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Abstract

This paper investigates synthetic data gener-
ation strategies in developing generative re-
trieval models for domain-specific corpora,
thereby addressing the scalability challenges
inherent in manually annotating in-domain
queries. We study the data strategies for a
two-stage training framework: in the first stage,
which focuses on learning to decode document
identifiers from queries, we investigate LLM-
generated queries across multiple granularity
(e.g. chunks, sentences) and domain-relevant
search constraints that can better capture nu-
anced relevancy signals. In the second stage,
which aims to refine document ranking through
preference learning, we explore the strategies
for mining hard negatives based on the initial
model’s predictions. Experiments on public
datasets over diverse domains demonstrate the
effectiveness of our synthetic data generation
and hard negative sampling approach.

1 Introduction

Generative retrieval is emerging as a promising
paradigm for information retrieval (IR), leverag-
ing generative models (e.g., Transformers, Vaswani
et al., 2017) to directly produce ranked lists of po-
tentially relevant document identifiers for a user
query. Although prior work has made progress on
various fronts, including training strategies (e.g.,
identifier choices) (Tay et al., 2022; Zhou et al.,
2022; Bevilacqua et al., 2022; Sun et al., 2023),
modeling techniques (Chen et al., 2023b; Zhou
et al., 2023; Li et al., 2024b), and inference meth-
ods (Cao et al., 2020; Lee et al., 2023a; Zhang et al.,
2024), the role of data strategies in training gen-
erative retrieval models, particularly when dealing
with domain-specific corpora, remains relatively
underexplored. This gap is critical: as generative
retrieval models internalize entire corpus within
their parametric memory, the choice and quality of
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training data are likely to play a critical role in their
performance.

To mitigate the high cost and scalability chal-
lenges of in-domain annotation, most studies have
adopted DSI-QG (Zhuang et al., 2022a), which
uses passage-level synthetic queries generated by
docT5query (Nogueira et al., 2019) (a model
trained on MS-MARCO data). However, applying
such off-the-shelf synthetic data strategies to new
domains may not suffice. Unlike dense retrieval
approaches, which focuses on strong text represen-
tation (Karpukhin et al., 2020; Izacard et al., 2021),
generative retriever must develop three key capabil-
ities: (1) memorization (storing the content of the
corpus (e.g., documents) and mapping them to their
assigned identifiers), (2) generalization (inferring
beyond explicit textual cues from user queries),
and (3) relevance scoring (accurately ranking doc-
ument identifiers by relevance to a given query).
Domain-specific corpora can amplify these chal-
lenges, as the model must adapt its internal repre-
sentations to reflect domain nuances while main-
taining robust generalization and ranking accuracy.
In this work, we systematically investigate data
strategies that can foster these core capabilities.

We introduce a two-stage training framework.
The first stage focuses on mapping an input directly
to document identifiers via supervised fine-tuning
on synthetic data. The second stage uses prefer-
ence learning to further enhance the ranking perfor-
mance (Zhou et al., 2023; Li et al., 2024b). Here we
adopt Regularized Preference Optimization (Pang
et al., 2024, RPO), an effective alternative to PPO-
based reinforcement learning (Ouyang et al., 2022).
We study the data strategies for both stages.

The first stage focuses on the memorization
and generalization ability. We examine two data
sources as the input for decoding document identi-
fiers during training: the context data (e.g., chunks)
directly extracted from the corpus, and synthetic
queries that represent various relevance signals.
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For synthetic queries, we investigate query gener-
ation using multi-granular context (e.g., sentence-
level, chunk-level) to capture both local and global
information from the corpus. We also explore
adding constraints derived from available meta-
data or domain-specific knowledge when generat-
ing synthetic queries to enhance the model’s ability
of handling complex, domain-relevant queries.

In the first stage, models are optimized to pro-
duce a single positive candidate, without consid-
ering relevance between different candidates. In
the second stage, we further create data to enhance
the model’s ranking capability through preference
learning (Zhou et al., 2023; Li et al., 2024b). We
study the selection of negative candidate docu-
ments for preference learning. Rather than relying
on static offline data, we collect preference data on-
line from the model’s own top-ranked candidates
after the first stage, and compare it to random sam-
pling from the corpus. We further investigate the
choices and impact of varying the number of nega-
tive candidates to the ranking performance.

We conduct experiments on datasets cover-
ing various aspects of relevance, including the
widely adopted Natural Questions (Kwiatkowski
et al., 2019, NQ), a multi-hop dataset MultiHop-
RAG (Tang and Yang, 2024), and two perspective-
based retrieval datasets: AllSides (Baly et al., 2020)
and AGNews (Yu et al., 2023) from Zhao et al.
(2024). We show that queries with different as-
pects, such as multi-granular and constrains-based
queries, significantly improve the retrieval perfor-
mance compared to relying solely on chunk-level
synthetic queries from query generation models.
Additionally, upsampling context data further im-
proves the performance. Moreover, we show that
these data strategies generalize well to other types
of document identifiers, such as atomic identifiers.
Finally, we demonstrate that RPO effectively im-
prove the ranking performance of generative re-
trieval, and the key lies in the selection of high-
quality negative candidates: high-quality hard neg-
ative candidates improve the performance while
random negatives may have an adverse impact.

In summary, this work offers a comprehensive
investigation of data strategies for building scal-
able and effective domain-specific generative re-
trieval systems. Our findings emphasizes the impor-
tance of creating high-quality and diverse synthetic
queries that capture multiple levels of granularity
within the corpus, as well as informed negative
selection strategies for ranking optimization.

2 Generative Retrieval Framework

A typical generative retrieval framework takes a
query as input, and generates the corresponding
relevant document identifiers as the retrieval re-
sults (Tay et al., 2022). Because each document
in the corpus has a unique identifier, one can then
use these identifiers to retrieve the corresponding
documents for downstream tasks.

2.1 Document Identifiers
We primarily use semantic document identifiers in
our experiments due to their superior performance
and better scalability to larger corpora. Instead
of using corpus-specific semantic identifiers like
titles or urls, we adopt a more general, keyword-
based approach that can be applied to a wide variety
of corpora (Zhou et al., 2022). Specifically, we
instruct an LLM to produce a list of keywords that
describes the content of a document, and use this
keyword list as its semantic identifier.

In addition, we extended our synthetic data
strategies to other types of identifiers to validate
its generalizability, such as atomic identifiers (Tay
et al., 2022), which are unique tokens that can be
generated through a one-step decoding or classifi-
cation process.

2.2 Generative Modeling
The generative retrieval model learns to generate
the identifier of a relevant document given a query.
Formally, for a query q and a relevant document
d with identifier d′, generative retrieval aims to
produce d′ given q, which can be represented as:

score(q, d) = P
(
d′ | q; θ

)

=
∏

i

P
(
d′i | d′<i, q; θ

)
,

where d′i is the ith token of the identifier. To ensure
the generated identifiers are valid during inference,
we use constrained beam search with Trie (Cao
et al., 2020) to restrict the output token space at
each decoding step. The top-k output from the
beam search serves as the final retrieval results.

Compared to dense retrieval models (Karpukhin
et al., 2020), generative retrieval bypasses the need
for an external index by directly producing relevant
document identifiers. However, there are distinct
challenges in learning a generative retrieval model.
As it solely relies on parametric knowledge, the
model must not only learn the retrieval task, but
also capture and encode document content in a way
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Figure 1: The overall workflow of the generative retrieval training and synthetic data utilization at each stage.

that associates each document with its identifier.
Therefore, generative retrieval often requires train-
ing on the entire corpus to enable the model to
memorize and comprehend the necessary informa-
tion effectively.

3 Supervised Fine-Tuning Data Strategy

In a typical domain-specific setup, we often assume
access to a corpus with limited or no labeled data
for domain-specific training (Hashemi et al., 2023).
Therefore, it is crucial to create high-quality syn-
thetic data that thoroughly covers the entire corpus
for generative retrieval training.

Our synthetic data comprises two main compo-
nents: Context2ID data and Query2ID data. Con-
text2ID involves training the model to retrieve the
document identifiers given the document’s content.
Query2ID focuses on teaching the model to retrieve
relevant document identifiers from a given query.
Combining these two data types encourages the
model to learn both content memorization and re-
trieval given a query.

3.1 Supervised Fine-Tuning Objective

At this stage, we train the model to generate rele-
vant document identifiers by maximizing the proba-
bility of each individual token. While typical super-
vised fine-tuning (SFT), especially with encoder-
decoder architectures such as T5, focuses on op-
timizing the output sequence (i.e. document iden-
tifiers), it’s also part of the training goal for gen-
erative retrieval models to comprehend and mem-
orize the context. To this end, we also optimize
the model for learning to decode the input. Specifi-
cally, for a given query-document pair (q, d), where
q could be an actual query or a text chunk from the
document, the model maximizes the likelihood of

the combined input and output sequence:

Lsft (q, d) =− logP
(
d′, q; θ

)

=−
∑

i

logP (qi | q<i; θ)

−
∑

i

logP (d′i | d′<i, q; θ).

3.2 Context2ID
Context2ID data is created by pairing each chunk
of text in the corpus with its corresponding docu-
ment identifier. The goal of Context2ID data is to
help the generative retrieval model associate each
document’s content with its unique identifier, i.e.,
“memorizing” the text.

3.3 Query2ID
Query2ID is designed to teach the model to retrieve
the relevant document identifiers given a query. It
helps the model to learn the core retrieval task and
also further comprehend content from the query
perspective.

Previous work (Zhuang et al., 2022a) finds it
effective to use a query generation model (e.g.,
docT5query, Nogueira et al., 2019) to produce syn-
thetic queries from documents using multiple inde-
pendent samplings. In this work, we instead use an
LLM for synthetic query generation. Specifically,
given a context (e.g., a document chunk), the LLM
is instructed to generate a diverse set of m queries,
thereby covering a wider range of semantic vari-
ations compared to the sampling-based approach
with a specialized query generation model.

3.3.1 Multi-Granular Query Generation
We first generate queries with context at different
levels of granularity: chunk-level and sentence-
level. Chunk-level synthetic queries are produced

7963



Data Type Example

Context title: Christmas Day preview: 49ers , Ravens square off in potential Super Bowl sneak
peek. . . source: Yardbarker . . . San Francisco has racked up an NFL-leading 25 turnovers and
has given up the second-fewest rushing yards (1,252) , . . .

Chunk-level query What is the potential implication of this matchup between the 49ers and Ravens ?
Sentence-level query Where does the 49ers ’ defense stand in terms of total yards allowed per game?

Constraints-based query According to the Yardbarker article, which team has the league’s most effective running game?

Table 1: Examples of different synthetic queries generated from MultiHop-RAG corpus.

by providing the entire chunk as input to the LLM
to capture higher-level semantics or facts, while
sentence-level synthetic queries are produced by
only providing individual sentences to focus on
more specific details within the document Con-
cretely, for each chunk, we ask the LLM to produce
mc chunk-level queries. We then split the chunk
into individual sentences and ask the LLM to gen-
erate ms sentence-level queries for each sentence.

3.3.2 Constraints-Based Query Generation
A key advantage of using an LLM for query gen-
eration is its ability to incorporate domain-specific
instructions. For instance, we can prompt the LLM
to include metadata constraints, such as the author
name or political polarity of a document, in the
generated queries. Although the specific constraint
types depends on the metadata available and can be
domain or dataset specific, they are common in real-
world scenarios such as enterprise data. Table 10 in
Appendix specifies the attributes that we use to pro-
duce constraints-based synthetic queries for each
dataset. We ask the LLM to generate mi queries for
each document that incorporate these constraints,
allowing our generative retrieval model to handle
more specialized or domain-specific queries.

4 Preference Learning Data Strategy

Previous work (Zhou et al., 2023; Li et al., 2024b)
have shown that incorporating ranking tasks can
further enhance the relevance modeling of gener-
ative retrieval models. However, when generative
retrieval models are based on large language mod-
els, complex ranking objectives – such as listwise
optimization – often become computationally in-
efficient due to multiple forward passes. In this
work, we instead use a simpler method and adopt
the regularized preference optimization algorithm
to perform the preference optimization, a technique
widely applied in optimizing large language mod-
els. We will first briefly introduce the preference

optimization method, and then turn our focus on the
synthetic data construction, which consists of the
synthetic queries along with their corresponding
preferred or rejected candidates.

4.1 Preference Optimization Objective
We use Regularized Preference Optimization (Pang
et al., 2024, RPO) as our optimization method for
preference learning. It is an extended version of
Directed Preference Optimization (Rafailov et al.,
2023, DPO), including additional supervised fine-
tuning loss to alleviate the over-optimization issues
on negative responses. It takes an input query q,
a positive candidate dp, and a negative candidate
dn as input. The loss is in favor of the positive
candidate while against the negative candidate

Lrpo (q, dp, dn) =− log δ

(
β log

P
(
d′p | q; θ

)

P
(
d′p | q; θref

)

−β log
P (d′n | q; θ)
P (d′n | q; θref)

)

− α
logP (d′p | q; θ)∣∣d′p

∣∣ ,

where θref is the parameter of the reference model,
i.e., the supervised fine-tuned model from the first
stage training. d′p and d′n are the identifiers of the
positive and negative candidate, respectively.

4.2 Synthetic Queries
Similar to the previous section, in a domain-
specific setup, we assume that we do not have
enough data for model training. Therefore, after
the supervised fine-tuning stage, we need a batch
of new synthetic queries for preference learning.

We still adopt the LLM-based query generation
as with the supervised fine-tuning stage. However,
there are a few key differences in the instructions.
First of all, we ask the LLM to make queries as
difficult as possible. At the same time, we ask the
LLM to provide not only the synthetic queries but
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also their corresponding answers. This is to ensure
that, while making difficult queries, those synthetic
queries are still answerable using the given context.

These changes make the new batch of synthetic
queries different from queries used during super-
vised fine-tuning so that the model will not be over-
optimized to the same batch of data. Intensifying
the difficulties also increases the likelihood that the
initial generative retrieval model makes mistakes,
and therefore the model will benefit from the pref-
erence learning by learning from those mistakes.

4.3 Candidate Selection

After producing the synthetic queries, the next step
is to select document candidate pairs for RPO opti-
mization. For each training instance, we need one
positive candidate and one negative candidate. As
we always produce synthetic queries based on a
document, the positive candidate can be naturally
assigned. Therefore, the focus will be on selecting
negative candidates for each synthetic query.

To increase the hardness of the negative can-
didates, we choose to select negative candidates
from the retrieval results. Specifically, after the
supervised fine-tuning stage, we will use the gen-
erative retrieval model to perform retrieval on the
synthetic queries for preference learning. Our strat-
egy mainly focuses on selecting the top-k negative
candidates with ranks higher than the positive can-
didate from the retrieval results. In this way, if the
positive candidate ranks in the top-1, we will not
use the query for preference learning. If the rank of
the positive candidate is higher than k, then there
will be different numbers of negative candidates,
depending on the rank. If the rank is lower than k,
there will be k different negative candidates. When
there are multiple negative candidates, we pair each
negative candidate with the positive one to form a
candidate pair instance for preference learning.

5 Experiments

5.1 Datasets

We choose 4 datasets for our experiments: three
domain-specific corpora – MultiHop-RAG (Tang
and Yang, 2024), –AllSides (Baly et al., 2020) and
AGNews (Yu et al., 2023) from Zhao et al. (2024)
– as well as the general-domain dataset Natural
Questions dataset (Kwiatkowski et al., 2019, NQ).

For AllSides and AGNews, we mainly adopt
queries from Zhao et al. (2024). In the case of
AGNews, we replace the similar document part in

Context Source HIT@4 HIT@10 MAP@10 MRR@10

Chunk 43.64 66.65 13.98 31.14
Chunk+Sent 61.64 81.69 22.13 47.20

Table 2: Ablation study on the effect of using synthetic
queries generated with context at different levels of
granularity on Multihop-RAG.

queries with another attribute of perspective, as we
focus on the query retrieval rather than document
similarity search.

For NQ, we use the “old document” split from
Kishore et al. (2023), which constructs a subset of
Wikipedia pages containing all positive candidates
for training and testing, while keeping the corpus
size manageable for generative retrieval training.

5.2 Experiment Setup
For all datasets, we use Mistral 7b (Jiang et al.,
2023) series as the generative retrieval base model.
We use Mixtral 8x7b (Jiang et al., 2024) to gen-
erate all the synthetic queries and we use Claude
3 Sonnet (Anthropic, 2024) to generate keywords.
Please refer to Appendix A for more details on the
training infrastructure, hyperparameters, dataset-
specific setup and statistics.

5.3 Results
We will discuss our experiment results for each of
the stages. In the supervised fine-tuning stage, we
will discuss the effects of multi-granular synthetic
queries, synthetic data with domain-specific con-
straints, and the use of Context2ID data. For the
preference learning stage, we will discuss using
different candidates for preference learning.

5.3.1 Supervised Fine-Tuning Stage
Effects of multi-granular synthetic queries.
We conduct an analysis on the effects of incor-
porating synthetic queries generated from the con-
text at different levels of granularity on MultiHop-
RAG. We train the generative retrieval model based
on semantic identifiers on chunk-level Query2ID
data (Chunk), comparing it with the model trained
on chunk-level and sentence-level Query2ID data
(Chunk+Sent), and both models use Context2ID
data. The results are shown in Table 2. We find that
sentence-level synthetic queries can significantly
improve retrieval performance, indicating that syn-
thetic query generation with a small context can
help capture more details from the document.

Effects of constraints-based synthetic queries.
We further study the use of constraints-based

7965



MultiHop-RAG AllSides AGNews

HIT@4 HIT@10 MAP@10 MRR@10 HIT@1 HIT@5 HIT@10 HIT@1 HIT@5 HIT@10

w/o constraints 61.64 81.69 22.13 47.20 10.19 29.63 47.22 59.91 83.94 88.11
w/ constraints 69.98 88.34 24.85 52.29 14.20 38.58 51.85 62.19 83.78 88.24

Table 3: Ablation study on generative retrieval performances with or without the constraints-based synthetic queries.

MultiHop-RAG Natural Questions

HIT@4 HIT@10 MAP@10 MRR@10 HIT@1 HIT@5 HIT@10 MRR@10

w/o Context2ID 41.33 69.31 14.45 31.25 69.72 85.58 89.01 76.57
w/ Context2ID 69.98 88.34 24.85 52.29 70.71 86.48 89.85 77.54

Table 4: Ablation study on generative retrieval performance trained with or without Context2ID data. The results
demonstrate the helpfulness of Context2ID data and learning to memorize the context for generative retrieval.

HIT@4 HIT@10 MAP@10 MRR@10

Concat 44.30 72.77 15.64 33.59
Interleave 69.98 88.34 24.85 52.29

Table 5: Analysis on different ways of combining
Query2ID and Context2ID data on Multihop-RAG. We
compare simple concatenation (Concat) and interleaving
(Interleave) that inherently upsamples the Context2ID
data.

synthetic queries that are customized for each
domain-specific setting. We conduct experiments
on three domain-specific corpora, MultiHop-RAG,
AllSides, and AGNews. We compare the semantic
identifier-based generative retrieval model trained
with or without constraints-based synthetic queries,
combing with the corresponding Context2ID data.
The results are shown in Table 3. The results show
that constraints-based synthetic queries can further
improve retrieval performance, indicating that it is
helpful to use LLM-produced synthetic queries for
domain customization.

Effects of Context2ID data. Existing
work (Zhuang et al., 2022a; Kishore et al.,
2023) debates whether Context2ID data are useful
for generative retrieval training. In this work, we
consider Context2ID data as an important part of
the data recipe, and also include the memorization
of the context as part of the supervised fine-tuning
objective. Therefore, we conduct an analysis that
removes the Context2ID data on MultiHop-RAG
and NQ, and the results are shown in Table 4. We
can find that Context2ID data consistently improve
generative retrieval performance. We also include
the comparison of the strategies to combine
Query2ID and Context2ID data, including simple
concatenation or interleaving Context2ID and

0% 20% 40% 60% 80% 100%

% win rate (Jaccard Similarity)

Mixtral (w/ constraints)
vs Mixtral (w/o constraints)

Mixtral (w/ sent)
vs Mixtral (w/o sent)

Mixtral (chunk) 
vs DocT5Query (chunk)

65.1% 34.9%

69.3% 30.7%

94.5%

Win Tie Loss

Figure 2: Jaccard similarity post-analysis on MultiHop-
RAG test set. Synthetic queries from Mixtral 8x7b
are generally closer to the test set than those from
docT5query. Besides, incorporating granularity and
domain-specific attributes further helps with getting
queries that are closer to the test set.

Query2ID that will upsample Context2ID data (i.e.,
smaller size dataset) on MultiHop-RAG in Table 5,
again illustrating the importance of Context2ID
and learning to memorize context may strengthen
the effects on Context2ID.

Different query generation models. As we pri-
marily use LLMs to produce synthetic queries, it
is important to understand the performance and ef-
fects of using an LLM compared to a specialized
query generation model. To this end, we conduct a
comparison between synthetic queries generated by
Mixtral 8x7b and those from docT5query, as shown
in Table 6. For a fair comparison, we exclude
constraints-based queries because docT5query can-
not produce these types of queries. The results
show generative retrieval models trained with
queries from Mixtral 8x7b consistently outperform
models trained on queries from docT5query.

Following Pradeep et al. (2023), we use Jac-
card similarity to evaluate the semantic similar-
ity between test queries and synthetic queries as a
post-analysis. For each test query, we compute the
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MultiHop-RAG Natural Questions

HIT@4 HIT@10 MAP@10 MRR@10 HIT@1 HIT@5 HIT@10 MRR@10

docT5query 50.86 73.30 17.60 37.73 63.30 79.12 85.18 70.30
Mixtral 8x7b 61.64 81.69 22.13 47.20 70.71 86.48 89.85 77.54

Table 6: Generative retrieval performance with synthetic queries from Mixtral 8x7b and docT5query. The results
show that queries from Mixtral 8x7b can help train a better generative retrieval model.

HIT@4 HIT@10 MAP@10 MRR@10

all 74.32 88.03 29.71 59.26
w/o Context2ID 72.15 86.21 28.54 57.50
w/o Sent 58.40 75.17 21.51 44.76
w/o constraints 68.34 83.73 26.28 53.83

Table 7: Ablation study on atomic identifier-based gen-
erative retrieval performance on MultiHop-RAG.

maximum Jaccard similarity among all synthetic
queries generated for the corresponding chunk or
document. We then compute the win rate between
two synthetic query sets (e.g., Mixtral 8x7b versus
docT5query) as the proportion of test queries for
which one set exhibits higher Jaccard similarity.
Let Q be the set of test queries. Then, the win rate
for a synthetic query set S over another set T is
defined as:

Win Rate(S, T ) =

1

|Q|
∑

q∈Q
I
[
max
s∈S(q)

J(q, s) > max
t∈T (q)

J(q, t)

]
,

where J(q, s) denotes the Jaccard similarity be-
tween the token sequences of the test query q and
a synthetic query s, and S(q) represents the subset
of synthetic queries for the corresponding chunk.

Figure 2 illustrates that synthetic queries from
Mixtral 8x7b generally have a higher similarity to
test queries. Moreover, both sentence-level syn-
thetic queries and constraints-based queries con-
tribute to improved distribution matching with the
test queries.

Generalization to different identifiers. We fur-
ther study the generalizability of our data strategies
across different types of document identifiers. In
this analysis, we use atomic identifier, which are
arbitrary unique IDs assigned to each document
or chunk. We conduct experiments on MultiHop-
RAG and the results are shown in Table 7. The
findings align with our observations using seman-
tic identifiers, highlighting the critical role of all
three data types in generative retrieval. Among
them, sentence-level synthetic queries contribute
the most to performance improvements.

5.3.2 Preference Learning Stage

Effects of negative candidate sources. We first
study the strategies of candidates selection for pref-
erence learning. We compare random selection
from the corpus with using the top candidates from
the generative retrieval model after the supervised
fine-tuning stage. The results are shown in Table 8,
which illustrates that candidate selection has an im-
pact on preference learning, and random candidates
may have a negative impact.

Effects of negative candidate number. We also
study the effects of using different negative candi-
date numbers for each query. We experiment with
selecting Top-5 and Top-10 negative candidates
with a rank higher than the positive candidate from
the retrieval results. The results are shown in Ta-
ble 8. In general, it is effective to use the strategy,
which includes high-quality candidates with ranks
higher than the corresponding positive candidates.
We also see some slight differences when includ-
ing different numbers of negative candidates. We
can find that a large number of negative candidates
helps better in metrics such as HIT@1 and HIT@4.

5.3.3 Comparison to Off-The-Shelf Retrievers

We also compare the performance of our genera-
tive retrieval with several off-the-shelf retrievers,
including BM25 (Robertson and Walker, 1994),
bge-large-en-v1.5 (Xiao et al., 2023), Contriever-
msmarco (Izacard et al., 2021), E5-mistral-7b-
instruct (Wang et al., 2024) and GTE-Qwen2-7B-
instruct (Li et al., 2023c). The results are shown
in Figure 3 and more detailed results can be found
in Appendix B.2. The results demonstrate that
generative retrieval models, which rely solely on
in-domain synthetic data training without retrieval
pre-training, can achieve competitive performance
compared to those retrievers. These results indicate
the potential of generative retrieval, as well as the
effectiveness of using LLMs to generate synthetic
data tailored to domain-specific needs.
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MultiHop-RAG Natural Questions

HIT@4 HIT@10 MAP@10 MRR@10 HIT@1 HIT@5 HIT@10 MRR@10

SFT 69.98 88.34 24.85 52.29 70.71 86.48 89.85 77.54
Random 5 58.94 82.88 20.88 43.53 70.19 86.48 89.50 77.17
Top-5 negative 71.53 89.62 26.36 55.40 71.02 87.32 90.04 78.02
Top-10 negative 71.88 89.80 26.23 54.94 71.22 87.41 89.97 78.14

Table 8: Preference learning with different numbers of negative candidates. The results show that it is an effective
strategy to select negative candidates with ranks higher than the positive candidate, while different numbers of
negative candidates may optimize the retrieval performance in different ways.

MultiHop-RAG AllSides AGnews NQ
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Figure 3: Performance comparison between generative retrieval using semantic identifiers and off-the-shelf-retrieval
models. We use HIT@4 for MultiHop-RAG and HIT@1 for other datasets as the evaluation metric. For the full
experiment results, please refer to Appendix B.2 (Table 12).

6 Related Work

Generative retrieval modeling. Previous work
has explored various aspects of generative retrieval.
One line of research aims to find appropriate docu-
ment identifiers for generation, such as numerical
or atomic identifier (Tay et al., 2022; Zhuang et al.,
2022a; Zhou et al., 2022), N-grams (Bevilacqua
et al., 2022; Chen et al., 2023a), titles or URLs (Li
et al., 2023a; Lee et al., 2022; Chen et al., 2022;
Ziems et al., 2023), keywords-based or summary-
based semantic identifiers (Lee et al., 2023b; Tang
et al., 2023), codebook (Zhang et al., 2023; Yang
et al., 2023; Zeng et al., 2024), and full passages
themselves (Tang et al., 2024a). There are also
efforts to combine the advantages of different iden-
tifiers (Li et al., 2023b). Another line of work tack-
les the optimization of generative retrieval models,
such as incorporating ranking losses (Zhou et al.,
2023; Li et al., 2024b; Tang et al., 2024b), or us-
ing auxiliary tasks to enhance training (Li et al.,
2024a). During retrieval, different constrained de-
coding methods have been explored to obtain valid
identifiers, such as FM-Index (Bevilacqua et al.,
2022), Trie-based (Cao et al., 2020), and set-based
inference (Tang et al., 2024b).

Synthetic query generation. Alongside the
progress in generative retrieval modeling and opti-

mization, synthetic query generation has emerged
as a pivotal technique for enhancing retrieval sys-
tems, particularly in domains with limited anno-
tated data. In dense retrieval, synthetic queries have
been used extensively to improve cross-domain
performance. For instance, Ma et al. (2021) gen-
erated synthetic questions for target-domain docu-
ments with a question generation model trained on
general-domain data, thereby improving retrieval
performance in zero-shot settings. Similarly, Wang
et al. (2022) introduced generative pseudo label-
ing, which combines query generation with pseudo
labeling using a cross-encoder to capture finer-
grained ranking signals. Further advancements in-
clude Bonifacio et al. (2022) and Jeronymo et al.
(2023), which leverage large language models to
generate synthetic queries in a few-shot manner,
and then combine with top K documents ranked by
the conditional question generation probability, to
train a domain-specific reranker.

Despite these successes in dense retrieval, the
potential of synthetic data for generative retrieval
has been underexplored. Existing studies typically
rely on passage-level synthetic queries generated by
docT5query (Nogueira et al., 2019), following the
DSI-QG paradigm (Zhuang et al., 2022a). Chen
et al. (2023b) explores breaking documents into
text fragments for query generation and memo-
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rization. However, there still lacks a comprehen-
sive discussions on effective strategies for generat-
ing synthetic data tailored to domain-specific cor-
pora, especially with LLMs. This work investi-
gates data strategies from multiple perspectives,
including the generation of synthetic queries using
multi-granularity contexts, incorporating search
constraints, and exploring the impact of context
data. For preference learning, Zhou et al. (2023)
proposes using preference learning objectives for
generative retrieval with specialized reward models,
though acquiring such models in a domain-specific
setting can be challenging. In contrast, our pro-
posed preference learning strategy directly uses
the retrieval results to obtain the preference data,
offering a more streamlined approach for domain-
specific applications.

Similar synthetic-data paradigms have also been
explored in Text-to-SQL tasks. Kobayashi et al.
(2025) propose YORO, which internalizes database
schema and content via LLM-generated NLQ–SQL
pairs so that at inference time no schema encod-
ing or value retrieval is required. This parallels
our goal of teaching a generative retriever to in-
ternalize a domain corpus, and suggests a broader
applicability of synthetic data strategies for LLM
customization.

7 Conclusion

In this work, we explore several strategies to pro-
duce synthetic data for generative retrieval training.
We find that adding queries in multi-granularity
and queries with domain-specific constraints can
largely improve the generative retrieval perfor-
mance during supervised fine-tuning, and mem-
orizing document contents can also contribute to
the generative retrieval training. We also find that it
is critical to choose high-quality hard negative can-
didates to effectively use the preference learning
objectives to further improve generative retrieval.

Limitations

Our proposed synthetic data strategies mainly focus
on the supervised fine-tuning and preference learn-
ing stage. But there are also settings that can largely
improve the usability of generative retrieval, such
as incremental learning or generalization to unseen
documents. It is also important to extend the data
strategy exploration for these settings. In addition,
similar data strategies may also be effectively used
to enhance dense retrieval domain adaptation. Fur-

ther systematic research is needed to investigate
the strategies for dense retrieval model fine-tuning,
as well as the differences between generative and
dense model training.

Our synthetic queries are mainly based on one
document. However, queries from the real world
may be more complex, such as those involving mul-
tiple documents with multi-hop reasoning or multi-
evidence comparison. It is still under-investigation
that to generate those complex queries and to use
those queries during retrieval model training.
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Dataset Context Queries
Chunk-Level Sentence-Level Constraints-Based

MultiHop-RAG 7,724 72,090 472,193 51,212
AllSides 645 6,313 173,898 6,091
AGNews 1,050 10,355 80,524 20,875
NQ 98,748 1,459,031 - -

Table 9: Dataset Statistics

Dataset Attributes

MultiHop-RAG author, publish time, source, category,
title

AllSides political polarity
AGNews location, topic

Table 10: Attributes used in each dataset for constraints-
based query generation.

A Details of Experiment Setup

We use Mistral-7B-Instruct-v0.3 as the base
model for generative retrieval with the semantic
identifier, while use Mistral-7B-v0.3 as the base
model for atomic identifier as it is closer to a clas-
sification setting.

For supervised fine-tuning, we train the models
with 2 epochs, with a learning rate of 2e-5 and a
warmup ratio of 0.1. The batch size is set as 256.
We use sequence packing to put multiple examples
in one forward pass (Raffel et al., 2020). We use
bfloat16 for our training.

For preference learning, we mainly conduct ex-
periments on MultiHop-RAG and NQ with seman-
tic identifiers. We train the models with 1 epoch.
The learning rate is set as 1e-7, batch size is set as
64, β is set as 0.5, α is set as 1.0.

The training infrastructure includes TRL (von
Werra et al., 2020), Accelerate (Gugger et al.,
2022), Transformers (Wolf et al., 2020), Deep-
Speed (Rasley et al., 2020) and FlashAttention-
2 (Dao, 2024). We use 8x Nvidia A100-SXM4-
40GB for our experiments. Each training or infer-
ence procedure can be completed in 1 day.

Statistics of the numbers of the documents, dif-
ferent synthetic queries can be found in Table 9. At-
tributes used for constraints-based synthetic queries
can be found in Table 10.

A.1 MultiHop-RAG

On MultiHop-RAG, we split the documents into
chunks with maximum length of 256 without over-
lap and conduct retrieval on individual chunks. For
synthetic query generation, mc, ms and mi are set

as 10, and the temperature for LLM inference on
synthetic data generation is set as 0.7. We inter-
leave the Context2ID and Query2ID data as the full
dataset for model supervised fine-tuning. The max-
imum sequence length is set as 700. For synthetic
queries for preference learning, we ask the LLM to
generate 10 queries. We perform the retrieval with
beam size as 10 and retrieve the top-10 candidates
for each query to construct the candidate pairs.

A.2 AllSides

On AllSides, we conduct document-level retrieval.
For synthetic query generation, mc, ms and mi are
set as 10, and the temperature for LLM inference
on synthetic data generation is set as 0.7. For Con-
text2ID data, as there are some long documents
in the corpus, we will split the long context into
chunks with maximum length of 256 without over-
lap. The Context2ID data is constructed to use all
chunks in the document to predict its corresponding
document identifier. We interleave the Context2ID
and Query2ID data as the full dataset for model
supervised fine-tuning. The maximum sequence
length is set as 700.

A.3 AGNews

On AGNews, we conduct document-level retrieval.
For synthetic query generation, mc, ms and mi are
set as 10, and the temperature for LLM inference
on synthetic data generation is set as 0.7. Queries
constructed by Zhao et al. (2024) use two different
perspectives. The first perspective is either the lo-
cation of the desired news or the topic, while the
second perspective is that the news is similar to
another given news in the query. As we mentioned
Section 5.2, we replace the second perspective with
the other field so that each query consists of both
location and topic perspectives. The topic and lo-
cation information used for instruction-based syn-
thetic query generation is extracted with Mixtral
8x7b. We interleave the Context2ID and Query2ID
data as the full dataset for supervised fine-tuning.
The maximum sequence length is set as 700.
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A.4 Natural Questions

On NQ, we conduct document-level retrieval. We
use the document prefixes from (Kishore et al.,
2023) to produce the semantic identifiers. For syn-
thetic query generation, we perform truncation on
pages when they are too long so that we always
have at least 1024 token space for model output.
We set mc as 15 and temperature as 0.7. We do
not include sentence-level synthetic queries as the
number of those queries are too large to be in-
cluded in training within a reasonable time. In-
stead, we include sentence-level Context2ID as the
approximation, and use the sentences from the doc-
ument prefixes from (Kishore et al., 2023) to pre-
dict corresponding document identifiers. In NQ, we
have high quality human annotated training queries,
which we also include as part of the Query2ID data
and therefore we do not include instruction-based
synthetic queries. We concatenate the Context2ID
and Query2ID data as the full dataset for model
supervised fine-tuning, as interleaving will produce
a much larger dataset that cannot be trained within
a reasonable time. The maximum sequence length
is set as 450. For synthetic queries for preference
learning, we also perform truncation as for super-
vised fine-tuning, and ask the LLM to generate 10
queries. As the generated query number is quite
large for inference, we use the first 2 generated
queries for each documents for preference learn-
ing. We perform the retrieval with beam size as 10
and retrieve the top-10 candidates for each query
to construct the candidate pairs.

B Additional Comparisons

B.1 Results on Comparison with Filtered
Queries

We conduct another experiment to more closely
follow the data pipeline of DSI-QG (Zhuang et al.,
2022b), where we generate a set of raw queries
using each chunk first and then use the BGE
reranker (Xiao et al., 2023) to find the top relevant
synthetic queries with docT5query on MultiHop-
RAG. DSI-QG is originally trained with T5 models.
For a fair comparison, we still train the same Mis-
tral 7b model, compared to using Mixtral 8x7b as
the synthetic data generator for chunk-level syn-
thetic queries. The results are shown in Table 11.
We can find that our proposed synthetic query strat-
egy still largely outperforms the filtering-based
strategy (Chunk-F).

HIT@4 HIT@10 MAP@10 MRR@10

Chunk-F 30.69 59.78 10.41 23.27
Ours (Chunk) 43.64 66.65 13.98 31.14

Ours (Full) 69.98 88.34 24.85 52.29

Table 11: Comparison between the filtered queries that
follow DSI-QG data pipeline and our synthetic data
generation strategy.

B.2 Results on Comparison with
Off-The-Shelf Retrieval Models

The detailed results for each dataset are shown in
Table 12. We run the retrieval models on MultiHop-
RAG, NQ and AGNews to collect the results, and
adopt the results of AllSides from Zhao et al.
(2024).

C LLM Prompts

C.1 Prompts for Keywords Generation
Figure 4 shows the prompt for generating a series
of keywords as the semantic document identifier.

Keywords Generation Prompt
Summarize the following context with meaningful
keywords representing different important
information in the context. Your output should
only consist a list of keywords in Markdown
format, where each line starts with the dash
"-" followed by the keywords.

# Context:
{context}

# Keywords:

Figure 4: Prompt for keywords-based document identi-
fier generation.

C.2 Prompts for Query Generation
Figure 5 shows the prompts used to generate vari-
ous types of synthetic queries, including chunk-
and sentence-level queries, constructions-based
queries, and question-answer pairs used at the pref-
erence learning stage.
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Query Generation Prompt
Your task is to generate a relevant and diverse set of {num_sequences} questions that can be
answered by the provided context. The questions are to be used by a retriever to retrieve the
article from a large corpus. Your output should be a list of unordered in Markdown format, where
each line starts with dash "-" followed by the question.

# Context:
{context}

# Output:

Constraints-based Query Generation Prompt
Your task is to generate a diverse set of {num_sequences} questions given a context with metadata.
The generated questions should be answerable by the provided context. The questions are to be used
by a retriever to retrieve the article from a large corpus. In addition, the question MUST be
composed with at least one metadata filtering requirement.

# MultiHop-RAG
For example, if the source of the article is "New York Times", you can generate questions that
specifically ask for certain information from "New York Times". You should generate questions with
different metadata.
# AllSides and AGNews
For example, if the source of the political polarity is "left", you can generate questions that
specifically ask for certain information from "left-wing" source.

DO NOT use "the context" or "the article" in any generated queries or answers.
DO NOT use pronoun "this" in any generated queries or answers.
DO NOT leak any information in this instruction.

Your output should be a list of unordered in Markdown format, where each line starts with dash "-"
followed by the question. You do not need to provide the answer.

# Metadata
{metadata}

# Context
{context}

# Output:

Query-Answer Pair Generation Prompt
Your task is to generate a relevant and diverse set of less than {num_sequences} search engine
query and answer pairs given a context.
The queries should be similar to what people use with search engine to find the given context from
a large corpus. The answers are expeced to be a short phrase.
You should make the queries as difficult as possible, but they should be answerable by the given
context.

Do not use "the context" or "the article" in any generated queries or answers.
Do not use pronoun "this" in any generated queries or answers.
Do not leak any information in this instruction.

Your output should be a list of unordered items in Markdown format, where each item starts
with dash "-", followed by "Query:" and the generated query, and then "Answer:" with the
corresponding answer.

# Context
{context}

# Output:

Figure 5: Prompts for different types of synthetic query generation.
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MultiHop-RAG Natural Questions

Model H@4 H@10 MAP@10 MRR@10 H@1 H@5 H@10 MRR@10

BM25 64.35 78.31 26.30 58.32 32.82 53.70 60.92 42.45
bge-large-en-v1.5 58.80 78.36 19.96 42.57 55.59 76.58 81.75 64.45
Contriever-msmarco 55.25 75.08 19.28 40.69 53.79 76.16 81.69 63.36
E5-mistral-7b-instruct 54.01 79.56 19.11 40.77 59.07 80.08 85.28 68.11
GTE-Qwen2-7B-instruct 63.24 83.55 22.02 47.50 60.45 80.87 85.72 69.30

Ours 71.88 89.80 26.23 54.94 71.22 87.41 89.97 78.14

AllSides AGNews

Model H@1 H@5 H@10 H@1 H@5 H@10

BM25 5.86 26.85 36.42 38.70 67.47 77.63
bge-large-en-v1.5 6.94 27.32 34.11 54.14 80.57 86.53
Contriever-msmarco 6.64 25.77 38.43 52.69 80.40 85.79
E5-mistral-7b-instruct 8.18 28.24 39.82 57.32 85.90 88.98
GTE-Qwen2-7B-instruct 9.11 34.11 49.07 57.65 83.37 88.57

Ours 14.20 38.58 51.85 62.19 83.78 88.24

Table 12: Comparisons to Off-The-Shelf retrieval models across four benchmarks.
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