Watermarking Large Language Models: An Unbiased and Low-risk
Method

Minjia Mao!* Dongjun Wei?> Zeyu Chen' Xiao Fang' Michael Chau?
1University of Delaware
The University of Hong Kong
{mjmao, chenze,xfang}@udel.edu
dongjun@connect. hku.hk, mchau@business.hku.hk

Abstract

Recent advancements in large language models
(LLMs) have highlighted the risk of misusing
them, raising the need for accurate detection
of LLM-generated content. In response, a vi-
able solution is to inject imperceptible identi-
fiers into LLMs, known as watermarks. Our
research extends the existing watermarking
methods by proposing the novel Sampling One
Then Accepting (STA-1) method. STA-1 is an
unbiased watermark that preserves the origi-
nal token distribution in expectation and has a
lower risk of producing unsatisfactory outputs
in low-entropy scenarios compared to existing
unbiased watermarks. In watermark detection,
STA-1 does not require prompts or a white-box
LLM, provides statistical guarantees, demon-
strates high efficiency in detection time, and
remains robust against various watermarking at-
tacks. Experimental results on low-entropy and
high-entropy datasets demonstrate that STA-1
achieves the above properties simultaneously,
making it a desirable solution for watermarking
LLMs. Implementation codes for this study are
available online.'

1 Introduction

Large language models (LLMs) are large-scale
deep learning models that can understand and gen-
erate natural languages by learning from a large
amount of textual data. As LLMs can generate
content more efficiently at a lower cost compared
to humans, the risk of LLMs being employed to
generate biased, fake, or malicious content is also
increasing (Mirsky et al., 2023; Fang et al., 2024;
Pan et al., 2023). To reduce the harm caused by
LLMs, it is crucial to identify LLM-generated con-
tent precisely and efficiently (Kirchenbauer et al.,
2023b). A viable solution is to inject watermarks

“Minjia Mao, Dongjun Wei, and Zeyu Chen contribute
equally. Corresponding to Minjia Mao.
"https://github.com/djwei96/STA

into LLM-generated text. The watermarked text
is imperceptible to humans but detectable by cer-
tain models (Liu et al., 2023b). This is achieved
by controlling the randomness of the token genera-
tion process in LLMs (Kirchenbauer et al., 2023a;
Lee et al., 2023), with the randomness kept confi-
dential by LLM owners. In this study, we seek a
watermark with the following properties during the
generation phase, which are crucial for an effective
watermark:

< Unbiased: The watermark should adjust
the probability distribution while maintaining the
same expectation as the unwatermarked distribu-
tion, making it impossible to discern between wa-
termarked and unwatermarked text.

#A Low-risk: The watermark should have a
low risk of producing unsatisfactory outputs in low-
entropy scenarios (e.g., code generation), where
high-probability tokens should be sampled even
with watermarks.

Furthermore, the watermark should have the fol-
lowing necessary properties during the detection
phase:

¥ Black-box: We do not need prompts or a
white-box LLM for detection.

Guarantee: We can have a statistical guar-
antee on the type Il error, where the watermark
detection fails to identify a watermarked text.

Efficiency: The detection should only require
a low time complexity.

© Robustness: The watermark is hard to be
removed by watermarking attacks.

However, we find that existing watermarking
methods cannot satisfy all these properties simulta-
neously in the generation and detection phases. In
response to these challenges, we propose a novel
Sampling One Then Accepting (STA-1) method
that can simultaneously achieve these properties.
We provide an analysis of previous methods in Ap-
pendix A and compare them with the proposed

7939

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7939-7960

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/djwei96/STA

Table 1: Comparison of the Properties of the Proposed Watermark with Properties of Previous Methods.

‘ Watermark Generation

Watermark Detection

Method

‘ < Unbiased #-A Low-risk ‘ @ Guarantee @ Black-box # Efficiency © Robustness

Kirchenbauer et al. (2023a)
Lee et al. (2023)

Hu et al. (2024)

Christ et al. (2023)
Kuditipudi et al. (2023)

Lu et al. (2024a)

Wu et al. (2024) v
Dathathri et al. (2024) v

SNENEN

v v
v

v
v

ESENENEN

SNENEN

Ours (STA-1) \ v v

N ENENENENEN
SNIENENEN

STA-1 method in Table 1. Our proposed STA-1
method can be traced back to the original water-
marking method (denoted as KGW) (Kirchenbauer
et al., 2023a), where the token set is divided into a
green and a red list at each generation step. Instead
of raising logits in the green list, STA-1 samples
a token from the original probability distribution
and accepts it if it is in the green list. If the sam-
pled token is in the red list, it resamples another
token and accepts it. We theoretically prove that
our STA-1 method is an unbiased watermarking
method, which is similar to previous unbiased wa-
termarks (Hu et al., 2024; Wu et al., 2024).

The STA-1 method also outperforms other un-
biased watermarks in low-entropy scenarios with
a lower risk of producing unsatisfactory outputs.
Specifically, unsatisfactory outputs in low-entropy
scenarios represent that under certain watermark
keys, the unbiased watermarking method alters the
probability distribution too much such that high-
probability tokens cannot be sampled at risk. We
prove that STA-1 is less risky than previous un-
biased watermarks by analyzing the variance of
the probability after altering, using a well-adopted
risk-return analysis (Sharpe, 1998).

Another benefit of our proposed method is that
STA-1 is a natural extension of KGW that inherits
its advantages in the detection phase. Specifically,
STA-1 counts the number of green list tokens and
employs the z-test for watermark detection. The
z-test naturally eliminates the need for prompts and
white-box LLMs in detection (which is required
in some previous work (Hu et al., 2024)) and only
requires O(m) time complexity, where m is the
number of tokens. Furthermore, we establish the
statistical guarantees for the type II error in water-
mark detection. These guarantees are related to the
Gini index of the probability distribution, a com-

mon metric in machine learning (Breiman, 2017),
compared to the proposed Spike entropy in KGW.

Additionally, we propose STA-M, an extension
of STA-1, by setting up a threshold for entropy in
generation (Lee et al., 2023; Wang et al., 2023)
and sampling more times for high-entropy steps.
Although STA-M is not unbiased theoretically, it
allows higher watermark strength with small text
quality shifts empirically. Based on the experimen-
tal results, we also find that our proposed STA-M
method has better robustness compared to KGW
against various attacks. Our main contributions can
be summarized as follows:

1. We propose STA-1, a novel unbiased water-
marking method that has a lower risk theoreti-
cally compared to other unbiased watermarks.
Moreover, we introduce STA-M, an extension
of STA-1 that enhances watermark strength
with low text quality shifts.

2. We prove that STA-1 has statistical guaran-
tees for the type Il error in its detection based
on the widely used Gini index. STA-1 also
does not require access to white-box LLMs
and only requires O(m) time complexity in
detection.

3. Experimental results on low-entropy and high-
entropy datasets empirically show that STA-1
is unbiased and has a lower risk of unsatis-
factory outputs compared to other unbiased
watermarks. Meanwhile, STA-M is more ro-
bust against different watermarking attacks
than existing methods.

2 Preliminary

Notations. We follow notations in previous work
(Kirchenbauer et al., 2023a; Hu et al., 2024) to

7940

represent the generation task of LLMs. Let Py
denote a pretrained LLM and V is the overall
token set. An example token set contains more
than 50,000 tokens (|V| > 50000) (Radford et al.,
2019). For simplicity, we use Python-style notation
for an ordered token sequence, where =" =
(x=™m x=™+L ... 2™), m and n are integers. In
a typical LLM generation task, an LLM receives
a sequence of N, + 1 tokens = Nri0 known as
a prompt, and outputs a sequence of T tokens
21T step by step. At step ¢, the probability of
each token is given by the conditional distribution
Py (t|z=Ne(t=1))_ The LLM generation follows
an autoregressive fashion, where the joint probabil-
ity of the generated tokens is Py (2|2~ Nei0) =
[Tisy P (ata=Neit=D),

When applying watermarking methods, the
LLM employs a private key k to adjust the con-
ditional distribution from Py (zt|z—Nr:(t=1) to
Purap(2t|z= Vo= k) where Py, indicates a
watermarked LLLM and the private key £ is ran-
domly selected from a key space K according to a
known distribution Pk (k). An unbiased watermark
requires that the expectation of the watermarked
distribution equals that of the original distribution
(Hu et al., 2024), defined as follows.

Definition 1 (Unbiased watermark). Given a
prompt 2~ V» and a known distribution Pg (k)
of the key k, a watermarking method is unbiased
towards the original model Py, if the watermarked
model Py, satisfies

Eppye () | Pt (@ |20 k)

(1
= PM(xt‘xin:(til))a
for any prompt 2~ Vr0 ¢ YNe+1 any token 2t €
V), and all generation steps 1 < ¢ < T
One of our main contributions is to show that
the risk of unsatisfactory outputs in STA-1 is lower.
Here, ‘risk’ is specifically defined for unbiased wa-
termarks in low-entropy scenarios. To support our
analysis, we introduce a previous biased watermark
KGW (as the backbone of our study) (Kirchenbauer
et al., 2023a), alongside other unbiased watermarks
including Dipmark (Wu et al., 2024), vy-reweight
(Hu et al., 2024), and RDW (Kuditipudi et al., 2023)
in Appendix B.

3 Method: Sampling Then Accepting

In this section, we first propose the Sampling One
Then Accepting (STA-1) method and theoretically

show that it is unbiased. We then analyze previous
unbiased watermarks alongside STA-1 under a low-
entropy protocol, showing that STA-1 has a lower
risk of producing unsatisfactory outputs. Next, we
explore the detection of STA-1-generated text using
the z-test and provide a statistical guarantee for its
type II error based on the Gini index. Finally, we
introduce Sampling M Then Accepting (STA-M),
an extension of STA-1.

3.1 Sampling One Then Accepting (STA-1)

We start by proposing the STA-1 method in Algo-
rithm 1, which is always unbiased. We first utilize
the last generated token from an LLM to compute
its hash value and employ this value as the seed of
a random number generator (RNG). We then use
the RNG to divide the token set into a green and
ared list (Kirchenbauer et al., 2023a). Finally, we
sample from the original LLM output distribution
(as depicted in Line 4 of Algorithm 1). If the token
is in the green list (as shown in Lines 5 and 6 of
Algorithm 1), we accept the sample. Otherwise, the
token must be in the red list (as depicted in Lines
7 and 8 of Algorithm 1), and we sample a token
again, always accepting the second sample.

Algorithm 1 STA-1 Text Generation
Input: A pretrained LLM P,,, a watermark key
k € K, the proportion of the green list y € (0, 1),
and a prompt 2~ V»:0
1: fort=1,2...,T do
2: Get the probability distribution of tokens
pt _ PM(.|fop:(t71))
3: Compute the hash of the last token x!~!.
Partition the token set V to form the green
(G and red R lists based on the key k, the
hash, and the proportion ~y
. Sample the candidate token ', with p
5. ifzl € G then
Accept the sampling, the next generated

token 2! = z!,

7: else

8: Deny the sampling (i.., x. € R), sample
2! from the distribution p?

9: end if

10: end for

Output: The generated text 217

STA-1 is a simple yet effective method with
many great properties. We begin by analyzing the
unbiasedness of STA-1. In the following theorem,
we assume that the key k is randomly sampled

7941

from a uniform distribution. Consequently, the ran-
dom partition of the green and red lists associated
with this key is also uniform (Kirchenbauer et al.,
2023a).

Theorem 1. The STA-1 method (Algorithm 1) is
an unbiased watermark.

Proof. See Appendix C.1.

3.1.1 Risk in the Low-Entropy Scenario

The STA-1 method outperforms other unbiased wa-
termarks in generating low-entropy texts, demon-
strating a lower risk of producing unsatisfactory
outputs. Specifically, the low-entropy text refers to
a relatively deterministic sequence in natural lan-
guage. The entropy measures the uncertainty of the
probability distribution Py (2¢|z~Ne:(=1)) at a sin-
gle generation step among the token set)V, where
low entropy means low uncertainty. For example,
in code writing, the structure of a code sequence is
regularized where few changes can be made (Lee
et al., 2023). More explicitly, for a typical English
pangram such as “The quick brown fox jumps over
the lazy dog’ (Kirchenbauer et al., 2023a), both
humans and machines should generate similar if
not identical output. For example, when provided
with the prompt ‘The quick brown fox jumps over
the lazy’, the trained LLaMA-2-7B (Touvron et al.,
2023) outputs an empirical probability above 0.8
for the next token ‘dog’. Such low-entropy scenar-
i0s are common in text generation tasks of LLMs.
In this paper, we aim to model a simple problem
protocol for the low-entropy generation scenario.

Low-entropy Protocol. For simplicity, we con-
sider the low-entropy scenario where only one to-
ken probability is significantly large. Specifically,
denote P4, as the largest probability of a token
in the probability distribution Py (-]~ Nr(t=1)),
We make an intuitive assumption that except pmaz,
other |V| — 1 probabilities are small enough to uni-
formly fill in the remaining 1 — p;,4, probability
value.

Previous work claims that unbiased watermarks
have no impact on text quality by maintaining the
same expectation (Hu et al., 2024). However, we
challenge this claim in the low-entropy protocol
described above. We show that in such a protocol,
unbiased watermarks can still affect text quality
because of the risk of unsatisfactory outputs. Con-
sider the following example.

Example 1. Assuming that the token set only
consists of two tokens V = {A, B}, at a typical
step, an LLLM outputs the probability of generat-

ing A (pa) and B (pp) as (pa,pp) = (0.8,0.2).
Consider the following two unbiased watermarks.
W1: with a probability of 0.8 always generating
A and with a probability of 0.2 always generat-
ing B; Wy: with a probability of 0.5, the proba-
bility distribution becomes (pa,pp) = (0.9,0.1)
and with the other probability of 0.5, it becomes
(pa;pB) = (0.7,0.3).

In Example 1, one can view the prompt as ‘The
quick brown fox jumps over the lazy’, A as the
token ‘dog’, and B as all other tokens. It is easy
to show that watermarks 17 and W5 are both un-
biased. However, risk-averse people (Pratt, 1978)
will prefer watermark W5 because Wy does not
have a possibility that only B is sampled. B rep-
resents unsatisfactory outputs in low-entropy sce-
narios which could significantly harm text quality,
and we want the risk of sampling B to be as low as
possible.> At any generation step, let 2,4, denote
the token with the maximum probability p,,q,. We
measure the risk by the variance (Sharpe, 1998)
of p%fx among watermark keys, where p%fx de-
notes the altered value of p,,,q, With a watermark-
ing method and a key k. We show that STA-1 has
a lower risk compared to previous unbiased water-
marks in the following theorem. To put it plainly,
under the same expectation, the variance of the
altered probabilities (risk) by STA-1 is lower.

Theorem 2. Assume 1 — o < Py < 1, where
« represents the partition hyperparameter used in
Dipmark. For the low-entropy protocol above, the
STA-1 method has a lower variance in the proba-
bility of generating x,q, compared to other unbi-
ased methods (including Dipmark, ~y-reweight, and
RDW) (Hu et al., 2024; Wu et al., 2024; Kuditipudi
et al., 2023). Formally,

Viinaw [Phs] < VTR, [phi]

max k~Pp (k) max (2)
__ yY-Teweight K RDW k

forany o € [0,0.5] used in Dipmark.
Proof. See Appendix C.2.

3.1.2 Statistical Test Guarantees

The proposed STA-1 method also has a statistical
test guarantee of type II error for detection. Specif-
ically, the detection of STA-1 compares the em-
pirical proportion of green list tokens in the given

2We refer readers to Appendix D for a conventional exam-
ple in finance and a better understanding of the analysis via
utility theory.

7942

text against the green list proportion ~y (Kirchen-
bauer et al., 2023a). We employ the z-test where
the null hypothesis (Hy) is that the text is gener-
ated without knowing the green-red list partition.
Denote | S| as the number of green list tokens in
this text. Under Hy, |S|¢ follows a Binomial distri-
bution B(T),~) with a mean of 47" and a variance
of 7(1 — v)T'. The z-score is calculated with the
empirical |\S|¢q as

y— M 3)
V(1 =T
The alternative hypothesis (H,) is that the text is
generated with STA-1. Under H,, |S|¢ is expected
to be larger than 47T'. We can detect watermarked
texts with a certain confidence level if the z-score
exceeds a z threshold.

To ensure the effectiveness of the z-test, under
H,, alower bound on the expectation of |.S| and
an upper bound on the variance of |S|q are re-
quired. We establish the necessary lower and upper
bounds in the following theorem. Because both
bounds are related to the Gini index of the LLM
output distribution, we define the Gini index first.
Definition 2 (Gini index). Given a discrete proba-
bility distribution p = (p1,p2, - ,pn), the Gini
index of p is defined as

N
Gini(p) = Zpi(l — i) 4)
i=1

A low Gini index implies less uncertainty in the
probability distribution, resulting in a low-entropy
scenario. Next, we propose the mean and variance
bounds of |S|q.

Theorem 3. For STA-1 generated text sequences
with T tokens, let the random green list have a
fixed size of y|V|, and p! denote the LLM’s raw
output probability of the i-th token in V at step
ti =12 V] pt = (pthp%?"' vpfw)- If
an STA-1 generated sequence S has an average
Gini index larger than or equal to Gini*, that is,
+ S Gini(pt) > Gini*, then the expectation
of |S|q is at least

E([S|g) 2T + (1 =y)yT'Gini*. (5)

With one additional assumption that vy and Gini*
satisfy v + (1 — v)yGini* > 0.5, the variance of
|S|q is at most

V([Sla) < Ty + (1 = y)vGini*]

6
[1 =7 —(1—9y)Gini"]. ©

Proof. See Appendix C.3.

Remark 1. The additional assumption required
for the variance upper bound, v+ (1—~)yGini* >
0.5, implies that a larger green list is necessary in
low-entropy scenarios to establish an upper bound
on the variance of |S|q. By selecting v > 0.5, this
assumption holds for any Gini*.

Remark 2. Compared to the Spike entropy pro-
posed by Kirchenbauer et al. (2023a), the Gini in-
dex is a commonly used metric in machine learning
to measure the uncertainty of a probability distribu-
tion, such as CART decision tree (Breiman, 2017).

Having established the mean and variance
bounds for | S|, with an additional condition, we
derive from Theorem 3 a corollary that provides
an explicit upper bound on the type II error of the
z-test in detecting STA-1.

Corollary 1. Given that Theorem 3 holds, if

Gini* > Z/\/~v(1 —)T, we have the type II er-

rorIB = P<7|S|G7'YT < E‘Ha) satisfy

VAT =

<= v ,
VA4 E AT - 2y/v(1 —~)T)?

(N

where % is the z threshold value, E and V are the
lower bound and upper bound values on E(|S|q)
and V(|S|q) as established in Theorem 3, respec-
tively.

Proof. See Appendix C.4.

A higher Gini* increases E and decreases V,
resulting in a reduced upper bound on the type
IT error. Therefore, the test has higher statistical
power in high-entropy scenarios.

3.2 Sampling M Then Accepting (STA-M)

A low-entropy scenario indicates a low Gini index
which weakens the watermark strength based on
Theorem 3. To enhance the watermark strength, we
propose the Sampling M Then Accepting (STA-M)
method, an extension of STA-1. STA-M employs a
heuristic threshold 7 for entropy at each generation
step. In detail, at generation step ¢, we first calcu-
late the entropy 7¢ of the probability distribution
Py (-|x=Ne:(t=1)) If it shows low entropy 7% < T,
we apply STA-1 at this generation step; if it shows
high entropy 7! > 7, we repeat sampling if the
previously sampled token is in the red list, and the
procedure repeats at most M times.

The detailed algorithm and analysis of STA-M
can be found in Appendix E. According to Remark
3 in Appendix E, STA-M is biased. In low-entropy

7943

steps where probabilities are concentrated on a few
tokens, actively using STA-M by repeated sam-
pling can skew these probabilities, thereby reduc-
ing text quality. On the contrary, in high-entropy
steps, since there are more acceptable tokens, the
impact of repeated sampling on text quality is weak-
ened. Therefore, STA-M only repeats sampling in
high-entropy steps, which could increase water-
mark strength and largely maintain text quality.

4 [Experiments

In this section, we conducted computational ex-
periments to evaluate the performance of STA-1
and STA-M using two public datasets. We bench-
marked our methods against various watermarking
baselines on text quality, watermark strength, and
detection time. Moreover, we discussed the risk of
unsatisfactory outputs in the low-entropy dataset.
Finally, we conducted a robustness analysis of STA-
1 and STA-M against different watermarking at-
tacks.

4.1 Experimental Setup

Datasets and metrics. We employed two public
datasets: C4 subset (Raffel et al., 2020) for news-
like (high-entropy) text generation and HumanEval
(Chen et al., 2021) for code (low-entropy) gener-
ation. We evaluated the performance of different
watermarking methods on text quality and water-
mark strength. For text quality, we measured per-
plexity (PPL) and coherence (Gao et al., 2021) for
generations on C4; We computed PPL and pass@k
scores of code generations (Chen et al., 2021) for
HumanEval. We refer readers to Appendix F.1
for more dataset details and prompts used in each
dataset. For watermark strength, we set z thresh-
olds as 2 and 2.5 and report the F1-score and AUC
of watermark detection. Additionally, for the C4
subset, we employed true positive rate at false posi-
tive rate (TPR@FPR) as another metric to evaluate
the detection (Liu et al., 2023a).

Baselines. We chose KGW (Kirchenbauer et al.,
2023a), SWEET (Lee et al., 2023), and EWD (Lu
et al., 2024a) as the biased watermark baselines.
Additionally, we selected RDW (Kuditipudi et al.,
2023), Dipmark (Wu et al., 2024), and y-reweight
(Hu et al., 2024) as the unbiased watermark base-
lines. Specifically, we set KGW, SWEET, and
EWD with a fixed green list proportion v = 0.5.
For KGW, we employed diverse logit increments
0 € {1,1.5,2}. For SWEET, we fixed the logit

increment as 6 = 2 (Lee et al., 2023). The entropy
threshold of SWEET was set the same as STA-M
for a fair comparison. For EWD, the spike entropy
parameter was set according to their public imple-
mentation.> We set the watermark key length as
256 in RDW. The partition parameter of Dipmark
was set as a € {0.3,0.4,0.5}. When o = 0.5,
we report this result as «-reweight. Note that ~-
reweight (Hu et al., 2024) does not include a z-test.
Therefore, we implemented the z-score in Dipmark
(Wu et al., 2024) for y-reweight by counting the
number of tokens in the latter portion of the token
set. Also, RDW only contains a permutation test
that reports p-values. We set p-value thresholds at
0.05 and 0.01 to approximate two z-tests.

Implementation details. We utilized different
variants of LLaMA-2-7B (Touvron et al., 2023) as
our generative LLMs, and LLaMA-2-13B to com-
pute perplexity. For hyperparameters in STA-M,
we set M € {4,8,16} and two entropy thresholds
7 for different datasets. We conducted a robustness
check on 7 in Appendix F.2 and selected different
7s for different datasets in the final experiment. For
each method, we run 10 times to conduct all pair-
wise statistical tests. Results in the following tables
show only average values. For detection efficiency,
we report the detection time for all generations. We
refer readers to Appendix F.1 for more details on
implementation.

4.2 Results on C4

1
RDW Unbiased

Dipmark (a=0.3 [Biased
Dipmark (a=0.4
y-reweight

SWEET (T =1.35)
EWD

STA-4 (T =1.35)
STA-8 (T =1.35)
STA-16 (T =1.35)

0.0 0.2 0.4 0.6 0.8 1.0
TPR@0.1%FPR

Figure 1: Result Comparison of Watermark Strength of
TPR@0.1%FPR Between Our Method and Baselines
for the C4 Dataset.

For the C4 dataset, each method generates at
least 500 text sequences with at least 200 4+ 5
tokens (Kirchenbauer et al., 2023a). Table 2
demonstrates each method’s text quality, water-
mark strength, and detection efficiency for 500 gen-
erations, and we present generated text examples

Shttps://github.com/luyijian3/EWD

7944

https://github.com/luyijian3/EWD

Table 2: Result Comparison between Our Methods and Baselines on Text Quality and Watermark Strength for the
C4 Dataset. For unbiased watermarks, the best results without statistical differences are underlined. For biased
watermarks, the best results without statistical differences are shown in bold.

Text Quality Watermark Strength Detection

z=2.0 z2=25 Efficiency

| Method | LPPL 1 Coherence 1Fl 1+AUC 1Fl 1AUC Total Time
| No Watermark | 7.474 0.604 0.046 0.500 0.012 0.500 46s
RDW 7.650 0.592 0942 0942 0948 0.950 4h
Dipmark(a=0.3) | 7.415 0.599 0933 0935 0909 00915 44s
Unbiased | Dipmark(a=0.4) | 7.384 0.601 0957 0957 0954 0.955 44s
~y-reweight 7.436 0.599 0961 0961 0963 0.963 44s
| STA-1 | 7.387 0.600 0962 0961 0963 0.963 46s
KGW(6=1) 7.591 0.601 0961 0962 0940 0944 46s
KGW(4=1.5) 7.844 0.600 0985 0.984 0.990 0.990 46s
KGW(6=2) 8.091 0.595 098 0.986 0992 0.992 46s
Biased SWEET(7=1.35) | 7.917 0.600 0980 0.980 0989 0.989 46s
EWD 7.580 0.606 0930 0932 0.880 0.892 46s
STA-4(7=1.35) 7.611 0.599 0973 0972 0988 0.988 46s
STA-8(7=1.35) 8.006 0.592 0975 0975 0987 0.987 46s
STA-16(r=1.35) | 8.199 0.588 0973 0972 0988 0.988 46s

in Appendix F.3. We can observe that the proposed
STA-1 method achieves comparable perplexity and
coherence when compared to no watermark gen-
eration and existing unbiased watermarks, includ-
ing RDW, Dipmark, and y-reweight. This result
empirically shows that the STA-1 method is un-
biased. In terms of watermark strength, the STA-
1 method also achieves satisfactory results on F1
and AUC and is not inferior to existing unbiased
benchmarks. We also plot the detection perfor-
mance of TPR@0.1%FPR in Figure 1. We observe
that, unlike some unbiased watermarks such as
Dipmark, which experience a significant drop in
TPR@0.1%FPR, the STA-1 method remains com-
parable to the best-performing unbiased watermark
RDW. Furthermore, based on Table 2, the STA-1
method is highly efficient, taking only 46 seconds
to detect 500 generations, while RDW requires 4
hours to detect the same number of generations.

In Table 2, we also report the performance of
STA-M, which samples more times at high-entropy
steps for improving watermark strength. In terms
of watermark strength, it is evident that STA-M
(M € {4,8,16}) outperforms all unbiased wa-
termarks and demonstrates results comparable to
the biased KGW watermark (6 € {1.5,2}) and
SWEET. We also plot the TPR@0.1%FPR scores
for different parameter settings of STA-M and bi-
ased watermark baselines in Figure 1. From this,
we observe that the watermark strength of EWD
and SWEET is inferior to our method. Meanwhile,

the watermark strength of KGW (6 € {1,1.5,2})
varies significantly, ranging from 0.7 to 0.99. In
contrast, our STA-M (M € {4, 8, 16}) method re-
mains stable across all parameter settings, with a
consistent TPR@0.1%FPR score over 0.99. Re-
garding text quality, STA-M does not experience
significant drops compared to the unbiased water-
marks and remains comparable to the biased KGW
methods.

4.3 Results on HumanEval

We then compare our methods against baselines on
the HumanEval dataset, a low-entropy code gen-
eration benchmark. We report perplexity, pass @k
scores, and watermark strength for all methods in
Table 3. Since it is preferable not to control the
length of code during generation, we remove de-
tection time results. We observe that our STA-1
method achieves similar perplexity, pass@k scores,
and watermark strength compared to other unbi-
ased watermarking methods. This also empirically
corroborates that the STA-1 method is unbiased.
Moreover, we examine the risk of unsatisfac-
tory outputs produced by unbiased watermarks for
low-entropy generations. Specifically, we ran 10
times of code generation for each problem using
different unbiased watermarking methods with 10
different keys. We compute the average variance of
perplexity for each problem, as well as the average
number of passed codes among all passed prob-
lems. The results are shown in Figure 2. From the

7945

Table 3: Result Comparison between Our Methods and Baselines on Text Quality and Watermark Strength for the
HumanEval Dataset. For unbiased watermarks, the best results without statistical differences are underlined. For

biased watermarks, the best results without statistical differences are shown in bold.

Text Quality Watermark Strength
z=2.0 z=2.5

\ Method \ JPPL 1 Pass@l 1 Pass@5 1 Pass@l0 1F1 f1TAUC 1Fl 1AUC

| No Watermark | 3.041 0.138 0.405 0.537 0.114 0494 0.072 0497

RDW 3.159 0.134 0.362 0.470 0408 0.628 0343 0.604
Dipmark(a=0.3) | 3.037 0.144 0.392 0.512 0.518 0.665 0423 0.625

Unbiased | Dipmark(a=0.4) | 3.101 0.141 0.393 0.512 0516 0.668 0.429 0.634
~-reweight 3.088 0.142 0.371 0.488 0.522 0.671 0479 0.655

STA-1 3.006 0.147 0.394 0.494 0.526 0.677 0472 0.651

KGW(6=1) 3.078 0.135 0.326 0.415 0471 0.643 0416 0.627
KGW(6=1.5) 3.499 0.098 0.308 0.427 0.720 0.770 0.650 0.730

KGW(6=2) 3.723 0.098 0.254 0.372 0.737 0775 0.733 0.785

Biased SWEET(7=1.95) | 3.125 0.127 0.312 0.402 0.386 0.605 0.299 0.583
EWD 3.106 0.132 0.335 0.439 0469 0.630 0385 0.607
STA-4(7=1.95) 3.175 0.135 0.392 0.500 0.633 0.685 0.594 0.679
STA-8(1=1.95) 2.842 0.146 0.399 0.537 0.652 0.703 0.587 0.675
STA-16(T=1.95) | 3.024 0.140 0.382 0.476 0.725 0.764 0.640 0.717

figure, it is evident that the STA-1 method demon-
strates the lowest variance of perplexity compared
to RDW, Dipmark(a=0.3), Dipmark(a=0.4), and
~v-reweight. A lower variance indicates a lower risk
among different text generations under different
keys. Additionally, we observe that for STA-1, the
average number of passed codes among all passed
problems is significantly larger than that of other
unbiased watermarks, exceeding 3.1, while others
remain below 2.9. Therefore, we can conclude that
the STA-1 method has a lower risk when gen-
erating low-entropy texts compared to existing
unbiased watermarks, as discussed in Theorem 2.

=22 ® ® RDW

I ’1 [l Dipmark(a=0.3)

§ : A Dipmark(a=0.4)

w20 y-reweight

5 * STA-1

319

2 A

Llis

[

£1.7

8

b

Si6

-

&1s u N
2.7 2.8 2.9 3.0 3.1

PC per PP (- higher is better)

Figure 2: Comparison on the Risk of Unsatisfactory
Outputs for Unbiased Watermarks. For space concerns,
we denote the average number of passed codes among
all passed problems as PC per PP.

We then report the performance of STA-M in

Table 3. As shown, by repeating sampling dur-
ing high-entropy steps, STA-M (M € 4,8,16)
achieves higher watermark strength compared to
all unbiased watermarks, while maintaining simi-
lar pass scores. Specifically, the STA-16 method
achieves comparable watermark strength against
biased watermark KGW(§ = 2) with an AUC of
0.764 (z = 2) against 0.775. Meanwhile, the text
quality is maintained with a pass@10 of 0.476,
highlighting the efficacy of the heuristics to en-
hance watermark strength at high-entropy genera-
tion steps.

4.4 Attacking STA

Il Best Biased
3 STA-16(t=1.35)

Best Unbiased
STA-1

o o o
EN o ©

Detection AUC (- higher is better)
o
)

7

GPT-3.5
Attacking Methods

%,

Copy-Paste

Figure 3: Attacking Watermarks for C4. For baselines,
we report the highest AUC score of unbiased and biased
watermarks against each attack. Full results and discus-
sions are available in Appendix F.4 and Table 6.

7946

We assess the robustness of different watermark-
ing methods under various attacks, including the
copy-paste attack (Kirchenbauer et al., 2023a),
paraphrasing using GPT-3.5, and two configura-
tions of the DIPPER attack (Krishna et al., 2024).
For space concerns, we describe the detailed attack
setting and report the F1-score and AUC of water-
mark detection with z = 2 in Appendix F.4. We
plot the AUC of watermark detection with z = 2
for STA-1 and STA-16, alongside the highest AUC
values of biased and unbiased benchmarks against
each attack in Figure 3. As depicted, on the one
hand, the unbiased STA-1 method achieves satis-
factory performance, matching the best-performing
unbiased benchmark in each attack. This empiri-
cally demonstrates that the STA-1 is also robust
to various attacks. On the other hand, by repeat-
ing sampling as high-entropy steps, the STA-16
method achieves better robustness than KGW.

We detail the reasons for the robustness of STA-
1 and STA-M as follows. For the copy-paste attack,
since our method inherits from KGW, it is natu-
rally robust to simple text insertion and removal
(Kirchenbauer et al., 2023a). Meanwhile, LLM-
based attacks, such as GPT-3.5 and DIPPER, are
designed to replace tokens in given texts by sam-
pling from the LLM. STA-M effectively increases
the proportion of green-list tokens by raising their
probability in high-entropy scenarios without com-
promising too much text quality, making it difficult
for LLM-based attacks to replace a substantial num-
ber of tokens in STA-M-generated text and remove
the watermark.

5 Related Work

With the development of LLMs, the idea of wa-
termarking LLMs has been proposed (Aaronson,
2022) and widely explored (Tu et al., 2024). Ex-
isting white-box watermarking techniques can be
categorized into watermarking during logits and
probabilities generation (Wang et al., 2023; Zhao
et al., 2023; Yoo et al., 2023; Ren et al., 2023;
Takezawa et al., 2023; Lu et al., 2024b), and water-
marking by controlling sampling strategies (Christ
et al., 2023; Kuditipudi et al., 2023; Hou et al.,
2023; Fairoze et al., 2023). We refer readers to
Appendix G for a detailed related work.

6 Conclusions

In this work, we propose a novel watermarking
method named STA-1. Theoretically, we show that

STA-1 is unbiased and has a lower risk than exist-
ing unbiased watermarks. During detection, STA-
1 also provides statistical test guarantees on the
type II error of watermark detection, demonstrates
high efficiency in detection time, and remains ro-
bust against various watermarking attacks. Experi-
mental results on public datasets show that STA-1
achieves the above properties simultaneously. We
also extend STA-1 to STA-M, which can enhance
watermark strength with small text quality shifts.

7 Limitations

We acknowledge several limitations in this work
and suggest directions accordingly for future im-
provement. First, watermarking low-entropy tasks
remains challenging, and future work could devise
better watermarking methods to improve water-
mark strength while maintaining text quality. Sec-
ond, future work could incorporate more datasets
and models to evaluate our method. Third, LLM
watermarks should be robust against paraphrasing
attacks like GPT-3.5 and DIPPER even in low-
entropy scenarios. Future work can consider ex-
tending watermarking methods by enhancing ro-
bustness in these scenarios. Fourth, it may also be
useful to consider context code history (Hu et al.,
2024) to extend the unbiased results from the token
level to the sequence level.

8 Ethical Statement

Watermarking methods for LLMs are designed to
enhance accountability in their deployment by facil-
itating the precise and efficient detection of LLM-
generated content. While showcasing broad bene-
fits, these watermarking techniques also carry in-
herent risks: if the underlying watermarking mech-
anism (which is typically kept confidential by the
LLM owner) is exposed, malicious actors could
exploit it to manipulate watermarks, such as falsely
attributing LLM-generated content or escaping de-
tection entirely. Therefore, to maintain ethical stan-
dards, users must protect the confidentiality of the
watermarking mechanism (such as the hash func-
tion and the key required in our proposed method)
and acknowledge that watermarks alone cannot pre-
vent all types of misuse. Moreover, a watermarking
method should be implemented alongside broader
safeguards to minimize unintended harms, such as
access controls and misuse monitoring, ensuring it
functions as a tool for accountability rather than a
means for new abuses.

7947

References

Scott Aaronson. 2022. My ai safety lecture for ut effec-
tive altruism. https://scottaaronson.blog/?p=
6823. Accessed: 2024-05-15.

Leo Breiman. 2017. Classification and regression trees.
Routledge.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Miranda Christ, Sam Gunn, and Or Zamir. 2023. Un-
detectable watermarks for language models. arXiv
preprint arXiv:2306.09194.

Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-
Sen Huang, Rob McAdam, Johannes Welbl, Vandana
Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana
Matejovicova, et al. 2024. Scalable watermarking
for identifying large language model outputs. Nature,
634(8035):818-823.

Gerard Debreu et al. 1954. Representation of a pref-
erence ordering by a numerical function. Decision
processes, 3:159-165.

Jaiden Fairoze, Sanjam Garg, Somesh Jha, Saeed
Mahloujifar, Mohammad Mahmoody, and Mingyuan
Wang. 2023. Publicly detectable watermarking for
language models. arXiv preprint arXiv:2310.18491.

Xiao Fang, Shangkun Che, Minjia Mao, Hongzhe
Zhang, Ming Zhao, and Xiaohang Zhao. 2024. Bias
of ai-generated content: an examination of news pro-
duced by large language models. Scientific Reports,
14(1):5224.

Pierre Fernandez, Antoine Chaffin, Karim Tit, Vivien
Chappelier, and Teddy Furon. 2023. Three bricks to
consolidate watermarks for large language models.
In 2023 IEEE International Workshop on Information
Forensics and Security (WIFS), pages 1-6. IEEE.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Abe Bohan Hou, Jingyu Zhang, Tianxing He,
Yichen Wang, Yung-Sung Chuang, Hongwei Wang,
Lingfeng Shen, Benjamin Van Durme, Daniel
Khashabi, and Yulia Tsvetkov. 2023. Semstamp: A
semantic watermark with paraphrastic robustness for
text generation. arXiv preprint arXiv:2310.03991.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu,
Hongyang Zhang, and Heng Huang. 2024. Unbiased
watermark for large language models. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024. OpenReview.net.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023a.
A watermark for large language models. In Infer-
national Conference on Machine Learning, pages

17061-17084. PMLR.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli
Shu, Khalid Saifullah, Kezhi Kong, Kasun Fer-
nando, Aniruddha Saha, Micah Goldblum, and Tom
Goldstein. 2023b. On the reliability of water-
marks for large language models. arXiv preprint
arXiv:2306.04634.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska,
John Wieting, and Mohit Iyyer. 2024. Paraphras-
ing evades detectors of ai-generated text, but retrieval
is an effective defense. Advances in Neural Informa-
tion Processing Systems, 36.

Rohith Kuditipudi, John Thickstun, Tatsunori
Hashimoto, and Percy Liang. 2023. Robust
distortion-free watermarks for language models.
arXiv preprint arXiv:2307.15593.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. 2023. Who wrote this code? watermarking for
code generation. arXiv preprint arXiv:2305.15060.

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and
Lijie Wen. 2023a. A semantic invariant robust wa-
termark for large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming
Hu, Lijie Wen, Irwin King, and Philip S Yu. 2023b.
A survey of text watermarking in the era of large
language models. arXiv preprint arXiv:2312.07913.

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Irwin
King. 2024a. An entropy-based text watermarking
detection method. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11724—
11735.

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and
Irwin King. 2024b. An entropy-based text water-
marking detection method. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
11724-11735. Association for Computational Lin-
guistics.

Yisroel Mirsky, Ambra Demontis, Jaidip Kotak, Ram
Shankar, Deng Gelei, Liu Yang, Xiangyu Zhang,
Maura Pintor, Wenke Lee, Yuval Elovici, et al. 2023.
The threat of offensive ai to organizations. Comput-
ers & Security, 124:103006.

Yikang Pan, Liangming Pan, Wenhu Chen, Preslav
Nakov, Min-Yen Kan, and William Yang Wang. 2023.
On the risk of misinformation pollution with large
language models. In The 2023 Conference on Empir-
ical Methods in Natural Language Processing.

7948

https://scottaaronson.blog/?p=6823
https://scottaaronson.blog/?p=6823
https://doi.org/10.18653/V1/2024.ACL-LONG.630
https://doi.org/10.18653/V1/2024.ACL-LONG.630

John W Pratt. 1978. Risk aversion in the small and in
the large. In Uncertainty in economics, pages 59-79.
Elsevier.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

Jie Ren, Han Xu, Yiding Liu, Yingqgian Cui, Shuaigiang
Wang, Dawei Yin, and Jiliang Tang. 2023. A
robust semantics-based watermark for large lan-
guage model against paraphrasing. arXiv preprint
arXiv:2311.08721.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

William F Sharpe. 1998. The sharpe ratio. Streetwise—
the Best of the Journal of Portfolio Management,
3:169-185.

Yuki Takezawa, Ryoma Sato, Han Bao, Kenta Niwa,
and Makoto Yamada. 2023. Necessary and sufficient
watermark for large language models. arXiv preprint
arXiv:2310.00833.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Shangqing Tu, Yuliang Sun, Yushi Bai, Jifan Yu, Lei
Hou, and Juanzi Li. 2024. Waterbench: Towards
holistic evaluation of watermarks for large language
models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pages 1517-1542. Association
for Computational Linguistics.

Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou,
Yankai Lin, Fandong Meng, Jie Zhou, and Xu Sun.
2023. Towards codable text watermarking for large
language models. arXiv preprint arXiv:2307.15992.

Wikipedia. 2024. St. Petersburg paradox —
Wikipedia, the free encyclopedia. http:
//en.wikipedia.org/w/index.php?title=St.
%20Petersburgk20paradox&oldid=1212997265.
[Online; accessed 21-May-2024].

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. ArXiv, abs/1910.03771.

Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang
Zhang, and Heng Huang. 2024. A resilient and ac-
cessible distribution-preserving watermark for large
language models. In International Conference on
Machine Learning.

KiYoon Yoo, Wonhyuk Ahn, and Nojun Kwak. 2023.
Advancing beyond identification: Multi-bit wa-
termark for language models. arXiv preprint
arXiv:2308.00221.

Xuandong Zhao, Yu-Xiang Wang, and Lei Li. 2023.
Protecting language generation models via invisible
watermarking. In International Conference on Ma-
chine Learning, pages 42187-42199. PMLR.

A Research Gap Summary

Existing unbiased watermarks can be categorized
according to the stage where watermarks are in-
jected: distribution reweighting and controlled sam-
pling (Liu et al., 2023b). For distribution reweight-
ing, Hu et al. (2024) proposes y-reweight, which
uses the log-likelihood ratio (LLR) test by compar-
ing the likelihood of the text produced by water-
marked and unwatermarked white-box LLMs. It
requires the prompt as input and a white-box LLM
in watermark detection (Fernandez et al., 2023;
Hu et al., 2024). Also, the watermark is unsta-
ble because changing the first token of the gen-
erated text can lead to huge deviations from the
original likelihood value (Fernandez et al., 2023).
In response, Wu et al. (2024) avoid the LLR test
and propose Dipmark, an extension of vy-reweight
with more general parameter settings. However,
although both y-reweight and Dipmark ensure the
type I error of watermark detection, they fail to
provide statistical guarantees for the type Il error
(Hu et al., 2024; Wu et al., 2024). For controlled
sampling, Christ et al. (2023) introduce a water-
marking method that uses a sequence of random
values to guide the token sampling process. How-
ever, their method is not robust enough against
simple removal attacks (Liu et al., 2023b). Kudi-
tipudi et al. (2023) also use random values to con-
trol the sampling and introduce a permutation test
on detection that does not require white-box access

7949

https://doi.org/10.18653/V1/2024.ACL-LONG.83
https://doi.org/10.18653/V1/2024.ACL-LONG.83
https://doi.org/10.18653/V1/2024.ACL-LONG.83
http://en.wikipedia.org/w/index.php?title=St.%20Petersburg%20paradox&oldid=1212997265
http://en.wikipedia.org/w/index.php?title=St.%20Petersburg%20paradox&oldid=1212997265
http://en.wikipedia.org/w/index.php?title=St.%20Petersburg%20paradox&oldid=1212997265

to LLMs. However, this permutation test is time-
consuming theoretically and empirically. Dathathri
et al. (2024) propose SynthID-Text, which is an
unbiased watermarking method and incorporates
a tournament-based sampling technique. With a
tournament hyperparameter m, 2™ tokens are sam-
pled and split into pairs. m rounds of tournaments
are completed by different random watermarking
functions with different random seeds. It is not cost-
efficient for local usage and is not robust against
strong paraphrasing attacks. Fairoze et al. (2023)
propose to sample the token sequence generation
until its hash matches a key value. According to
their distortion-free definition, the upper bound
of the difference between probabilities before and
after watermarking is exp(—a), where a is the min-
imal entropy. The difference is not negligible in
low-entropy scenarios. Note that using random
values to control sampling can be treated as a spe-
cial case of distribution reweighting where only
the probability of the sampled token is reweighted
to 1 (Kuditipudi et al., 2023). Thus, we build our
analysis framework in Section 2 solely based on
distribution reweighting.

B Details of Previous Methods

Distribution reweighting refers to methods that ad-
just the output distribution Py (zt|z~Nri(t=1) at
each step t by artificially increasing probabilities
for certain tokens while reducing those for others.
The direction and magnitude (increasing or decreas-
ing) of change in probability mass for a token are
determined by the private key k.

KGW (Kirchenbauer et al., 2023a) first ran-
domly splits the vocabulary set V into two non-
overlapping lists based on a uniformly distributed
key k: a ‘green’ list and a ‘red’ list. This method
has two versions: the ‘hard’ version completely
ignores the red list tokens and only samples tokens
from the green list; The ‘soft’ version adds a prede-
fined constant 0 to logits of green list tokens while
keeping logits of red list tokens fixed. The soft
KGW reweights distribution as

Pyp(at = jla™ 00 k)

exp (l; + 1Green(j)5>
T Y icred ©XPE) D cGreen €XP(LE + 0)

where j denotes the j-th token within the vocabu-
t

lary set, [} is its loglt. o'utput‘ by' the orlgm?:ll LLM

at step ¢, and 1 Green(7) is an indicator function hav-

ing a value of 1 when j is in the green list and O
otherwise.

Wu et al. (2024) propose an unbiased reweight-
ing method, named Dipmark. Dipmark arranges all
probability masses over the vocabulary set from the
original LLM output consecutively within the inter-
val [0, 1] and then randomly permutes their orders
based on a key k. A hyperparameter o € [0, 0.5]
partitions the probability interval [0, 1] into three
segments: [0, o], (a,1 — @, and (1 — «, 1]. Proba-
bility masses in the first segment are set to 0, those
in the second remain constant, and those in the
third are doubled. Denote the token order after per-
mutation as V), the adjusted probability for the j-th
token within V is Py, (2! = jla=Vp(=1. k) =
F(j|V) — F(j — 1|V), with F(j|V) being defined
as

F(j|V) =max | Y Py(a' =i|)—a,0
i€Vi<j
+max | > Py =il)—(1-a),0
ieV:i<j

Notably, Dipmark becomes ~y-reweight (Hu
et al., 2024) when oo = 0.5.

Another unbiased reweighting method, RDW
(robust distortion-free watermark), is developed by
Kuditipudi et al. (2023). We focus on the RDW
method with an inverse transform sampling scheme.
In RDW, the uniformly random key k£ = (II, u),
where II represents a random shuffle of all prob-
ability masses Py (z*|z~»*(*=1) over the vocab-
ulary set within the interval [0, 1], and « is a ran-
dom value following the distribution U(0, 1). RDW
first permutes the order of all Py (x|z~Nr:(t=1)
within the interval [0, 1] according to II, then it uti-
lizes w as the cumulative distribution function value
of Py (zt|z—Nr(t=1)) with respect to the permuta-
tion. Let I1(j) denote the j-th token in the ordered
vocabulary set under the permutation II. Following
the inverse transform sampling scheme, the value u
is inverse transformed to generate a token through

J
x® = I (min{j : Z Py(at = (i) |~ Ne(t=1)
1=1

> u}),
where x° is the sampled token. Therefore, we have
Pirap(zt = 2%~ Neit=1: k) = 1, and the prob-
abilities of all other tokens are reweighted to 0
accordingly.

7950

C Proofs
C.1 Proof of Theorem 1

To simplify notation, we denote the size of the vo-
cabulary set [V| as N, the size of the green list
as N¢, and the size of the red list as Nr. Given
the proportion of green list v, we have Ng = YN
and Np = (1 —v)N. At a generation step, let
p = (p1,p2, - ,pN) denote the raw probabil-
ity output by the LLM over the vocabulary set.
Let j represent a token within the vocabulary set,
j€(1,2,--+,N). We denote by p}”’k the adjusted
probability of token 7 under the STA-1 watermark-
ing method with key k. The key & is sampled
randomly from a uniform distribution Pk (k).

w,k

To conveniently compute E;.p, (x) [p } , we

J
consider the uniformly random partition of green
and red lists associated with the uniformly dis-
tributed key k as the following process. Initially,
token j is randomly assigned to the green list with
a probability of « and to the red list with a proba-
bility of 1 — «y. Subsequently, tokens are randomly
sampled from the remaining pool to fill the green
list, with all remaining tokens then placed in the
red list. For the adjusted probability, we have

pok = JPi + (Xicrpi)pj JEG |
’ (ZieRpi) Dpj JE€ER

Next, we first analyze the scenario where j €
G and compute E¢ r.jec {p;“k} The expecta-
tion is taken over uniformly random partitions of
green/red lists that fulfill j € G. Let

h;j(p) = Eg,r:jec [Pf’k]

(5]

Note that h;(p)’s value remains unchanged un-
der permutations in the order of the remaining
tokens {p;,i # j}. Thus, we have the equal-
ity that hj(p) = Egq [h;(IIp—;)], where II repre-
sents a random permutation of the remaining to-
kens p_; while preserving the position of p;. Since
h;(IIp_;) is a linear function of p_;, we then get

= Eg. rjea

hj(p) = En [h;(Ilp—;)] = hj (En [IIp—;]) .

The expectation of the probability values at the
remaining (N — 1) positions over permutations
of their corresponding tokens Ery [IIp_;] yields a

probability distribution p where p; = p; and p; =
(1 —p;)/(IN —1) fori # j. With this p, we derive

that
i+ (Zm) pj]
i€ER

(1 —pj)p;-

h;(p) = hj(p) = Eg,r:jec

Ng
AR ES!

Then, we analyze the scenario where 7 € R and
w,k

compute Eg gr.jer [p]] Let

[i(p) = Eg rijer [p}”’k}

!

For the same reasons as illustrated above and using
the same definition of p, we have

fi(p) = fi(p) = Eg,r:jer KZ Pz‘) Pj]

i€ER

_ <pj L (VR (—Nl)_(ll)— pj)) »;
=pj+ (]Xf__ll)(l — Pj)pj-

Finally, combining the random partition process
of green and red lists described at the beginning
of the proof with the derived expressions for i (p)
and f;(p), we obtain that

Ep Py () [p}”’k] =h;(p) + (1 =) fi(p)

Z’ijJrW%(l—pj)pj

+(1—y)p}+ (1 - 7)%__11)(1 —)P
_ <v+NR];(_11_7)>pj

- <(1—V)—]\W>P§

with Np = (1 —) N. This concludes the proof.

C.2 Proof of Theorem 2

In this proof, we continue utilizing the notations in-
troduced in the proof of Theorem 1 in Section C.1.

We start with the variance for the STA-1
method. Because STA-1 is an unbiased water-

mark by Theorem 1, we have Vig};}((k) | =

7951

K
Eil;AP}l((k) (p%ax - pmax)2

identical uniformly random partition process of
green and red lists associated with the uniformly
distributed key £ as in the proof of Theorem 1, de-
pending on whether the token x4, is assigned to

. . w,k :
the green list or not initially, pna have two possi-
ble realizations:

Considering the

w,k DPmaz + (ZieRpi) Pmaz Tmaz € G
Pmaz = .
(ZzER pl) pmax Tmax S R

Under the assumption that the probabilities of
the other N — 1 tokens uniformly fill in the re-

maining (1 — pmm) probability mass, each p;,
i € (1,2,--- ,N)andi # Xmaz, equals (1 —
Pmaz) /(N —) Therefore, if T,,00 € G, p%fx =

Pmazx +NR<1 Pmax)pmam/(), and this value
is fixed for all partitions of green/red lists that fulfill
Tmaz € G. Then we have
Egl:/]%{-:lxmameG [(p%75x - pmaac)Q}
_ NR(l - pmam)pmaz 2
1)

Similarly, if 24> € R, we get

E%Téz_:lxmazeR [(p%:fx - pmaz)ﬂ =
Nr—1)(1 -
[((R]\2(_ - pmaa:) +pma:c>pmax _ pmaz]z

With these two expected values, and recalling that
Tmaz has a probability of v of being assigned to
the green list and a probability of 1 — « of being
assigned to the red list, the variance for the STA-1
method is

STA-1 k
VkNPK(k) [%az}
= EzzAP;((k) [(p%’zfx - pmam)ﬂ

STA-1 w,k 2
EG:R:ZmazEG [(pmax - pma:v) :|

(1= VEFEL er [0k — Pras)’]

= p’?nax(l - pma:v)z
N2 N2
oww+“‘”wfw]

9 9 N?
= 1 - MPmax 1 - AT 4N\0°

Next, we compute the variance of Dipmark with

a partition hyperparameter c. VDlpmar?k) [p%(ﬁc} =

Di k k
B b) | (Priaz — pmax)ﬂ

mark is also unbiased. In Dipmark, the uniformly
distributed key k& controls the randomness of per-
mutations. Under the same assumption that p; =
(1 — Pmaz)/(N — 1) for i # Zyqs, the relative
orders among these (N — 1) tokens become irrel-
evant in the permutation. Therefore, there are a
total of NV unique permutations, each with a prob-
ability of 1/N. Specifically, in the first unique
permutation, there are O tokens i where i # %4,
placed to the left of x4, and (N — 1) tokens 4
where i # X4, placed to the right of z,,4,. In
the second one, there is 1 token on the left and
(N — 2) tokens on the right, and so forth. The last
permutation has (/N — 1) tokens on the left and 0 on
the right. If j such tokens are on the left of =44,

holds because Dip-

j=0,1,--- (N — 1), the corresponding p%fx is
(1 = pmaz)
pmaa: 2pmaac 1 + 2] ﬁ>

given that 1 — a < P < 1 as assumed in the
condition. Therefore, the variance for the Dipmark
method with a partition hyperparameter « is

VDipmark w,k
k~Ppy (k) maxr

= El]:f}];;rz(k) [(p%ﬁa; - pma:}c)2:|
N—-1 2
B 1 .(1 - pmaa:)
—NZ[pmam_l‘F?] (N—l)
J=0
N-1
1 1-— 2
= _(pmaac - 1)2 AT 4j2m
N (N —1)2
7=0
+1)
= (1= 2(7
(pmam) 3(N 1)

Note that, this variance value does not depend on
a. When o = 0.5, Dipmark becomes ~y-reweight.

Then, VDlpmar?) [w é:x} VZ Nre}x;v;l(g;)t [p%’fz]

Finally, we determine the variance for the RDW
method with an inverse transform sampling scheme.
In RDW, the uniformly distributed key k& = (11, u),
where I is a uniformly random permutation of the
N tokens and u ~ U(0, 1). Similar to the previous
analysis of Dipmark, the relative orders among the
remaining (N — 1) tokens except Z;,q, are irrele-
vant to the permutation. Therefore, we only need
to consider the [V unique permutations, each with
a probability of 1/N, as discussed above. Con-
ditional on any permutation II, under the inverse
transform sampling scheme, there is a probability

7952

of Prnag that T4, Will be sampled out. Therefore,
the altered value of p;,q, given II is

pmax

wik |7 — 1 with probability p,ez
0 with probability 1 — prae

Then, we have that

VEDW [pl#{clfx’ﬂ} = pmax(l - pmaz)‘

Because these results hold for any permutation II,
by the law of total variance, we can derive that

V};B\}YK(IC) [p%fw} =En (VEDW [p%fz|n:|>
v (2%]
= pma:p(l - pmam) +0
= pmax(l - pmax)a

which is the variance for the RDW method with an

inverse transform sampling scheme.

VSTA— 1

. w,k
For the comparison between V7 2 Prc (k) [max}

Dipmark w,k .
and VkN Pre (k) {pmax} , consider

STA-1 w,k
VkNPK(k;) |: maz}

= Prrae(1 = Prmaz) (1 —7)7]\[2
max max (N o 1)2
1 N2
—(1 - max 2 —
N+1 N?
= (1 _pmaz)Q (+) 5

3N_1) “ANZ_1’

where N2 /(N? — 1) is a decreasing function on N
and N2/(N? — 1) < 4/3 for N > 2. Therefore,
for a real-world vocabulary set where N > 2, we
have

(N+1)

STA-1 w,k _ 2
V’CNPK(k‘) [mam} < (1 = pmaz) 3(N —1)

__ yyDipmark k
= Vk~PK(k) [p%az} .
. Dipmark w,k
For the comparison between ka Py (k) |Pmaz
and VEB"IZK *) {p%éﬂx} , we have that
Dipmark k (N+1)
ey [Pk = (1~ Pmar) 307y
< (1 - pmax)2
S pmaac(l - pmax)

__ yRDW w,k
- VkNPK(k) { maac})

where the first inequality holds because (N + 1) <
3(N —1) for N > 2, and the second inequality is
valid under the assumption that 1 — a < ppaz < 1
and « € [0,0.5].

Putting all the results together, we get

- k Di k k
Vb () [p%’ax] <V e [p“”]

k~Pg (k) max
__ yy-reweight w,k
- T k~Pg (k) mazx

k
< VI]:B\]’-:{K(k) [:Un’ax])
which concludes the proof.

C.3 Proof of Theorem 3

In this proof, we employ the notations introduced
in the proof of Theorem 1 in Section C.1, and we
leverage the results derived from that theorem’s
proof.

For a token j within the vocabulary set, j €
(1,2,---,N), we consider the identical random
partition process of green and red lists as described
at the beginning of the proof of Theorem 1. If
j is initially assigned to the green list, according
to the proof of Theorem 1, its expected adjusted
probability over uniformly random green/red list
partitions that fulfill j € G satisfies

Ngr
N -1

Np
zpj+— (L =pjp

k
Eq rijec {p;'j } =pj+ (1 —pj)p;

=pj + (1 —7v)p;(1 - pj),

where the inequality holds straightforwardly.
Recall that each token within the vocabulary set
has a probability of -y being assigned to the green
list. Thus, the overall probability of sampling a
token from the green list has the lower bound

P(G) := P(sampling a token € G)

N

k

= 1Ea rijec [pq}u’ }
j=1

N

> pi+(1—7)pj(1—p))
j=1

N
=y+v1-7))_pi(1-p)).
j=1

Note that this lower bound applies to every gen-
eration step t. Let p' denote the LLM’s original

7953

output probability distribution at step ¢, and G* de-
note the event of sampling a token from the green
list at step ¢, we then have

P(G) >y +~(1—~

Zpa (1 _p]

=v+7(1- V)G””(P)-

It is important to highlight that this lower bound
holds significant meaning, as it strictly exceeds the
naive lower bound for P(G!), which is «. This
bound serves as a crucial element in the proof of
Theorem 3. For the expectation of the number of
green list tokens in the sequence, we can derive
that

E(S|q) = TE; [P(G")]
> TRy [y + (1 — 7)Gini(p")]
>T[y+~(1—~)Gini"|

=T + (1 — y)yTGini*,

where the lower bound Gin:* for the average Gini
index is provided as a condition in the theorem.

Next, regarding the variance of |S|g, it is worth
noting that the success of sampling a token from
the green list at each step ¢ can be viewed as a
Bernoulli random variable with a success probabil-
ity of P(G"). This Bernoulli random variable has
a variance of P(G")[1 — P(G")]. The sum of these
Bernoulli random variables across all T" steps gives
us |S|g. Because these random variables are in-
dependent of each other, the variance of their sum
equals the sum of their variances. Consequently,
we can obtain that

V(|S|e) = TE, [P(G")[1 — P(G")]]
< TE[P(GY)] [1 - Et[(@]
<T[y+ (1 =y)Gini"]
[1—v—(1—=)Gini"],

where the first inequality holds by applying
Jensen’s inequality to a concave function of P(G?),
and the second inequality is valid because 1)
E¢ [P(G')] > v+ (1 —~)yGini* as shown above;
2) the function (1 — x) is decreasing in the range

€ [0.5,1]; and 3) it is assumed in the theorem
that v + (1 — v)yGini* > 0.5. This concludes the
proof.

C.4 Proof of Corollary 1

For the z-test in detecting STA-1, its type II error is
defined as P(z < Z|H,). Following the definition,

we have that
1S|g — T

V(1 =y)T
= P(|S|g — E(|S]a) <

<

P(z<3H,) =P (

z Ha>

VT +2/~4(1 =)T ~ E(|S|6) | Ha)
< P(ISle — E(I]e) <
VT 4 2\/v(1 =)T — E|H,)
V(Sle)
V(ISla) + (E— (VT + 2/~(1 = 7)T))?
(Cantelli’s inequality)

Vv
STTE-_T-A0 D

where Cantelli’s inequality holds because

E— (T +2\/4(1 =)T)
= (1 = Y)TGini* — 2\/v(1 —)T > 0

according to the condition assumed in the corollary.
This completes the proof.

D Example of Risk-averse

St. Petersburg paradox (Wikipedia, 2024). As-
sume that one must choose either one lottery from
the following two lotteries. (1) Lottery 1 (L1) has
a 0.8 probability of earning nothing and the other
0.2 probability of losing 1,000 dollars. (2) Lottery
2 (L2) has a 0.5 probability of losing 100 dollars
and the other 0.5 probability of losing 300 dollars.

It is easy to show that L1 and L2 have the same
expected outcome that 0.8 x 0 — 0.2 x 1000 =
—0.5 x 100 — 0.5 x 300 = —200. However, risk-
averse people will choose L2 as they do not want
to take the risk of losing 1,000 dollars.

Computationally, assume the person has 1,001
dollars in total and the utility function is In(Y")
(Debreu et al., 1954), where Y is the wealth. The
utility function measures happiness. It is a con-
cave function (such as In(Y")) because people are
happier if they are wealthier (In’(Y") > 0) but the
increment of happiness decreases as the wealth in-
creases (In" (V) < 0).

The weighted utility of L1 and L2 are as follows

U(L1) = 0.8 x In(1001) + 0.2 x In(1) ~ 5.53,

U(L2) = 0.5 x In(901) + 0.5 x In(701) ~ 6.68.

Based on the weighted utility, risk-averse people
will choose L2.

7954

Link the lottery example to Example 2 in Sec-
tion 3.1.1. Because of the low-entropy setting, sam-
pling B results in a huge loss in text quality. Sup-
pose we treat sampling A as earning nothing and
sampling B as losing 1,000 for text quality. In
this case, we should minimize the risk of sampling
B. Also in this case, the two unbiased watermarks
in Example 2 can be viewed as L1 and L2 in the
lottery example. Sampling B may not be a big is-
sue in high-entropy scenarios because it should not
significantly harm text quality as much as 1,000.

E STA-M Details

The detailed algorithm of STA-M is shown in Al-
gorithm 2.

Remark 3. STA-M is not unbiased.

We provide a counterexample to show that STA-
M is biased. Assume that the vocabulary set con-
sists of four tokens {a,b,c,d}, and at a genera-
tion step, the raw probabilities output by the LLM
for these tokens are {p, = 1/2,pp, = 1/3,p. =
pa = 1/12}. The proportion of green list v equals
0.5. Therefore, with a key &, two tokens are ran-
domly assigned to the green list, and the red list
contains the other two. For the uniformly dis-
tributed key k, there are six possible random parti-
tions of green and red lists: {a,b € G;¢,d € R},
{a,c € G;b,d € R}, {a,d € G;b,c € R},
{b,c € G;a,d € R}, {b,d € G;a,c € R},
and {c,d € G;a,b € R}, each with a probabil-
ity of 1/6. Next, considering the token a, its ad-
justed probability under the STA-M watermarking
method for each of the six partitions is:

babxd et (B)
({a,b € G;c,d € R})

1 5 1 5 \M 1
st Xgt ()" X3
({a,c € G;b,d € R})

1 5 1 5 \M 1
st Xg ()" X

wk ({a,d € G;b,c € R})
Pa” =N, 7\Mm 1
)7 X 5

l)M ;

With these adjusted probability values, the expecta-
tion of the adjusted probability over the six possible

partitions is easily derived as

Epepr (k) [Pg’k]

g — i(l)Mﬂ'l _ 2(5)M+1

~ 70 106 7\12

1.7 . 1,5y
+ E(E) + E(g))
which equals p, = 1/2 only when M = 1 and
is less than 1/2 for M > 2. Hence, this coun-
terexample demonstrates that the STA-M method
is biased.

F Experiment

F.1 Experimental Setup

Datasets and metrics. We employed two public
datasets which are C4 subset (Raffel et al., 2020;
Kirchenbauer et al., 2023a) for news-like text gener-
ation and HumanEval (Chen et al., 2021) for code
generation. Specifically, C4 represents the high-
entropy generation task and HumanEval represents
the low-entropy generation task.

C4: We extracted random text segments from
the news-like subset of the C4 dataset (Raffel et al.,
2020) following Kirchenbauer et al. (2023a). For
each segment, we removed a fixed number of to-
kens from the end and the removed tokens served
as a ‘baseline’ completion. The remaining tokens
were used as the prompt.

HumanEval: HumanEval includes 164 Python
problems with test cases and solutions written by
humans. We prompted the LLLM with these prob-
lems. In particular, the prompt was devised as
‘Below is an instruction that describes a task. Write
a response that appropriately completes the request.
Instruction: Complete the following Python
code without any tests or explanation [INPUT] ###
Response:’.

We evaluated the performance of different wa-
termarks on text quality and watermark strength.
For watermark strength, we implemented the z-test
for all baselines and our methods. We set the z
threshold as 2 and 2.5. With z > 2, we are more
than 97.7% confident that the text is watermarked
based on the one-tail test.

7955

STA-4:z= 2.0

9.00 1.000
8.75 .-—\\’___/\/\/\\/\ 10.975
8.501 r0.950
8.251 s
2
(20.925<
_,8.00 5
2 [0.900.2 &
7.75 g
t0.875 @
7.50 1 a
""""""""""""""""""""""" 10.850
7.254 —--— PPL: No Watermark
—e— PPL: STA r0.825
7.001 —e— Detection AUC
0.800
0.0 0.3 0.6 0.9 1.2 15 1.8 2.1
Entropy threshold
(a) STA-4 on C4
9.00 STA-16: z = 2.0 1.000
8.75 r0.975
8.501 r0.950
8.25 S
=)
0.925 T
1 8.00+ 5§ @
o r0.900.5 @
o
7.75 g &
+0.875 @
7.50 1 a
""""""""""""""""""""""" 10.850
7.254 —--~ PPL: No Watermark
—e— PPL: STA r0.825
7.001 —e— Detection AUC
- - - - - - T —0.800
0.0 0.3 0.6 0.9 1.2 15 1.8 2.1
Entropy threshold
(c) STA-16 on C4
0.200 STA-8:2=2 0.90
0.175
F0.85
0.150
. O.SOg
- < -
® 5§ @
© 0.100 0753 8
5 3 &
0.075 °
F0.70a
0.050
-== Pass@1l: No Watermark 1 0.65
0.025 —o— Pass@1: STA ’
—e— Detection AUC
0.000 T T - - - - —10.60
00 03 06 09 12 15 18 21

Entropy threshold

(e) STA-8 on HumanEval

STA-8:z = 2.0

9.00 1.000
8.75 1 M 10.975
8501 10.950
8.231 0.925
8.00 1
r0.900
7.75 41
r0.875
7.50 1
"""""""""""""""""""""" +0.850
7.251 ——- PPL: No Watermark
—e— PPL: STA r0.825
7.001 —e— Detection AUC
0.800
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1
Entropy threshold
(b) STA-8 on C4
0.200 STA-4:2=2 0.90
0.1751
0.85
0.1501
0.80
0.1251
0.100 A 0.75
0.0751
0.70
0.050
--- Pass@1: No Watermark 0.65
0.0251 —e— Pass@1: STA ’
—e— Detection AUC
0.000 = T T - - . - -1 0.60
0.0 0.3 0.6 0.9 1.2 15 1.8 21
Entropy threshold
(d) STA-4 on HumanEval
0.200 STA-16:z =2 0.90
0.1751
0.85
0.1501
0.80
0.1251
0.100 0.75
0.075 1
0.70
0.050 1
--- Pass@1: No Watermark 0.65
0.0251 —o— Pass@1: STA ’
—e— Detection AUC
0.000 = T T - - . - -1 0.60
00 03 06 09 12 15 18 21

Entropy threshold

(f) STA-16 on HumanEval

Figure 4: Performance of STA-M w.r.t. 7

7956

etection AUC

(=]

Detection AUC

Detection AUC

Algorithm 2 STA-M Text Generation

Input: A pretrained LLM Py, a key k € K, the proportion of green list v € (0, 1), the number of

maximum samples per step M, a entropy threshold 7, and a prompt z

1: fort=1,2,...,T do

2:

3. Compute the entropy 7¢ of p’
4 if 7t < 7 then

5: Mt =1

6: else

7: Mt =M

8: endif

9:

—Np:0

Get the probability distribution of tokens p! = Py (-|z—NVe:(t=1))

Compute the hash of the last token x!~!. Partition the token set V to form the green GG and red R

list based on key k, the hash, and the proportion ~y

10: Initialize sample number m = 1

11: while m < M? and the next token z* not defined do

12: Sample the candidate token /., with p*

13: if 27, € G then

14: Accept the sampling, the next generated token 2" = 2, ,
15: else

16: m+—m+1

17: end if

18: end while
19: if the next token z* not defined then

20: Sample 2! from the distribution p*
21: end if
22: end for

Output: The generated text 217

For text quality, we employed different metrics
for different datasets. For the C4 dataset, we uti-
lized perplexity (PPL) and coherence (Gao et al.,
2021) to measure the text quality. For HumanEval,
we employed PPL and pass@k score of the code
(Chen et al., 2021). The pass@Fk score measures
the normalized percentage of solved problems in
HumanEval. Formally, the pass score is calculated
as

Ck
pass@k = Epyoblems [1 — g;c],
n
where c is the number of passed codes among k

generations.

Baselines. We compared against biased and un-
biased watermarks in terms of text quality and wa-
termark strength. For further details of baselines,
we refer readers to Appendix B. We implemented
all LLMs with the Hugging Face library (Wolf et al.,
2019). All watermark benchmarks including KGW,
RDW, v-reweight, and Dipmark were implemented
using their public codes.

Implementation details. For all baselines and
our methods, we utilized multinomial sampling dur-

ing text generation. For C4, we employed LLaMA-
2-7B as our generative LLM (Touvron et al., 2023).
Following previous work (Kirchenbauer et al.,
2023a), we continued to sample prompts from C4
until we had generated at least 500 text sequences,
each consisting of T' = 200 +£ 5 tokens. We lever-
aged LLaMA-2-13B to compute the perplexity of
the generated texts. For HumanEval, we applied
CodeLLLaMA-7B-Instruct (Roziere et al., 2023)
as the generative LLLM to generate codes for all
Python problems. We also leveraged LLaMA-2-
13B to compute the perplexity. All experiments
were conducted on a single Nvidia A100 GPU with
80GB memory.

F.2 Robustness Check on Entropy Threshold
Parameter

In this section, we conducted a robustness check
on the parameter 7 in STA-M. In particular, we
set the low entropy threshold 7 from O to 2.1 with
an interval of 0.15. At each generation step, we
sampled at most 4, 8, and 16 times (i.e., STA-4,
STA-8, and STA-16) when the entropy was above

7957

Table 4: Examples of STA-generated Texts for C4

Prompt

Human-written

| STA-1 generated

| STA-16 generated

[...] Single taxpayers who
are eligible to participate in
a workplace retirement plan
are also eligible to make
a tax-deductible contribution
to an IRA if their adjusted
gross income is below $64,000
($103,000 for marrieds) in
2019. This is up from $63,000
(singles) and $101,000 (mar-
rieds) in 2018. This deduction
is phased out when AGI is be-
tween $64,000

and $74,000 (singles) and
$103,000 to $123,000 (mar-
rieds). The income range for
making contributions to a Roth
IRA in 2019 is $122,000 to
$137,00 (singles and heads of
households) and $193,000 to
$203,000 (marrieds). The 2019
income limit for the Savers
Credit (also called the retire-
ment savings contributions tax
credit), which is for low- to
middle-income workers who
contribute to a retirement plan
orIRA, [...]

(PPL:3.09) and $74,000 for sin-
gles ($103,000 and $123,000
for marrieds, respectively).
IRA contributions can be made
until the 2018 tax-return dead-
line, April 15, 2018, for those
that filed an extension. How-
ever, you’'ll need to make these
contributions with the 2018 de-
duction in mind. This means
you must make IRA contribu-
tions no later than Dec. 31,
2018, to benefit on your 2018
return. [. . .|

(PPL:3.11) and $74,000
($103,000 and $123,000 for
marrieds) and fully elimi-
nated when AGI exceeds
$74,000 (marrieds phase out at
$123,000). If you’re not able to
participate in a 401(k) or other
workplace retirement plan, you
may qualify to deduct your
total IRA contributions even if
your income exceeds certain
amount if you meet certain
conditions (a deductible
contributions means you won’t
owe tax on the contributions).

L]

[...] Thomas will be respon-
sible for overseeing Micron’s
solid state storage business that
ranges from hard disk drive
replacements with solid state
drives (SSDs) to enterprise-
class storage solutions. He
brings more than 30 years of
experience to Micron and most
recently served as the vice pres-
ident of Enterprise Storage for

Micron’s common stock is
traded on the NASDAQ under
the MU symbol. To learn more
about Micron Technology, Inc.,
visit www.micron.com. Mi-
cron and the Micron orbit logo
are trademarks of Micron Tech-
nology, Inc. All other trade-
marks are the property of their
respective owners. [. . . |

(PPL:3.25) the Americas re-
gion for Seagate Technology.
He is a senior executive level
leader with a proven track
record in defining strategy that
drives revenue, profit and new
technology execution. "Micron
is thrilled to have Darren as
part of our team,"” said Mary
Jane Raymond, . [. . .]

(PPL:4.45) Fusion I/O, LLC.
Before that, Thomas was at
Western Digital Corporation
where he was a progressive ex-
ecutive, holding various man-
agement roles since 2008, most
recently as its executive vice
president of storage technology.

[...] Sanabia has benefited
from the two times Miami’s of-
fense has given its starters de-
cent run support, including his
last outing against Washington.
The 24-year-old allowed two
runs and six hits over six in-
nings in Tuesday’s 8-2 victory
over the Nationals. He tossed
six scoreless frames in

his only road start against the
New York Mets, but is allow-
ing left-handed hitters to bat 8-
for-24 against him - a troubling
trend against a Reds team that
features Choo, Votto and Jay
Bruce at the top of the order.

L..]

(PPL:4.30) his prior start at
Colorado. Sanoobia is 3-4 with
a 4.53 ERA in 13 starts for
the Marlins, who are off to the
second-worst start in franchise
history at 5-13. Johnny Cueto
(2-3,2.63 ERA) was hit around
for five earned runs over 6 2/3
innings in a loss to Colorado
last Saturday. [. . .]

(PPL:5.30) a 5-1 home loss to
the L.A. Dodgers eight days
earlier. Reds rookie Anthony
DeSclafani produced an excel-
lent performance the last time
he stepped onto Great Ameri-
can Ball Park. The young right-
hander used excellent com-
mand of his off-speed pitches
to strike out eight [. . .]

the threshold 7. Figure 4 shows text quality and
watermark strength of STA-M with different 7s. As
depicted, different 7s do not affect the watermark
strength significantly for C4 because C4 is a high-
entropy dataset. Also, we observe a decrease in
PPL when we increase 7 in Figure 4a, 4b, and 4c.
The reason is that by setting up a higher entropy
threshold, fewer generation steps will apply the
STA-M strategy, making the watermarking method
more similar to STA-1. According to Figure 4d, 4e,
and 4f, we observe a general increase of watermark
strength if we have a larger 7 because we will have
more green list tokens if we sample M times instead
of once. However, higher watermark strength leads
to a lower pass@1 score, which is related to the
text quality (Kirchenbauer et al., 2023a). We chose
the Pareto optimal of each dataset as our final pa-
rameter for each dataset. Specifically, we selected
7 = 1.35 for C4 and 7 = 1.95 for HumanEval.

F.3 Examples of STA-generated Texts

We present examples of STA-generated texts for
C4 and HumanEval in Table 4 and Table 35, respec-
tively. Also, we report the PPL of the generated

text, and whether the code is passed specifically for
HumanEval.

F.4 Attacking Watermarks

We introduce the implementation of different at-
tacks as follows. For the copy-paste attack, we
randomly replaced 25% of tokens in the water-
marked text with tokens from non-watermarked
text generated from the same prompt (Kirchenbauer
et al., 2023a). For the GPT-3.5 attack, we utilized
the prompt ‘Rewrite the following paragraph: [IN-
PUTY for GPT-3.5. For DIPPER-1 (Krishna et al.,
2024), we set the lexical diversity to 60 without
considering order diversity. Additionally, we in-
creased the order diversity by 20 for DIPPER-2
following previous work (Liu et al., 2023a).

For the copy-paste attack, since STA-1 and STA-
M are based on the green-red list partition and
changing a token can only affect the detection score
of itself and the next token, it is naturally robust
to simple text insertion and removal (Kirchenbauer
et al., 2023a). Meanwhile, LLM-based attacks,
such as GPT-3.5 and DIPPER, are designed to re-
place tokens in given texts by sampling from the

7958

Table 5: Examples of STA-generated Texts for HumanEval

Prompt

| Canonical Solution

STA-1 generated

STA-16 generated

from typing import List

def filter_by_prefix (strings:
List[str], prefix: str) ->
List[str]: """ Filter an
input list of strings only
for ones that start with a
given prefix. >>> fil-
ter_by_prefix([], ’a’) [] >>>
filter_by_prefix([’abc’, “bed’,
’cde’, ‘array’], ’a’) [’abc’,
“array’] """

return [x for x in strings if
x.startswith(prefix)]

(Pass, PPL:1.92) from typing
import List

def filter_by_prefix (strings:
List[str], prefix: str) ->
List[str]: """ Filter an
input list of strings only
for ones that start with a
given prefix. >>> fil-
ter_by_prefix([], a’) (]
>>> filter_by_prefix([’abc’,
’bed’, ’cde’, Carray’], ’‘a’)
['array’, ’abc’] """ return
[word for word in strings if
word.startswith(prefix)]

(Pass, PPL:2.18) from typing
import List

def filter_by_prefix (strings:
List[str], prefix: str) ->
List[str]: """* Filter an input
list of strings only for ones that
start with a given prefix. In-
put: ‘strings = ["abc", "bcd",
"cde", "array"]’, ‘prefix =’a’*
Output: ‘["abc", "array"]* """
return [word for word in strings
if word.startswith(prefix)]

from typing import List

def intersperse (numbers:
List[int], delimeter: int) ->
List[int]: """ Insert a number
’delimeter’ between every
two consecutive elements of
input list ‘numbers’ >>>
intersperse([], 4) [>>>
intersperse([1, 2, 3], 4) [1, 4, 2,
4,31

if not numbers: return []

result =[]
for n in numbers|:-
1]: result.append(n) re-

sult.append(delimeter)
result.append(numbers[-1])
return result

(Not pass, PPL:2.45) def inter-
sperse (numbers: List[int], de-
limeter: int) -> List[int]: """
Insert a number "delimeter’ be-
tween every two consecutive el-
ements of input list ‘numbers’
>>> intersperse([], 4) []
>>> intersperse([1, 2, 3], 4)
[1,4,2,4,3] """ answer=[] for
i in range(0,len(numbers),1):
answer = answer + [num-
bers[i]] answer = answer + [
delimeter | return answer

(Not pass, PPL:3.38) Maybe
you meant () -> List[int]

defis_prime(n): """Return true
if a given number is prime, and
false otherwise. ™

if n < 2: return False for k in
range(2, n- 1): if n % k ==0:
return False return True

(Pass, PPL:1.94) “‘python def
is_prime(n):

if n == I: return False
foriinrange(2, n): ifn % i==
0: return False

def

= 1:

(Pass, PPL:1.78)
is_prime(n): if n
return False for i in range(2,
n): if n % i == 0: return False
return True

return True if __name__
’__main__": import doctest
doctest.testmod()

LLM. STA-M effectively increases the proportion
of green-list tokens by raising their probability in
high-entropy scenarios without compromising too
much text quality, making it difficult for LLM-
based attacks to replace a substantial number of
tokens in STA-M-generated text and remove the
watermark.

G Related Work

Existing white-box watermarking techniques fall
into two categories: watermarking during logits
and probabilities generation, and watermarking by
controlling sampling strategies.

Watermarking during logits and probabili-
ties generation. This category of watermarking
methods inserts watermarks into LLMs by artifi-
cially adjusting the raw logits or probabilities gen-
erated by the LLM. Among this category, Kirchen-
bauer et al. (2023a) propose the first watermarking
method based on logits adjustment. Their approach
randomly partitions the vocabulary set into a green
and a red list at each generation step, increasing
the logits of green list tokens while keeping red
list tokens’ logits fixed. Lee et al. (2023) extend
the green and red list-based watermarking method

to low-entropy scenarios. They adjust the logits
only during high-entropy generation steps, leav-
ing the raw logits unchanged for low-entropy steps.
Ren et al. (2023) improve the vocabulary set parti-
tion process by determining the green and red lists
based on semantic embeddings of preceding to-
kens rather than their hash values. Fernandez et al.
(2023) propose a multi-bit watermarking method
that generates a multi-dimensional vector at each
generation step, which is utilized to modify log-
its produced by the original LLM. Their approach
allows embedding any bit of watermarking infor-
mation, up to the dimension of the vector used in
the logits adjustment. Yoo et al. (2023) develop
a multi-bit method by extending the two-list parti-
tion idea to multi-list partitions. At each generation
step, the vocabulary set is divided into multiple
lists. Based on the message to be inserted, the log-
its for tokens in a selected list are increased, while
the token logits in all other lists remain unchanged.

Instead of splitting the vocabulary set into dif-
ferent lists, Hu et al. (2024) introduce a method
that randomly shuffles the order of all token prob-
abilities within the interval [0, 1], setting the prob-
abilities in the first half of the interval to O and

7959

Table 6: Attacking Watermarks for the C4 Dataset.

Attack Setting | No Attack Copy-Paste GPT-3.5 DIPPER-1 DIPPER-2
Method | #F1 tAUC tFl 1AUC +1Fl tAUC 1Fl 1AUC 1Fl 1AUC
RDW 0.98 0.98 0.77 0.79 0.43 0.62 0.34 0.53 0.45 0.63
Dipmark(ae = 0.3) | 0.93 0.94 0.61 0.70 0.29 0.57 0.24 0.55 0.26 0.55
Dipmark(ax = 0.4) | 0.96 0.96 0.75 0.79 0.38 0.61 0.31 0.58 0.34 0.59
~y-reweight 0.96 0.96 0.74 0.78 0.41 0.61 0.32 0.57 0.36 0.60
STA-1 ‘ 0.96 0.96 0.78 0.81 0.47 0.63 0.39 0.60 0.46 0.63
KGW(@$ =1) 0.96 0.96 0.68 0.75 0.27 0.57 0.13 0.53 0.15 0.54
KGW(§ = 1.5) 0.99 098 0.90 0.90 0.41 0.62 0.22 0.56 0.27 0.57
KGW(§ = 2) 0.99 0.99 0.95 0.95 0.54 0.68 0.30 0.58 0.40 0.62
SWEET(7=1.35) 0.98 0.98 0.92 0.92 0.48 0.65 0.25 0.56 0.35 0.60
EWD 0.93 0.93 0.60 0.70 0.27 0.52 0.10 0.50 0.12 0.52
STA-4(r=1.35) 0.97 0.97 0.95 0.95 0.72 0.78 0.65 0.73 0.69 0.75
STA-8(1=1.35) 0.98 0.98 0.95 0.95 0.78 0.81 0.71 0.77 0.76 0.79
STA-16(7=1.35) 0.97 0.97 0.95 0.95 0.76 0.80 0.68 0.74 0.78 0.81

doubling those in the second half. During the de- key.

tection phase, a likelihood ratio test examines the
significance of the likelihood that the given text is
generated with the adjusted probability distribution.
Wau et al. (2024) further generalizes this method by
introducing a hyperparameter « € [0,0.5], which
controls the two cutoff points « and 1 —« within the
interval [0, 1]. The probability masses for the three
resulting sub-intervals are adjusted accordingly.
Watermarking by controlling sampling strate-
gies. This category of watermarking methods in-
serts watermarks into the token sampling process
by using watermark information to control the sam-
pling of candidate tokens. For example, Christ et al.
(2023) introduce a watermarking method that rep-
resents each token in the vocabulary set as a binary
string of Os and 1s. Next, a sequence of values from
0to 1 is sampled uniformly. These values guide the
token sampling process: if the predicted probability
for a position in the binary string is larger than the
corresponding pseudo-random value, that position
is assigned a 1; otherwise, it is assigned a 0. Once
all positions are determined, the token correspond-
ing to the resulting binary string is sampled. Ad-
ditionally, previous work (Kuditipudi et al., 2023)
use a sequence of values randomly sampled from
a uniform distribution between 0 and 1. The value
controls the token sampling process through a de-
coder function, where the decoder function varies
based on the sampling strategy. Hou et al. (2023)
sample new sentences according to the original
LLM until a sentence’s semantic value falls into
the acceptance region. The acceptance region is
predefined by randomly splitting the space of se-
mantic embedding according to the context and the

7960

