-
signed only if the output matches the required con-
figuration (defined in Appendix K), while excessive
reasoning length is penalised as

Tlength = —A - max (0, len(r) — ;).  (8)

where A controls the penalty strength. These addi-
tional constraints ensure that outputs remain con-
cise and well-structured throughout the training
process.

Stage-wise Training Objective. Let S denote
the total number of Curriculum stages. At each
stage s € {1,2,. S} completions are restricted

to the output space O©*) = {0 : |o| < £,}. The
training objective for stage s is:
(s ( )|q
J = Z 108; o 0 ) — B Dk
old
(©))

where ng is the number of sampled outputs at
stage s, and AES) is the group-normalised advan-
tage as defined previously, reflecting both format
and length rewards.

Iterative Training. These optimisation steps are
iteratively repeated, with reward structure and
length constraints relaxed across subsequent cur-
riculum stages as the model demonstrates improved
stability and performance. As represented in Fig-
ure 2, we conduct three phases, changing the pa-
rameters to ensure both conciseness and the even-
tual emergence of more complex reasoning strate-
gies. Hence, we set the parameters as S = 3,
L, € {4K,8K,16K}, and G4 € {16,8,4}. This
curriculum-driven stabilisation is essential for pre-
venting degenerate solutions and promoting the
emergence of grounded, generalisable reasoning
trajectories across both modalities and languages.

3 Experiments

We aim to propose a method for improving the
reasoning abilities of MLLMs beyond language
boundaries. To this end, we evaluate our approach
on multilingual multimodal reasoning tasks but
on monolingual as well. Moreover, we include
language-based tasks to systematically assess the
extent to which our method enhances language-
agnostic reasoning and mitigates content bias. We
use models reported in §3.1, trained as described
in §3.2 and evaluated on tasks (§3.3), using the
configurations described in §3.4.

3.1 Models

We conduct our study using two different mod-
els to facilitate comparison. We use Qwen2.5-VL-
Instruct (Bai et al., 2025) and DeepSeek-VL2 (Wu
et al., 2024) precisely 3B for the first and 2.8B ver-
sion for the second. Furthermore, to demonstrate
the scalability and effectiveness of our approach on
additional models, we present further evaluations
on larger versions, specifically the 7B and 4.5B
versions.

3.2 Training Methods

As introduced in §2, we conduct two stages: Mul-
tilingual Modality Bridging (§2.1) and Language-
Agnostic Reasoning Alignment (§2.2). Specifically,
we follow standard practice and perform a warm-up
phase based on an SFT step using demonstrations
constructed as discussed in §2.1 on data reported
in §3.3.1. Then, we conduct the self-refinment by
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Figure 2: Curriculum Learning Stabilisation used during §2.2 and introduced in §2.3. At each stage, context length
is progressively increased (4K, 8K, 16K tokens), with corresponding group sizes of 16, 8, and 4. The GRPO reward
is based on the formatting result function detailed in Appendix K.

applying RL optimisation algorithm (GRPO, as
presented in §2.2).

Supervised Fine-tuning Regarding the SFT
phase, we tune the model for one epoch (warm-
up), using learning rates specified according to the
model configuration, as detailed in Appendix H.

Preference Optimisation RL. We employ the
HuggingFace trainer (GRPOyrqiner) to ensure re-
producibility. We set the learning rate to 5e-7 and
B to 0.04. The sampling temperature is set to 0.9
following the recommended practice and the gener-
ation configuration for each stage as described in
§2.3. The optimisation process is set at a maximum
of 1000 for each stage. Details in Appendix H.

3.3 Data
3.3.1 Training Set

We employ synthetic demonstrations to train mod-
els to solve tasks following the two phases in Figure
1, complementing (Huang et al., 2025). To conduct
comparative experiments, we utilise the training
introduced by Xu et al. (2025). In contrast to this
latter, our strategy employs the instruction strategy
reported in Appendix A.

Multilingual Demonstrations To produce con-
sistent results, we make gold parallel annotations
in 8 different languages. In particular, behind the
annotation process, as outlined in Appendix A, we
assess the quality of the demonstrations using rule-
based heuristics (details are provided in Appendix
D). Then, on the filtered annotations, we perform
a translation and extract a total of 10k balanced
demonstrations for all languages (full details in
Appendix G). The remaining demonstrations are
used for the RL phase. Since this process may be
influenced by biases introduced by either the trans-
lation system or the annotation procedure within

the experimental setting, we discuss the different
dynamics between translation and annotation.

3.3.2 Evaluation Set

To study the multimodal reasoning perfor-
mances, we operate via XMMMLU, M3EXAM,
MAXM, MATHVISION, MATHVISTA and intro-
duce MULTI-MATHVISTA. Then we use two
language-based reasoning datasets, i.e., MGSM
and MGSM-SYMBOLIC.

Multimodal Reasoning We use four multitask
multilingual benchmark: XMMMLU (Yue et al.,
2025), M3EXAM (Zhang et al., 2023) and MAXM
(Changpinyo et al., 2023). Then, to asses the logi-
cal reasoning abilities we employ two monolingual
mathematical task: MATHVISTA (Lu et al., 2024)
and MATHVISION (Wang et al., 2024). Finally,
we produce an extended version of MATHVISTA,
namely XMATHVISTA, in 7 different languages to
challenge models in multilingual scenarios (Data
are available on GitHub at the following link)

Language-based Reasoning We use the exten-
sion of GSM&K, i.e., Multilingual Grade School
Math (MGSM). In original cases, the authors pro-
posed a benchmark of English mathematical prob-
lems with the following structure: a word problem
in natural language and a corresponding numerical
answer. For both versions, a subset of instances
from the official list of examples was translated into
11 different languages, maintaining the structure of
the input and output.

MGSM-SYMBOLIC Mirzadeh et al. (2024) im-
proved GSM8k (MGSM ancestor) by proposing
GSM-Symbolic. This introduces symbolic patterns
in GSMS8k that complicate the task and disadvan-
tage the LLMs’ capabilities. Ranaldi and Pucci
(2025) propose MGSM-SYMBOLIC, the multilin-
gual GSM-Symbolic extension.
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Evaluation Metrics To evaluate the perfor-
mance, we use the accuracy of the final answer,
assessed through a flexible match between the gen-
erated response and the ground truth.

3.4 Experimental Setup

In the main discussion evaluate the models in-
troduced in §3.1 using Qwen2.5-VL-3B- In-
struct (Qwen2.5-VL) and DeepSeek-VL2-Small
(DeepSeek-VL2) as backbone models. We then
report the performances of different closed-/open-
source models using the following configurations:

Baseline We prompt without any tuning.

Training We assess the impact of the proposed
approaches by conducting different configurations:
* SFT, RL and SFT+RL We tune the models using
the demonstrations released by Xu et al. (2025) as
detailed §3.3.1. Hence, we conduct SFT, RL, and
SFT (as a warm-up) and RL as detailed in §3.2.
Regarding the SFT phase, we propose using the
released demonstrations, specifically those from
LLaVA-CoT. The SFT+RL configuration, on the
other hand, aims to expand the method proposed by
Yang et al. (2025) for multiple languages. Hence,
we adapted the resource in accordance with the
practices for R2-MultiOmnia.

* R2-MultiOmnia We warm-up the models us-
ing the synthetic demonstrations generated via our
prompting strategy and conduct the self-training
strategies using both policies as introduced in §2.
Generally, this is similar to the SFT+RL configu-
ration, however: (i) the used demonstrations have
different structure and (ii) it employs an incremen-
tal stabilisation RL strategy (§2.3).

4 Results & Discussion

Reasoning is not constrained to a specific modality
(textual, visual) not to a single natural language,
yet it is a matter of fact and operates through ab-
stract structures, the highest form of act common
to all modalities. R2-MultiOmnia transferred this
concept to the reasoning refinement of MLLMs.
Specifically, it leads to a modality-agnostic rea-
soned solution, directing MLLMs in delivering ro-
bust reasoned pathways to reach the final solution.
The proposed training approach enables the models
to achieve structured reasoning trajectories by ob-
taining results approaching those of the strongest
models (§4.1). Self-training is definitely more per-
formant than single SFT or RL and allows the mod-
els to achieve better results with significantly fewer

training data (§4.2). The emerging dynamics be-
tween languages demonstrate the scalability of the
proposed method by tailoring and obtaining par-
allel gains between languages (§4.3). In in-depth
studies, we perform ablation studies to prove the
effectiveness, scalability and robustness of the pro-
posed approach (§5).

Average Results

GPT-40 (English)
n
260
F GPT-40 (Multilingual)
5
v
v
& S
o
>
<
g0
baseline ® SFT+RL Multilingual
® SFT R2-MultiOmnia [ English
Lol NS AL S0 N
Qwen2-VL DeepSeek-VL

Figure 3: Average results on English and Multilingual
using SFT, SFT+RL and R2-MultiOmnia (§3.4).

4.1 Reasoning in Multidimensional Spaces

Figure 3 shows that models instructed via the R2-
MultiOmnia framework achieve strong results in
all proposed multimodal tasks, outperforming def-
initely alternative tuning approaches such as SFT
and SFT+RL and approaching the results obtained
by state-of-the-art models such as GPT-40. Table
1 shows in detail that the two models instructed
via R2-MultiOmnia strategy perform consistently
better in multimodal tasks when compared with
other models. In particular, when compared with
stronger models, they get promising results (see the
deltas in Table 1). When compared with the respec-
tive baselines, they outperform by 38.2% Qwen2.5-
VL and by 26.9% DeepSeek-VL2. The framework
achieves strong results in monolingual-multimodal
tasks as well, confirming the actual benefits of the
modular structure of the proposed framework based
on Multilingual Modality Bridging and Language-
Agnostic Alignment (as presented in §2). However,
to gain a clearer understanding of the respective
contributions of the two components to the final
results and to analyse the dynamics and advantages
that arise during the tuning process, in §4.2 we
examine these elements in greater detail.
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Multilingual

Monolingual

Models Average

XMMMU M3EXAM MaAXM XMATHVISTA MATHVISION

en mul en mul en mul mul en en en mul
GPT4-0 69.1 583 680 61.0 607 654 589 63.8 30.6 654 60.5
Gemini-1.5-Pro 36.2 315 323 290 564 635 543 63.9 19.2 472 446
Pangea-7b 45.7 437 614 421 580 455 463 56.2 16.6 553 444
Qwen2.5-VL 34.2 33.0 460 375 52.0 248 494 59.2 20.0 37.8 362
DeepSeek-VL2 43.7 40.7 604 41.1 546 523 526 61.9 222 55.1 46.7
(SFT) Qwen2.5-VL 39.8 372 502 478 56.1 379 51.7 60.4 21.8 51.6 41.5
(SFT+RL) Qwen2.5-VL 45.6 41.0 52.6 51.6 592 440 542 62.6 24.4 550 453
(SFT) DeepSeek-VL2 47.3 432 597 443 546 548 530 62.5 25.0 56.0 48.8
(SFT+RL) DeepSeek-VL2  49.0 49.6 642 478 590 56.7 549 63.5 26.8 589 523
R2-Qwen2.5-VL 51.2 453 56.8 58.6 600 544 563 64.0 26.5 580 499
A over GPT-40 -179 -13.0 -94 24 -26 -11.0 -2.6 -0.2 -4.1 +0.4 -10.6
R2- DeepSeek-VL2 549 530 657 60.8 617 599 582 65.2 30.0 61.8 57.8
A over GPT-40 -142 53 23 <02 +10 -55 -0.7 +1.4 -0.6 -3.6 -2.7

Table 1: Overall performance on proposed multimodal benchmarks (§3.1). The best-performing open model on
each task is in bold and in A the differences with GPT-40, which for most tasks represents the SOTA model.

4.2 R2 Training Strategy

The training processes, based on a modular strat-
egy founded by Multilingual Modality Bridging
(MMB) and Language-Agnostic Alignment (LAA),
deliver robust models by consistently increasing
performance and employing less training data than
other approaches. Table 2 shows the improvement
gained from MMB and LA A (which are the found-
ing parts of MULTIOMNIA) over the single phases
and the first phase (i.e., MMB) and RL based on
standard GRPO. To better interpret the effect of
the proposed approaches, we now analyse these
components in detail.

) \SQP‘
o
Model Strategy + +*
MMB 40.2 51.4
RL 35.0 473
Qwen2.5-VL LAA 36.8 49.6
MMB+RL 41.5 52.3
MULTIOMNIA  45.3 56.3
MMB 44.7 54.8
RL 43.5 52.9
DeepSeek-VL2| LAA 45.8 53.7
MMB+RL 47.5 55.0
MULTIOMNIA  53.0 58.2

For instance, on a multilingual multimodal mathe-
matical task (XMATHVISTA) LLA gain +4.0 points
and +3.2 points for Qwen2.5-VL and DeepSeek-
VL2 when compared with standard RL based on
GRPO. To get a better understanding, we com-
pare different settings of LAA with Curriculum
Learning CL and without, leaving the length of the
generations fixed (4K, 8K or 16K). Figure 4 demon-
strates the impact of CL on model performance,
both when output length is held constant and when
it is incrementally increased; yet, when there is the
incremental setting, it is possible to observe signifi-
cantly better performances. These results confirm
that the proposed strategy is optimal.

Reward and Accuracy vs Training steps

o’ »
- -
_e—— -
R “=eezT? P tae
0 19=="" " __e— o ST -
2 / - "> - e =g | D
9 Iy 9= / I
(7} ", 5
y) =
° ’ v
[ 7, Q
© ”, <
2 7y <
] 7, >
4 4, <
’y

Reward CL
—#— Reward w/o CL (4k)

—e— Acc.CL
—e— Acc. w/o CL (4k)

Table 2: Average accuracies achieved performing Multi-
lingual Modality Bridging (MMB), Language-Agnostic
Alignment (LAA), standard reinforcement learning us-
ing GRPO (RL).

The role of RL The results in Table 2 demon-
strate that the Language-Agnostic Alignment
(LLA) is effective and yields gains for both models.

—#— Reward w/o CL (8k)
Reward w/o CL (16k)

=8~ Acc. w/o CL (8k)
Acc. w/o CL (16k)

500 1000 1500 2000 2500 3000

Training Steps

Figure 4: Reward Score and average Accuracy on
DeepSeek-VL2 over XMATHVISTA after MMB (the
first warm-up phase) using incremental output length
rewards and fixed (w/o CL).
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The impact of Training Demonstrations Cur-
rent alignment strategies typically rely on demon-
strations produced by an expert model from the
same architectural family, highlighting the greater
influence of in-family learning on student model
performance (Ranaldi and Freitas, 2024a,b). In
the MMB (i.e., warm-up phase), we employ self-
generated demonstrations. To evaluate the robust-
ness of our approach, we perform a comparative
analysis using demonstrations generated by alter-
native models. As shown in Figure 5, GPT -4 gen-
erations lead to more performant models; however,
these require an annotation budget, i.e., costs asso-
ciated with the use of APIs. On the other hand, self-
generated annotations have a significantly reduced
cost and very good performance (note the differ-
ences in Figure 5 around two percentage points).

soning tasks and obtains substantial benefits both
in the more robust models capable of performing
this abstraction step and (ii) in the smaller models
(as the proposed ones) consistently improves re-
sults by providing performance alignment between
languages.

Models MGSM MGSM-
SYMBOLIC
GPT-40 70.9(86.8) 67.3(83.2)
Gemini-1.5-Pro 69.5(77.5) 60.2(75.3)
Qwen-2.5-VL 55.7(64.7) 52.9(59.8)
+SFT+RL 60.2(67.3) 56.6(66.5)
+R2-MultiOmnia 69.8 (83.5) 66.6 (76.8)
DeepSeek-VL2 60.5(66.2) 55.8(61.0)
+SFT+RL 66.4(70.5) 61.2(69.3)
+R2-MultiOmnia 70.9 85.0) 69.8 (75.0)

R2-MultiOmnia using different Annotators

® DeepSeek-VL

Accuracy (%)

Qwen2.5-VL

.. XMathVista

Maxm
39.9

® GPT-40

. L ]
M3Exam

L]
xMMMU
s

Accuracy (%)

Figure 5: Average results on multimodal multilingual
tasks (§3.3) using demonstrations self-generated (as
original R2-MultiOmnia) and generated from GPT-4o0.

4.3 Language Improvements

Reasoning is modality-agnostic; nevertheless, nat-
ural language is used to deliver and externalise
reasoning processes. In the previous sections, we
observed the performance achieved by the pro-
posed framework in multimodal tasks. To show
R2-MultiOmnia’s multidimensional functionality,
we now evaluate this framework on text-based mul-
tilingual mathematical reasoning tasks introduced
in §3.3.2. Table 3 shows the improvement over
baseline models and over other stringer models
(GPT-40 and Gemini-1.5-Pro). The models tuned
via the proposed framework achieve higher aver-
age accuracies. Although they do not outperform
in all cases, GPT-4o0, they definitely get improve-
ment when compared to baseline models and when
compared with Gemini-1.5-Pro. This demonstrates
that R2-MultiOmnia: (i) separating reasoning and
content both in vision-based and text-based rea-

Table 3: Average performances on MGSM and MGSM-
SYMBOLIC. In brackets are the performances for the
English subset.

5 Additional Studies

Scaling models and data To demonstrate the
impact of the proposed framework on scalabil-
ity and operability for larger models, we oper-
ated with models of the same family, scaling the
number of parameters. Specifically, we operated
via Qwen-7B-2.5-VL and YDeepSeek-VL2-Small
(named as DeepSeek-VL2-S), adopting the same
tuning approach proposed for Qwen-3B-2.5-VL
and DeepSeek-VL2-Tiny (see §3.4). Table 4 shows
that the models evaluated without tuning (base-
line) outperform their smaller-parameter counter-
parts (see values in brackets). However, the R2-
MultiOmnia framework also proves effective on
these models, enhancing their base performance.
Moreover, the bracketed values, which indicate the
performance gap with the smaller models trained
through R2-MultiOmnia, reveal that such differ-
ences are significantly smaller compared to the
baseline models.

Models XMMMLU XMATHV M3EXAM
GPT-40 58.3 58.9 61.0
Gemini-1.5-Pro 31.5 54.3 29.0
Qwen-7B-2.5-VL 40.9 (-6.7) 54.5 (-4.6) 44.8 (-7.3)
+R2-MultiOmnia 49.1 (-3.8) 51.8 1.2 60.3 (-1.7)
DeepSeek-VL2-S 44.3 (-3.6) 56.9 (-4.3) 45.0 (-39
+R2-MultiOmnia 55.1 ¢2.0) 59.2 (-1.0) 61.6 (-0.8)

Table 4: Performances of bigger versions of the models
used in the previous experiments.
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6 Related Work

The performance of large language models (LLMs)
on reasoning tasks has been shown to improve sig-
nificantly when they are guided to simulate human-
like cognitive processes and follow stepwise rea-
soning strategies. In response, a growing body of
research has focused on developing methods to
structure and enhance LLM reasoning. These ap-
proaches often involve human-designed formats
that scaffold outputs into interpretable steps. Some
examples include CoT, plan-based methods such as
Tree-of-Thought (Lightman et al., 2023; Ranaldi
et al., 2024b), and the construction of complex
Supervised-Fine-Tuning (SFT) datasets (Ranaldi
et al., 2025d,e).

Recent advances have shown that reinforce-
ment learning (RL) with structured rewards can
foster sophisticated, human-like reasoning in
LLMs (DeepSeek-Al et al., 2025), enhancing their
performance on complex tasks. However, applying
these methods to Multilingual LLMs (MLLMs) re-
mains largely unexplored and raises several open
challenges. MLLMs process inputs from various
modalities by translating them into textual represen-
tations, which are subsequently analysed by LLM
architectures. This technique has consistently de-
livered strong performance across multiple vision-
related understanding tasks, as evidenced by nu-
merous recent studies (Liu et al., 2024). Motivated
by these successes and parallel advancements in
reasoning for MLLMs, considerable effort has been
directed towards enhancing the reasoning capabili-
ties. Notably, approaches employing Multimodal
CoT prompting (Zhang et al., 2024) and the cre-
ation of data that explicitly incorporates structured
reasoning (Yao et al., 2024) have gained traction.
Recent approaches that integrate tuning initialisa-
tion with targeted RL training have shown promise
in developing richer reasoning and enhancing per-
formances (Zhang et al., 2024). While useful, these
methods often fail to capture key cognitive aspects
of human reasoning, such as questioning and reflec-
tion, limiting their effectiveness on complex tasks.
In response, we propose a strategy to instruct mod-
els to abstract reasoning logic from image and text
content. Building on our prior work (Ranaldi et al.,
2023, 2025b,c), we extend these insights to multi-
lingual and multimodal contexts.

Despite utility, the reasoning generated through
these methods frequently displays deficiencies, par-
ticularly in reflecting natural cognitive processes

integral to human reasoning, such as critical ques-
tioning, reflective analysis, and iterative inspec-
tion. Hence, their overall effectiveness in complex
problem-solving scenarios remains limited. To this
end, we propose a strategy to instruct models to ab-
stract reasoning logic from image and text content.
Building on our prior work (Ranaldi and Pucci,
2025), we go beyond language by transferring the
previous findings into multimodal contexts.

7 Conclusion

Although reasoning inherently transcends modal-
ity and language, MLLMs typically exhibit incon-
sistent performance due to modality-specific and
linguistic biases in training data. To enhance multi-
lingual and multimodal reasoning capabilities eq-
uitably, we introduced R2-MultiOmnia, a modu-
lar approach instructing models to abstract reason-
ing processes independent of specific languages or
modalities, followed by structured self-correction.
Leveraging Multilingual Modality Bridging, we
synthesised modality-neutral reasoning demonstra-
tions, enabling fair proficiency across languages.
Our Language-Agnostic Reasoning Alignment, en-
hanced via Curriculum Learning, significantly im-
proved reasoning consistency and depth. Empiri-
cal results confirmed that R2-MultiOmnia reduces
cross-lingual performance gaps, offering robust,
precise multilingual reasoning. These outcomes
underscore the extent to which structured abstrac-
tion and incremental RL refinements advance mul-
tilingual, modality-agnostic reasoning capabilities.

Limitations & Future Work

In future developments, we plan to extend the anal-
ysis to other models and take care of the efficiency
of the methodologies used. Concerning tasks, we
will expand the analysis to tasks of cultural com-
monsense reasoning. Instead, we explore annota-
tion strategies that require fewer computational and
data resources. Considering the limitations posed
by existing evaluation tools and the financial costs
associated with external model APIs, our experi-
mentation necessarily focused on a limited subset
of tasks and linguistic contexts, thereby addressing
only a fraction of the world’s language diversity.
Moreover, future work should explore models tai-
lored to specific languages. While such resources
are currently limited, their expected growth will en-
able deeper multilingual research, facilitating more
comprehensive research in multilingual modelling.
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A Instruction Template for R2-MultiOmnia

-

#Role You are an expert in visual reasoning, skilled at abstracting and integrating information from images.

#Task Given a problem that includes both an image and a text question, follow the steps below to extract,
abstract and structure relevant information, formalise the problem, and solve it rigorously.

#Instructions
1) Visual Abstraction: Analyse the image and identify all visual elements, patterns, or relationships that are
important for solving the problem. Clearly describe these elements in a structured, concise way. Label this
step as <visual_abstraction>...</visual_abstraction>

2) Formalisation: Transform the abstracted visual information into key logical components of the problem,
including the relevant visual information, variables, operations, and constraints. Structure these elements to
clearly formulate the problem. Label this step as <formalisation>...</formalisation>

3) Reasoning: Solve the problem by breaking it into clear, logically coherent steps, integrating both the
structured visual abstraction and the formalised problem statement. Clearly explain your reasoning and
justify each step. Label this step as <reasoning>...</reasoning>

Final Answer: State the answer clearly as “The answer is:”. Label this step as <answer>...</answer>

#Question {image, question}

Table 5: The template instructs the model to abstract key visual components, formalise the problem, reason stepwise,
and present a clear answer.

B Instruction Template for Step-wise Verification and Refinement

e D

#Role You are an expert reviewer in visual reasoning, specialised in critically evaluating, correcting, and
refining multimodal problem-solving steps.

#Task Given a solution structured following the template (visual abstraction, formalisation, reasoning, answer),
carefully review each step to detect any misleading passages. Clearly identify any issues and provide a corrected,
refined version, ensuring clarity, rigour, and logical soundness.

#Instructions

1) Step-by-Step Verification: For each section, evaluate the content for correctness, clarity, and logical
consistency. Indicate any factual mistakes, omitted reasoning, misleading steps, or unclear explanations.
2) Correction and Refinement: For every identified issue, provide a corrected and improved version of
the relevant steps. Ensure the refined solution: abstracts and structures the visual information; formalises
logical components; presents coherent reasoning steps; states the answer clearly and unambiguously. 3)
Present the Refined Solution: Complete the revised steps into a complete solution, using the same template
(<visual_abstraction>, <formalisation>, <reasoning>, <answer>).

#Input

Table 6: The template instructs the model to rigorously verify, correct, and refine each step of a multimodal reasoning
solution, ensuring logical soundness and clarity.
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C Annotations Pipeline

We construct our tuning set starting from LLaVA-
CoT (Xu et al., 2025). We generate synthetic
demonstrations for the warm-up phase §2.1. We
use both the self-generation strategy and GPT-40
as an annotator. We then conduct the self-training
phase §2.2. As a common practice, we name the an-
notations demonstrations. As described in the main
paper, they are generated by prompting the models
using instructions detailed in Appendix A. After
generating these, they go back to the model and are
reviewed i.e. checked and corrected with the in-
structions in Appendix B. Although the generations
are basically good after this double-check, there
are still some misleading cases. To handle this, we
evaluated the quality of the generated demonstra-
tions by filtering out inaccurate examples to get a
gold instruction set. In particular, we removed all
inaccurate answers (outputs that do not match the
exact target string metric). Then, we verify that the
demonstrations follow the steps indicated in our
prompt (see Table 5) using GPT-40-mini and the
prompt in Appendix D.

D Evaluation Metrics

We used a double-check to assess the accuracy of
the responses delivered in the different experiments.
In the first step, we used an exact-match heuristic.
However, since some experiments required a more
accurate response check, we used GPT-40-mini as
a judge. Hence, we prompt the model as follows:

Evaluation Prompt

#Role:

You are an experienced expert skilled in answering
complex problems through logical reasoning and
structured analysis.

#Instructions:

Given the following "#Input", you are a decider that
decides whether the "Generated Answer" follows the
"Required Format" and the final answer is the same
as the "Target Answer". If the output doesn’t align
with the required format and target answer, respond
with ’0’, whereas if it’s correct, then respond with "1°.
Please, do not provide any other answer beyond ‘0’
or ‘1.

#Senteces:

Generated Answer: {model_result}

Required Format: {format}

Target Answer: {correct_answer}.

E Data Composition

Therefore, to produce the training set, we start from
LLaVA-CoT. We take a random sample of 60k out
of the total 100k. We then annotate these and dis-
card misleading and poorly formatted outputs. The
results are about 20k. Table 7 shows the instances
in the final testing. Then, we conduct the transla-
tion phase by making the data available for eight
languages (including the original one, i.e. English).
To ensure the languages are perfectly balanced, we
translated 10k samples from English to (it, zh, fr,
pt, ja, es, de). We conduct this phase using the nllb-
200-distilled-600M as the translation system. How-
ever, to understand the quality, we back-translated
the outputs and performed sanity checks.

Resource Selected Filtred* Train. Set
R2-MultiOmnia (warm-up) 60k 20k 10k
SFT 60k 20k 10k
R2-MultiOmnia (RL) 60k 20k 2k
RL 60k 20k 2k

Table 7: Initial training data. *(in SFT and RL we used
the demonstrations released by (Xu et al., 2025) that we
translated into the different languages).

As described above, the demonstrations used in the
SFT phase are those released in LLaVA-CoT. In
order to have consistent and comparable experi-
ments, we selected the same set that we used for
R2-MultiOmnia. However, as described in Ap-
pendix C, the qualities of the annotations are not
perfect. Hence, after filtering the annotations, we
obtained a gold dataset, respectively 20k. Again,
to have balanced data, we use 10k for SFT and
2k for RL phases (standard and the one proposed
in the R2-MultiOmnia framework). The numbers
discussed are native, i.e., in English and then trans-
ferred into different languages.

F Details Evaluation Data

Dataset Lan Size
XMMMU en, ar, fr, hi, id, ja, pt 3K
M3EXAM en, zh, it, pt, vi, th, ar 3K
MAXM en, hi, th, zh, fr, iw, ro 2K
XMATHVISTA en, it, zh, pt, jp, es, de 2K
"MGSM " ‘en,de,es, fr,ja, th,zh  1.7K

MGSM-SYMBOLIC en, de, es, fr, ja, th, zh, 2K

1t

Table 8: Overview of evaluation datasets. Five multi-
modal and two text-only multilingual datasets are in-
cluded.

8232


https://huggingface.co/datasets/Xkev/LLaVA-CoT-100k
https://huggingface.co/datasets/Xkev/LLaVA-CoT-100k
https://huggingface.co/datasets/Xkev/LLaVA-CoT-100k

G Translation Process

We translated the demonstrations from English into
seven target languages (it, zh, fr, pt, ja, es, de)
using nllb-200-distilled-600M (NLLB-200-600M).
The purpose of the translation process is to trans-
late the tense parts of the demonstrations to align
proficiency and warm-up models in different lan-
guages. For this purpose, we only translate the
text of the demonstrations and not the markers
(i.e.,<visual_abstraction>, <formalisation>,
<reasoning>, <answer> left original). Similar
pipelines used language augmentation strategies
(Ranaldi and Pucci, 2023; Ranaldi et al., 2024a)
and systematic translations (Ranaldi et al., 2025a),
and evaluating the quality of the translations.

To evaluate translation quality, we adopted a multi-
step strategy. First, we performed back-translation
into English and computed BLEU-4 scores, a stan-
dard metric that measures n-gram overlap up to four
words between a candidate and a reference text.
BLEU-4 allowed us to capture both lexical accu-
racy and local coherence by comparing the original
demonstrations (English) with their back-translated
versions. Additionally, we assessed semantic sim-
ilarity by computing cosine similarity scores: we
used the all-MiniLM-L6-v2 sentence-transformer
to compare original and back-translated demon-
strations, and the paraphrase-multilingual-MiniLM-
L12-v2 model to compare the original demonstra-
tions with their direct translations.

Lang Back- Translation BLEU-4
translation
it 0.95 0.88 51
de 0.93 0.82 48
pt 0.94 0.84 47
fr 0.90 0.83 46
zh 0.96 0.87 42
ja 0.89 0.76 40

Table 9: Cosine similarity between original and trans-
lated demonstrations across languages. The third col-
umn are the BLEU-4 scores using NLLB-200-600M.

Lang Back- Translation = BLEU-4
translation
it 0.98 0.90 54
de 0.95 0.86 50
pt 0.97 0.87 50
fr 0.93 0.85 49
zh 0.98 0.88 47
ja 0.92 0.82 45

Table 10: Cosine similarity between original and trans-
lated demonstrations across languages. The third col-
umn are the BLEU-4 scores using NLLB-200-1.3B.

H Models and Hyperparameters

Models In our experimental setting, as intro-
duced in §3.1, we propose different models (de-
tailed in Table 11). We choose the generation tem-
perature for (mostly) deterministic outputs, with
a maximum token length related to our CL strat-
egy. The other parameters are left unchanged as
recommended by the official resources. We use
four 48GB NVIDIA RTXA600 GPUs for all exper-
iments.

Hyperparameters In §3.2, we described the
standard RL setting. We have proposed different
experimental settings. In the self-training experi-
mental setting, we conducted three iterations. In the
SFT-only settings, we warm-up for one epoch. We
conducted this setting after the pilot experiments
shown in the previous sections.

I Models Vesions
Model [ Version

Qwen2.5-VL-3B-Instruct | Qwen/Qwen2.5-VL-3B-
Instruct

Qwen2.5-VL-7B-Instruct | Qwen/Qwen2.5-VL-3B-
Instruct

DeepSeek-vI2-tiny deepseek-ai/deepseek-v12-
tiny

DeepSeek-vI2-small deepseek-ai/deepseek-v12-
small

GPT-40 gpt-40-2024-08-06

GPT-40-mini gpt-40-mini-2024-07-18

Table 11: List the versions of the models proposed
in this work, which can be found on huggingface.co.
We used all the default configurations proposed in the
repositories for each model.

J Dataset

Dataset | Version

MaAXM neulab/PangeaBench-
maxm

XMMMLU | neulab/PangeaBench-
xmmmu

M3EXAM neulab/PangeaBench-
m3exam

Table 12: List the versions of the models proposed in
this work, which can be found on huggingface.co.

8233


https://huggingface.co/datasets/neulab/PangeaBench-maxm
https://huggingface.co/datasets/neulab/PangeaBench-maxm
https://huggingface.co/datasets/neulab/PangeaBench-xmmmu
https://huggingface.co/datasets/neulab/PangeaBench-xmmmu
https://huggingface.co/datasets/neulab/PangeaBench-m3exam
https://huggingface.co/datasets/neulab/PangeaBench-m3exam

K RL Tuning

This procedure evaluates model-generated com-
pletions using key constraints, each contribut-
ing to the composite reward function used in the
Language-Agnostic Reasoning Alignment phase

(§2.2).

1. Strict Reward (r5) Assesses factual correct-
ness by verifying whether the extracted answer
matches the ground truth. The reward is assigned
as follows:

rs(y) =

2 ifextract_match(y) =9
0 otherwise

where extract_match(y) match the target answer
and generated response (both the score and the
query language).

2. Format Reward (7pum/choice) Promotes adher-
ence to a structured reasoning format via regular
expression matching:

) 0.5 if answer_format(y) is valid
r —
st 0  otherwise

(a1

follow The answer is: [] (in specific language).

3. Format Reward (rf) Enforces compliance
with a rigid reasoning structure using regex:

re(y) =

0.5 if response matches s1 A sy,
0  otherwise

12)

4. Structural Integrity Reward (rs;) Assign
incremental rewards on correct placement and pe-
nalising excessive content:

4
TSI(?J) = Z wj - ]1(81‘ S y) — )\ - extra_content
i=1

(13)
where: w; = 0.125 for placing s; and s2 and A =
0.001 additional content.

5. CL Stabilisation Rewards (r¢cy,) In order to
avoid overthinking (excessive text generation) and
obtain robust and consistent output, we propose dy-
namic tuning by progressively increasing the gen-
eration token limit while decreasing the generated
output. We then use the configurations introduced
in §2.3.
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