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Abstract

Understanding uncertainty in causality is vi-
tal in various domains, including core NLP
tasks like event causality extraction, common-
sense reasoning, and counterfactual text gen-
eration. However, existing literature lacks a
comprehensive examination of this area. This
survey aims to fill this gap by thoroughly re-
viewing the uncertainty in causality. We first in-
troduce a novel trichotomy, categorizing causal
uncertainty into aleatoric (inherent randomness
in causal data), epistemic (causal model limi-
tations), and ontological (existence of causal
links) uncertainty. We then survey methods for
quantifying uncertainty in causal analysis and
highlight the complementary relationship be-
tween causal uncertainty and causal strength.
Furthermore, we examine the challenges that
large language models (LLMs) face in handling
causal uncertainty, such as hallucinations and
inconsistencies, and propose key traits for an
optimal causal LLM. Our paper reviews current
approaches and outlines future research direc-
tions, aiming to serve as a practical guide for
researchers and practitioners in this emerging
field.

1 Introduction

The only thing we can count on is uncer-
tainty. — Albert Einstein

Uncertainty is a fundamental aspect of scientific in-
quiry and practical decision-making, and the study
of causality is no exception. Causal uncertainty
refers to the ambiguity and unknown factors in iden-
tifying, reasoning about, or quantifying causal rela-
tionships, commonly arising from random variabil-
ity, incomplete knowledge, or existential doubts.
Causal uncertainty has long been recognized as
critical in high-stakes domains such as financial
markets (Rigotti and Shannon, 2005), medical diag-
nosis (Dahm and Crock, 2022), and environmental
sciences (López-Gamero et al., 2011), but it also
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Figure 1: Overview of different aspects of causal uncer-
tainty and their corresponding sections in the survey.

holds significant importance in natural language
processing (NLP) tasks. For instance, tasks like
event causality extraction (Dasgupta et al., 2018;
Liu et al., 2023b), commonsense reasoning (Wang
et al., 2023b; Joshi et al., 2024), and counterfactual
text generation (Feder et al., 2021; Nguyen et al.,
2024) often hinge on recognizing whether causal
relationships in text are robust, partially known, or
merely correlational (see App. A for details).

While previous surveys have explored causal
reasoning (Yao et al., 2021; Liu et al., 2024b) and
uncertainty in machine learning (Abdar et al., 2021;
Geng et al., 2024) separately, none have systemati-
cally reviewed the intersection of these two critical
areas. Though Cui et al. (2024a) use uncertainty
levels as a criterion for classifying commonsense
causality benchmarks and reasoning methods, they
do not present a clear taxonomy or overview of
uncertainty quantification methods. Motivated by
this gap, we present the first systematic review of
uncertainty in causality (see the overview of our
survey’s structure in Figure 1).

A clear taxonomy of uncertainty in causal-
ity forms the essential foundation for advanc-
ing research in this area. Unlike the commonly
used dichotomy of uncertainty in machine learn-
ing (Kendall and Gal, 2017), which primarily dis-
tinguishes between aleatoric and epistemic uncer-
tainty, the unique characteristics of causality re-

8022



quire a more nuanced approach. In § 2, we pro-
pose a trichotomy that categorizes uncertainty in
causality into three types: (i) Aleatoric uncer-
tainty ( ), arising from randomness in causal
data; (ii) Epistemic uncertainty ( ), stemming
from limitations in modeling causality and the
model’s causal knowledge; and (iii) Ontological un-
certainty ( ), relating to the conditional existence
and validity of causal links. This trichotomy dis-
tinguishes inherent randomness, model-dependent
uncertainty, and existential ambiguities in causal
structures, providing a clearer foundation for study-
ing causal uncertainty.

Additionally, in § 3, we review methods for
quantifying uncertainty in causality and highlight
how evaluating causal strength provides a comple-
mentary perspective. Specifically, we first exam-
ine existing quantification methods that could be
adapted for causal uncertainty measurement (Lak-
shminarayanan et al., 2017; Kuhn et al., 2023), and
then we discuss established approaches for assess-
ing causal strength measurements (Good, 1961;
Suppes, 1973; Pearl, 2009) as a complementary
counterpart to causal uncertainty estimation.

Finally, we examine how LLMs contend with
causal uncertainty in § 4. Our analysis highlights
their successes in causal discovery, inference, and
counterfactual reasoning, while also exposing crit-
ical vulnerabilities—most notably, hallucinations
and self-contradictions when confronted with am-
biguous evidence (Gao et al., 2023; Cui et al.,
2024b; Mündler et al., 2024). These deficiencies
appear to arise predominantly from pattern memo-
rization rather than from authentic causal reason-
ing (Zečević et al., 2023). Drawing on these in-
sights, we propose key attributes for an optimal
causal LLM, emphasizing unwavering consistency,
versatility across various causal reasoning tasks,
and robust modeling of causal uncertainty.

The full organization of the literature review is
summarized in Figure 2. Overall, our contributions
are threefold:

• We introduce a novel trichotomy for categoriz-
ing uncertainty in causality – aleatoric, epis-
temic, and ontological uncertainties – that ex-
tends beyond the conventional dichotomy to
better address the unique complexities inher-
ent in causal reasoning.

• We review methods for quantifying uncer-
tainty in causality from a complementary per-
spective, encompassing both the direct esti-

mation of uncertainty and the causal strength
estimation, highlighting their interrelation.

• We analyze LLMs’ performance under causal
uncertainty, exposing issues like hallucina-
tions and self-contradictions, and propose key
traits for an optimal causal agent: robust con-
sistency, versatile reasoning, and precise un-
certainty quantification.

Paper Selection. The papers reviewed in this
survey are mainly from renowned conferences and
journals in ML and NLP, including but not limited
to ACL, EMNLP, NAACL, ICML, NeurIPS, ICLR,
AAAI, IJCAI, etc. The primary selection criteria
we use are relevance to causal uncertainty, com-
pleteness, and influences of the candidate papers.
The discussion about related surveys is in App. B.

2 Taxonomy of Uncertainty in Causality

The conventional dichotomy of uncertainty
(Kendall and Gal, 2017), which classifies uncer-
tainty into aleatoric and epistemic types, is not fully
tailored to the complexities of causal reasoning1.
Specifically, causal analysis (i) must determine
whether an observed association reflects a genuine
causal mechanism rather than mere correlation, (ii)
necessarily embodies a directional influence from
cause to effect, and (iii) is intrinsically concerned
with the outcomes of hypothetical interventions and
counterfactual scenarios. These properties motivate
our extension of the classical aleatoric–epistemic
dichotomy: we introduce ontological uncertainty
to capture the existential doubt about whether a
causal link is real, directional, and robust under in-
tervention. We redefine total causal uncertainty as
a combination of aleatoric, epistemic, and ontolog-
ical uncertainty, providing a more comprehensive
framework for understanding uncertainty in causal
contexts.

2.1 Aleatoric Uncertainty

Alea, derived from the Latin word “alea”, means
“dice” ( ). It pertains to elements of chance, ran-
domness, or unpredictability. Aleatoric uncertainty
refers to inherent randomness in the data, such
as variability in health outcomes among patients
receiving the same treatment, and is generally ir-
reducible even with more data. It can be further
categorized into:

1The preliminary knowledge about uncertainty sources and
uncertainty expressions is detailed in App. C
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Taxonomy of
Causal Uncertainty
(§ 2)

Aleatoric
Uncertainty (§ 2.1)

Definition: Uncertainty derived from inherent randomness or unpredictability in causality.
Subcategories: (i) Random variability; (ii) Measurement noise.
Literature: (Nalatore et al., 2007), (Knaeble et al., 2023), (Wang et al., 2023b).

Epistemic
Uncertainty (§ 2.2)

Definition: uncertainty stemming from incomplete knowledge about causal relationships.
Subcategories: (i) Structural design uncertainty; (ii) Parameter uncertainty.
Literature: (Jesson et al., 2020), (Zhang et al., 2023b).

Ontological
Uncertainty (§ 2.3)

Definition: uncertainty related to the existence of the causal link between the cause and the effect.
Subcategories: (i) Existential uncertainty; (ii) Probabilistic uncertainty; (iii) Contextual uncertainty.
Literature: (Yu et al., 2020), (Jin et al., 2024), (Bontempi and Flauder, 2015), (Good, 1961),
(Eells, 1991),(Carroll et al., 2010),(Yarlett and Ramscar, 2019),(Wang et al., 2023b),(Zhang et al., 2023b).

Quantification of
Causal Uncertainty
(§ 3)

Direct Uncertainty
Estimation (§ 3.1)

Entropy-based methods: (Lakshminarayanan et al., 2017),(Bakman et al., 2024),(Ling et al., 2024).
Verbalized Expression and Epistemic Modal Words: (Brogaard and Gatzia, 2017), (Lin et al., 2022),
(Xiong et al., 2024), (Tian et al., 2023).

Causal Strength
Estimation (§ 3.2)

Probaility Raising Theory: (i) Conditional probability: (Pearl, 2009); (ii) Difference-based:
(Suppes, 1973), (Cheng, 1997), (Eells, 1991); (iii) Ratio-based: (Lewis, 1986), (Good, 1961).
Event Association: (Luo et al., 2016), (Du et al., 2022), (Cui et al., 2024c).

LLMs and Causal
Uncertainty (§ 4)

LLMs’ Causal Reas-
oning Ability (§ 4.1)

Causal discovery and inference : (i) Prompting strategies: (Liu et al., 2024b), (Lin et al., 2024),
(Bagheri et al., 2024),(Chao et al., 2024),(Li et al., 2024a),(Wang et al., 2024a); (ii) Causal graphs as
an auxiliary tool: (Vashishtha et al., 2023),(Zheng et al., 2023), (Jiralerspong et al., 2024),
(Zhang et al., 2024),(Vashishtha et al., 2024); (iii) Agent-based frameworks: (Tang et al., 2023),
(He et al., 2023), (Abdulaal et al., 2024), (Le et al., 2024).
Counterfactual reasoning: (Qin et al., 2019), (Ashwani et al., 2024), (Li et al., 2024c),
(Gat et al., 2024), (Gendron et al., 2024),(Mu and Li, 2024).
Commonsense causal reasoning: (i) Uncertain NLI (Chen et al., 2020); (ii) Knowledge reasoning:
(Zheng et al., 2023),(Sun et al., 2024); (iii) Causality extraction: (Wang et al., 2024c),(Luo et al., 2024).

LLMs over Causal
Uncertainty (§ 4.2)

Hallucinations over causal uncertainty: (i) LLMs are causal parrots: (Zečević et al., 2023),
(Jin et al., 2024); (ii) LLMs are outperformed by customized BERT:
(Kim et al., 2023),(Gao et al., 2023).
Self-contradictions and inconsistencies (i) Inconsistency in causal reasoning: (Tang et al., 2023);
(ii) Causal epistemic consistency: (Cui et al., 2024b); (iii) Self-contradictions: (Mündler et al., 2024).

Towards an Optimal
Causal LLM (§ 4.3)

Consistency and confidence: (Zečević et al., 2023),(Jin et al., 2023),(Cui et al., 2024b),.
Versatility in causal reasoning: (Yang et al., 2024), (Kiciman et al., 2024), (Liu et al., 2023c),
(Liu et al., 2024b), (Cui et al., 2024a).
Accurate Estimation of Causal Uncertain Influences: (Luo et al., 2016), (Du et al., 2022),
(Zhang et al., 2022),(Cui et al., 2024c).

Figure 2: Overview of existing literature on causal uncertainty, including taxonomy and quantification aspects and
LLMs’ abilities and challenges in managing causal uncertainty.

• Random variability: The variability of causal-
ity occurs even under identical conditions. A
typical example is that “smoking leads to lung
cancer.” There are situations where two in-
dividuals, both with similar smoking habits,
may have different health outcomes.

• Measurement noise: This uncertainty is due
to the limitations of measurement tools. For
instance, inaccuracies in data collection or
measurement tools can introduce uncertainty
in quantifying causal relationships, especially
in complex systems.

2.2 Epistemic Uncertainty
Episteme ( ), as implied by its Greek origin
επιστημηmeans knowledge. Epistemic uncertainty
arises from incomplete knowledge about causal
mechanisms or limitations inherent to the model
structure and parameters. Epistemic uncertainty
can be further divided into:

• Structural design uncertainty: Uncertainty
also arises from the design of the model it-
self. For instance, different kinds of causal

model structures lead to different model pre-
diction results even when trained with the
same datasets (Zhang et al., 2023b). Choices
such as model architecture, the number of neu-
ral network layers, and activation functions
contribute to this type of uncertainty.

• Parameter uncertainty: In the era of deep
learning and following LLMs, there is vari-
ability and lack of certainty in the estimates
of parameters used in models. Specifically,
Jesson et al. (2020) propose an approach for
estimating epistemic (outcome) uncertainty in
individual-level cause-effect estimates.

2.3 Ontological Uncertainty

The Greek origin of “ontology”, i.e., ὸν, means
“being”. Namely, ontology ( ) deals with ques-
tions concerning existence. Ontological uncertainty
pertains to whether a causal relationship truly ex-
ists. For instance, ice cream sales and shark attacks
both increase during the summer months. The hot
weather acts as a confounding variable, leading to
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Aspect Aleatoric ( ) Epistemic ( ) Ontological ( )

Definition The inherent randomness in the
causal data.

The lack of knowledge about causal
relationships.

The unsureness related to the funda-
mental existence or non-existence of
causal relationships.

Subcategories (i) Random variability; (ii) Measure-
ment noise.

(i) Model (structure) design uncer-
tainty; (ii) Parameter uncertainty.

(i) Existential uncertainty; (ii) Prob-
abilistic uncertainty; (iii) Contextual
uncertainty.

Source Inherent in the randomness of causal
data.

Due to incomplete observation sam-
ples, model structure design, and lim-
itations of causal models.

Due to the ambiguity about the exis-
tence or definition of concepts, enti-
ties, and their relationships.

Reduction method It is generally considered irreducible
even when increasing data or improv-
ing model capacity.

Can be mitigated by obtaining more
causal data samples or improving
model design and capability.

Can be reduced by conceptual clari-
fication, adding contextual informa-
tion, conducting control experiments,
etc.

Illustration with a
single example

All these three types of causal uncertainty can be illustrated with the example of studying the effect of a newly
developed antihypertensive medicine in lowering blood pressure. Aleatoric uncertainty refers to the situation in
which, even under controlled conditions, each patient’s body reacts differently to this medicine. Typical epistemic
uncertainty, in this case, is the unobserved factors such as participants’ dietary habits and fitness routines. One
ontological uncertainty example is questioning whether the observed drop in blood pressure is causally related to the
medicine intake or just correlated. More examples in the NLP domain are provided in App. A.

Table 1: Comparison of different kinds of uncertainty in causality: aleatoric, epistemic, and ontological.

higher rates of both activities, but there is no direct
causal link between ice cream sales and shark at-
tacks. Ontological causal uncertainty can be further
decomposed into three kinds:

• Existential uncertainty: As we all know, “cor-
relation does not imply causation.” For ex-
ample, ice cream sales are correlated with
shark attacks. However, evidently, there is
no causal link between them. People eat more
ice cream and swim more frequently in wa-
ters where sharks inhabit during hot summers.
Namely, the confounder is the hotter weather.
However, existing models, even for LLMs like
GPT-4, still struggle with distinguishing cor-
relation from causation (Yu et al., 2020; Jin
et al., 2024), which highlights the difficulty of
identifying existential uncertainty.

• Probabilistic uncertainty: The core idea is the
link from the cause to the effect is not abso-
lute but probabilistic. Instead of the cause
leading to the occurrence of the effect with-
out exception, probabilistic principles state
that causes increase the probabilities of their
effects’ occurrence, but they do not guaran-
tee the occurrence (Good, 1961; Eells, 1991).
This principle is also implemented in the prob-
abilistic causal strength metrics (§ 3.2).

• Contextual uncertainty: Existing causality
with the formulation C → E often omit the
contextual factors that influence the causal re-
lationship (Carroll et al., 2010; Yarlett and
Ramscar, 2019; Wang et al., 2023b; Zhang

et al., 2023b). For instance, the causal link
between exercise and good health depends on
context – such as the exercise being moderate
and the absence of underlying health condi-
tions like heart disease.

2.4 Why Trichotomy
While finer subdivisions are possible, these three
categories encapsulate the primary facets of causal
uncertainty. For instance, aleatoric uncertainty
focuses on inherent randomness (e.g., two patients
responding differently to the same drug), epistemic
uncertainty stems from knowledge gaps (e.g., not
knowing a patient’s underlying conditions), and
ontological uncertainty questions whether a causal
link even exists (e.g., distinguishing correlation
between ice-cream sales and shark attacks from a
true causal relationship).

However, please note that these three categories
are intended as a conceptual lens, not an exhaustive
partition. A real instance of causal uncertainty may
bear multiple labels (multi-label schemes in (White
et al., 2016)). Consider the example: ‘hot weather’
acts as a hidden confounder, casting ontological
doubt on whether the observed association ice-
cream sales → drownings is causal; the same omis-
sion constitutes epistemic uncertainty in a model
that fails to encode temperature; and individual be-
havioural variability introduces an aleatoric com-
ponent. However, such overlap does not weaken
the trichotomy. Rather, it shows that each category
can be treated as a label that may co-occur with oth-
ers. Annotating an instance with multiple labels is
therefore analogous to multi-label classification in
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NLP: the scheme is not a rigid partition but a set of
conceptual anchors that practitioners can combine
as the analysis demands. More discussion about the
complex interactions among these types of causal
uncertainty is given in App. D.

3 Quantification of Uncertainty

Direct estimation of uncertainty and the estimation
of causal strength are complementary approaches
to understanding causality. A strong causal link
often corresponds to lower overall uncertainty, but
high uncertainty can also persist if the underly-
ing model remains incomplete. Below, we detail
methods for directly measuring causal uncertainty,
typically focusing on aleatoric and epistemic as-
pects (§ 3.1), and then turn to causal strength
estimation as its complementary counterpart in
§ 3.2. The interplay between causal uncertainty
and causal strength is further elaborated in § 3.3.

3.1 Direct Quantification: Measuring
Uncertainty in Causality

Entropy-Based Methods. Quantifying causal
uncertainty can leverage similar approaches to pre-
dictive uncertainty (Lakshminarayanan et al., 2017;
Bakman et al., 2024; Ling et al., 2024), using meth-
ods such as entropy-based estimations, which mea-
sure the spread or unpredictability of the potential
outcomes of causal relationships. We can quantify
causal uncertainty using predictive entropy by mod-
eling causal reasoning between variables C and E
as a classification problem (binary or ternary). The
label set is either L = {0, 1} or L = {−1, 0, 1},
where (i) l = 0: there is no causal relationship be-
tween C and E; (ii) l = 1: C facilitates the occur-
rence of E; (iii) l = −1: C prevents the occurrence
of E. In this setting, causal uncertainty (Φ(C,E))
can be quantified using predictive entropy:

Φ(C,E) = −
∑

l∈L
p(l|(C,E)) log p(l|(C,E))

(1)
where L is the set of labels. This approach draws on
foundational methods used in uncertainty quantifi-
cation, which measures uncertainty by calculating
the conditional entropy of predicted outputs (Shan-
non, 1948; Cover and Thomas, 2006).
Verbalized Expressions and Modal Words.
Beyond numerical measures, verbalized expres-
sions (e.g., “certain”, “most likely”, “probably”,
“likely”, “even chance”, “possibly”, “perhaps”,
“most unlikely”, and “impossible”) can reflect vary-

ing degrees of causality uncertainty (Brogaard and
Gatzia, 2017). Zhou et al. (2023) systematically
investigate how verbal and numerical markers in-
fluence LLMs’ performance over uncertainty. Fur-
thermore, Xiong et al. (2024) and Tian et al. (2023)
show that verbalized confidence can often be bet-
ter calibrated than probabilistic (numerical) val-
ues for models like GPT-4 (OpenAI, 2023) and
Claude (Anthropic, 2024). However, modal words
can express more than epistemic uncertainty, mak-
ing it vital to discriminate epistemic uses from de-
ontic and other senses to ensure accurate uncer-
tainty measurement.

3.2 Complementary Approach: Causal
Strength Estimation

Causal strength measures the intensity of the cause
leading to the occurrence of the effect. In causal
reasoning, the effects of causes are divided into two
parts: facilitative and preventative causal strength.
The central difference behind these two concepts is
how causes change the probability of their effects.
Facilitative causal strength studies how a cause
positively contributes to the occurrence of the ef-
fect, whereas preventative causal strength focuses
on how causes negatively impact effects’ occur-
rence. Despite the contrasting nature of these influ-
ences, both operate within the same probabilistic
framework, offering a complete picture of causa-
tion. Further discussion is presented in App. E. The

Metrics Formulation

Conditional Probability-Based Metrics
Pearl (2009) P (E|C)

Difference-Based Metrics
Suppes (1973) P (E|C)− P (E)
Cheng (1997) [P (E|C)−P (E|¬C)]/[1−P (E|¬C)]
Eells (1991) P (E|C)− P (E|¬C)

Ratio-based Metrics
Lewis (1986) P (E|C)/P (E|¬C)
Good (1961) log[1− P (E|¬C)/(1− P (E|C)]

Table 2: Probabilistic causal strength metrics.

estimation of causal strength can be approached in
two primary ways (Cui et al., 2024a):
Probability Raising Theory. This approach
is based on the idea that cause C increases the
probability of the effect E occurring. Metrics de-
rived from this theory involve probability terms:
(i) P (E): the probability of E’s occurrence with-
out any knowledge of C; (ii) P (E|C): the proba-
bility of E’s occurrence given the presence of C;
(iii) P (E|¬C): the probability of E’s occurrence
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Probability Raising Theory

Rationale

Advantages

Limitations

Estimation based on
probability-raising theory

Estimation based on
event association

Lack of theoretical basis.

VS

The causes increase the
probability of the effects’
occurrence.

The event-level causal strength is
the combination of the word-level
causal strength. 

Clear mathematical framework.

Good explanability. 

Data-driven approach. 

Good explanability.

Additional noises are
introduced by conditional
probability estimation. 
Over simplification, e.g.,
confounders are not considered. 

Spurious causality: word co-
occurrence usually indicates
correlation rather than causality.

Reporting bias in the corpus. 

Figure 3: Comparison of metrics based on probability
raising theory and event association, highlighting key
principles, strengths, and limitations.

given the absence of C. Existing metrics of this
line can be roughly classified into three types: (i)
The original conditional probability P (E|C); (ii)
Difference between probability terms like P (E|C)
and P (E|¬C) or P (E); (iii) Variants based on
the ratio of the probability of E’s occurrence with
the presence of C and without the presence of C.
Various metrics are summarized in Table 2.

Events (Words) Association. This approach
estimates causal strength based on event co-
occurrence frequencies, e.g., “rain” → “flood”,
“heat” → “melt”, “infect” → “sick”, etc. Specifi-
cally, CEQ (Luo et al., 2016; Du et al., 2022) uses
the word co-occurrence frequency as the word-level
causal strength, while CESAR (Cui et al., 2024c)
uses the association score between events’ causal
embeddings. Figure 3 highlights the principles,
advantages, and limitations of these two methods.
However, we should note that association metrics
that rely on raw co-occurrence counts inherit the
topical and cultural skew of the corpus in which
they are measured. Over-reported events (e.g., ex-
treme weather in newswire) artificially inflate ap-
parent causal strength, whereas under-reported or
tacit commonsense links (e.g., drinking water →
quenching thirst) may appear spuriously weak or
even absent. Consequently, reporting bias consti-
tutes an additional source of epistemic uncertainty,
distinct from sampling variance, because it reflects
systematic gaps in what humans choose to write
down. Possible mitigations include (i) re-weighting
counts with external priors or domain statistics, (ii)
triangulating multiple heterogeneous corpora, and
(iii) applying causal-feature de-biasing methods
that treat medium or genre as a confounder.

3.3 Causal Uncertainty and Causal Strength:
Two Sides of the Same Coin

Causal uncertainty and causal strength are inher-
ently complementary but not strictly inversely re-
lated. Generally, a high causal strength implies
a relatively low causal uncertainty. However, the
reverse is not necessarily true. Specifically, high
causal uncertainty often indicates ambiguity or in-
complete evidence about the causal link, regard-
less of the intensity and direction (either facili-
tative or preventative) of causal strength. To un-
derstand this, consider that as more contextual in-
formation or evidence becomes available, causal
uncertainty generally decreases, which can either
reinforce or weaken the causal strength. A high fa-
cilitative strength typically indicates a solid causal
link with minimal uncertainty. For example, a
well-established causal relationship like “overeat-
ing junk food leads to weight gain” has high causal
strength and low uncertainty due to extensive evi-
dence. Nevertheless, high causal uncertainty sug-
gests the evidence supporting causality is unclear
without providing any definitive statement about
the intensity of the causal link. More compari-
son between causal strength and causal uncertainty
regarding definition, advantages, limitations, and
applications is illustrated in Table 3 and App. E.

Aspect Causal Uncertainty Causal Strength

Definition The uncertainty inside
the causal relationship
(C,E).

The intensity of how
likely the cause C leads
to the occurrence of the
effect E.

Taxonomy Aleotoric (data random-
ness), epistemic (knowl-
edge gaps), and ontologi-
cal (existential questions
about causal link).

Facilitative (promoting
the effect) and preven-
tative (inhibiting the ef-
fect).

Advantages (i) Beneficial for robust
decision; (ii) Helpful for
model calibration.

Offering directional in-
sights to indicate either
facilitative or preventa-
tive.

Limitations Does not provide infor-
mation about the direc-
tion of causal relation-
ships, i.e., preventative or
facilitative.

Sensitive to confounding
variables.

Application (i) Model reliability: en-
hances trustworthiness in
model’s causal predic-
tions; (ii) Risk assess-
ment: identifying poten-
tial risk by gauging the
uncertainty level.

(i) Interventional plan-
ning: helping design in-
terventions to strengthen
or weaken the desired
outcomes; (ii) Causal at-
tributions: identifying
the most likely root
cause for the investigated
events.

Table 3: Comparison of causal uncertainty and causal
strength from various aspects.
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Figure 4: LLMs over causal uncertainty, illustrating challenges like hallucinations and inconsistencies.

4 Causal Uncertainty with LLMs

4.1 LLMs’ Causal Reasoning Abilities

LLMs have demonstrated strong capabilities in
causal reasoning tasks, which can be categorized
into three major areas:
Causal Discovery and Inference. Causal dis-
covery identifies relationships between variables,
while causal inference determines their effects. Re-
cent causality-focused methods improve LLMs’
performance in these areas, which can be broadly
classified into three types: (i) Prompting strategies:
Prompt engineering enhances LLMs’ causal reason-
ing using Chain-of-Thought (Wei et al., 2022), Few-
Shot prompting (Brown et al., 2020), and exten-
sions like multi-turn reasoning (Liu et al., 2024b,a;
Bagheri et al., 2024), in-context contrastive learn-
ing (Chao et al., 2024), heuristic semantic depen-
dency (Li et al., 2024a), synthetic control (Wang
et al., 2024a), and expert reasoning prompts (Lin
et al., 2024); (ii) Causal graphs as auxiliary tools:
LLMs can benefit from causal graphs in reason-
ing tasks (Jiralerspong et al., 2024; Zheng et al.,
2023; Zhang et al., 2024). Vashishtha et al. (2023,
2024) show that topological ordering of graph vari-
ables suffices for causal inference, while axiomatic
training further enhances reasoning; and (iii) Agent-
based frameworks: Multi-agent systems help im-
prove LLM-based causal inference (Tang et al.,
2023; He et al., 2023; Abdulaal et al., 2024; Le
et al., 2024). Tang et al. (2023) propose a multi-
agent system where a reasoner LLM generates solu-
tions, and evaluators challenge them with counter-
factuals. Abdulaal et al. (2024) introduce an agent
unifying metadata and data-based modeling for rea-
soning, while other frameworks focus on causal
explanation (He et al., 2023) and discovery (Le
et al., 2024).
Counterfactual Causal Reasoning. Counter-
factual causal reasoning, the ability to explore

“what if” scenarios, is crucial for robust causal
reasoning. Empirically, Li et al. (2024c) improve
smaller language models’ performance in natural
language inference through counterfactual gener-
ation. Ashwani et al. (2024) propose a novel ar-
chitecture to enhance LLMs’ causal reasoning and
explainability. Mu and Li (2024) introduce a VAE-
based method leveraging event commonsense in
narratives. Gendron et al. (2024) develop an end-
to-end framework that extracts causal graphs from
text and performs counterfactual inference.
Commonsense Causal Reasoning. Common-
sense causal reasoning enables AI systems to infer
cause-and-effect relationships in everyday scenar-
ios using intuitive world knowledge (Cui et al.,
2024a). LLMs can predict action outcomes, in-
fer causes, and identify event causality (Hobbhahn
et al., 2022; Ko et al., 2023; Sun et al., 2024; Zhang
et al., 2023c; Nie et al., 2023). Sun et al. (2024) find
that prompt engineering techniques, such as Chain-
of-Thought and Tree-of-Thought, enhance LLMs’
causal reasoning by structuring reasoning steps and
capturing hierarchical dependencies. Zheng et al.
(2023) mitigate catastrophic forgetting by using
causal inference to retain commonsense knowledge
during fine-tuning. Wang et al. (2024c) propose a
document-level approach for extracting common-
sense causal relations with LLMs.

4.2 LLMs over Causal Uncertainty
While advancements such as improved prompt-
ing techniques and multi-agent frameworks have
enhanced LLMs’ causal reasoning performance,
LLMs often generate hallucinations (i.e., plausible
but incorrect causal links) and self-contradictions
when reasoning under causal uncertainty.
LLMs’ Hallucinations over Causal Uncertainty.
LLMs often struggle with uncertainty in causality,
leading to hallucinations - plausible but incorrect
causal links - in their reasoning. Specifically, Zeče-
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Consistency and Confidence Versatility in Causal Reasoning Accurate Estimation of Uncertainty

1. Make causal decisions with
high confidence. 

2. Causal decisions should be
stable and reproducible. 

3. Extract causal relationships
given new contexts confidently. 

Ladder of
causation

1. Associational causality. 

2. Intervential causality. 

3. Counterfactual causality. 

4. Data-based causality. 

5. Commonsense causality. 

Identify Anticipate Quantify

Aleatoric Epistemic Ontological

LLMs are expected to identify,
anticipate, and quantify aleatoric,
epistemic, and ontological uncertainties. 

Figure 5: Desired characteristics of an optimal causal LLM: (i) maintaining consistency and confidence; (ii)
versatility in different levels of causal reasoning tasks; and (iii) accurate estimation (quantification) of uncertainty.

vić et al. (2023) argue that LLMs are not inher-
ently causal and tend to rely on reciting knowledge
learned from their training data rather than per-
forming genuine causal inference. Similarly, Jin
et al. (2024) conclude LLMs do not arrive at their
answers via genuine reasoning, but rather through
memorizing corresponding question and answer
pairs. As summarized in Figure 4, these short-
comings highlight the difficulty LLMs have in dis-
tinguishing correlation from causation, a crucial
aspect of ontological uncertainty (see § 2.3).

Self-Contradictions and Inconsistencies.
LLMs frequently struggle to maintain consistency
under uncertainty, leading to self-contradictions
and inconsistencies (Mündler et al., 2024; Liu
et al., 2024d; Li et al., 2024b). Self-contradictions
in causal analysis occur when LLMs provide
conflicting responses to logically equivalent or
minimally altered prompts, usually due to their
struggle to resolve ambiguous causal links. Incon-
sistencies occur when models produce conflicting
responses across tasks, for instance, generating
intermediates for cause-effect pairs with increasing
strengths and ranking them based on their strengths
produces a different output, as shown in Figure 4.
These issues commonly stem from the partial
knowledge of correct causal mechanisms (epis-
temic) and spurious correlations (ontological).
Empirically, Cui et al. (2024b) show that small
LLMs (≤7B) barely outperform random baselines
in maintaining causal consistency when generating
and ranking intermediates in cause-effect pairs.
To improve causal consistency, Tang et al. (2023)
propose CaCo-CoT, which combines reasoning
and evaluating agents to mitigate inconsistencies
seen in CoT (Wei et al., 2022) and Self-Consistent
CoT (Wang et al., 2023a). Additionally, emerging

techniques like causal abstraction (Tan, 2023)
and incorporating external knowledge bases (Liu
et al., 2023a) show promise in enhancing LLMs’
reasoning abilities without producing contradictory
statements. More details about causal uncertainty’s
impact on LLMs are presented in App. F.

4.3 Towards an Optimal Causal LLM

Zhang et al. (2023a) identify three types of causal
questions to assess the causal ability of LLMs: (i)
identifying causality using domain knowledge; (ii)
delivering new causal knowledge from data; and
(iii) quantitatively estimating the consequences of
actions. However, these categories do not address
the inherent uncertainty in causal reasoning. Our
survey isolates this topic, clarifying future research
on LLMs and causal uncertainty. From the uncer-
tainty perspective, and the shortcomings presented
in § 4.2, an optimal causal LLMs should demon-
strate the abilities depicted in Figure 5, which de-
scribes the following key characteristics:
Consistency and Confidence. LLMs must reli-
ably make confident causal decisions, distinguish-
ing between strong and weak causal links with-
out ambiguity. Decisions should be stable, repro-
ducible, and consistent, minimizing errors from
conflicting information (Cui et al., 2024b). Ad-
ditionally, LLMs should be able to extract causal
relationships given new contexts confidently, with-
out relying on the training data they are fed to make
conclusions (Zečević et al., 2023; Jin et al., 2023).
Versatility in Causal Reasoning. An optimal
causal LLM should be capable of handling vari-
ous levels of causal reasoning tasks (Yang et al.,
2024; Kiciman et al., 2024), including (i) Associ-
ational Causality: Identifying patterns and corre-
lations within data; (ii) Interventional Causality:

8029



Predicting outcomes of potential interventions (Liu
et al., 2023c); (iii) Counterfactual Causality: As-
sessing hypothetical scenarios to determine alter-
native outcomes; (iv) Data-based Causality: as-
sessing data-based statistical causal reasoning (Liu
et al., 2024b); and (v) Commonsense Causality:
conducting causal reasoning based on common-
sense knowledge, i.e., general public’s intuition
how the occurrence of one event contributes to an-
other happening (Cui et al., 2024a). This versatility
ensures the LLM can adapt to different contexts
and provide accurate causal reasoning ability.
Accurate Estimation of Causal Uncertain Influ-
ences. An optimal causal LLM should identify,
anticipate, and quantify the impact of uncertain
factors, encompassing aleatoric (data randomness),
epistemic (knowledge gaps), and ontological (exis-
tence of causal links) uncertainty (Jin et al., 2023;
Stolfo et al., 2023). LLMs should also effectively
model these uncertainties to provide probabilis-
tic estimations that reflect potential variability in
causal predictions (Kiciman et al., 2024). This
includes generating confidence intervals or proba-
bility distributions over possible outcomes, thereby
enabling more informed decision-making in the
presence of uncertainty.

Together, these traits define an optimal causal
agent that is robust, reliable, and capable of navigat-
ing complex causal relationships while managing
the uncertainty in causality. More details on future
directions are in App. G.

5 Concluding Remarks

This survey provides a comprehensive review of
the uncertainty in causality, categorizing it into
aleatoric, epistemic, and ontological types. We
synthesize existing methods for quantifying uncer-
tainty and explore their complementary relation-
ship with causal strength. We further highlight
LLMs’ limitations over causal uncertainty and un-
derscore future research directions. This survey
aims to provide valuable guidance for researchers
and practitioners regarding causal uncertainty.

Limitations

We acknowledge the following limitations in our
work. Firstly, the taxonomy of causal uncer-
tainty is relatively subjective. Our trichotomy of
aleatoric, epistemic, and ontological causal uncer-
tainties strives to capture the most distinct facets
of causal uncertainty: data randomness, model lim-

itations, and existential doubt. However, it still
inevitably retains a degree of subjectivity. In partic-
ular, alternative classifications may slice these cat-
egories differently or introduce finer-grained sub-
types. For instance, splitting epistemic uncertainty
into structural and confounder-focused dimensions.
Although we believe our trichotomy strikes a bal-
ance between conceptual clarity and practical util-
ity, the field may benefit from further theoretical
or domain-specific refinements. Second, though
we try our best to cover influential and recent stud-
ies across both machine learning and NLP venues,
the field’s rapid growth means that some relevant
work may not be fully captured. Due to the page
limit, the description of the techniques is generally
sketchy. In particular, area-specific research such
as event causality extraction and causal reasoning
may present further nuances that we have not fully
covered. We suggest readers consult area-specific
publications for deeper insights.

Ethical Considerations

Our paper summarizes existing literature and com-
prehensively reviews uncertainty in causal reason-
ing. As a survey paper, we do not foresee signif-
icant ethical considerations or risks in our paper.
We use ai assistants to check the grammar issues
in our writing. While this survey does not intro-
duce direct ethical concerns, the propagation of
biased or inaccurate causal models, particularly in
high-stake fields like healthcare or criminal justice,
could have severe implications if causal uncertainty
is mismanaged. To mitigate such risks, we advo-
cate for the transparent reporting of model uncer-
tainty. Moreover, it is essential to acknowledge that
the studies we cite may contain unrecognized bi-
ases or unfairness. These biases can inadvertently
be perpetuated through our review. We encourage
readers to critically assess these potential biases
when understanding the findings and conclusions
presented in this survey.
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A Examples and Impact of Causal
Uncertainty in NLP Tasks

While causal uncertainty is a general concept ap-
plicable to numerous domains, it holds particular
significance for many NLP tasks. In what follows,
we demonstrate how causal uncertainty impacts
textual cause-effect analysis across diverse NLP
tasks.

A.1 Event Causality Extraction

Causal uncertainty in NLP tasks is often reduced
to event causality extraction (Dasgupta et al., 2018;
Hosseini et al., 2022; Shen et al., 2022; Cui et al.,
2022; Liu et al., 2023b), where models identify
cause-effect links in textual content. The following
are examples of these three types of causal uncer-
tainty in the event causality extraction task:

• Aleatoric uncertainty: For instance, coverage
of the same geopolitical event and its sequence
in news articles from different sources can di-
verge in tone or detail, yielding inherently
noisy data. A model might inconsistently as-
sign causal labels because certain news agen-
cies exaggerate or underreport pivotal trig-
gers.

• Epistemic uncertainty: If a causal event ex-
traction model has no background knowledge
about the cultural or historical context in its
training corpus, it may fail to distinguish a
direct cause from tangential events. The sys-
tem’s incomplete knowledge of these contexts
in its training corpus further raises doubts
about the extracted cause-effect pair.

• Ontological uncertainty: The existence of a
cause-effect link itself can be questionable if
news reports only highlight correlation. For
example, when a model detects correlation
patterns (e.g., “Ice cream sales increase dur-
ing the hot summer months. At the same
time, police report a rise in drowning inci-
dents along crowded beaches and pools.”), on-
tological uncertainty may arise if the text only
presents correlational cues without direct ev-
idence of causal relationships. In this exam-
ple, we could see the true cause for “drown-
ing incidents” is the “hot weather and more
swimming” rather than the correlation factor
of “increased ice cream sales”.

In summary, understanding these uncertainties
is vital for ensuring accurate extraction of cause-
effect relationships from textual inputs. By distin-
guishing spurious causal links from genuine causal
links, models can extract more reliable causal event
graphs, which is key to downstream applications.

A.2 Commonsense Reasoning
Commonsense reasoning tasks often require a nu-
anced understanding of everyday cause-effect rela-
tionships in text (Ponti et al., 2020; Han and Wang,
2021; Chun et al., 2023; Zhang et al., 2023c; Chen
et al., 2023). For example, consider a logistics
planning question: “Why might ignoring an up-
coming severe weather front lead to shipping de-
lays?” Answering this question involves applying a
general causal reasoning rule in general cases (“ex-
treme weather” → “flight or route disruptions”)
alongside domain-specific knowledge about sup-
ply chains (e.g., rerouting costs, limited carrier
options). Epistemic causal uncertainty emerges if
the training corpus lacks explicit coverage of the
interplay between inclement weather and shipping
routes, leading the model to produce incomplete
or unconvincing answers. Moreover, aleatoric un-
certainty can lead to hallucinations over noisy or
ambiguous textual mentions about the severity of
the bad weather (e.g., “strong winds” vs. “hurri-
cane conditions”), making it difficult to gauge the
precise level of logistic disruption.

To sum up, commonsense reasoning in text often
relies on incomplete clues and ambiguous descrip-
tions, making it easy for models to confuse inher-
ent randomness or partial knowledge with genuine
causal rules. By explicitly and accurately handling
these uncertainties, models can deliver more robust
and reliable reasoning conclusions, especially in
high-stake domains like policy-making and health-
care.

A.3 Counterfactual Reasoning and
Counterfactual Text Generation

Counterfactual reasoning (Qin et al., 2019; Liu
et al., 2023c; Li et al., 2023; Mu and Li, 2024) and
counterfactual text generation (Yang et al., 2020;
Treviso et al., 2023; Nguyen et al., 2024; Wang
et al., 2024b) involve assessing “what if” scenar-
ios, such as rewriting a story by removing a causal
trigger or altering a key causal condition. Suppose
a generative model aims to produce an alternate
storyline where a triggering causal event does not
happen (e.g., removing a character’s decision to
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light a fire). In that case, it must manage epistemic
uncertainty regarding unknown downstream ramifi-
cations in the narrative. Additionally, aleatoric un-
certainty may arise if multiple endings are equally
plausible based on existing textual clues. Without
full knowledge of ontological uncertainty, the sys-
tem might hallucinate cause-effect chains that were
never grounded in the original story.

To sum up, explicitly classifying, identifying,
and quantifying causal uncertainty in NLP tasks
is not merely a theoretical exercise. It tangibly
bolsters downstream NLP tasks and helps to build
robust intelligent causal agents. This makes under-
standing causal uncertainty a necessary component
for complicated language understanding and rea-
soning tasks.

B Related Surveys

In Table 4, we present various surveys that are asso-
ciated with the concept of causal uncertainty. These
surveys are organized into four distinct categories:

• Surveys of uncertainty in machine learning:
These surveys (Gawlikowski et al., 2023)
cover the classification of uncertainty and the
quantification methods.

• Surveys of causal inference: Yao et al. (2021)
and (Liu et al., 2024b) review causal infer-
ence methods and the integration with ma-
chine learning and LLMs.

• Surveys of Uncertainty in language modeling:
there are multiple surveys (Hu et al., 2023;
Geng et al., 2024) that particularly focus on
uncertainty in language modeling.

• Surveys of commonsense causality: Although
Cui et al. (2024a) use uncertainty level as a cri-
terion for classifying existing commonsense
causality benchmarks and reasoning meth-
ods, they do not explicitly illustrate different
kinds of uncertainty sources. Our survey not
only introduces a novel trichotomy but also
illustrates the complementary relationship be-
tween causal strength and causal uncertainty.
Additionally, we elaborate on existing litera-
ture regarding LLMs’ performance in address-
ing causal uncertainty.

Our survey distinguishes itself from existing sur-
veys by bridging the gap between uncertainty and

Citation Summary

Uncertainty in Machine Learning
Zhou et al. (2022) They provide a comprehensive review of

epistemic uncertainty in supervised learn-
ing and decompose the epistemic uncer-
tainty into bias and variance types.

Gawlikowski et al.
(2023)

They review types of uncertainty: model
and data uncertainty. They focus on ap-
proaches for estimating uncertainty, such
as Bayesian inference, ensemble meth-
ods, and test-time augmentation.

Mena et al. (2021) They review the definition and quantifica-
tion of uncertainty when applied to clas-
sification systems.

Ulmer et al. (2023) This survey reviews evidential deep learn-
ing (Sensoy et al., 2018) for uncertainty
estimation, which is different from pre-
dictive uncertainty that involves distribu-
tions over parameters.

Blasco et al. (2024) They review existing works on uncer-
tainty quantification methods to predict
the behavior of financial assets. These
works span the years from 2001 to 2022.
Causal Inference

Yao et al. (2021) They review causal inference methods
within the potential outcome framework,
focusing on the integration with ma-
chine learning. The review covers meth-
ods from both statistical and machine-
learning perspectives.

Liu et al. (2024c) They review the intersection of causal
inference and LLMs, focusing on how
causal models can enhance reasoning,
fairness, and explainability. They also
discuss how LLMs can discover causal
relationships.

Uncertainty in Language Modeling
Hu et al. (2023) They first classified the sources of uncer-

tainty in NLP systems into three kinds:
input, system, and output. And then, they
review the works focusing on uncertainty
quantification in NLP systems.

Geng et al. (2024) They review confidence estimation and
calibration techniques for LLMs, high-
lighting factual errors and instability.

Campos et al.
(2024)

This paper reviews the application of con-
formal prediction in various language
modeling tasks.

Commonsense Causality
Cui et al. (2024a) They focus on taxonomies, benchmarks,

acquisition methods, qualitative reason-
ing, and quantitative measurements in
commonsense causality.

Table 4: Related surveys categorized by their research
areas.

causality. Furthermore, we uniquely distinguish be-
tween aleatoric, epistemic, and ontological uncer-
tainty in causality. This trichotomy is tailored to un-
certainty in causality, diverging from traditional un-
certainty in machine learning (Gawlikowski et al.,
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2023; Mena et al., 2021; Blasco et al., 2024). Ad-
ditionally, we underscore the complementary re-
lationship between causal uncertainty quantifica-
tion and causal strength (more details in § 3 and
App. E).

C Preliminary Knowledge

C.1 Uncertainty Sources
There are two major sources of uncertainty
involved in machine learning models: data-
induced (aleatoric) and modeling-induced (epis-
temic). Data-induced uncertainty (aleatoric uncer-
tainty) includes labeling noise, measurement errors,
or inherent variability in the data and is generally
irreducible. Modeling-induced uncertainty (epis-
temic uncertainty) includes ambiguities related to
the machine learning models, tools, or methods,
and can often be reduced with more data or im-
proved modeling techniques.

However, this traditional dichotomy of aleatoric
and epistemic uncertainty is insufficient when ap-
plied to causality, as it does not account for the
complexities introduced by the existence of the
causal relationship and its directionality. This re-
quires a more nuanced treatment, as causal relation-
ships inherently involve questions of existence and
directionality that are not present in conventional
predictive modeling.

C.2 Uncertainty Expression
In machine learning, there are three major ways of
expressing uncertainty:

• Numerical Uncertainty Quantification: Mod-
eling the level of uncertainty with a numerical
score. Calibration scores, conditional prob-
abilities, predictive entropy, and confidence
regions (Xiao et al., 2022; Kuhn et al., 2023;
Fadeeva et al., 2024; He et al., 2024; Bak-
man et al., 2024; Duan et al., 2024; Chen and
Mueller, 2024) can be categorized into this
type.

• Set-Valued Prediction: Instead of providing
only one answer, provide a set of candidate
answers. Methods like conformal predic-
tions (Angelopoulos and Bates, 2021; Ulmer
et al., 2022) fall into this category.

• Abstain Answering (Selective Prediction): In-
stead of giving a definite answer or giving a
set of candidates, avoiding answering is an-
other way of expressing uncertainty when the
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Figure 6: A concentric view of causal uncertainty
types—aleatoric, epistemic, and ontological. Although
depicted as conceptually distinct, real-world cases fre-
quently blur these boundaries, highlighting their inter-
woven nature in practice.

model’s confidence is not high enough (Ka-
math et al., 2020; Xin et al., 2021; Zhou et al.,
2024).

These existing methods primarily handle uncer-
tainty from a predictive modeling perspective and
are not well adapted to the specific demands of
causal inference. Causality involves understanding
not just correlations but the underlying mechanisms
and effects of interventions, which requires a more
refined framework for uncertainty expression.

D Entangled Uncertainties: How
Aleatoric, Epistemic, and Ontological
Uncertain Factors Intertwine?

Although we distinguish aleatoric, epistemic, and
ontological uncertainties as three conceptually sep-
arate types(as viewed in Figure 6), real-world
causal problems often exhibit intricate interactions
among them. Below are two illustrative scenarios:

• Ontological uncertainty leading to model lim-
itations (epistemic uncertainty): For instance,
a hidden or unaccounted causal factor may
introduce ontological uncertainty about the
underlying structure of a medical study. If a
genetic trait is unobserved, researchers face
existential doubts about whether a purported
cause actually influences a health outcome.
This gap in causal structure then manifests
as epistemic uncertainty: the model remains
limited in predicting outcomes because it is
missing a critical piece of information.

8040



0.0 0.2 0.4 0.6 0.8 1.0
Causal Strength

0.0

0.2

0.4

0.6

0.8

1.0

Ca
us

al
 U

nc
er

ta
in

ty
Relationship between Causal Strength and Causal Uncertainty - facilitative_strength

Causal Strength vs. Entropy (facilitative_strength)

(a) Facilitative causal strength.
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(b) Net causal strength.
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(c) Maximum causal strength.

Figure 7: Relationship between causal strength and causal uncertainty using different formulations of causal
strength.

• From random variability (aleatoric) to unde-
cided existence (ontological): For instance, in
agricultural experiments, the crop yields usu-
ally fluctuate due to various factors, including
weather, soil health, and seed genetic differ-
ences. Such inherent randomness (aleatoric)
may obscure the causal inference conclusion
of whether a new fertilizer truly increases crop
yield or not. In this case, the systems en-
counter ontological uncertainty as they are
not sure about whether a causal relationship
holds or not.

These examples underscore that real-world
causal analysis rarely isolates just one type of uncer-
tainty. Instead, apparent shortfalls in data, models,
or even the existence of a causal link often blur the
lines between aleatoric, epistemic, and ontological
considerations.

E More Discussion about Causal Strength
and Causal Uncertainty

There can be various definitions of causal strength
and causal uncertainty. Suppose there is a ternary
classification problem with labels of (i) l = 1:
event C facilitates the occurrence of event E; (ii)
l = −1: event C prevents the occurrence of event
E; (iii) l = 0: event C has no influence on the
occurrence of event E. In this setting, there is a
relationship between causal uncertainty and causal
strength.
Causal Uncertainty. In this case, the predictive
entropy about causal uncertainty is defined as

Φ(C,E) = −
∑

l∈L
p(l|(C,E)) log p(l|(C,E))

(2)
where L = {+1,−1, 0} is the set of labels. This
entropy measures the degree of uncertainty in pre-
dicting the causal relationship between C and E. A
higher entropy indicates greater uncertainty, while

a lower entropy suggests more confidence in the
prediction.
Causal Strength. The causal strength,
CS(C,E) and defined in the following three ways:

• Facilitative Causal Strength: Focuses on the
facilitative effect of C on E.

CS(C,E) = p(l = +1 | (C,E)) (3)

This definition captures how likely C is to pos-
itively impact E. It is useful in contexts where
the main interest is in enhancing positive out-
comes, such as determining the effectiveness
of a treatment or intervention.

• Net Causal Strength: Balances facilitative and
preventative effects.

CS(C,E) =p(l = +1 | (C,E))−
p(l = −1 | (C,E))

(4)

This definition provides a balanced view of the
overall impact by considering both positive
and negative influences. It helps assess the net
effect, which is valuable in scenarios where
both facilitation and prevention matter.

• Maximum Causal Influence: Reflects the
strongest effect among facilitation, prevention,
or neutrality.

CS(C,E) = max
(
p(l = +1 | (C,E)),

p(l = −1 | (C,E)),

p(l = 0 | (C,E))
) (5)

This approach highlights the most dominant
influence of C on E, whether facilitative, pre-
ventative, or neutral. It is particularly useful
when identifying the strongest effect, which is
crucial, such as in decision-making processes.
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The visualization of the relationship between
causal uncertainty and causal strength using differ-
ent formulations of causal strength is presented in
Figure 7. The plots show that as causal strength
increases, causal uncertainty tends to decrease, sup-
porting the notion that they are inversely related but
not strictly inverses of each other. Furthermore, it’s
important to note that while a high causal strength
generally corresponds to lower causal uncertainty,
a low causal strength does not necessarily imply
high uncertainty. The uncertainty depends on the
distribution of probabilities across the labels. For
example, if all probabilities are low and evenly dis-
tributed, uncertainty is high, but if one probability
is low and the others are negligible, uncertainty
may still be low due to the dominance of one out-
come.

F Impact of Causal Uncertainty on LLMs

Causal uncertainty poses a significant challenge to
the reliability of causal decisions given by LLMs.
Addressing this issue requires a comprehensive un-
derstanding of the different types of uncertainties’
impact on LLMs and a systematic evaluation of this
influence. In this section, we first highlight how
each type undermines the performance of causal
reasoning in LLMs. Subsequently, we propose sev-
eral promising evaluation methodologies designed
to quantify and mitigate the impact of these uncer-
tainties on LLM outputs.
Types of Causal Uncertainty in LLM Outputs .
Though LLMs often show impressive performance,
hidden uncertainties in causality can lead to flawed
causal conclusions (Zečević et al., 2023; Tang et al.,
2023; Liu et al., 2023a; Jin et al., 2024; Mündler
et al., 2024). By highlighting examples of aleatoric
randomness, epistemic knowledge gaps, and onto-
logical misinterpretations, we reveal how each un-
certainty type can degrade LLM outputs. This per-
spective underlines the need for more transparent,
uncertainty-aware modeling strategies in LLMs to
mitigate spurious or even erroneous causal claims
in practice.

• Aleatoric uncertainty: Inherent randomness
in data samples can lead to LLMs’ inconsis-
tent and incorrect causal decisions (Liu et al.,
2024c). For instance, even with controlled
experiments, LLMs may still make erroneous
decisions regarding treatment for patients, as
patients’ reactions to the same treatment vary.
This is due to individual differences.

• Epistemic uncertainty: Missing data or model
design flaws will likely cause LLMs to hal-
lucinate over the causal links (Zečević et al.,
2023; Jin et al., 2024). For example, an LLM
might incorrectly link diet to specific health
outcomes if critical variables like genetics are
missing. This might be due to the missing
data in the LLMs’ pre-training corpus.

• Ontological uncertainty: LLMs might gen-
erate spurious causal connections (Mündler
et al., 2024; Liu et al., 2024d), such as linking
ice cream sales to shark attacks when only a
confounder(confounded by hot weather) ex-
ists but no direct causation between ice cream
and shark attacks.

In conclusion, these diverse forms of causal un-
certainty can substantially degrade the reliability
of LLM outputs. Addressing them is essential for
conducting robust, trustworthy causal reasoning for
LLMs.
Evaluating the Influence of Causal Uncertainty
on LLM Outputs. Systematic evaluation of
causal uncertainty’s influence on large language
models (LLMs) is critical for identifying and then
mitigating erroneous causal conclusions. There
are several promising approaches to effectively
measure this impact: (i) Specific benchmark con-
struction: novel benchmarks can be designed that
specifically challenge LLMs with scenarios in-
volving spurious causal links, such as those that
are purely correlational or confounded. Addi-
tionally, constructing datasets annotated with ex-
plicit uncertainty-level indicators can further assess
whether LLMs accurately express uncertainty or
avoid unwarranted definitive claims; (ii) Quanti-
tative assessment approaches: These quantitative
assessment approach include (a) tracking halluci-
nation rates by comparing model-generated causal
attributions against established ground truths; (b)
evaluating self-consistency and self-contradictions
through minimally perturbed prompts for causal
reasoning; (c) provide robust metrics for examining
how effectively LLMs manage causal uncertainty.
These methodologies constitute a comprehensive
framework for diagnosing and ultimately enhanc-
ing the robustness of LLMs’ causal reasoning under
uncertainty.

G Future Research Directions

Numerical (or Comparative) Benchmark Con-
struction for Causal Uncertainty. Current
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benchmarks often represent causal uncertainty as
uncertain factors rather than through numerical val-
ues (e.g., 0.1, 0.9) or epistemic modal expressions
(e.g., “most likely”, “perhaps”) (Rudinger et al.,
2020; Cui et al., 2024c). This limitation restricts
the ability to quantitatively measure and compare
uncertain factors. Therefore, creating datasets that
support numerical and comparative quantification
is crucial for advancing causal models and enhanc-
ing uncertainty assessment methods.
Causal Uncertainty Quantification. Accurate
quantification of causal uncertainty is important in
high-stake domains such as finance and medical di-
agnosis. We highlight several promising directions:
(i) Quantification with causal interventions: By
manipulating specific variables and measuring the
effects (Zhang et al., 2020; Wang et al., 2022), we
can estimate how interventions impact uncertainty
levels, which is vital for robust decision-making
in fields like policy-making, medicine, and eco-
nomics; (ii) Quantification of uncertainty in coun-
terfactual reasoning: Counterfactual reasoning es-
timates the effects of interventions by comparing
actual outcomes to hypothetical scenarios. How-
ever, current methods provide a single counterfac-
tual prediction without indicating its uncertainty.
Future research is needed to quantify uncertainty
in counterfactual scenarios.
Towards Better LLMs for Causal Uncertainty.
LLMs have made significant strides in causal rea-
soning but still face limitations when handling
causal uncertainty. Future work should focus on:
(i) Enhancing LLMs’ consistency and confidence:
Improve the reliability of LLMs by ensuring their
causal predictions are stable, reproducible, and con-
sistent (Cui et al., 2024b); (ii) Achieving versatility
in causal reasoning: Enable LLMs to effectively
handle various types of causality, including associ-
ational, interventional, counterfactual, data-based,
and commonsense causality (Yang et al., 2024;
Kiciman et al., 2024; Liu et al., 2023c, 2024b);
(iii) Accurate estimation of uncertain influences:
Enhance LLMs’ ability to identify and quantify the
impact of uncertain factors across all uncertainty
types discussed in § 2. More details on the desired
characteristics for LLMs in causality are provided
in § 4.3.

H Glossary of Terms and Concepts

This section presents definitions and examples of
key terms and concepts involved in this survey,

helping readers unfamiliar with these terminolo-
gies. The definitions and illustrative examples of
these terminologies are provided in Table 5, includ-
ing causal uncertainty, causal strength, aleatoric
uncertainty, epistemic uncertainty, ontological un-
certainty, and predictive uncertainty.
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Term Definition Example(s)
Causal Uncertainty Causal uncertainty refers to the ambiguity

and unknown factors in identifying, rea-
soning, or quantifying causal relationships.
It encompasses three types of uncertainty:
aleatoric, epistemic, and ontological uncer-
tainty.

When investigating the impact of medicine
on illness treatment, causal uncertainty
may arise from limited clinical data, po-
tential confounders, and difficulty in estab-
lishing a solid cause-effect relationship.

Causal Strength Causal strength is a measure that gauges
how strongly a cause leads to the occur-
rence of its effect.

Under the context of probability raising the-
ory, causal strength could measure smok-
ing’s effect on lung cancer by assessing
how smoking increases the likelihood of
lung cancer.

Aleatoric Uncertainty Generally, aleatoric uncertainty arises from
inherent randomness or unpredictability in
the data. It is irreducible with more data. In
causality, the aleatoric causal uncertainty is
mainly due to natural variability in causal
effects, as described in § 2.1.

In medical research, smoking’s effect on
lung cancer varies from person to person.
This variation is irreducible even with more
study cases. Similar aleatoric uncertainty
examples include that a drug designed to
regulate blood sugar levels may have vary-
ing effects on different patients due to bio-
logical variability.

Epistemic Uncertainty Epistemic uncertainty refers to the uncer-
tainty caused by incomplete knowledge
about causal mechanisms or limitations in-
herent to the model structure and parame-
ters.

A model predicting medication effects has
epistemic uncertainty if it lacks informa-
tion on patients’ diets. Recognizing this
helps improve causal models by identify-
ing where additional data could enhance
accuracy.

Ontological Uncer-
tainty

Different from aleatoric and epistemic un-
certainty, ontological uncertainty is exclu-
sive to causality due to the existential un-
certainty of the causal link.

In causality, ontological uncertainty is
about the existence or validity of a causal
relationship. Examples include the correla-
tion between ice cream sales and drowning
incidents(the confounder is hot weather).

Predictive Uncertainty Predictive uncertainty primarily estimate
how uncertain an AI agent is in its predic-
tion (Malinin and Gales, 2018; Ulmer et al.,
2022). In § 3, we adapt the uncertainty
quantification formula as the method for
quantifying causal uncertainty.

Predictive uncertainty has been studied
in text classification (Van Landeghem
et al., 2022), conditional language gener-
ation (Xiao and Wang, 2021), ensemble
models (Lakshminarayanan et al., 2017),
etc.

Conformal Prediction Conformal prediction quantifies uncer-
tainty by providing a set of possible out-
comes or intervals, expressing uncertainty
by giving a range within which the true out-
come is likely to lie.

For medical diagnosis, conformal predic-
tion generates a set of potential diagnoses
with confidence levels. It aids robust
decision-making by providing confidence
regions around causal estimates.

Ladder of Causation The original Judea Pearl’s ladder of cau-
sation (Pearl, 2009; Pearl and Macken-
zie, 2018) consists of three levels:
(i) association (p(e|c)); (ii) interven-
tion (p(y|do(x), z)), and (iii) counterfac-
tual (p(ec|c′, e′)).

Association (Seeing): How does watching
more TV correlate with students’ academic
performance?
Intervention (Doing): If we restrict the TV
time for students, will students’ academic
performance improve?
Counterfactual (Imagining): If I had not
watched too much TV, would my academic
performance have progressed differently?

Table 5: Glossary of key terms in causal uncertainty.
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