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Abstract
Typically, when evaluating Theory of Mind, we
consider the beliefs of others to be binary: held
or not held. But what if someone is unsure
about their own beliefs? How can we quan-
tify this uncertainty? We propose a new suite
of tasks, challenging language models (LMs)
to model the uncertainty of participants in a
dialogue. We design these tasks around con-
versation forecasting, where the goal is to pre-
dict the probability of an unobserved conversa-
tion outcome. Uniquely, we view conversation
agents themselves as forecasters, asking an LM
to predict the uncertainty of an individual from
their language use. We experiment with scaling
methods, bagging, and demographic context for
this regression task, conducting experiments
on three dialogue corpora (social, negotiation,
task-oriented) with eight LMs. While LMs can
explain up to 7% variance in the uncertainty of
others, we highlight the difficulty of the tasks
and room for future work, especially in tasks
that require explicit shifts in perspective.

1 Introduction

Theory-of-mind (ToM) and, specifically, false be-
lief prediction are vital for planning and decision-
making in conversation (Ho et al., 2022). While
beliefs are often treated as existing in a binary state
(held or not held), there are situations where an in-
dividual’s belief is better represented more flexibly
(e.g., held, not held, or unsure), capturing uncer-
tainty or belief intensity. For instance, intelligent
tutoring systems need to model student uncertainty
about course materials to provide effective feed-
back (Forbes-Riley and Litman, 2009; Jraidi and
Frasson, 2013), and in task-oriented settings, peo-
ple may even be unsure of their goals (Sicilia et al.,
2023), impeding success when this uncertainty is
not considered (see Figure 1). Meanwhile, recent
work suggests that the perceived uncertainty in AI
systems does not always align with human uncer-
tainty in dialogue (Testoni and Fernández, 2024).

Figure 1: Recognizing uncertainty in others can influ-
ence AI dialogue strategies, ultimately improving task-
success. Here, an AI assistant recognizes user uncer-
tainty and probes to resolve it, eventually increasing
user satisfaction. We formalize tasks to assess model
ability to recognize uncertainty from language cues.

This paper studies whether language models can
recognize an individual’s uncertainty from the lan-
guage they use in conversation. We study this spe-
cific ToM capacity in language models, using con-
versation forecasting as a tool. Whereas existing
forecasting tasks (Sokolova et al., 2008; Zhang
et al., 2018; Sicilia et al., 2024) focus on predicting
aleatoric factors of uncertainty, which are inherent
to the data and independent of perspective, we fo-
cus on predicting subjective and individual factors
of uncertainty held by each conversation partici-
pant. In particular, we ask models to forecast the
uncertainty of others’ beliefs as well as the uncer-
tainty of others’ beliefs about others.

As noted, the ToM tasks we study emphasize
an important capability for conversational agents,
like language models: their ability to reason about
others’ mental states, and particularly, uncertainty.
Conversational agents use these skills to collabo-
rate and achieve goals, making these intimately re-
lated to communicative grounding – the collabora-
tive process whereby language is used to establish
mutual understanding (Clark and Brennan, 1991).
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While the latter focuses on how shared knowledge
can be established through direct evidence, such as
acknowledgment (e.g., okay, got it), ToM enables
reasoning about beliefs without explicit validation,
instead using language cues to make assumptions.
Both processes can work together during a conver-
sation, as when recognizing uncertainty triggers
behaviors like acknowledgment (Nilsenová, 2001).

To formalize belief uncertainty, we build on a tra-
ditional statistical view, where uncertainty is mea-
sured via probability (Bröcker, 2009), granting us
an established framework to design our tasks. Be-
lief uncertainty can be measured on a ternary scale
(yes, no, maybe) or more general spectrum (e.g.,
a Likert scale) and we discuss some strategies to
calibrate these human annotations to real-world
probabilities. Meanwhile, to capture differences in
individual perspective, we disentangle this proba-
bilistic notion into two components – the epistemic
(subjective) and the aleatoric (ground-truth) – com-
mon to modern studies of uncertainty in machine
learning (Hüllermeier and Waegeman, 2021). In-
terestingly, our formal setup defines a series of
regression tasks, allowing us to explore the rela-
tively unexplored area of continuous inference with
language models (Vacareanu et al., 2024). In this
context, we study the relation between traditional
methodologies, like bagging, and recent language
modeling methods, like self-consistent chain-of-
thought (Wang et al., 2023) for the first time.

In initiating this evaluation of ToM about uncer-
tainty, we offer a few contributions:

1. we formalize “false uncertainty” – a concept
akin to false belief – and connect it to Theory
of Mind and forecasting (§ 2.2), using this to
motivate a new task suite (§ 3.2);

2. we propose new methods to forecast others’
uncertainty with language models (§ 4), study-
ing ways to use language models for regres-
sion and calibrate probability estimates with
continuous labels (rather than discrete);

3. we study impacts of individual demographics,
goals, and other context on model ToM (§ 5).

From experiments (§ 5) across three corpora (social,
negotiation, and task-oriented) and eight models,
our findings suggest that language models are able
to explain some of the variance in others’ uncer-
tainty (up to 7%). Yet, we also observe the diffi-
culty of this task, even for humans, making code
open-source to promote progress.1

1https://github.com/anthonysicilia/forecasting-tom

2 Conversation Forecasting and ToM

We focus on the setup of Sicilia et al. (2024) where
an agent observes a conversation and is asked to
express their uncertainty about a potential out-
come for this conversation; e.g., “How much does
Speaker A like Speaker B?” or “Will the negotiation
result in a deal?” As implied, the conversation is
just a partial window into the true (or, eventual)
ground-truth. Hidden information, such as future
events or mental states, creates an inherent random-
ness about reality, which may not be fully deter-
mined by the available evidence. In this context,
we assume a (human) agent forms a mental model
capturing their uncertainty about the outcome – a
“forecast” about whether the outcome will occur.

2.1 Comparing Forecasts with Ground-Truth

Given a (potentially partial) conversation and any
accompanying evidence about the situation (e.g., in-
terlocutor context), the forecasting agent expresses
their uncertainty P about the outcome of interest.
For now, we assume P is a probability estimate, but
later allow other expressions of uncertainty (§ 3.1).
The forecast P is evaluated by Brier score:

BS = (P −O)2 (1)

where O is a binary indicator of the outcome (e.g.,
1 if a deal occurs, 0 else). Forecasters with accurate
uncertainty estimates (agreeing exactly with the
distribution of O) will have a lower Brier score
than other, less accurate forecasters. Brier score
also ranks sub-optimal forecasts with consideration
of both calibration and variance (Bröcker, 2009).

2.2 The Missing Building Blocks for ToM

We observe that Brier score, alone, does not cap-
ture the full story about an agent’s uncertainty P .
Indeed, the Brier score measures two individual
aspects of uncertainty:

E[BS] = Var[O]︸ ︷︷ ︸
aleatoric uncertainty

+ E[(P − p)2]︸ ︷︷ ︸
epistemic uncertainty

(2)

where p is the probability O = 1. While the out-
come variance captures the inherent randomness of
the forecasting task, the latter quantifies the fore-
caster’s excess errors that should not be attributed
to this randomness. These model-specific aspects
of error are the epistemic uncertainty (Lahlou
et al., 2022; Hüllermeier and Waegeman, 2021).
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CaSiNo CANDOR MultiWOZ

S1: Nice to interact with you!
S2: Same here. I hope to get some items
for my family...
S1: Yes, let’s make a deal that benefits
both families.
...negotiation continues
S2: I get it, but I guess we will have to
compromise...
S1: I’d like the option of 2 food packs.
S2: In that case I’ll take additional fire-
wood and water
S1: Sounds fair...

S1: our office is neat. We have people
with all sorts of different backgrounds...
S2: mm
S1: theater,
S2: hmm,
S1: um like business
S2: mhm
S1: the managing partner of our office.
S2: Yes.
S1: Her degree is in art
S2: wow.
...conversation continues

S1: what type of attraction?
S2: I don’t know, let’s say a museum. I
need the address too.
S1: castle galleries is quite nice, they
are at unit su43, grande arcade, saint
andrews st. Free admission too
S2: Free is the right price tag for me.
I appreciate all your help, that’s it for
today. Have a great day!
S1: Glad I could help, have a great day.
S2: You too and thank you for your
help. I’m looking forward to a nice day.

How certain is S1 they are more satis-
fied than would occur by chance?
→ Ground-truth P = 11%
→ Predicted P̂ = 40%

How certain is S2 they like S1 more
than would occur by chance?
→ Ground-truth P = 27%
→ Predicted P̂ = 90%

How certain is S2 they are more satis-
fied than would occur by chance?
→ Ground-truth P = 81%
→ Predicted P̂ = 90%

Table 1: Dialogues adapted from examples in each corpus. Below these, model prompts are shown for the 1st-Order ToM task,
demonstrating “more than chance” calibration strategy, ground-truth uncertainty, and estimates by Meta’s Llama 3.1 70B.

Integrating ToM in Forecasting Uniquely, we
consider the epistemic uncertainty of human inter-
locutors (treated as forecasters) in a conversation.
This dual interpretation captures the individual as-
pects of an interlocutor’s uncertainty by comparing
their forecast to ground-truth. Precisely, it mea-
sures the fluctuations in uncertainty caused by the
interlocutor themselves – their knowledge, percep-
tions, and biases – rather than those (fluctuations)
which may be attributed to changes in ground-truth.
Based on the epistemic uncertainty, we define an
interlocutor’s false uncertainty as:

FUn = P − p. (3)

False uncertainty similarly captures subjective fluc-
tuations, but preserves the direction of this sub-
jectivity, distinguishing between positive (over-
confident) or negative (under-confident) forms of
uncertainty. Quantifying false uncertainty will be
the primary motivation for our task design. While
works have focused on improving the quality of a
forecast (the Brier score), ours is first to propose
quantification of other interlocutors’ uncertainty.

2.3 Related Studies of Theory-of-Mind
Theory-of-Mind is often evaluated (in language
models) using question-answering (Nematzadeh
et al., 2018; Le et al., 2019; Sap et al., 2022);
which, for instance, mimics common ToM eval-
uations from psychology, like the Sally-Anne test.
Other proposals study machine ToM in situated and
collaborative environments (Bara et al., 2021; Ma
et al., 2023b; Li et al., 2023), focus on higher-order
ToM (Wu et al., 2023), or consider ToM beyond

(more common) belief/false belief anticipation (van
Duijn et al., 2023). Inference-time methods to im-
prove ToM in language models have also been stud-
ied (Takmaz et al., 2023; Sclar et al., 2023). Yet,
whenever beliefs are involved, they are typically as-
sumed to held or not held. Our forecasting setting
resolves this by emphasizing the potential uncer-
tainties attached to a belief.

While our work is the first to operationalize
the forecasting setting for purpose of a dedicated
theory-of-mind evaluation suite, it is important to
acknowledge myriad other pragmatic reasoning
tasks that can also involve modeling of belief un-
certainty (Fried et al., 2023). For example, these
include reference games (Monroe et al., 2017) and
certain goal-oriented dialogue tasks (Haber et al.,
2019). Other formal models of (uncertain) commu-
nication, such as the Rational Speech Acts frame-
work, are also well-equipped to handle notions
of uncertainty in a ToM context (Goodman and
Stuhlmüller, 2013). These tasks and frameworks
are related to our current framing, but our use of
the forecasting setting enables a more precise and
focused task definition.

Lastly, it is important to discuss the formal def-
inition of Theory-of-Mind. Quesque and Rossetti
(2020) suggest ToM evaluations should require
representation of a mental state that differs from
one’s own (non-merging criterion) and ensure task-
success cannot be based on lower-level processes
(mentalizing criterion). For example, inferring
someone’s uncertainty based purely on one’s own
opinion or observed environmental factors would
not constitute ToM. Since language models do not
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have mental states, non-merging can be achieved by
information-asymmetry (Kim et al., 2023), which
forces the model to predict distinct (non-merged)
perspectives. In forecasting, this distinction lies in
the interlocutor uncertainty P and ground-truth p,
whenever P ̸= p. As for mentalizing, this crite-
rion is undermined by spurious data correlation, to
which language models are susceptible (Kim et al.,
2023; Shapira et al., 2024). Our current, natural
conversation corpora (§ 3.3) do not necessarily ex-
clude the possibility that models are actually using
spurious features to make their predictions. Albeit,
it has been suggested socially situated tasks, like
ours, can mitigate potential confounding (Ma et al.,
2023a). Using controlled data can completely re-
move confounding, which we leave as future work.

3 New Uncertainty Quantification Tasks

3.1 Human Expressions of Uncertainty
As we are (uniquely) interested in humans as con-
versation forecasters, probability annotations are
not necessarily the most effective way to elicit un-
certainty or intensity of belief. Indeed, most of
the corpora we study (§ 3.3) annotates belief inten-
sity on a Likert scale; e.g., “on a scale from 1 to
10, how much do you think Speaker B likes you.”
We focus on probability estimates because these
can be compared to ground-truth world states; i.e.,
whether B actually “likes,” to enforce non-merging
(§ 2.2). Without “the world” or “reality” as refer-
ence, we have no way to define subjective, or false,
uncertainty. Thus, we map human expressions to
probability estimates to enable comparison.

Calibration Strategy: “More Than Chance”
Mapping verbal or quasi-continuous expressions of
belief uncertainty to probabilities is a calibration
problem; e.g., it has been approached for language
models using scaling (Tian et al., 2023). In this
work, we enable calibration by making a slight se-
mantic change to the outcome of interest. Instead
of studying “whether Speaker B likes Speaker A”
we study “whether Speaker B likes Speaker A more
than would occur by chance.” This alteration ties
belief intensity annotations to a ground-truth out-
come that is observable in data. Precisely, follow-
ing the colloquial meaning of “more than chance”
in the statistics literature, the ground-truth probabil-
ity is defined by a p-value for the magnitude of the
belief, computed from the data. In turn, appending
“more than chance” defines both ground-truth out-
come probabilities and an appropriate calibration

function for human expressions of intensity. We
provide details in § A.1.

3.2 Uncertainty Quantification (UQ) Tasks

1st-Order ToM Uncertainty (1TUQ) To quan-
tify false uncertainty, one first needs to quantify
an interlocutor’s base uncertainty about their belief
(i.e., the forecast P ). Aptly, our first task eval-
uates a language model’s ability to quantify the
base uncertainty of others. For instance, suppose
an interlocutor A expresses their uncertainty about
“whether A is happy” and this is calibrated to a
probability forecast P .2 The language model’s task
is to make a prediction P̂ about the uncertainty of
A’s belief. We evaluate this prediction using regres-
sion metrics; e.g., the correlation between P and
P̂ , the absolute error, and the explained variance.

2nd-Order ToM Uncertainty (2TUQ) Besides
their own beliefs, interlocutors also hold uncer-
tainty about the beliefs of others. For instance, an
interlocutor A can express their uncertainty about
“whether interlocutor C likes A”. Then, TUQ tasks
the language model with quantifying the uncer-
tainty of A about C’s belief. Similar to the first-
order task, we evaluate a language model’s predic-
tion by comparing it to A’s true uncertainty.

False Uncertainty (FUnQ) Finally, we ask lan-
guage models to directly quantify an interlocutor’s
false uncertainty. In essence, this requires them to
quantify both the interlocutor’s uncertainty about a
belief as well as the ground-truth probability that
the belief is true (the outcome probability p). For
instance, P may be a forecast about “whether inter-
locutor C likes A” and p may be the ground-truth
probability that “C likes A.” The language model
is tasked with quantifying FUn = P − p, and we
evaluate this estimation using regression metrics.

3.3 Corpora and Basic Prompts

CaSiNo is a corpus of negotiations about camp-
resource allocation (Chawla et al., 2021). Inter-
locutors barter over available resources, such as
fire-wood and water, based on (assigned) resource
preferences. Performance-based monetary incen-
tives stimulate competitive behaviors. Interlocutors
indicate their satisfaction with the final deal on a 5-
point scale. For an interlocutor A, we ask language

2Recall, belief intensity needs calibration to a world out-
come to make sense as a probability; e.g., “A tells friends
about happiness.” We use an outcome observable in the data,
i.e. “whether A is happier than would occur by chance.”
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models to predict “how certain A is that they are
more satisfied than would occur by chance.” Pre-
cise details are in § A.3. This formulation allows
us to evaluate language models for 1st Order ToM
uncertainty quantification (1TUQ). The average
number of tokens in a conversation is 320.

CANDOR is a corpus of spoken conversations
between strangers, conducted over video communi-
cation platform (Reece et al., 2023). Conversations
are social in nature with minimum time constraints
and an assigned goal of “getting to know each
other.” Exit interviews (conducted privately) ask
interlocutors to quantify how much they like each
other on a 7-point scale, as well as how much they
think their conversation partner likes them. For two
interlocutors A and B, we ask language models to
predict “how certain is B that they like A more than
would occur by chance.” As with CaSiNo, this lets
us evaluate language models at the first-order task
(1TUQ). Because of the available data, we also ask
language models to predict “how certain is A that
B likes A more than would occur by chance.” As
we discuss in § 4, this lets us evaluate models at the
second-order task (2TUQ) and False Uncertainty
Quantification (FUnQ). The average token-count
is 11K, but we only show models the first 5K.

MultiWOZ is a task-oriented Wizard-of-Oz cor-
pus wherein one human plays the role of a con-
versational booking system (for hotels, restaurants,
etc.) and the other plays as user (Eric et al., 2020).
Additional annotations (Sun et al., 2021) designate
perceived satisfaction of the user by crowd-workers
on a 5-point scale. This annotation is less organic
than previous datasets, but it can be considered
a representative proxy, capturing how annotators
might feel if they were in the user’s position. As
such, we ask language models to predict “how cer-
tain the user is that they are more satisfied than
would occur by chance” using the average crowd-
worker annotation as ground-truth. This allow us to
evaluate 1TUQ. The average token-count is 460.

4 Methods

4.1 Forecasting the Uncertainty of Beliefs

Direct Forecasting (DF, Sicilia et al., 2024) is
a good “out-of-the-box” method for uncertainty-
aware conversation forecasting with language mod-
els. Adapted to our belief anticipation problem, we
prompt the language model to express its predicted
uncertainty for the interlocutor on a 10-point scale.

We parse the prediction directly from the model’s
sampled completion and divide by 10 to get an es-
timate P̂ for the interlocutor’s true forecast P . In
general, we use the Chain of Thought (CoT) strat-
egy proposed by Kojima et al. (2022), asking the
model to approach the prediction “step-by-step.”

4.1.1 Post-Hoc Scaling
Post-hoc scaling (calibration) tends to improve di-
rect forecasts (Tian et al., 2023; Sicilia et al., 2024),
requiring only a small amount of data. Notably, our
ToM tasks work with continuous uncertainty an-
notations in place of traditional, discrete outcome
annotations. We propose new scaling methods to
accommodate our data.

Platt Scaling: DF (PS) One option is to assume
the relationship between the true uncertainty P and
the predicted uncertainty P̂ is linear in the logits;
e.g., this is common in soft classification (Platt
et al., 1999). In our new setting,

logit(P ) ≈ α · logit(P̂ ) + β. (4)

The new (re-scaled) forecast is:

P̂PS = expit
(
α · logit(P̂ ) + β

)
(5)

where α, β are the MLE estimates of Eq. (4).

Linear Scaling: DF (LS) We also suggest linear
scaling, which instead learns a direct linear map:

P̂LS = clip(α · P̂ + β, 0, 1). (6)

4.1.2 Fine-Tuning a Regression Head (FT)
In place of direct forecasts, fine-tuning a classifica-
tion head on a language model’s latent features can
help boost performance in soft classification (Kada-
vath et al., 2022). Again, since our annotations are
continuous, we slightly modify this, replacing the
classification head with a regression head. Specif-
ically, using the same prompt as DF, the language
model encodes latent features x and inference is
conducted as:

P̂FT = fθ(x) (7)

where fθ is the regression head. We test a linear
regression head denoted FT (L), a 2-layer ReLU-
network head denoted FT (NN), and a random for-
est head denoted FT (RF). Details are in § A.4.
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Figure 2: Comparison of workflow for direct forecasting with calibration (DF) and fine-tuning with regression-heads (FT). The
Bag-of-Thoughts (BoT) method is applied during the causal LLM step, aggregating predictions before any logistic or linear
scaling. If included, demographic information (DEM) is used to modify prompts at the start of the workflow.

4.1.3 Bias and Variance
Classically, for a fixed probability P , the MSE of a
corresponding estimate P̂ can be decomposed:

E[(P − P̂ )2] = Var[P̂ ] + Bias2(P, P̂ ) (8)

where Bias(P, P̂ ) = E[P̂ ]−P . This points to two
possible ways we can reduce error, discussed next.

Bagging (BoT) Bagging or Bootstrap Aggregat-
ing trains many models on random samples from
the same data and averages the predictions of all the
models. For instance, this is how random forests
(RF) are trained (Breiman, 2001). It is a known
variance reduction strategy, and is why we explore
RF as a regression head. Another strategy we can
take, with language models, is to “bag” the Chain-
of-Thought (CoT) inferences generated when we
prompt models to “think step-by-step.” We sug-
gest re-sampling the direct forecasts produced by
this CoT prompt many times (n = 10) and aver-
aging these to make an inference. The changes in
sampling distribution triggered by each new expla-
nation make this distinct from greedy decoding (see
Table 7). It is akin to traditional bagging, except we
re-sample model explanations, instead of training
data. We call this approach a “Bag of Thoughts”
(BoT). Notably, our strategy is similar to, yet dis-
tinct from, self-consistent decoding in classifica-
tion (Wang et al., 2023), where a majority vote is
used to aggregate multiple CoT inferences. With
majority votes, variance reduction is not necessar-
ily a plausible motivation, since the bias-variance
trade-off is not well defined (Brown and Ali, 2024)
and reducing variance can actually increase error
(James, 2003). In contrast, our method uniquely
connects CoT aggregation to variance reduction.

Demographic Data (DEM) provides important
background information about the interlocutor in
question. Particularly, we consider the age, sex,
race, and education of the interlocutor. We hy-
pothesize these characteristics reduce prediction

bias because they add situational context, an impor-
tant aspect of Theory of Mind (Ma et al., 2023b).
Moreover, language models are known to inherent
and propagate certain social biases (Gallegos et al.,
2023) and improved context representations – such
as those achieved by making demographics clear –
can be an effective means to mitigate the biases in
generative inference (Sicilia and Alikhani, 2023).

4.2 Forecasting False Uncertainty

A straightforward way to predict false uncertainty
is to have the model shift perspectives across two
inference steps. For instance, in CANDOR, we
predict A’s uncertainty about “whether C likes A...”
and then predict the ground-truth probability that
“C likes A...”, shifting perspectives from A to the
outside world (C’s belief, in this case). Denoting
these P̂ and p̂, respectively, we combine estimates:

ˆFUn = P̂ − p̂. (9)

The same strategies discussed in § 4.1 can be used
to make the individual components of this infer-
ence, learning p̂ and P̂ , separately. Alternatively,
one can estimate ˆFUn directly. This makes the
most sense in the fine-tuning setting, where both la-
tent representations (from the p̂ and the P̂ prompt)
can interact in a (non-linear) regression head to
improve inference. -J denotes this joint strategy.

5 Experiments

We use the 3 datasets/prompting schemes discussed
in § 3.3. More details on prompts are in § A.3. We
use 5 different random seeds to create 5 distinct
train/test splits. For training, n = 100 unless other-
wise noted. Models are listed in tables with version
numbers and inference strategies detailed in § A.2

Metrics We report standard regression metrics
including the Pearson (linear) correlation R, the
Spearman (rank) correlation ρ, the mean absolute
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method xl MAE R2 min max

DF ✗ 44.9 -370 -620 -110
DF (LS) ✗ 22.2 1.5 -4.1 7.5
DF (PS) ✗ 31.9 -180 -740 -1.8
FT (L) ✗ 22.5 -1.0 -2.3 1.1
DF (LS) ✓ 22.1 2.1 -5.3 12.5
FT (L) ✓ 22.2 0.1 -5.1 3.7
FT (NN) ✓ 22.3 -9.2 -30.5 5.4
FT (RF) ✓ 21.9 1.3 -5.4 7.6

Table 2: Regression performance on first-order Theory of
Mind uncertainty quantification (1TUQ). No BoT or demo-
graphic data is used. Direct forecasts (DF) are linearly cor-
related (R = 0.14) before scaling, but only linear post-hoc
scaling (LS) calibrates these forecasts to be good predictors
(R2 up to 12.5%). A slight non-linear, monotone relationship
also exists (ρ = 0.16), but this is not well-modeled by Platt
scaling (PS). Tuning a regression head (FT) in place of direct
forecasting (DF) does not explain more variance, even with 8x
more data (xl). With the same data, DF (LS) performs best.

error MAE, and the % of variance in the test data
explained by the predictions R2. Explaining more
variance is better, but it’s not typical to explain
all of it (R2 = 100%). For reference, explained
variance in (traditional) forecasting tasks with lan-
guage models is low (up to 10% Brier Skill Score
– a type of explained variance for soft classifiers,
Sicilia et al., 2024). Generally, we use train data
to compute the mean when estimating variance on
the test set (called “out-of-sample” R2 ), which
provides a fair evaluation on held-out sets. In this
context, R2 can also be interpreted as percent im-
provement compared to a constant mean prediction.
For MAE, we report the additive error in % prob-
ability (e.g., |0.2− 0.4| × 100% = 20%). Finally,
metrics are micro-averaged over all data splits.

5.1 Results & Analysis
We structure our results using a research question
(RQ) / answer (A) format with trailing discussions.

RQ1: Can models predict the uncertainty
of others from conversation cues?
A: No. Inference “out-of-the-box” is
poor. Some simple methods do improve.

Comparison of Scaling Methods Table 2 reports
regression metrics for first-order ToM UQ (1TUQ)
split according to different methods of inference.
While direct forecasts are ineffective “out-of-the-
box,” linear scaling (DF LS) with 100 data points
can improve scores to a positive explained variance,
on average. These results suggest a consistent (if
slight) linear relationship between the language
model’s inferences and the interlocutors’ true un-
certainty. Explained variance sometimes exceeds

7%, or with more data, 12%. Contrary to con-
ventional wisdom (using soft classifiers to forecast
outcomes), a logit-linear relationship between the
model’s inferences and it’s target seems unlikely,
due to the poor performance of DF PS.

RQ2: Does variance reduction via bag-
ging improve inference capability?
A: Yes. Random forests trained on lan-
guage model embeddings show promise.
The proposed Bag of Thoughts (BoT)
strategy also improves inference.

Variance Reduction Strategies Use of bagging
in fine-tuning (i.e., via random forests) did improve
performance as anticipated, compared to other tun-
ing strategies. We recall, bagging is a known vari-
ance reduction strategy, which can ultimately re-
duce errors by this mechanism. Another variance
reduction strategy we propose is Bag of Thoughts
(BoT). Table 3 reports ablation study of BoT for
first-order TUQ, limited to CANDOR and CaSiNo.
Ablation is also reported for second-order TUQ,
limited to CANDOR, in Table 5. Findings show
BoT has positive impact on small models on aver-
age, with particular models/setups seeing substan-
tial gain (2% bump for Gemma 7B on 1TUQ, more
for GPT 3.5 on 2TUQ). Performance is amplified
more so in Table 4 (includes MultiWOZ). Averaged
across all 1TUQ data, BoT allows small models
to surpass some large models (particularly, Llama3
70B). We did not try BoT for large models, as their
lower throughput (tokens/second) made repeated
sampling time consuming. Comparison between
BoT and greedy decoding is in Table 7.

Why BoT Works Because we use BoT on di-
rect forecasts, and then scale them, BoT actually
reduces variance in the feature space of the linear
scaling function (not necessarily the predictions).
Indeed, comparing before/after BoT shows an in-
crease in the standard deviation of the prediction
(+0.5% proba.). Meanwhile, in feature space (the
pre-scaled forecast), the STD decreases by 1.5%
probability. Our hypothesis is that variance reduc-
tion in feature space (by BoT) actually increases
the signal-to-noise-ratio, mitigating the effects of
outlier inferences from the model. Increase correla-
tion between pre-scaled forecasts and ground-truth
after applying BoT (+0.03) may confirm this.

RQ3: Can interlocutor demographic in-
formation be used to improve ToM UQ?
A: Yes, depending on model size.

8013



BoT DEM Llama3 8B Mix 8x7B Gemma 7B GPT 3.5 Avg Llama3 70B Mix 8x22B GPT 4o

✗ ✗ 0.7 1.3 0.0 -0.3 0.4 0.1 2.5 2.2
✗ ✓ -1.5 0.7 0.7 -1.0 -0.3 0.7 3.2 3.3
✓ ✗ 0.8 1.4 1.9 0.0 1.0 ✗ ✗ ✗
✓ ✓ 0.8 0.6 0.7 0.6 0.7 ✗ ✗ ✗

Table 3: R2, i.e., % explained variance, of direct forecasts (DF LS) micro-averaged across CANDOR and CaSiNo for 1TUQ
task. These results ablate use of demographic data in prompt and BoT method (§ 4.1.3). Demographic context (DEM) helps
larger models, while smaller models fail to effectively use it. BoT tends to help, or have no effect, on small models, regardless of
demographic context. We test BoT for small models only due to inference cost constraints.

Dataset Llama3 8B Mix 8x7B Gemma 7B GPT 3.5 Llama3 70B Mix 8x22B GPT 4o Avg Hum

CANDOR -0.2 2.3 0.2 0.1 -0.4 1.0 0.6 0.5 2.7
CaSiNo 1.7 0.5 3.6 0.0 0.6 3.9 3.7 2.0 ✗
MultiWOZ 4.8 2.6 4.4 3.3 4.5 2.8 6.8 4.2 ✗
Avg 2.1 (0.6) 1.8 (1.6) 2.7 (0.7) 1.1 (0.0) 1.5 2.5 3.7

Table 4: Explained variance R2 for direct forecasts (DF LS) on 1TUQ task separated by data and model. BoT is used for small
models only, with ablation in parentheses. Models show varied success across different corpora, meanwhile BoT improves small
models to outperform others 10x larger. Hum denotes human R2, after linear scaling LS (MAE=17.7).

0.5 0.0 0.5
GPT 4o

0

500

1000

0.5 0.0 0.5
Mixtral 8x22B

0.5 0.0 0.5
Ground Truth

Predicted and True Difference in Perspective (CANDOR)

Figure 3: Differences in perspective captured by false un-
certainty (FUn) on CANDOR. Model predictions (without
scaling) and ground-truth values are shown. Humans exhibit
highly variable differences in perspective, whereas models
tend to show negative bias, underestimating FUn, with less
overall variance. Predictions concentrated near zero show that
models fail to distinguish between interlocutor mental states.

Use of Demographic Context In Table 3 we
ablate the role of including demographic data in
the prompt (DEM), limited to first-order TUQ on
CANDOR and CaSiNo. With or without BoT,
adding demographics tends to hurt performance of
small models (0.7% and 0.4% drop in average R2,
respectively). Meanwhile, the scaled inferences of
larger models are all improved by including demo-
graphics. In similar ablation for second-order TUQ
(Table 5), we did find less conclusive evidence of a
distinction between smaller and larger models use
of demographic context. For instance, without BoT,
demographics seem to help both model groups.

Demographics and Bias Our initial hypothesis
was the bias reduction was the principle mecha-
nism by which demographic context could reduce
error. This is consistent (for large models, 1TUQ)
with observed reduction in bias after including de-
mographics (-0.1%). The limited effect size does
suggest potential for other factors. For instance,

similar to variance reduction, interplay between de-
mographic data and scaling may play a role. On the
other hand, models (in general) may be ineffective
in using demographic context.

RQ4: What factors of conversation con-
text impact recognition of uncertainty?
A: Conversation length and speaker mo-
tives may play a role. Models generally
have trouble with perspective shift.

Data Comparison Table 4 reports explained vari-
ance for 1TUQ for DF LS, split by model and
dataset. We observe CANDOR to be the most diffi-
cult dataset for 1TUQ, followed by CaSiNo, then
MultiWOZ. One hypothesis for the difficulty of
CANDOR is the length of it’s conversations, which
average more than 11K tokens (GPT-2 tokenizer).
This may also be compounded because dialogue is
between strangers. Small, but important, nuances
can become dominated other – perhaps, superfi-
cially polite – interactions. The reality that humans
can hide their true mental states may also explain
increased difficulty in CaSiNo, a negotiation cor-
pus. Rather than “acting” to be polite, interlocutors
in the CaSiNo corpus hide motives and intentions,
as a strategy, to receive a better deal. In contrast,
in the collaborative and task-oriented MultiWOZ
corpus, interlocutors have incentive to reveal many
aspects of their mental state; e.g., to indicate satis-
factory constraints for their booking task.

Why FUnQ is Hard Most methods exhibit poor
performance on the False Uncertainty Quantifica-
tion (FUnQ) task. One possibility is that this dif-
ficulty may, in part, come because model errors
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BoT DEM Llama 3 8B Mix 8x7B Gemma 7B GPT 3.5 Avg Llama 3 70B Mix 8x22B GPT 4o

✗ ✗ -1.4 -0.9 -0.7 -0.4 -0.9 0.4 1.0 0.1
✗ ✓ 0.0 1.4 -0.7 -0.2 0.1 0.7 1.8 0.7
✓ ✗ 0.8 0.6 -1.8 1.8 0.4 ✗ ✗ ✗
✓ ✓ 0.6 1.5 -0.6 -0.3 0.3 ✗ ✗ ✗

Table 5: R2, i.e., % explained variance, of direct forecasts (DF LS) for 2TUQ task on CANDOR. As before, BoT helps smaller
models, often pushing them to perform at the level of larger counterparts. In second-order ToM UQ, demographic data (DEM)
appears to help most models. Albeit, concurrent use of BoT (small models) complicates this result with varied performance.

method xl MAE R2 minR2 maxR2

DF (LS) ✗ 24.2 -0.9 -2.5 -0.1
DF (LS) ✓ 24.3 -1.9 -7.0 -0.2
FT (RF) ✓ 24.8 -5.2 -8.9 -2.2
FT (RF-J) ✓ 23.9 0.3 -1.7 1.4

Table 6: Regression metrics for False Uncertainty prediction
(FUnQ) on CANDOR. Even with more data, neither direct
forecasting (LS) nor fine-tuning is able to explain variance in
the ground-truth false uncertainty. False uncertainty prediction
is a more difficult task, requiring models to perspective shift,
from the interlocutor’s uncertainty to that of the outside world.

compound across multiple inference steps; e.g.,
the inference for interlocutor’s uncertainty P̂ and
the inference for the ground-truth probability p̂.
Indeed, one data point in favor of this hypothe-
sis is the positive explained variance of the joint
fine-tuning procedure (FT RF-J), which conducts
non-linear inference over the embedding of both
prompts (i.e., to infer P̂ and p̂) and then produces
a single estimate for the difference P − p. On
the other hand, another problem may come from a
models’ inability to flexibly shift perspectives (e.g.,
from the mental state of Speaker A to the mental
state of Speaker B). Figure 3 shows a qualitative
analysis, comparing distributions of False Uncer-
tainty (both ground-truth and base predictions by
models). Results lend evidence to the hypothe-
sis that models simply fail to distinguish between
interlocutor perspectives due to predicted FUn con-
centration near 0, among other pitfalls.

RQ5: How do humans compare?
A: Slightly better than language models.

Human Performance Because of available anno-
tations (§ 3.3), we infer human performance at first-
order ToM UQ on CANDOR. Interestingly, linear
scaling also improves the performance for human
forecasts, which may be suggestive of individual
baselines for how people express their uncertainty
(or, intensity) about beliefs. Human performance
is not drastically higher than models (R2 = 2.7%,
MAE=17.7), which is again suggestive of the diffi-
culty of this corpus (recall, our data comparison).

RQ6: Can uncertainty estimates improve
model inference at routine ToM?
A: Yes. § A.6 shows uncertainty estimates
can improve F1 at belief classification.

6 Conclusions

This paper details tasks and methods to explore if
language models can infer subjective uncertainties
from language. We connect this capacity to com-
municative grounding and Theory-of-Mind, sug-
gesting the ability to infer an interlocutor’s uncer-
tainty from linguistic cues is fundamental to both.
Methodologically, we capture this by proposing a
continuous analog of false belief recognition (i.e.,
false uncertainty quantification) and discuss vari-
ous techniques that map from model representa-
tions of uncertainty to estimates of interlocutor
belief. Our high-level findings suggest that pre-
cisely quantifying the uncertainty of others can
be difficult for both models and humans. While
top-performing models do reasonably well in struc-
tured goal-oriented settings like MultiWOZ, ex-
plaining about 7% variance in belief uncertainty,
top-performance degrades to only 1% in CAN-
DOR, a dataset characterized by long, informal,
and socially-motivated conversations. Here, both
humans and models struggle, likely due to unclear
conversation goals and ambiguous belief expres-
sion – humans still beat models by a small margin.
We also test ways to improve model performance,
showing mixed effects for different models.

Potential for Progress Although available com-
parisons to human performance suggest con-
strained headroom, qualitative analyses show some
consistent model errors that future methods can
aim to address. These include: failure to distin-
guish between individual perspectives, underrep-
resention of population-level variances in belief
uncertainty, and persistent biases. Our results also
suggest dependencies between individual expres-
sions of uncertainty and demographics, which may
be of interest to broad research communities.
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Limitations

As noted in our conclusions, there are many aspects
of this research which call for continued develop-
ment. For instance, we study relatively simple fine-
tuning strategies and do not explore downstream ap-
plications directly in our experiments. The purpose
of this work is to propose an evaluation methodol-
ogy and some initial algorithms. We acknowledge
the limited scope of our initial experiments, with
respect to these topics of future work.

Moreover, while we do study three diverse cor-
pora, generalization of our findings to new data
is not guaranteed. Different outcomes or corpora
may show worse results from the studied language
models. Scientific conclusions drawn about this
data may not generalize to new corpora either. Re-
producibility studies and greater data collection is
needed to allow the tasks we propose to be stud-
ied at a larger scale, to mitigate concerns about
generalization of methods/findings.

While we do motivate this work from the point-
of-view of ToM, we do recall some potential
caveats we brought up when outlining ToM evalu-
ation criteria (ToM Criteria). Namely, our setup
does not explicitly control for potential spurious
correlations between the dialogues we use as fea-
tures and the target predictions we evaluate as a
proxy for ToM capability. For this reason, one
should be careful to interpret our results as sug-
gesting language models have (any level) of ToM
capability. With that said, future research can incor-
porate more data controls (without changing our
task designs) to help mitigate any present limita-
tions from the corpora we study. It should also be
noted that it is not clear whether ToM is a capa-
bility that can ever truly exist in language models,
at least in a human sense. Exactly what counts as
“reasoning” about human’s mental states and what
is purely “statistical parrot”-like behavior is a topic
of debate, which this paper does not aim to address.
Simply, we aim to propose tasks that can evaluate
(or, approach evaluation) of abilities traditionally
associated with ToM in humans.

Finally, there are many other aspects of ToM, be-
sides anticipation of beliefs and false beliefs, which
we do not cover in this paper. Some mentioned re-
lated works include study of other sub-topics, under
the broad umbrella of ToM. We focus on false be-
liefs because of the practical value that considering
uncertainty of beliefs can have.

Ethics

The data we use in this study is either publicly
available or available at the request of the respec-
tive dataset authors. Our use of this data is consis-
tent with any license or terms of use attached to
the data. Some of the data used in this study may
contain personally identifying information. Appro-
priate care should be taken, whenever re-creating
our evaluation setup, about the consequences of
this fact. Details on these and other ethical con-
siderations are discussed by the datasets original
authors.

The models we study, and therefore methods we
propose (built on these models), may have social
biases inherited from their training data. Although
bias mitigation and other safety protocols can be
put in place to mitigate concerns, using these mod-
els can also introduce (unexpected) biases however
they are deployed. For instance, if used in the appli-
cations we suggest, they might change a dialogue
systems policy, and this change could dispropor-
tionately impact a subset of users. The scale of
impact is made greater by the ability to use our
methods without much human supervision. Thus,
deployment of these models should consider the
potential impact on users and other far-reaching
consequences that improperly moderated use of
our models can create.
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A Appendix

A.1 Extreme Value Uncertainty
Given an annotation m about an interlocutor A’s
magnitude of belief, we consider the forecasting
problem with outcome γ = “whether A’s magni-
tude of belief is more extreme than would be ob-
served by chance.” Then, in the context of the full
dataset, the magnitude annotation m implicitly de-
fines the ground-truth probability of our outcome:

p = P{m > M} (10)

where M is sampled from all dialogue annotations,
and thus, p can be computed from data. A separate
agent (e.g., another interlocutor B) can annotate
their own perception m′ of A’s belief, which is an
expression of uncertainty/intensity of their belief
about A’s belief. This can then be calibrated to a
probability estimate about the outcome γ, using the
same formula:

P = P{m′ > M}. (11)

The important qualities of this outcome formula-
tion are that: (a) it implicitly defines both uncer-
tainty annotations and (ground-truth) calibration
functions, which are not available in typical fore-
casting problems; and (b) it is general, since it im-
plicitly models certainty about any belief for which
we have magnitude annotations.

The semantics of the outcome are, in fact,
not much different than a more typical decision
“whether A believes _____” instead asking a ques-
tion about relativity of belief, to induce the (im-
plicit) certainty annotations from those (magnitude
annotations) that already exist. As a caveat, this
outcome format does not work for calibrating un-
certainty/intensity of beliefs about many types of
“future events”; e.g., whether a deal will occur. In
these contexts, the human expression may need to
be calibrated with data in order to map human ex-
pressions of belief intensity to the same scale as
ground-truth outcome probabilities for comparison.

A.2 Models
Direct forecasting (DF) is conducted with Llama3
8B and 70B (AI@Meta, 2024), Mixtral 8x7B and
x22B (v0.1 Jiang et al., 2024), Gemma 7B (Team
et al., 2024), GPT 3.5 (turbo-0125, OpenAI) and
GPT-4o (2024-05-13, OpenAI). All models are
instruction-tuned (chat) versions. We use default
sampling parameters, given on the API or model

repository. For fine-tuning (FT), we use latent rep-
resentations from a pre-trained masked language
model, specifically fine-tuned for long-context em-
bedding (M2-BERT, Fu et al., 2024), which regu-
larly beats much larger models at embedding tasks
(Fu et al., 2023). We use Together AI and Open AI
APIs for inference.

A.3 Prompts

We use a common system prompt for all models:
You are TheoryOfMindGPT, an expert language

model at using your theory-of-mind capabilities to
predict the beliefs and actions of others in human
conversations. You will be given a potentially un-
finished conversation between two speakers. Put
yourself in the mindset of the speakers and try to
reason about the requested conversation outcome.
Use the keyword "CERTAINTY" to report your pre-
diction for the outcome of interest. Report your
answer on a scale from 1 to 10 with 1 indicating
"not likely at all" and 10 indicating "almost cer-
tainly". For example, "CERTAINTY = 7".

The user-role prompt is also common, with slight
variations by corpora, or inclusion of demographics.
Here is an example for MultiWOZ.

In the following conversation segment, a hu-
man user is interacting with an AI task assistant.
**insert conversation, set off by white
space**. Now, fast-forward to the end of the
conversation. How certain is the user that they
(the user) are more satisfied than would occur by
chance? Let’s think step by step, but keep your
answer concise (less than 100 words).

We found that “Let’s think step by step” in-
creased the rate of an explanation associated with
the answer. This agrees with the findings of Kojima
et al. (2022). We also found that “keep your answer
concise (less than 100 words)” was important to
prevent models from going on too long without
providing an answer (more than 256 tokens).

A.4 Optimization

We used scikit-learn to implement all scaling
and fine-tuning algorithms (Pedregosa et al., 2011).
Ordinary least squares is used to optimize both
scaling methods, while SGD is used for the linear
fine-tuning method. The neural regression head
has a single hidden layer of dimension 100. The
random forest has 100 trees of maximum depth 5.
All other optimization parameters (e.g., for regular-
ization) are the defaults of the library.
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Llama3 Mixtral Gemma GPT Avg
greedy 0.5 2.2 2.2 -0.7 1.0
BoT 4.8 2.6 4.4 3.3 3.8

Table 7: Comparison of greedy sampling (temperature
= 0) and BoT, illustrating distinction between them. Re-
sults show explained variance on MultiWOZ (1TUQ).
BoT beats greedy sampling for all models. As final
model prediction is conditioned on preceding expla-
nation, setting temperature to 0 does not provide an
adequate summary of the true (intractable) sampling
distribution. BoT, on the other hand, approximates the
mean of the true sampling distribution and provably
lowers the variance of the model inference.

A.5 Model Comparison

Table 4 reports explained variance for 1TUQ for
DF LS, split by model and dataset. GPT-4o and
Mix 8x22B offer the best performance with GPT
beating out Mixtral for first place, primarily on
MultiWOZ. Interestingly, Gemma 7B (with BoT)
outperforms two of the larger models, on average.
The performance of Llama3 70B was also surpris-
ing, as it is often improved by much smaller models
(if they use BoT). Table 5 also reports explained
variance, split by model, for 2TUQ. Here, Gemma
does not perform as well and neither does GPT-4o
(i.e., the fair comparison across tables is without de-
mographic data). The most successful models are
the Mixtral models, suggesting a unique advan-
tage from their training data (closed-source) or their
MoE architectures. GPT 3.5 also shows promise in
2TUQ, under one setting (BoT, no demographics),
but is less robust to perturbations among settings.

A.6 Case Study: Does Considering
Uncertainty Improve ToM Predictions
Outright

Throughout the paper, we have argued for the im-
portance of estimating the uncertainty in others’
beliefs, pointing to substantial existing literature as
well as a few motivating examples. Here, we show
how reasoning about others’ uncertainty can even
help language models to improve their accuracy at
a traditional ToM task (i.e., an existing belief pre-
diction task). Specifically, we use a belief predic-
tion task built on one of the experimental corpora
from § 5: CaSiNo. In this campsite negotiation cor-
pora, annotations for satisfaction are provided on a
Likert scale, but have clear semantic descriptions
(e.g., “very satisfied”), making it easy to create a
binary labeling scheme for the outcome “speakers
are satisfied” or not. We use the scheme outlined

ACC F1

uncertainty ✗ ✓ ✗ ✓
Llama 3 8B 60.5 65.5 71.7 77.8
Llama 3 70B 68.5 70.5 80.0 82.2

Table 8: Accuracy and F1 of Llama 3 series models on
CaSiNo corpora. We consider a binary conversation
outcome – whether both speakers are satisfied with the
negotiation – as suggested by Sicilia et al. (2024), to
test our uncertainty estimates on a simple ToM belief
prediction task. Results are shown with and without
use of uncertainty estimation (§ 4.1) to make the predic-
tion. These results show how reasoning about others’
uncertainty can help language models, even in more
traditional ToM tasks.

by Sicilia et al. (2024) in their conversation fore-
casting work, where a conversation is labeled 1 if
both speakers are satisfied and 0 otherwise. We
ask the model to make this prediction in two ways:
(1) with an estimate of the speakers’ uncertainty
about this outcome and (2) without this estimate of
uncertainty, making a simple binary prediction. For
the uncertainty estimate, all answers greater than 5
are mapped to a prediction of 1 (i.e., a prediction
that both users are satisfied). Overall, we use a
largely similar prompt as shown in § A.3 and used
in our previous experiments. Results in Table 8
are promising, showing that a language model’s
inferences can be more accurate when they reason
about the uncertainty of others’ beliefs to make pre-
dictions (rather than making a binary choice). This
is especially true for the smaller Llama 3 model.
These results are in line with our central argument
that considering uncertainty in ToM is an important
skill to evaluate.
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