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Abstract

Voice assistants, such as Siri and Google As-
sistant, typically model audio and text sepa-
rately, resulting in lost speech information and
increased complexity. Recent efforts to address
this with end-to-end Speech Large Language
Models (speech-in, text-out) trained with su-
pervised finetuning (SFT) have led to models
“forgetting" capabilities from text-only LLMs.
Our work proposes an alternative paradigm for
training Speech LLMs without instruction data,
using the response of a text-only LLM to tran-
scripts as self-supervision. Importantly, this
process can be performed without annotated
responses. We show that our Distilled Voice
Assistant (DiVA) generalizes to Spoken Ques-
tion Answering, Classification, and Translation.
Furthermore, DiVA better matches user pref-
erences, achieving a 72% win rate compared
with state-of-the-art models like Qwen 2 Audio,
despite using >100x less training compute.

1 Introduction

As Large Language Model (LLMs) capabilities
improve, so does the value of bringing these ca-
pabilities to new modalities, including audio and
speech (Shu et al., 2023; Wang et al., 2023; Gong
et al., 2023). Speech is a natural interface for lan-
guage technology (Murad et al., 2019), offering
large communication speedups (Ruan et al., 2018).

One straightforward method of enabling speech
inputs to LLMs is to feed audio to an Automatic
Speech Recognition (ASR) model and produce a
text transcription for the LLM to use. However,
these pipelined systems cannot capture paralinguis-
tic information such as tone or pace (Upadhyay
et al., 2023) and require supervision for both tran-
scription and response generation to be finetuned.

As such, LLMs that directly process speech have
the potential to accelerate inference, reduce an-
notation costs, and capture the rich information

*Contact: held@stanford.edu, diyiy @stanford.edu.

inevitably lost by ASR. In this pursuit, a variety
of works have trained audio encoders on top of
LLMs (Ao et al., 2021; Chen et al., 2021b; Desh-
mukh et al., 2023; Chu et al., 2023; Wu et al., 2023),
many of which utilize the same well-established
approach: large-scale multi-task supervised fine-
tuning (SFT). However, models using SFT face
two key challenges both stemming from the lim-
ited available speech instruction data.

First, SFT-trained Speech LLMs often fail to
generalize capabilities from the text-only LLM to
speech. As observed in Tang et al. (2023), freezing
the weights of the text-only LLLM is insufficient to
prevent this “forgetting". For text LLMs, this is
solved with instruction data covering different tasks
and domains. However, broad annotated speech
instruction training data does not currently exist.

Secondly, the limited instruction data that does
exist is often collected from a small pool of speak-
ers (Kim et al., 2021; Tomasello et al., 2023) or
intended for evaluation rather than training (Faisal
et al., 2021; Eisenstein et al., 2023). This lack of
representation of speech from the wider population
is likely to exacerbate biases in speech process-
ing (Koenecke et al., 2020; Mengesha et al., 2021;
Chan et al., 2022; Javed et al., 2023; Brewer et al.,
2023). At present, Speech LLMs appear fundamen-
tally limited by existing instruction data.

In this work, we argue that these “limitations"
of existing data are artificially imposed by SFT.
The speech community has invested in large-scale
data collection from the internet (Radford et al.,
2023; Chen et al., 2021a; Li et al., 2023b), audio-
books (Panayotov et al., 2015; Pratap et al., 2020),
and public archives (Galvez et al., 2021). Further-
more, several datasets have been explicitly gath-
ered to represent diverse demographics (Porgali
et al., 2023; Garg et al., 2023). However, these
large-scale and diverse datasets are dominated by
one task: Automatic Speech Recognition (ASR).
Adding ASR data into SFT will weaken non-ASR
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Figure 1: Training pipeline for Distilled Voice Assistant (DiVA). Red indicates trainable components, while Blue
indicates frozen pretrained modules. DiVA modifies a text-only LLM into a general-purpose Speech LLM by using
the model’s own responses to transcribed speech as self-supervision.

capabilities due to imbalanced distribution.

We train a model that generalizes well despite
using only ASR data'. Rather than relying on ex-
ternal labels, our Distilled Voice Assistant (DiVA)
self-supervises learning using the output distribu-
tion of an LLM in response to transcripts as a target,
a cross-modal form of context distillation (Snell
etal., 2022; Mu et al., 2024). We test our approach
by training on just a single corpus, Common Voice,
consisting of speech and transcriptions from volun-
teers around the world (Ardila et al., 2019).

Despite this data simplicity, DiVA generalizes
to Spoken Question Answering, Classification, and
Translation. Furthermore, DiVA is preferred by
users to our most competitive baseline Qwen 2
Audio in 72% of trials despite DiVA using over
100x less training compute. Beyond contributing a
new Speech LLM, DiVA creates a new approach to
Speech LLMs that improves generalization without
requiring new speech instruction data.

2 Related Work

LLMs have been extended to both audio and image
inputs using cross-modal encoders. For example,
LLaVA (Liu et al., 2023b) enables image under-
standing by connecting CLIP (Radford et al., 2021)
to Vicuna (Chiang et al., 2023) through an MLP
layer. Several recent works (Zhang et al., 2023;
Gong et al., 2023; Tang et al., 2023; Chu et al.,
2023, 2024) have connected audio-encoders (Gong

'We open-source our models, code, and data in A.2

Model Base LLM Training Method # Hours
BLSP Llama 2 Continuation Writing ~20k
SALMONN  Alpaca 7B SFT 4.4k
Qwen Audio Qwen 7B SFT ~50k

Qwen 2 Audio  Qwen 7B SFT, DPO >370k
UltraVox Llama 3 8B Output Distillation ~10k
DiVA (Ours) Llama3 8B Input & Output Distillation 3.5k

Table 1: High-Level comparison with state-of-the-art
open-access Speech & Audio LLMs which we compare
to. DiVA offers an new form of context distillation
which improves generalization.

et al., 2021; Hsu et al., 2021) to LLMs. There are
two critical questions in this space.

How can audio features be transformed into a
reasonable number of LLLM input embeddings?
Audio comes at high sample rates, and therefore,
audio encoders often have a large number of out-
puts. To use these features for LLMs, the dimen-
sionality must be reduced, either by stacking con-
secutive features (Wu et al., 2023; Fathullah et al.,
2024) or learning an adapter-module, such as an
MLP (Liu et al., 2023b; Gong et al., 2023), or Q-
Former (Dai et al., 2023; Tang et al., 2023).

While learned approaches are more flexible, al-
lowing for an adaptive reduction, they generally re-
quire learning a cross-attention mechanism, which
generally requires significant training (Li et al.,
2023a). In this work, we find the best of both
worlds by leveraging the Whisper decoder (Rad-
ford et al., 2023) to initialize the text-audio cross-
attention mechanism of a Q-Former.
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How can Speech LL.Ms be trained to achieve
instruction following abilities using existing
data? Prior work has explored two main routes for
creating instruction data without major financial
investment. The first approach transforms exist-
ing datasets into instruction-following formats (Dai
et al., 2023; Chu et al., 2023; Tang et al., 2023; Liu
et al., 2023a). While this leverages available re-
sources, it often faces limitations from dataset-task
misalignment and imbalanced coverage across dif-
ferent capabilities. The second approach generates
synthetic responses by having commercial models
process text representations of new modalities (Liu
et al., 2023b; Gong et al., 2023; Wang et al., 2024).

Within the synthetic generation paradigm, sev-
eral approaches use conceptually similar ideas of
utilizing supervision from text. Some methods em-
ploy hard distillation, where discrete outputs are
sampled from teacher models and used as training
targets (Wang et al., 2024). This approach treats the
teacher’s outputs as ground truth labels, optimizing
cross-entropy loss on these discrete tokens. In con-
trast, soft distillation methods attempt to match the
continuous probability distributions of the teacher
model, which has shown to be more efficient due to
rich supervision across the entire distribution from
the teacher model Hinton et al. (2015a).

Among soft distillation approaches, implemen-
tations vary significantly in both methodology and
computational efficiency. UltraVox? and other re-
cent models employ direct KL divergence distilla-
tion as a natural strategy, though this can be compu-
tationally expensive as shown in Snell et al. (2022).
Computing full KL divergence over the vocabulary
requires O(V - d) operations, where V' represents
vocabulary size and d the hidden dimension—a sig-
nificant cost given typical vocabulary sizes of most
LLM:s.

A key limitation of existing distillation meth-
ods is their exclusive focus on output distribu-
tions. However, the input representations from
text-backbone models also contain valuable super-
visory signals that could enhance knowledge trans-
fer. By incorporating distillation losses from both
input and output distributions, more comprehen-
sive alignment between student and teacher models
becomes possible. Additionally, we introduce an
alternative formulation of the KL divergence objec-
tive which reduces computational complexity from

2While no paper or technical report exists for UltraVox,
we analyze the available training source code from Fixie Al.

O(V -d) to O(d).

How can we train foundation models for
speech using open and permissively licensed
data? Recently, frontier LLMs have begun inte-
grating native speech capabilities. Unlike prior
speech foundation models (Baevski et al., 2020;
Hsu et al., 2021; Chen et al., 2022; Kim et al.,
2021; Peng et al., 2023, 2024), these models offer
instruction following capabilities rather than self-
supervised audio representations or transcriptions.
It is unclear to what degree these results are de-
pendent on internal datasets, especially since even
the state-of-the-art open-access Speech LLM with
such capabilities do not report data details other
than size (Chu et al., 2024).

Similar to the Open Whisper-style Speech Model
(OWSM) initiative (Peng et al., 2024), we use only
open and permissively-licensed data. Furthermore,
unlike the baselines we compare to in Table 1, we
release the training code, rather than just the infer-
ence code, which can help reproduce a DiVA-style
model easily. In addition to our novel method, we
believe this broadens the ability to train and under-
stand Speech LLMs.

3 Method

DiVA is an end-to-end voice and text assistant,
trained using the process shown in Figure 1. We
focus heavily on effectively using pretrained mod-
els in each domain (Section 3.1). Similar to prior
works, we initialize the audio encoder from the
1.5B parameter Whisper-Large-v3 model. Unlike
previous works, we further reuse the Whisper de-
coder as the initialization of the Q-Former between
the audio encoder and the text-only LLM. We train
our model using distillation loss on the input and
output distribution of the LLLM, which we discuss
in Section 3.2.

3.1 Model Initialization

When adding multimodal capabilities to an existing
language model, the new modality must be repre-
sented as embeddings that can used in place of text
token embeddings. Achieving this goal has two
steps. First, meaningful features must be extracted
from the input modality. Second, these features
must be aggregated to be in-distribution for the
downstream language model.

Audio Feature Extraction We follow prior
works (Chu et al., 2023; Tang et al., 2023) and use
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the Whisper encoder (Radford et al., 2023). Whis-
per first transforms the raw audio signal into a 128-
channel time-frequency domain Mel-spectrogram.
This is then passed through two 1D convolutions
and used as embeddings fed to an unmodified
Transformer architecture (Vaswani et al., 2023).
All baselines, and indeed almost all recent
Speech LLMs, in Table 1 use Whisper in some way.
While we follow this choice for consistency with
prior work, this means limitations in Whisper itself
are unlikely to be measured by our experiments.
While Whisper provides strong ASR capabilities,
it was primarily trained for transcription tasks and
may have limitations in capturing paralinguistic
information such as tone, emotion, and prosody.

Audio-Text Feature Alignment While the Whis-
per encoder extracts meaningful audio features,
they are encoded at high granularity, with one
token for every 20 milliseconds of input audio.
By comparison, humans speak on average around
one syllable every 150 milliseconds across lan-
guages (Coupé et al., 2019), and most tokens in
an LLLM vocabulary are made up of several sylla-
bles. This creates a mismatch between the gran-
ularity between the Whisper encoder outputs and
the downstream LLMs input distribution.

Prior work (Tang et al., 2023) addresses this us-
ing a Querying Transformer (Q-Former, Li et al.
2023a), which learns static query embeddings with
cross-attention to keys and values features from
another modality. Given audio embeddings A, the
Q-Former learns a transformer with a cross atten-
tion mechanism U(Q(\I/(d;:T))(VA) where Q@ is a
static set of query vectors, while K and V' are pro-
jection matrices for the audio tokens. Conceptually,
this cross-attention mechanism learns to dynami-
cally aggregate information from the audio tokens
into text-like tokens. This comes at the cost of sig-
nificant training required to train the transformer
from scratch.

The Whisper decoder, which prior work discards,
is trained with a similar goal: mapping audio em-
beddings to discrete text tokens for ASR. Therefore,
rather than learning Q-Former parameters from
scratch, we initialize K and V' from Whisper’s
cross-attention mechanism. We adapt the model
to a Q-Former by replacing the inputs with static
query tokens (). Finally, we project the output
from the hidden dimension h of Whisper to the
hidden dimension H of the LLM. This results in
{taudio ¢ RH* @1} tokens representing the audio.

Text Decoding For language processing and in-
struction following capabilities, we use the original
Llama 3 8B Instruct model (Dubey et al., 2024)*
and leave its weight frozen throughout training.

3.2 Distillation Losses

We optimize two loss functions based on audio
recordings and corresponding text transcripts from
ASR data. First, we minimize the distance between
embeddings of audio and text on the input side
of the LLLM, similar to Radford et al. (2021); Li
et al. (2023a). Then, we minimize the KL Diver-
gence between the output distribution in response
to audio and text as a form of cross-modal context
distillation (Mu et al., 2024; Snell et al., 2022).

3.2.1 Input Token Alignment

To capture the mutual information between record-
ings and text transcripts, for a given ASR example
(a text transcript and an audio recording), we align
speech and text tokens as follows: The text tran-
script is embedded as N text tokens (¢t € RFXN,
The model produces |@| tokens from the recording
where || > N. We align these representations
by minimizing the Ly distance between the text
embeddings and the final 7 audio embeddings:

N
Leon = Z ‘tﬁzewt - t(é)ufl}\(l)+n|2 ey
n=0

We use the final N tokens of the audio embed-
ding rather than the initial N tokens due to the
causal attention in Whisper’s decoder. Since the fi-
nal tokens can attend to all preceding tokens, align-
ing the representations of the final tokens backprop-
agates signal to every token in the sequence. On the
other hand, the additional () — N tokens provide
information bandwidth for other information, such
as sociophonetic cues, to be passed to the LLM.*

Empirically, as we explore in Section 6, train-
ing with only token alignment leads to poor model
quality, even when low loss is achieved. However,
token alignment empirically enables reasoning be-
tween text and audio tokens, vastly improving text
instruction adherence.

3.2.2 Output Embedding Distillation

Voice assistant models should give coherent, help-
ful, and harmless responses to user speech. Thank-
fully, many openly accessible text-only LLMs have

3Training was performed before the release of Llama 3.1.
*We provide empirical validation of this claim through
token statistics analysis in Appendix A.3.
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been extensively refined for these objectives. As
such, our challenge is not to learn these behaviors
but instead to transfer them to the audio modality.
In theory, input token alignment could achieve this.
However, minor differences in input embeddings
can largely affect model behavior (Cai et al., 2022).

Distillation loss, on the other hand, directly op-
timizes for the similarity of the output distribu-
tion (Hinton et al., 2015b). Rather than distilling
a large model into a smaller model, recent work
has applied to distilling useful context into model
weights, a process termed context distillation (Snell
et al., 2022; Mu et al., 2024). Here, we apply con-
text distillation across modalities, aiming to distill
a text context into the audio modality under the as-
sumption that the model should respond similarly
to audio and text for most inputs.

In prior context distillation works, the full Kull-
back-Leibler (KL) Divergence has been shown to
be prohibitively expensive at training time due to
the large vocabulary of modern LLMs. Therefore,
the KL Divergence is instead approximated by sam-
pling random tokens (Snell et al., 2022). In our
case, where the output embedding matrix is frozen,
we show that there is an objective function easier
to optimize:

Lemma 1. Given the probability P, from a teacher
model and the probability Ps from a student model,
the KL Divergence is defined as KL(P;, Ps) =
P, - (log P, — log Py). For a transformer language
model, Ps = 0(Oshs) where hg is the final hidden
state, Oy is the output embedding matrix, and o is
the softmax function. Let 0 be the student weights
which we are trying to train to minimize the KL
Divergence, then

argy min ||hs — h¢l|2 C argy, min KL(P;, Ps)

Proof. The KL divergence is minimized when
P, = P,. Based on our definition of LM prob-
ability, this is equivalent to achieving o(Oshs) =
o(O¢hy). In the special case we consider, where the
teacher and student are initialized from the same
weights, and O; is held constant, we know that
Os; = Oq. Thus, a non-unique global minimum
will be achieved when hy = h;, where the non-
uniqueness comes from the softmax function o,
which is not injective. O

More importantly, we find that: (1) The gradient
for L2 loss is much smoother than minimizing the

KL divergence empirically>. (2) Since the vocabu-
lary size of most modern LLMs is far larger than
the hidden dimension, the distance between hidden
states can be computed using far fewer operations
than the KL divergence. In practice, we optimize
the similarity of only the first predicted next to-
ken (after all I text tokens/all () audio tokens) for
efficiency, as Morris et al. (2023) has shown that
just a single token probability encodes significant
information, both for prior and future tokens.

Notably, training with this loss only guarantees
that the output distribution is well aligned in re-
sponse to audio. However, our intuition is that this
loss alone is likely to be less robust to input dis-
tribution shift without our token alignment loss,
which we explore in Section 6.

4 Experimental Setup

4.1 Training Data

We utilize the English subsection of Common Voice
17 (Ardila et al., 2019) as the dataset for all DiVA
training runs. The dataset comprises just over 3.5
thousand hours of reading text that has been crowd-
sourced and validated on the Common Voice web-
site. We select the Common Voice for three reasons.
Firstly, it is permissively licensed for commercial
and research use. Secondly, it contains speech
recorded in realistic settings on an individual’s de-
vice rather than in a professional studio. Finally,
it includes speech from 93,725 speakers from a
global pool of volunteers®. The first factor means
that the resulting DiVA models we release can be
adapted for use broadly, while the latter two make
the training data more representative of real users.

4.2 Training Hyperparameters

We train for 4300 steps and a batch size of 512
using the AdamW Optimizer, a learning rate of
SE~5, and a weight decay of 0.1. This amounts
to roughly two epochs over the data. We linearly
warm up the learning rate for the first 1% of steps
and then follow a cosine learning rate schedule,
which decays the learning rate to O throughout the
training run. The training run completes in ~12
hours on a TPU v4-256 pod.’

SWe empirically validate the utility of our approximation

in an isolated, small-scale experiment in Appendix A.4
®Statistics drawn from the official CommonVoice tracker
7All training configurations can be found on Github
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5 Quantitative and Qualitative
Evaluations

We first assess how DiVA compares to baseline
models for various spoken language benchmarks
that SFT models target. We evaluate benchmarks
for spoken question answering, speech classifica-
tion, and speech translation. This provides a quan-
titative validation of DiVA’s generalization.

As these benchmarks were all designed to test
single-task systems focused on each task, it is un-
clear whether they capture the capabilities users
expect from virtual assistants that Speech LLMs
are now powering commercially. To assess this,
we compare DiVA with the best-performing model
on the benchmark evaluation (Qwen 2 Audio) in a
side-by-side user study.

Baselines We compare our results to five openly
available Speech Language Models: BLSP (Wang
et al., 2024), UltraVox, SALMONN (Tang et al.,
2023), Qwen Audio Chat (Chu et al., 2023), and
Qwen 2 Audio Instruct (Chu et al., 2024). Both
the Qwen models and SALMONN train on SFT
mixtures that covers these benchmark tasks. This
makes them strong baselines: they all use similar
scale base LLMs to DiVA, all use the Whisper
encoder, and all have received direct supervision
on the evaluated tasks. For our user study, we
compare with Qwen 2 Audio, which reports state-
of-the-art numbers and achieves the best average
performance in our benchmarks.

5.1 Benchmarking

Speech translation is tested on CoVoST 2, translat-
ing 15,500 English examples into seven commonly
tested typologically diverse languages (Clark
et al., 2020). For question answering, we use
HeySquad (Wu et al., 2024) and SDQA (Faisal
et al., 2021), testing on 4,000 and 494 question-
answer pairs, respectively. Classification is broken
down into emotion recognition, sarcasm detection,
and humor recognition. Emotion recognition is
assessed on IEMOCAP (Busso et al., 2008) and
MELD (Poria et al., 2019), with 1,241 and 2,608 ut-
terances. We evaluate sarcasm detection on MUS-
TARD’s 690 clips (Castro et al., 2019) and hu-
mor recognition on URFunnyV2’s 7,614 examples.
These datasets cover a wide range of traditionally
benchmarked speech tasks drawn from prior work,
which we cover in greater depth in Appendix A.6.

5.1.1 Speech Translation

First, we assess the speech-to-text translation capa-
bilities of each model from English Speech to text
in another language.

On this benchmark, which SALMONN and
Qwen Audio Chat were trained for, the results are
mixed across languages. The original Qwen Audio
performs best in Chinese and Japanese, Qwen 2
Audio performs best in Arabic, German, and In-
donesian, and DiVA performs best in Tamil and
Turkish. Notably, the original Qwen trains with
more than 3700 hours of speech-to-text translation
data from CoVost2. While Qwen 2 does not re-
port which tasks it trains on, it is likely trained on
similar or increased volumes of data from CoV-
ost2 as the original Qwen. This highlights the data
efficiency and the transferability of the DiVA ap-
proach, as both of these models were trained on
more translation-specific data than the DiVA used
for its entire training.

The other distillation-based approaches show no-
tably poor translation performance. BLSP, which
uses hard distillation, achieves very low BLEU
scores across all languages (averaging 5.05), while
UltraVox’s soft output distillation performs sim-
ilarly poorly, with particularly low scores on
Japanese (0.20) and Tamil (0.17). These results sug-
gest that output distillation alone—whether hard or
soft—has shortcomings for translation.

DiVA’s most notable underperformance is in Chi-
nese and Japanese, where it underperforms both
other models. Inspecting DiVA’s outputs and com-
paring them to translations from Llama 3 in re-
sponse to text, we again find that our distillation
loss leads us to preserve a negative behavior — for
both Chinese and Japanese, Llama 3 has a strong
bias towards generating translations in the Latin
alphabet (Pinyin and Romaji) rather than the ex-
pected native script. This leads to especially poor
results in these languages. Notably, this shortcom-
ing also impacts performance for UltraVox which
is derived from Llama 3 as well.

5.1.2 Spoken Question Answering

We evaluate all models on zero-shot spoken ques-
tion answering by prompting them with recorded
audio of a speaker asking a question. The under-
lying LLMs for all baseline models are capable
of question-answering, meaning that the audio en-
coder only needs to learn to map audio to the cor-
rect corresponding text to achieve strong results.
This is where we expect DiVA to perform partic-
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Model Arabic Chinese German Indonesian Japanese Tamil Turkish
BLSP 2.95 0.10 16.30 13.30 0.01 0.44 222
UltraVox Llama 3 6.59 2.64 14.31 10.55 0.20 0.17 5.22
SALMONN 0.73 19.63 20.93 11.50 8.42 0.04 2.08
Qwen Audio 8.03 25.11* 28.78 16.95 22.48* 0.23 7.72
Qwen 2 Audio 1355 2147 30.85* 26.08* 17.02 0.74 9.58
DiVA Llama 3 12.88 12.22 27.56 22.80 6.17 3.22%  11.74*

Table 2: Results for Speech Translation across 7 typologically diverse languages. We evaluate using Sacre-
BLEU (Post, 2018). * indicates significant (P < 0.05) improvement over other models using a paired bootstrap test.

Model Spoken-Dialect QA HeySquad
USA GBR PHL IND-S IND-N IRL AUS NZL NGA ZAF
BLSP 448% 453% 429% 43.4% 433% 447% 458% 442% 42.6% 43.4% 46.8%
UltraVox Llama 3 42.6% 43.5% 393% 41.0% 404% 434% 429% 413% 399% 43.0% 43.2%
SALMONN 48.0% 469% 45.6% 455% 453% 47.5% 47.6% 47.8% 457% 45.6% 48.9%
Qwen Audio 423% 43.4% 419% 428% 42.4% 428% 451% 44.1% 421% 43.7% 45.3%
Qwen 2 Audio 442% 444% 42.6% 42.6% 41.77% 433% 44.1% 447% 41.5% 42.4% 46.2%
DiVA Llama 3 54.6% 543% 523% 53.7% 519% 54.0% 552% 54.8% 52.6% 52.4% 55.2%

Table 3: Results across our two Question Answering benchmarks covering both standard evaluation and robustness
to regional accents. Accuracy is assessed using the PEDANTS metric, which is tuned for strong correlation with

human judgments of reference-based correctness (Li et al.,

ularly well despite never having been explicitly
trained on spoken questions.

Empirically, this expectation is met as shown
in Table 3. DiVA significantly (P<0.05) over the
baselines by at least 10% (+5 PANDA) across both
benchmarks and all accents.®

However, it’s unclear whether lower accuracy
can be directly attributable to “forgetting". We qual-
itatively explore this question by labeling a sample
of 50 responses from the HeySQUAD dataset for
whether the responses include even an attempted
answer relevant to the task. Qwen Audio shows
signs of severe forgetting, with 30% of responses
ignoring the prompt instructions entirely and in-
stead transcribing the question e.g. "The citation
for the Pearson v. Society of Sisters case is What
is the citation for the Pearson v. Society of Sisters
case?". By comparison, SALMONN, which takes
inference time interventions to reduce overfitting
by partially ablating the LoRA modules learned
for the base LLM, sees reduced overfitting with
only 8% of model responses ignoring the prompt
and instead transcribing. Qwen 2 Audio sees fur-
ther reduced overfitting, likely due to its DPO pro-
cess using unreleased data, with only 4% instances
where the instruction is ignored. DiVA, despite

$We isolate the contribution of our methodology from
base model effects through cascaded baseline analysis in Ap-
pendix A.S.

2024). All improvements are significant (P < 0.05).

Model IEMOCAP MELD MUSTARD URFUNNY
Weighted F1 Accuracy
BLSP 42.9 40.1 48.4 49.9
UltraVox 322 335 56.1 50.3
SALMONN 174 31.7 50.1 52.3
Qwen 9.4 3.0 49.7 54.5*
Qwen 2 334 37.7 55.5 50.6
DiVA 50.6* 41.3* 52.6 50.2

Table 4: Results across Emotion, Humor, and Sarcasm
classification tasks. * indicates significant (P < 0.05)
improvements computed using a paired bootstrap test.

being trained only on transcription data, is the only
model adheres to the instruction consistently.

5.1.3 Speech Classification

One possible downside of our distillation approach
is that the loss function contains minimal supervi-
sion for tasks where the audio of speech itself con-
tains rich information through tone. However, tone
is frequently correlated with the semantics of the
text itself. We hypothesize this mutual information
provides signal for sociophonetic understanding.
To assess this, we evaluate on speech classification
tasks where tone is likely to play a major role: Sar-
casm Detection, Humor Detection, and Emotion
Recognition.

Emotion Recognition DiVA performs signifi-
cantly better than all baselines on both the MELD
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benchmark and IEMOCAPS benchmark. Alter-
native distillation-based approaches show more
promise than SFT models: BLSP is somewhat com-
petitive with DiVA (42.9 F1 on IEMOCAP), while
UltraVox shows intermediate results (32.2 F1 on
IEMOCAP, 33.5 F1 on MELD). In contrast, all
models trained with SFT seem to struggle to pre-
dict a diverse array of labels. Qwen Audio pre-
dicts the emotion as Sadness for greater than 90%
of inputs for both MELD and IEMOCAPS, while
SALMONN and Qwen 2 Audio behave similarly
with Neutral predictions.

While cross-modal distillation proves surpris-
ingly effective for these tasks, this may be because
IEMOCAP and MELD retain examples where emo-
tion is detectable from text alone, limiting their
ability to measure true sociophonetic understand-
ing.

Sarcasm & Humor Detection We also evaluate
on two tasks where communicative intent is ex-
pressed largely through tone. No model performs
particularly well in these tasks. None of the eval-
uated models perform significantly (P > 0.05)
better than chance on sarcasm detection and only
Qwen Audio Chat performs better than chance on
Humor Detection. This suggests there is significant
progress to be made in enabling speech-oriented
language models to understand more complex so-
cial signals in speech.

5.2 Qualitative User Study

Finally, to get a sense of how well the resulting
models match user preferences, we recruit partici-
pants to compare DiVA to the top performing base-
line, Qwen 2 Audio.

5.2.1 Recruitment & Study Design

We recruit 53 participants on the Prolific platform
to provide preference ratings. Each user was al-
lowed to contribute a maximum of 10 ratings, but
able to opt-out at any time, resulting in 522 prefer-
ence ratings comparing the models. We paid users
2.508% per 10 ratings, which took fewer than 10 min-
utes of active time for all annotators involved, for
an effective pay rate of 15$ per hour. We report
annotator demographics in Appendix A.8.

We pre-screened for users who report familiar-
ity with existing LLM chatbots and virtual assis-
tants (e.g. ChatGPT, Gemini, Claude and others).
Users were then shown responses from each model,
without knowledge of which model was which.

Qwen 2 Audio DiVA Difference
28% Win Rate 72% Win Rate  Significant at
(148 Votes) (374 Votes) PREEY)

Figure 2: Win rate between models in our 522 prefer-
ences from 53 Prolific users.

Model QA Classification  Translation
DiVA 55.17 48.70 13.80
Loss Ablations

Input Only 35.43 32.21 0.01
Output Only  52.55 34.69 0.53
Architecture Ablations

No Init. 47.63 47.27 0.00
MLP 29.48 33.85 0.00

Table 5: Model ablations. QA shows mean scores be-
tween SD-QA and HeySquad. Classification shows
mean performance between [IEMOCAPS, MELD, MUS-
TARD, and URFUNNY. Translation shows mean BLEU
scores across 7 COVOST?2 languages.

To avoid any positional bias, we shuffle the order
which users were shown model responses for each
recording submitted.

5.2.2 Results

While there is no consistent winner across bench-
marks between Qwen 2 and DiVA, DiVA generally
is strongly preferred by users, with a 72% win rate
at the preference level. At the user level, 41/53
(77%) of users preferred DiVA for the majority
of their inputs. This is extremely promising as it
indicates that the data scale reportedly used for
Qwen 2 (Chu et al., 2023) may not be required for
effective speech-in text-out models.

6 Architecture and Loss Ablations

To better understand each component of our model,
we investigate the influence of each loss component
along with our architecture decisions. In Table 5,
we compare results between the complete DiVA
method, using just the output distillation loss, and
using just the input token alignment loss.

Impacts of KL Divergence Loss The most clear
necessity for DiVA is the KL Divergence loss on
the output distribution. Using token-alignment only
does not simply lead to marginally worse results,
it causes generations to be often incoherent. For
generative tasks, the model often outputs sentences
which are only vaguely semantically related to the
input or unrelated markdown headers. In classifica-

7883



tion tasks, the token-alignment only model never
performs significantly better than random guessing.

Impacts of Token Alignment Loss This might
raise the question: why use the token-alignment
loss if it performs so poorly? In evaluations on
question answering, this is certainly reasonable as
the KL Divergence loss alone leads to stronger
performance than the SFT baselines.

However, for translation and emotion recogni-
tion tasks, we see near-zero results from KL Di-
vergence loss alone. Qualitatively, we observe that
the distillation only model replies directly to the
speech regardless of the text instructions.

We quantify this failure to adhere to instructions
for the translation task using FastText Language
ID (Joulin et al., 2017) on the outputs, under the as-
sumption that outputs which are not in the correct
target language are the result of ignored instruc-
tions. DiVA outputs the correct language 74% of
the time while the distillation only model outputs
the correct language only 1.4% of the time”.

Impacts of Architecture Choices DiVA utilizes
a Q-Former initialized from the weights of the
Whisper Decoder (see Section 3). This decision re-
sults in two architecture decisions which we ablate.
First is the selection of the Q-Former, rather than a
simpler intervention such as a more simple projec-
tion of concatenated audio tokens, as done in the
Qwen models Chu et al. (2023, 2024). Second, is
the initialization of the Q-Former from pretrained
weights, rather than training it from scratch.

Our ablation studies quantify the impact of both
Q-Former design choices. First, removing the pre-
trained initialization (No Init.) leads to a 13.7%
drop in QA performance (from 55.17 to 47.63)
and a 2.9% drop in classification accuracy. Sec-
ond, replacing the Q-Former architecture entirely a
simple MLP further degrades performance substan-
tially, with an additional 38.1% decrease in QA (to
29.48) and 28.1% drop in classification (to 33.85),
demonstrating that both DiVA’s architecture and
pretrained initialization improve results.

7 Conclusion

In summary, we release DiVA, an end-to-end Voice
Assistant model capable of processing text and
speech natively. Our cross-modal distillation loss
from text to speech showcases a promising direc-
tion for cost-effective capabilities transfer from one

“We include LID results for all models in Appendix A.7

modality to another. Our Distilled Voice Assistant
generalizes to Spoken Question Answering, Classi-
fication, and Translation despite only being trained
on transcription data. Furthermore, DiVA is pre-
ferred by users to our most competitive baseline
Qwen 2 Audio in 72% of instances despite DiVA
taking over 100x less training compute. Together,
these contributions highlight a path forward for
rapid adaptation of LLMs to Speech, without sig-
nificant investments in new training datasets.
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9 Limitations

By using weak supervision from text, DiVA is in-
herently only capable of learning speech signals
which have some mutual information with the text
transcripts. This means that DiVA is limited in
the paralinguistic information it can capture at this
stage. While we show that DiVA outperforms our
compared Speech LLM baselines even on emotion
recognition tasks, which might be seen as requiring
paralinguistic signals, this limitation is unavoid-
able in our loss design. On the other hand, unlike
pipelined models, DiVA is end-to-end finetuneable
which means that it can be used to learn paralin-
guistic information through finetuning when it is
relevant to a downstream task.

Our evaluation focuses exclusively on single-
turn interactions, yet real voice assistants must
handle multi-turn conversations where context ac-
cumulates across exchanges. While preliminary
experiments suggest DiVA can process multi-turn
interactions by concatenating hidden states across
turns, we have not systematically evaluated this
capability.

While we show the initialization methods we
use for the modality connector offer significant
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benefits, this decision also heavily constrains the
architecture choice. Architecture design for multi-
modal adapters is an active area of research as we
explore in our related work. As this field advances,
the architectural insights from DiVA are likely to
offer diminishing value compared to initializing a
more optimal architecture from scratch.

Finally, DiVA’s training approach, while compu-
tationally efficient, also relies heavily on the qual-
ity of the base LLM’s responses to transcribed text.
This creates a potential bottleneck where biases or
limitations in the text model are transferred to the
speech domain. Given the rapid rate of advances
at present in text LLMs, this trade-off seems rea-
sonable but this does limit the ability of the DiVA
approach to improve capabilities offered by text
LLMs by exploiting meaningful training data and
information that is unique to speech.

10 Ethics Statement

Collecting speech data raise privacy concerns as
human speech is inherently personally identifiable.
While this paper focuses on technical capabilities,
deployment of such systems require careful consid-
eration of user consent, data handling, and potential
misuse for surveillance or unauthorized voice pro-
cessing. For our user study, users had to opt-in to
microphone use before beginning the study, voice
data was only stored and processed on our own
servers, and recordings were erased immediately
after responses were generated. Furthermore, we
stored only user votes without generated responses
in order to avoid risks that generated responses
themselves may contain PII.
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A Appendix

A.1 Contributions

Will and Diyi led the project, scoped the goals, and
planned the overall experimental procedure. Will
implemented and trained DiVA, as well as the infer-
ence code to serve interactive evaluations. Yanzhe
helped Will design and validate the DiVA architec-
ture and loss. Ella, Weiyan, and Michael helped
format, integrate, and evaluate models on existing
static benchmarks. All authors helped review, draft,
and edit the writing of this work.

A.2 Reproducibility Statement

We release our training code, as well as evalua-
tion code, demo code & raw outputs. All dataset
processing details are included in Appendix A.6.
We release all model weights, as well as inference
code, for both ablations and the main model on
HuggingFace, where they have been downloaded
>150,000 times externally since our public model
release on July 26th, 2024 including for extensive
external evaluations in English and Thai which con-
cluded that DiVA is the only model that performs
well on the Speech [Instruction Following] task,
but it experiences a notable drop when tested on
Thai. (Manakul et al., 2024).

A.3 Allocation Between Free and Text
Aligned Tokens

The alignment loss in Equation 1 operates on two
dimensions: the number of text tokens /N and the
number of audio tokens (). For DiVA, we fix
() = 448 while N varies per utterance based on the
training data. This design ensures () — N tokens
remain available for encoding non-textual informa-
tion such as paralinguistic cues.

To validate that N < (@ in practice, we analyze
the token distribution across the CommonVoice
evaluation set (16,411 utterances):
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Statistic Number of Tokens
Mean 15.22
Standard Deviation 4.08
Maximum 39
75th Percentile 18
Median 15
25th Percentile 12
Minimum 5

Table A.1: Distribution of text tokens (V) across Com-
monVoice evaluation utterances. With Q = 448 audio
tokens, over 90% remain unconstrained by text align-
ment.

These statistics demonstrate that at most 39 to-
kens (8.7% of audio tokens) and typically only 15
tokens (3.3%) are directly aligned with text content.
Consequently, the vast majority of audio tokens
(>90%) remain unconstrained by the alignment
loss, preserving capacity for paralinguistic informa-
tion. This empirical validation supports our design
choice and addresses concerns about information
bottlenecks in the alignment mechanism.

A.4 Toy Experiment on KL Divergence versus
Hidden State Alignment

—e—KL Divergence Optimization Hidden State L2 Loss

Embeddina Size

Figure A.1: Empirical Comparison of the KL Diver-
gence with our Proxy Lo loss in a toy experimental
setup. Optimizing the KL Divergence directly leads to
worse KL Divergence than optimizing the Lo loss. This
gap increases as the hidden dimension becomes larger.

Beyond being a valid and efficient approximate
of the KL Divergence, the Lo loss should offer a
more stable gradient, especially early in training
when the output distributions are extremely differ-
ent. When P, is positive and Ps is near zero, the
KL divergence explodes to extremely large values
which can make optimization difficult and subject
to significant numerical error.

In order to test this intuition, we set up a toy

experiment where the student model outputs a sin-
gle hidden state h, and the teacher model outputs
a single hidden state h;. In this highly simplified
space, each model is fully parameterized by the
these hidden states. We initialize and output vo-
cabulary from the normal distribution with 32, 000
vocabulary items. Then, we optimize hg based on
either the Lo distance with h; or the KL. Divergence
with the output probabilities. Finally, for both pro-
cedures, we optimize for 100 steps with stochastic
gradient descent, running the experiment 100 times
at logarithmically increasing embedding dimen-
sions, and plot the final KL divergence achieved
under each loss function.

We see that, as the embedding dimension grows,
optimizing the Ly loss actually achieves lower KL
divergence in this setup than optimizing the KL
Divergence directly. To some extent, this makes
sense as the Lo loss is an incredibly simple convex
function to optimize in this setting, while the KL
divergence introduces significant additional com-
plexity and a much sharper loss landscape early in
optimization. We used this setup early in model
design phases to help validate the choice of this ap-
proximation empirically, without training full scale
models.

A.5 Isolating Methodological Contributions

from Base Model Effects
SDQA DiVA Improvement over Llama 3 Improvement over
BLSP  Qwen 2 Audio Qwen Audio vs. Qwen vs. Llama 2
Australia +9.44 +11.15 +10.11 +5.16 +3.29
New Zealand  +10.56 +10.01 +10.67 +5.21 +3.55
Great Britain ~ +9.03 +9.96 +10.93 +5.11 +3.03
United States  +9.80 +10.39 +12.31 +5.54 +3.80
Ireland +9.21 +10.66 +11.17 +5.12 +2.96
South India ~ +10.31 +11.12 +10.94 +4.70 +3.09
South Africa  +9.02 +9.95 +8.67 +5.10 +3.09
Philippines +9.47 +9.75 +10.40 +4.88 +3.05
Nigeria +10.07 +11.19 +10.59 +3.81 +1.72
North India +8.58 +10.19 +9.51 +4.81 +2.30

Table A.2: DiVA’s improvements over end-to-end
Speech LLMs compared to base model differences in
cascaded systems. The cascaded results show the per-
formance gap when using Whisper + different LLMs on
the same task.

To isolate the contribution of our distillation
methodology from the choice of base LLM, we
compare DiVA’s performance gains against the in-
herent differences between base models. Specifi-
cally, we evaluate cascaded ASR + LLM pipelines
where different LLMs respond to Whisper tran-
scriptions, providing an upper bound on base model
contributions:
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The analysis reveals that DiVA’s improvements
(9-11 percentage points) substantially exceed the
performance differences attributable to base model
selection alone (3-5 percentage points in cascaded
systems). This demonstrates that our cross-modal
distillation methodology contributes significant
value beyond the choice of Llama 3 8B as the base
model.

A.6 In-Depth Evaluation Description
A.6.1 Spoken Question Answering

HeySquad HeySquad (Wu et al., 2024) is a spo-
ken question answering (QA) dataset that aims to
measure the QA ability of digital agents. It is based
on the SQuAD dataset Rajpurkar et al. (2016) with
76K human-spoken and 97K machine-generated
questions, and the corresponding answers. We eval-
uate the models on the open-source validation set
with around 4K QA pairs.

Spoken Dialect Question Answering (SDQA)
SDQA (Faisal et al., 2021) assesses the robust-
ness of Spoken Language Understanding to global
phonological variation in English. The dataset is
made up of the same 1000 questions spoken and
recorded by speakers in 10 accent regions where
English is frequently spoken. We evaluate on the
494 of these questions which contain ground truth
answers.

A.6.2 Speech Classification

Emotion Recognition Interactive Emotional
Dyadic Motion Capture (IEMOCAP) IEMO-
CAP (Busso et al., 2008) is a dataset of ~12 hours
of videos, audio, motion capture, and transcripts
of actors performing both improvised and scripted
scenes. The seven professional and three student ac-
tors perform emotionally expressive scenes. Each
conversation turn in each scene was labeled by
six evaluators as demonstrating “happiness," “sad-
ness," “anger," “surprise,"” “fear," “disgust," “frus-
tration," “excitement," ‘“neutral state," or “other."
We follow Yang et al. (2024) and remove unbal-
anced class labels, resulting in 1241 audio utter-
ances in the fifth fold used by Tang et al. (2023).
Multimodal EmotionLines Dataset (MELD)
MELD (Poria et al., 2019) contains 13,708 ut-
terances labeled by emotion and collected from
the sitcom Friends. MELD builds on Emotion-
Lines (Hsu et al., 2018); however, the authors of
MELD ask annotators to watch the videos instead
of simply reading the transcripts to produce labels.

Three graduate student annotators labeled all ut-
terances for emotions: “anger,” “disgust," “fear,"
“joy," “neutral,” “sadness," and “surprise," as well
as for sentiments “positive," “negative," “neutral."
We evaluate on the test set of 2608 utterances.

(LT3

Communicative Intent Recognition Multi-
modal Sarcasm Dataset (MUSTARD) MUS-
TARD (Castro et al., 2019) is a collection of 690
clips from the TV shows Friends, The Golden Girls,
The Big Bang Theory, and Sarcasmaholics Anony-
mous, labeled as sarcastic or non-sarcastic by three
annotators. The clips were collected primarily
from YouTube using keywords like Chandler sar-
casm, Friends sarcasm, etc. and sampled from
MELD (Poria et al., 2019). The final dataset was
filtered to have an even number of labels of sarcas-
tic and non-sarcastic clips. We evaluate on all 690
clips to test the models’ capability in understanding
intended sarcasm.

URFunny URFunny (Hasan et al., 2019) is a
multimodal humor recognition benchmark con-
structed from 90.23 hours of TED talk record-
ings, spanning 1741 speakers and 417 topics. TED
produces transcripts for the talks, which contain
"[laughter]" markers that show when the audience
laughs. The authors sampled the context and punch-
line before laughter markers for 8257 positive ex-
amples and random parts of the transcript without
laughter markers for 8257 negative examples. UR-
FunnyV?2 filters out noise and reduces overlap in
examples. We evaluate 7614 examples from the
train split of URFunnyV?2 to evaluate the models’
ability to understand speakers’ humorous intents.

A.6.3 Speech Translation

CoVoST 2 CoVoST 2 (Wang et al., 2020) is a
speech-to-text translation benchmark to and from
English. The speech inputs are sourced from
the CommonVoice and professional translators are
hired to translate the recording into a target lan-
guage. The test dataset is large, made up of 15,500
examples translated from English to each target lan-
guage. We evaluate on 7 target languages selected
for their typological diversity in prior work (Clark
et al., 2020).
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A.7 Language ID Outputs For All Models

Language DiVA

KL Only Token Alignment

Qwen

Qwen2 SALMONN

Arabic 84%
German 90%
Indonesian  85%
Japanese 28%
Tamil 96%
Turkish 74%
Mandarin 60%

2%
1%
1%
2%
1%
1%
2%

0%
0%
0%
0%
0%
0%
0%

95%
99%
97%
100%
60%
93%
91%

90%
98%
97%
99%
79%
92%
83%

19%
77%
77%
67%
8%
28%
93%

Table A.3: Percentage of outputs for which Language

ID matches the target language.

A.8 Prolific User Demographics

Age Gender Identity  Ethnicity (Simplified)
Median Age 34 Man 50.9% White 59.2%
Max Age 69 Woman 49.1% Black 16.3%
Minimum Age 19 Other 0% Asian 12.2%

Mixed 4.1%
Other 8.2%

Table A.4: Aggregate metrics for age, gender identity,

and ethnicity from our user study. Our participants
cover a wide range of ages, are gender balanced, and
have a similar distribution of ethnicities as reported in

the United States Census.
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