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Abstract
Complex video question-answering (VQA) re-
quires in-depth understanding of video con-
tents including object and action recognition as
well as video classification and summarization,
which exhibits great potential in emerging ap-
plications in education and entertainment, etc.
Multimodal large language models (MLLMs)
may accomplish this task by grasping the in-
tention of a question and decomposing it to a
series of visual recognition sub-tasks to find
out the answer with the help of an agent. To
tackle this task, we first collect a new dedicated
Complex VQA dataset named CVQA and then
propose VQAGuider, an innovative framework
planning a few atomic visual recognition tools
by video-related API matching. VQAGuider
facilitates a deep engagement with video con-
tent and precise responses to complex video-
related questions by MLLMs, which is beyond
aligning visual and language features for sim-
ple VQA tasks. Our experiments demonstrate
VQAGuider is capable of navigating the com-
plex VQA tasks by MLLMs and improves the
accuracy by 29.6% and 17.2% on CVQA and
the existing VQA datasets, respectively, high-
lighting its potential in advancing MLLMs’s
capabilities in video understanding.

1 Introduction
Video question-answering (VQA) allows users to
explicitly express their interests in certain video
contents, which exhibits great potential in many
emerging applications. For example, in the ed-
ucation field, AI assistants that understand com-
plex video contents can help students comprehend
course material effectively (Peng et al., 2021; Chen
et al., 2024b). In the field of entertainments, AI ex-
perts that well comprehend sports videos can help

∗ Work done during an internship at Ant Group.
† Qingpei Guo is the corresponding author.

Question

(a) Simple video task

How many people at the beginning of the video? 
(A) One   (B) Two   (C) Three    (D) Four

Answer

(D) Four

Question

(b) Complex video task

What makes the hairdressing scene in the video funny? 
(A) Hairdresser uses oversized scissors.
(B) Customer is satisfied with hairstyle.
(C) Hairdresser is wearing a stylish outfit.
(D) Hairdresser accidentally makes customer bald.

Atomic Task

Video Action Recognition     Video Object Tracking  
Video Object Detection         Video Classification

Answer

(D) Hairdresser accidentally makes customer bald.

Atomic Task

Video Object Detection

Figure 1: The examples of simple and complex VQA tasks,
requiring one or multiple atomic vision tasks to figure out the
answers, respectively.

the audience understand the competition through
analyzing the player’s strategy in matches (Li et al.,
2024b; Chen et al., 2024c). Complex VQA, as
a high-level form of VQA, requires multimodal
large language models (MLLMs) to understand the
situational relationships within the video content,
thereby presenting textual answers to the user’s
complex questions.

MLLMs have demonstrated tremendous
progress in image generation (Xu et al., 2024),
image understanding (Sun et al., 2024), and video
captioning (Zhou et al., 2024), etc. Nevertheless,
their capabilities in VQA, especially complex
VQA, have not been fully exploited. In real-world
applications, most VQA tasks are complicated,
involving planning and coordination of multiple
basic visual tasks. For instance, as shown in Fig. 1
(b), answering the video question requires MLLMs
to recognize the hair cut action and realize the
customer head became bald by accident. This
process involves basic visual tasks like video
action recognition, video object tracking, and
video object detection, etc. However, existing
VQA benchmarks (Kim et al., 2024; Li et al.,
2024c) do not provide a well-defined complex
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VQA dataset, making it hard to evaluate and
enhance MLLMs’ capabilities for complex VQA.

Existing methods for VQA mainly extract vi-
sual features and align them with the language
ones (Choudhury et al., 2025; Amoroso et al., 2025;
Chen et al., 2024a). These methods are effective
for simple VQA tasks where questions can be an-
swered directly by observing certain content in
video frames. For example, as shown in Fig. 1 (a),
only video object detection is able to answer this
simple question about “How many people”. In con-
trast, solving complex VQA tasks requires to plan
a logical chain of atomic visual tasks like figuring
out the objects in a video and tracking their mo-
tions, and then aggregates the results. This process
can be well formulated as an agent who decom-
poses complex VQA to multiple atomic tasks and
then consolidates MLLMs to produce an answer.
In general, we summarize two main issues in tack-
ling the complex VQA task: i) A lack of a suitable
complex VQA dataset, making it difficult to mea-
sure and enhance the performance of MLLMs in
handling such a complex task; ii) A lack of effec-
tive methodologies to guide MLLMs to figure out
sensible answers in the complex VQA task.

To address the first issue, we define the complex
VQA task as one requiring multiple atomic vision
tasks to figure out the answer. Then we construct
a complex VQA dataset, named CVQA, based on
whether multiple atomic tasks are needed to de-
rive the answer for this video question. To solve
the second issue, we propose a novel framework,
named VQAGuider 1, to guide MLLMs to identify
atomic tasks, select appropriate VideoAPIs, and
logically arrange the VideoAPI outputs, thereby
enabling MLLMs to obtain answers for the com-
plex video questions. To support VQAGuider in
assisting MLLMs with answering complex video
questions, we also require a set of specialized APIs
that allow MLLMs to seek external help when they
cannot rely on their internal knowledge. However,
existing tools, such as ToolBench (Xu et al., 2023),
APIBench (Patil et al., 2023), and API-Bank (Li
et al., 2023c), mainly prioritize lower-level API
libraries like Pandas in Python. These tools are
insufficient for complex VQA tasks, as they do
not facilitate the connection of real-world atomic
tasks, such as object detection, with video con-
tent. Therefore, we design a series of video-related
APIs (denoted as VideoAPIs) for each atomic task,

1https://github.com/Yukyin/VQAGuider

Content Task VideoAPI Path
Q C 2 3 >3 VODVOT VAR VFD VCl VS VCa VK S P

L/C 18.2 20.1 1335 1187 1208 3267 2965 2874 1098 1342 1102 3034 3258 1796 1934
L/C (%) / / 35.8 31.8 32.4 87.6 79.5 77.1 29.4 36.0 29.5 81.3 87.3 48.2 51.8

Table 1: The statistics of CVQA and each module of it. “L/C”:
Token count in content items or count of items in atomic tasks,
videoAPI distribution, and planned path distribution. “Q”
and “C” represent questions and choices in CVQA. “VOD”,
“VOT”, “VAR”, “VFD”, “VCl”, “VS”, “VCa”, and “VK” rep-
resent VideoAPIs including VideoObjectDetection, VideoOb-
jectTracking, VideoActionRecognition, VideoFaceDetection,
VideoClassification, VideoSegmentation, VideoCaptioning,
and VideoKeyFrameCapturing. “S” and “P” indicate sequen-
tial and parallel planning, respectively.

linking the video content to these atomic tasks. We
conduct experiments on the constructed CVQA and
other VQA datasets, demonstrating the challenges
of CVQA and the effectiveness of VQAGuider.

2 Dataset Construction
2.1 Video Atomic Tasks and VideoAPIs
We first propose eight atomic tasks which are given
by human experts as the basic tasks required to
complete a complex VQA task, including: Video
Object Detection, which identifies a specific target
in a video; Video Object Tracking, which identifies
and tracks a target within a video sequence; Video
Action Recognition, which recognizes human or
equipment gestures in a video; Video Face Detec-
tion, which detects human faces in a video, includ-
ing emotion analysis; Video Classification, which
categorizes videos, such as movie genres, sports
events, news, etc.; Video Segmentation, which di-
vides a video frame into different parts based on
scenes or objects; Video Captioning, which au-
tomatically generates text descriptions to explain
the video content; Video Summarization, which
extracts key frames of a video. Specifically, we
consult three researchers skilled in VQA to rate the
rationality of these atomic tasks on a scale of 1 to
5. They consistently rate these atomic tasks scores
of 4 and above, which suggests the meaningful-
ness of these atomic tasks for answering complex
video questions. We visualize these atomic tasks in
Fig. 2.

Next, we link each atomic task to a correspond-
ing VideoAPI. VideoAPI is defined as a function
interface that can solve an atomic task related to
a video. Specifically, VideoAPIs in this work are
built based on LangChain 2. We use GPT-4o in
LangChain to extract relevant information, such as
the position of an object in a frame of video, and
also allow GPT-4o to interact with external APIs

2https://github.com/langchain-ai/langchain/tree/master
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Video Face Detection

A man is smiling.

Video Classification Video Segmentation

Video Action Recognition

Video Object Detection Video Object Tracking

Video Captioning Video Summarization

News       Movie    Sports

A bed 

A lamp  

A TV

The person 
is using 
computer. 

The third cup is 
moved to the first 
position and then to 
the second position

Women help men 
change into 
formal attire.

Text description Key Frames

Figure 2: The illustrations of the atomic tasks.

What elements in the video contribute to its comedic nature?
(A) The man uses water to style his hair and he has a full head of hair.
(B) The man is using a comb to style his hair and is completely bald.
(C) Using flames to style his hair and the man's partial baldness.
(D) The scene features a man cutting his own hair with scissors.

QuestionVideo

Atomic Task Video Action Recognition    Video Object Detection     Video Object Tracking

Answer (B) The man is using a comb to style his hair and is completely bald.

Figure 3: A sample case in CVQA with its atomic tasks.

like Pandas to solve a specific atomic task. For ex-
ample, “VideoActionRecognition” is a VideoAPI
of the video action recognition task, aiming to rec-
ognize human actions in the video. We input the
video path into the VideoAPI “VideoActionRecog-
nition” and obtain the output “Showing [some-
thing] next to [something] 0.72; Showing [some-
thing] behind [something] 0.13; Showing [some-
thing] on top of [something] 0.03”, representing
the probability of a series of actions in the video.

2.2 Complex VQA Dataset

After that, we construct a complex VQA dataset
named CVQA. Compared with open-ended VQA
dataset (Maaz et al., 2023), evaluating the per-
formance of MLLMs is easier with multiple-
choice VQA dataset due to the explicit answers.
Therefore, we first collect multiple-choice VQA
dataset from public sources such as MVBench (Li
et al., 2024c), STAR (Wu et al., 2024), PAX-
ION (Wang et al., 2024b), Moments in Time
V1 (Monfort et al., 2019), FunQA (Xie et al.,
2023), CLEVRER (Yi et al., 2019), Perception
Test (Patraucean et al., 2024), Charades-STA (Gao
et al., 2017), MoVQA (Zhang et al., 2023b), NTU
RGB+D (Liu et al., 2019), VLN-CE (Krantz et al.,
2020), and TVQA (Lei et al., 2018). Next, we input

VideoAPI Input Output Explanation

VideoObjectDetection File path of
video

{Frame 20:[“laptop”, 0.84], Frame
40:[“sofa”, 0.93]...}

The name of
specific objects
in each frame.

VideoObjectTracking File path of
video

{Frame 0:[“person”, [114,453,248,927],
0.84], Frame 50:[“oven”, [0,469,98,901],
0.93]...}

Positions and
movements of
specific objects
in each frame.

VideoActionRecognition File path of
video

{“Showing [something] next to [some-
thing]”: 0.21, “Rolling [something] on a
flat surface”: 0.05, “Letting [something]
roll along a flat surface”: 0.04...}

Action in each
frame.

VideoFaceDetection File path of
video

{“bounding_box”: (100, 200, 50, 50),
“id”: “John_Doe”, “confidence”: 0.9, “emo-
tion_type”: happy}

The face and
emotion of per-
sons.

VideoClassification File path of
video

{“tai chi”:0.69,“country line danc-
ing”:0.05,“dancing charleston”:0.01...}

Category of the
video.

VideoSegmentation File path of
video

{Frame 0:[“trashbin”:[14,23,42,66], 0.77],
“street”:[100,231,199,308], 0.65],... }

Different parts
of each frame.

VideoCaptioning File path of
video

“{[00:00:00]”: “(Music play-
ing)”,“[00:00:05]”: “Interviewer: Wel-
come to our show today. We have a special
guest with us.”, ...,“[00:00:50]”: “(Music
fades out)”, “[00:00:55]”: “Caption: The
Importance of Renewable Energy in Urban
Areas”}

Description of
object, persons,
actions and etc.
in each frame.

VideoSummarization File path of
video

{Frame 20, Frame 50, Frame 80} Keyframe of the
video.

Table 2: The input, output and explanation of the constructed
VideoAPIs.

a video and its question as well as the description of
the complex VQA task into VideoChat2 (Li et al.,
2023b), making it determine whether the current
question is complex with the prompt “A complex
video question consists of multiple atomic tasks
including... determine if this question is a com-
plex one. If so, output 1; otherwise, output 0.”
Afterwards, three video experts validate our clas-
sification with an average score of 4.2 out of 5,
supporting its rationality.

To ensure a balanced comparison of VQA pairs
containing varying numbers of atomic tasks, differ-
ent types of video-related APIs, and diverse paths,
we generate a series of complex video QA pairs
with ChatGPT and the prompt “A complex video
question consists of multiple atomic tasks includ-
ing... Please generate a collection of complex video
question based on the given video”. Videos are
sourced from the above-mentioned datasets. We
make manual verification to ensure the reasonable-
ness of the QA pairs and their alignment with the
complexity definition. Only video QA pairs that
receive a score of 4 or higher (on a scale of 1-5)
from three video QA experts are considered to be
of acceptable quality.

Ultimately, we have curated a complex VQA
dataset named CVQA comprising 3,730 QA pairs,
each associated with a corresponding video. Within
this dataset, 2,325 QA pairs (62.3%) are derived
from existing datasets. The average duration of
each video is 32 seconds. The dataset statistics are
summarized in Table 1, with a sample provided in
Fig. 3. Table 3 presents the final proportions and
the average size of atomic tasks covered for each
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public source dataset. In order to ensure a relatively
balanced distribution in terms of the number and
types of atomic tasks as well as the proportion of
planning paths, we adjust the proportion of each
dataset accordingly. We also list statistics of com-
monly used open-sourced VQA datasets as shown
in Table 4. It can be seen that the average size
of atomic tasks covered and the average steps of
planning path in CVQA dataset both exceed those
of existing datasets, indicating there is a lack of
complex VQA dataset.

3 Method
In this section, we propose a novel framework
named VQAGuider for assisting MLLMs in solv-
ing the complex VQA task as shown in Fig. 4.

3.1 Atomic Task Recognition
The first step of VQAGuider is to guide MLLMs
to identify the atomic tasks. In this step, we de-
sign certain prompts to help each MLLM choose
appropriate atomic tasks from a list of candidates
that can answer a complex question. First, we in-
put the video, question, and candidate atomic tasks
into the MLLM. The MLLM then decomposes the
complex VQA task into a series of atomic tasks
denoted as {x1, x2, ..., xn}, forming an atomic task
group denoted as X . For example, given the ques-
tion “What is the action performed by the person in
the video? (A) blowing (B) sailing (C) swimming
(D) competing” shown in Fig. 4, the MLLM ulti-
mately outputs the atomic task group X = {Video
Action Recognition, Video Object Tracking} for
this question.

3.2 VideoAPI Matching
The second step is VideoAPI Matching with recog-
nized atomic tasks, aiming at providing reasonable
outputs for each atomic task for which MLLMs
cannot complete due to insufficient coding capa-
bilities. In this way, we bypass the step where
MLLMs must directly perform video-based reason-
ing, thereby enhancing their performance in han-
dling complex VQA tasks. Specifically, by query-
ing the constructed VideoAPI library, we match
the obtained atomic task group X with its cor-
responding VideoAPIs denoted as {a1, a2}, con-
structing the VideoAPI group denoted as A. For
example, the atomic task group X = {Video
Action Recognition, Video Object Tracking} can
be matched to obtain the VideoAPI group A =
{VideoActionRecognition, VideoObjectTracking}

                
           

           
               Suitable APIs

Atomic Task Recognition: The question is about identifying the action performed by the person in the 

video. I recognize two atomic tasks, Video Action Recognition and Video Object Tracking.
VideoAPI Matching: I match the suitable APIs by querying the API library.

:
1. Video Action Recognition: Recognize human or equipment gestures in a video.

2. Video Object Tracking: Identify and track the person in the video

Path Planning: 

                          ①                                                       ②                                                    

① Thought1: I first use VideoActionRecognition Tool to recognize the main actions of the video and it 
mentions a beach scene with sailboats and people enjoying water activities. This suggests that the action 
performed in the video could be related to sailing or swimming. 

② Thought2:  To confirm this, I will use the ObjectTracking Tool to identify the main objects and their 
movements in the video, which can help me determine the main action performed in the video. The 
objects seem to be moving around, which suggests some form of activity. 

           
Atomic Task2

Atomic Task3

  Atomic Task 

Recognition  VideoAPI Matching

API 
Library

API1

API2

API3

Path Planning

                       

Answer

VideoAgent

          What is the action performed by the person in the video?
(A) blowing (B) sailing (C) swimming (D) competing

 Question         video

Atomic Task1

             (B)saillingAnswer

API1
output

API2
output

API3 

API1 + API2 
output

API3

Process

    Answer  Video Object
Tracking

Video Action 
Recognition

People enjoy water activities.

  People are continuing
wa t e r  ac t i v i t i es .

Module

Process

Figure 4: The detailed process of the using VQAGuider in
assisting an MLLM to answer a complex video question.

in the VideoAPI library. The output of “VideoAc-
tionRecognition” is “People enjoy water activi-
ties on the water, conf: 0.85.”, indicating the per-
son’s current action relates to water, and the output
of “VideoObjectTracking” is “Frame id: 20 ob-
ject id: 3, conf: 0.51, c: 0 position: (499, 278,
513, 289); Frame id: 20 object id: 2, conf: 0.52,
c: 0 position: (84, 253, 96, 278);......;Frame id:
60 object id: 5, conf: 0.68, c: 0 position: (525,
272, 553, 327)”, suggesting that people are con-
tinuing water activities. The input and output of
all VideoAPIs are shown in Table 2. After that,
we adopt GPT-4o to convert the output of each
VideoAPI in the VideoAPI group A into natural
language for MLLMs to recognize with an instruc-
tion “Please interpret the output of each VideoAPI
[CONTENT] with natural language”.

3.3 Path Planning

The final step is to guide MLLMs to plan the trans-
formed outputs of each VideoAPI for comprehen-
sive reasoning. Generally, path planning includes
two approaches for a question: sequential and par-
allel. In the sequential approach, the MLLM takes
the transformed output of the first VideoAPI as the
first thought, then uses the first thought as known
information and obtains the second thought based
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Dataset MVBench STAR PAXION Moments in Time V1 FunQA CLEVRER Perception Test Charades-STA MoVQA NTU RGB+D VLN-CE TVQA CVQA

Portion 39.2 2.4 1.1 7.2 2.6 9.2 7.3 3.5 1.4 1.3 6.7 18.1 100
AT 3.8 1.8 1.3 2.4 2.2 2.8 2.4 2.1 1.5 1.3 2.8 3.2 4.8

Table 3: The portions and the average size of atomic tasks covered for each public source dataset in CVQA. AT: Average size of
atomic tasks.

Dataset V Q L AT PP

MSVD-QA (Xu et al., 2017) 1,970 50K 10 2.4 1.2
MSRVTT-QA (Xu et al., 2016) 10,000 243K 15 2.5 1.1
ActivityNet-QA (Yu et al., 2019) 5,800 58K 180 2.8 1.5
NExT-QA (Xiao et al., 2021) 5,440 47K 44 3.1 1.9
AGQA (Grunde-McLaughlin et al., 2021) 9,615 192M 30 2.9 1.8

CVQA (Ours) 3,730 3,730 32 4.8 3.1

Table 4: Statistics of commonly used VQA datasets. V:
Size of Videos. Q: Size of Questions. L: Average lengths of
videos. AT: Average size of atomic tasks. PP: Average steps
of planning paths.

on the transformed output of the second VideoAPI.
Next, the second thought is used as known infor-
mation to obtain the answer. The typical represen-
tation is as follows: Task 1’s output → Task 2’s
output, Task 2’s output → Task 3’s output, Task
3’s output → Task 4’s output. In the parallel ap-
proach, both the first and second thought are used
as known information to get the answer. The typ-
ical representation is as follows: Task 1’s output
→ Task 2’s output, (Task 1’s output ⊕ Task 2’s
output) → Task 3’s output, (Task 1’s output ⊕ Task
2’s output ⊕ Task 3’s output) → Task 4’s output,
where “⊕” denotes the integration of transformed
outputs from multiple VideoAPIs. For the com-
bination of typical sequential and typical parallel
tasks, we also consider it as parallel, such as Task
1’s output → Task 2’s output, (Task 1’s output ⊕
Task 2’s output) → Task 3’s output, Task 3’s out-
put → Task 4’s output. For the previous question,
MLLM’s path planning goes as follows: First, it
adopts the “VideoActionRecognition” VideoAPI
with the output indicating actions of people en-
gaging in water activities. Next, it undertakes the
“VideoObjectTracking” VideoAPI, which indicates
that people are always active in the water through-
out the video. Combining these two atomic tasks in
parallel, VQAGuider guides MLLMs to consider
that people engage in water activities, and this ac-
tion persists throughout the entire video, leading to
the inference that the main action is likely sailing.

4 Experiment
4.1 Experimental Setups

We conduct our experiments on 8x Nvidia A100
GPUs, each with 80GB of memory, implemented
using PyTorch in Python. For MLLMs capable
of processing videos directly, we input the videos

in their entirety without any frame selection strat-
egy. For MLLMs that are unable to process videos
directly, such as GPT-4v, we uniformly sample
frames every 3 seconds, resulting in an average of
10 frames as input. We set the maximum sequence
length for both input and output sequences to 1024
tokens. For path planning, we experiment with both
sequential and parallel approaches for each MLLM,
selecting the better option for demonstration.

4.2 Datasets, Baselines and Metrics

We select several MLLMs that have demon-
strated strong performance on video tasks, in-
cluding GPT-4o, LLaVA OneVision (Li et al.,
2024a), Video-ChatGPT (Maaz et al., 2023), Video-
LLaMA (Zhang et al., 2023a), PandaGPT (Su et al.,
2023), Otter-I (Li et al., 2023a), VideoChat (Li
et al., 2023b), VideoChat2 (Li et al., 2024c),
mPLUG-Owl-I (Ye et al., 2023), Valley (Luo et al.,
2023), GPT-4v (Yang et al., 2023), Chat-UniVi (Jin
et al., 2023), MovieChat (Song et al., 2023b), and
LLaMA-VID (Li et al., 2023d), as backbones to
validate the effectiveness of VQAGuider. For com-
paring other powerful VQA methods with the pro-
posed VQAGuider, we also choose COT (Wei
et al., 2022), MoReVQA (Min et al., 2024),
GSMT (Nguyen et al., 2024), VAA (Fan et al.,
2024), FreeVA (Wu, 2024), and VAL (Wang et al.,
2024a). COT is to remove the explicit annotation of
atomic task types and API names in the prompts to
further test whether MLLMs can achieve good per-
formance solely through chain-of-thought reason-
ing. An MLM is requested to directly decompose
the original question into atomic tasks, utilizing
external tools to obtain outputs, and then reason-
ing over the outputs to generate answers. Besides
validating the effect of VQAGuider in CVQA, we
select open-sourced videoQA datasets as shown
in Table 4 for further experiments. We follow the
same test set as used in Min et al. (2024).

We use accuracy as the evaluation metric for
the overall performance of VQAGuider. For each
individual step like atomic task recognition, we
measure the accuracy as the proportion of MLLM
outputs that match the ground truth in CVQA. For
videoAPI matching, we evaluate whether MLLMs
correctly select the appropriate VideoAPIs and ex-
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Model
CVQA MSVD-QA MSRVTT-QA ActivityNet-QA NExT-QA AGQA

O VG ↑ ↑(%) O VG ↑ ↑(%) O VG ↑ ↑(%) O VG ↑ ↑(%) O VG ↑ ↑(%) O VG ↑ ↑(%)

GPT-4o 61.5 63.7 2.2 3.6 83.9 86.2 2.3 2.7 66.0 70.7 4.7 7.1 63.1 66.3 3.2 5.1 69.4 71.4 2.0 2.9 72.9 73.8 0.9 1.2
LLaVA OneVision 58.1 62.2 4.1 7.1 79.5 83.7 4.2 5.3 64.6 68.5 3.9 6.0 59.4 63.5 4.1 6.9 67.4 70.2 2.8 4.2 66.3 69.5 3.2 4.8
VideoChat2 49.2 58.2 9.0 18.2 70 79.3 9.3 13.3 54.1 66.2 12.1 22.4 49.1 56.8 7.7 15.7 62.2 69.8 7.6 12.2 60.2 65.8 5.6 9.3
Panda-GPT 44.3 53.6 9.3 21.0 68.7 78.8 10.1 14.7 52.3 65.6 13.3 25.4 45.8 55.1 9.3 20.3 59.4 69.2 9.8 16.5 59.1 63.7 4.6 7.8
GPT4v 38.7 50.2 11.5 29.8 69.5 80.1 10.6 15.3 57.8 70.6 12.8 22.2 53.9 61.4 7.5 13.9 63.7 70.5 6.8 10.7 65.5 70.2 4.7 7.2
Chat-UniVi 35.3 46.6 11.2 31.8 65 77.6 12.6 19.4 54.6 62.7 8.1 14.8 45.8 54.7 8.9 19.4 61.5 68.8 7.3 11.9 53.9 59.8 5.9 11.0
Valley 34.7 48.2 13.5 38.9 60.5 69.5 9.0 14.9 51.1 63.6 12.5 24.5 45.1 52.8 7.7 17.1 57.7 66.3 8.6 14.9 58.4 62.4 4.0 6.9
LLaMA-VID 36.5 47.2 10.7 29.3 69.7 77.4 7.7 11.1 57.7 68.9 11.2 19.4 47.4 58.6 11.2 23.6 50.3 58.7 8.4 16.7 57.8 63.5 5.7 9.9
VideoChat 34.6 44.1 9.5 27.5 56.3 69.5 13.2 23.5 45 55.3 10.3 22.9 26.5 40.3 13.8 52.1 54.9 62.8 7.9 14.4 56.7 61.3 4.6 8.1
Video-LLaMA 31.1 44.2 13.1 41.9 51.6 65.2 13.6 26.4 29.6 40.7 11.1 37.5 12.4 28.4 16.0 129.0 47.6 53.2 5.6 11.8 52.7 58.7 6.0 11.4
MovieChat 30.6 42.0 11.4 37.4 75.2 84.1 8.9 11.8 52.7 61.6 8.9 16.9 45.7 54.1 8.4 18.4 55.7 62.7 7.0 12.6 55.1 59.3 4.2 7.6
Video-ChatGPT 29.8 38.5 8.7 29.3 64.9 77.3 12.4 19.1 49.3 56.8 7.5 15.2 35.2 46.5 11.3 32.1 58.6 64.6 6.0 10.2 59.2 65.5 6.3 10.6
mPLUG-Owl-I 24.8 33.2 8.4 33.9 57.3 65.6 8.3 14.5 37.6 50.2 12.6 33.5 29.6 37.1 7.5 25.3 51.3 60.0 8.7 17.0 54 59.5 5.5 10.2
Otter-I 21.4 35.2 13.9 64.9 56.9 65.4 8.5 14.9 37.9 48.6 10.7 28.2 25.7 35.5 9.8 38.1 52.8 61.2 8.4 15.9 51.5 55.7 4.2 8.2

Average 37.9 47.7 9.8 29.6 66.4 75.7 9.3 14.8 50.7 60.7 10.0 21.2 41.8 50.8 9.0 29.8 58.0 65.0 6.9 12.3 58.8 63.5 4.7 8.2

Table 5: The accuracies before (denoted as “O”) and after (denoted as “VG”) utilizing VQAGuider in CVQA,
descriptive QA (i.e. MSVD-QA, MSRVTT-QA, ActivityNet-QA) and inferential QA (i.e. NExT-QA, AGQA)
dataset. “VG”: VQAGuider.

Model
MSVD-QA MSRVTT-QA ActivityNet-QA NExT-QA AGQA

O VG ↑ ↑(%) O VG ↑ ↑(%) O VG ↑ ↑(%) O VG ↑ ↑(%) O VG ↑ ↑(%)

Simple 68.5 76.2 7.7 11.2 53.7 62.3 8.6 16.0 47.9 52.5 4.6 9.6 62.7 66.1 3.4 5.4 63.8 66.2 2.4 3.8
Complex 64.2 75.2 11.0 17.1 47.8 59.1 11.3 23.7 35.6 49.1 13.5 37.8 53.4 63.8 10.4 19.6 53.8 60.8 6.9 12.9

Table 6: The accuracies before (denoted as “O”) and after
(denoted as “VG”) utilizing VQAGuider in simple and com-
plex VQA tasks.

CVQA MSVD-QA MSRVTT-QA ActivityNet-QA NExT-QA AGQA

O 37.9 66.4 50.7 41.8 58.0 58.8
COT 40.4 68.8 52.5 42.6 59.8 59.1
MoReVQA 43.8 - - - 63.1 -
GSMT 44.7 - - - - 61.2
VAA 45.5 - - - - -
FreeVA 45.7 73.6 60.1 48.6 - -
VAL 46.1 - - - - -
VQAGuider 47.7 75.7 60.7 50.8 65.0 63.5

Table 7: The accuracies before (denoted as “O”) and
after utilizing VQAGuider and other baseline methods
in VQA datasets.

tract the results into readable natural language. The
readability is assessed using GPT-4o on a 1-5 scale
(1 being the worst and 5 being the best). For path
planning, GPT-4o is also used to score the reason-
ableness of the designed path on a 1-5 scale.

4.3 Main Results

From Table 5, we observe that VQAGuider signifi-
cantly enhances the complex VQA performance
of MLLMs and the improvements are statisti-
cally significant with p value is less than 0.05
in the t-test (the same below). On average,
VQAGuider leads to performance improvements of
33.7%, 16.6%, 23.6%, 33.8%, 13.7%, and 9.0% on
CVQA, MSVD-QA, MSRVTT-QA, ActivityNet-
QA, NExT-QA, and AGQA datasets, respec-
tively, confirming the effectiveness of VQAGuider
in boosting MLLMs’ complex VQA capabili-
ties. We observe that even for more powerful
MLMs, such as GPT-4o and LLaVA OneVision,
VQAGuider also leads to a slight performance im-
provement. The possible reason for the great effect
of VQAGuider lies in that it effectively decom-

poses a video question into smaller sub-tasks. Even
though these powerful MLLMs possess sufficient
capabilities, they may still make errors due to over-
looking some details of certain video questions.
We also compare other baseline methods with the
proposed VQAGuider for each dataset in Table 7.
The results also show that VQAGuider consistently
improves the performance across all datasets when
compared to the baseline methods.

Next, for the same dataset, different MLLMs
demonstrate different improvement. For instance,
on CVQA, Otter-I shows the most significant im-
provement, with an increase of 64.9%, while Panda-
GPT has the smallest improvement on this dataset,
with only an 21.0% increase. We observe that
the VQAGuider is more effective for more pow-
erful MLLMs, and less useful for those needing
instruction-following help, where Supervised Fine-
tuning is needed. For a same MLLM, the degree
of improvement varies across different datasets.
For example, VideoChat2 exhibits the most sig-
nificant improvement on CVQA, with a 18.2% in-
crease, whereas on the NExT-QA dataset, it has
the smallest improvement, with just a 12.2% in-
crease. Moreover, we also find that the VQAGuider
demonstrates a greater improvement in descriptive
QA than in inferential QA. We consider the possi-
ble reason is that inferential QA requires not just
atomic tasks but also deeper reasoning, and may
necessitate the integration of world knowledge and
commonsense to be effectively addressed.

After that, we present MLLMs’ average metrics
for respective simple and complex questions on five
datasets in Table 6. It shows that VQAGuider im-
proves MLLMs’ performance in both questions,
with a greater impact on complex ones. We
also analyze the performance of different steps
in VQAGuider as shown in Table 8 (Column 2-

7826



Model AT API P w/o AT w/o API w/o P V Ps Pp

GPT-4o 72.3 4.4 4.5 60.0 56.7 61.3 62.5 61.9 62.3
LLaVA OneVision 70.2 4.2 4.5 58.7 54.8 59.2 61.7 61.0 61.8
VideoChat2 67.2 3.9 4.4 55.1 48.3 55.3 56.9 56.8 57.4
Panda-GPT 63.1 3.4 4.1 50.2 45.5 52.2 52.8 51.5 52.5
GPT4v 64.5 3.8 4.2 46.8 42.7 48.5 50.3 49.3 50.7
Chat-UniVi 56.3 3.4 3.6 43.3 38.1 44.1 45.5 44.2 45.1
Valley 60.1 3.6 3.9 45.1 42.6 47.9 47.3 47.4 47.9
LLaMA-VID 63.6 3.9 3.8 40.3 38.7 45.6 46.4 45.5 46.7
VideoChat 56.2 3.6 3.7 41.4 37.7 42.9 43.2 42.7 43.4
Video-LLaMA 54.3 3.8 3.8 43.6 36.8 43.7 43.9 43.2 44.1
MovieChat 47.4 3.2 3.6 38.1 36.3 40.5 40.0 39.6 40.5
Video-ChatGPT 50.5 3.4 3.8 35.8 30.1 36.9 37.1 36.4 38.2
mPLUG-Owl-I 46.7 3.2 3.6 28.5 25.5 33.1 32.2 32.8 33.1
Otter-I 49.3 3.2 3.5 29.3 24.8 33.5 32.8 36.7 33.8

Average 58.7 3.6 3.9 44.0 39.9 46.1 46.6 46.4 47.0
↓ - - - 3.6 7.8 1.6 1.0 1.3 0.7
↓(%) - - - 8.3 19.4 3.5 2.2 2.8 1.5

Table 8: The accuracies of MLLMs in each step of the pro-
posed VQAGuider and the effect of each step in CVQA for
various MLLMs. “AT”, “API”, and “P” represent performance
of atomic task recognition, VideoAPI matching, path planning,
respectively.

4). For atomic task recognition (denoted as AT),
GPT-4o performs the best, which is above the av-
erage level of 58.7. mPLUG-Owl-I shows weaker
performance in this step. For VideoAPI matching
(denoted as API), all MLLMs score closely, with an
average of 3.6, indicating significant room for im-
provement in the program language understanding
of VideoAPI outputs. For path planning (denoted
as P), GPT-4o and LLaVA OneVision both perform
the best, showing their advantage in planning effec-
tive answer paths. However, most MLLMs score
between 3.6 and 3.9, suggesting that path planning
is not the main factor constraining the complex
VQA performance of MLLMs.

4.4 Ablation Study

We first observe that each step of VQAGuider con-
tributes significantly to the overall performance
as shown in Table 8 (Column 5-10). When the
atomic task recognition step (denoted as w/o AT)
is removed, there is an average performance de-
crease of 8.3% across all MLLMs, which possibly
attribute the atomic task recognition to the role that
helps MLLMs locate key information in the video
more accurately. The removal of the VideoAPI
matching step (denoted as w/o API) results in the
largest average performance drop of 19.4% among
three steps. The reason might be that VideoAPIs
provide more professional or detailed data process-
ing outcomes, which a single MLLM struggle to
perform independently. Eliminating the path plan-
ning step (denoted as w/o P) leads to an average
performance decline of 3.5%. Although this de-
crease is relatively small, it still highlights path
planning is important in integrating different infor-
mation sources into a final answer. We also experi-

ment with replace planning paths to only sequential
ones (denoted as Ps) or parallel ones (denoted as
Pp) processing for all questions. We find that the
results deteriorate in both cases, with a more signifi-
cant decline when using only sequential processing
compared with using VQAGuider. This indicates
that most complex video tasks require the simulta-
neous handling and integration of multiple atomic
tasks. Additionally, during the construction of the
VideoAPIs, we replace LangChain to another pow-
erful code generation tool ViperGPT (Surís et al.,
2023) (denoted as V) and observe that ViperGPT’s
performance is slightly inferior. The possible rea-
son is that ViperGPT focuses on the image domain,
so its capability to generate code for atomic tasks
related to videos still requires improvement.

Next, we study the average performance of the
cases with different numbers of atomic tasks with
VQAGuider as shown in Fig. 5. We can observe
that the number of atomic tasks significantly neg-
atively affects MLLMs’ performance. When a
question contains two atomic tasks, the accuracy
(denoted as Acc) on CVQA is the highest among
the three scenarios. After that, the performance
consistently declines when the number of atomic
tasks increases to three and exceeds three, sug-
gesting that as the number of atomic tasks in-
creases, the processing becomes more complex,
and VQAGuider requires more optimization. After
that, we explore the average performance of the
cases involving different atomic tasks before and
after using VQAGuider, respectively, as shown in
Fig. 6. It can be observed that the performance of
each API declines without the use of VQAGuider,
demonstrating the effectiveness of VQAGuider in
VideoAPIs matching. With the help of VQAGuider,
video captioning and action recognition in videos
shows good performance. However, video clas-
sification and video segmentation has the lowest
accuracy, possibly due to the diversity and com-
plexity of video content. Future research could
explore how to optimize MLLMs’ performance
with VQAGuider on these atomic tasks.

4.5 Case Study
In this section, we present a case processed by
VQAGuider, as shown in Fig. 7. First, VQAGuider
guides an MLLM, such as VideoChat2, to recog-
nize atomic tasks and acquires a group of atomic
tasks “Video summarization, Video object track-
ing”, followed by VideoAPI Matching to ob-
tain a group of VideoAPIs “VideoSummarization,
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Figure 5: The average performance of the cases with different
numbers of atomic tasks after using VQAGuider.
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Figure 6: The average performance of the cases with different
VideoAPI for MLLMs before and after using VQAGuider,
respectively. VG: VQAGuider.

VideoObjectTracking”. The program language out-
put by the VideoAPI library is “Frame 260, 280,
480” and “Frame id: 260, object id: 2, ...”, re-
spectively. Afterwards, it guides the MLLM to
transform the program language into natural lan-
guage as “A person is using a laptop” and“A laptop
on the leg; ...”. Next, for the path planning, the
MLLM establishes a sequential relationship for the
transformed output as “The person is using a lap-
top, and he throws a pillow from the couch and
continues using his laptop.”. Hence, the MLLM is
guided to output the correct answer “(B) Put down
the laptop.”

However, VQAGuider also encounters some er-
rors, such as the non-applicable instructions to
some MLLMs, resulting in some samples where
MLLMs cannot output atomic tasks, or convert
the VideoAPI’s output into natural language, or
output the exact answer after path planning (the
MLLM may output an entire paragraph instead
of the answer itself). In the future, we will im-
prove VQAGuider’s instruction adaptability to bet-
ter complete the guidance for MLLMs in the com-
plex VQA task.

4.6 Exploratory Analysis

We also conduct an exploratory analysis to evaluate
the importance of video grounding and whether the
introduced atomic tasks capture the complexity of

videos in the vertical domain. For the first aspect,
we find that some questions can be answered effec-
tively through language understanding alone with-
out video grounding. We test 100 questions with
MLLMs, achieving an average accuracy of 16.6%
without video input, compared to 34.6% with video.
Notably, 11.0% of the questions are correctly an-
swered by more than half of the MLLMs with-
out video context. This indicates that determining
when video grounding is necessary for answering
video questions is an important research area.

For the second aspect, we choose five domains,
including finance, agriculture, technology, sports,
and healthcare with 20 short TikTok videos per cat-
egory, generating five complex questions for each
video, resulting in 500 questions. We then vali-
date the complexity by having three human eval-
uators determine whether answering these ques-
tions required the predefined atomic tasks. The
results show that 477 out of 500 questions (95.4%)
rely on these tasks, suggesting their adequacy for
most cases. However, for the remaining 4.6%,
VQAGuider needs a reasoning module that builds
on atomic task outputs, rather than relying solely
on path planning, which is a future optimization.

Moreover, we provide an analysis of
VQAGuider’s efficiency and computational
cost. While the original MLLMs require only a
single prompt to generate an output, VQAGuider
involves three prompts to produce the final result.
On average, the original MLLMs take about 8
seconds, whereas VQAGuider takes approximately
20 seconds. Despite the increased time, there is no
significant difference in computational resource
consumption, demonstrating the its high efficiency
alongside its improved performance. In future
work, we plan to further optimize VQAGuider to
enhance efficiency.

5 Related Work
VQA. Choudhury et al. (2025) introduced a pro-
cedural program-based approach for video ques-
tion answering. Amoroso et al. (2025) introduced
a temporal querying transformer that extracting
relevant information over time and space in the
VQA task. Yu et al. (2024) proposed CREMA for
multimodal compositional video reasoning; Liang
et al. (2024) presented a reference-free method
for evaluating video QA and caption data qual-
ity. Others focused on constructing benchmark
of VQA. For example, Han et al. (2023) intro-
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Question

VideoAgent for VideoChat2

What happened after the person threw the pillow?
(A) Tidied up the clothes.       (B) Put down the laptop.
(C) Tidied up the towel.          (D) Washed the table.
Atomic Task Recognition
Video Summarization             Video Object Tracking  

Answer (B) Put down the laptop.

Path Planning

① Thought1:  The person is using a laptop.
② Thought2:   He put the laptop on his leg, then he throw a pillow from the               
                            couch and continue using his laptop.

A laptop 
on the leg 

VideoAPI Matching

VideoSummarization

VideoObjectTracking

Frame id: 20 object id: 2, conf: 0.54, c: 28 
position: (205, 78, 353, 270)

Throw a 
pillow

A person is using a laptopFrame id: 260, 280, 480

Frame id: 280 object id: 4, conf: 0.88, c: 
63, position: (158, 63, 306, 154)

Frame id: 480 object id: 2, conf: 0.87, c: 0, 
position: (121, 0, 351, 267)

Put down 
the laptop

VQAGuider

Figure 7: The average performance of the cases with different
VideoAPI after using VQAGuider.

duced Shot2Story20K, a multi-shot video bench-
mark with comprehensive summaries; However,
the existing benchmark do not contain a complex
VQA task.

Agent. Wei et al. (2025) proposed a multi-
agent multimodal framework to perform advanced
understanding and indexing of presentation-style
videos. Ma et al. (2024) introduced an MLLM-
based autonomous agent for comprehensive cog-
nition and reliable perception. Yue et al. (2024)
fine-tuned a general-purpose MLLM to enhance
multimodal retrieval for embodied agents in un-
seen scenarios. Gu et al. (2024) demonstrated
how large-scale deployments of MLLM agents
can lead to exponential jailbreaks. Zheng et al.
(2024) introduced a multimodal large language
agent framework for closed-loop vehicle motion
planning. Shen et al. (2023) proposed Hugging-
GPT, an LLM-powered agent that leverages Chat-
GPT in solving intricate tasks; Song et al. (2023a)
adopted LLMs as planners for embodied agents. In-
spired by the various applications of agents, we pro-
posed a novel VQAGuider for enhancing MLLMs’
complex VQA capability. Although Wang et al.
(2025) and Fan et al. (2025) also address video
QA, they focus on improving video understanding
rather than solving complex VQA tasks.

Tool usage. Wu et al. (2025) introduced a new

prompting paradigm that enhances the detection
ability of MLLMs through strategic tool combi-
nations; Chen et al. (2025b) presented a DPD
strategy for reducing hallucinations for QA dataset;
Chen et al. (2025a) developed MedTransTab for
cross-table tabular data generation in the medical
context; Patil et al. (2023) introduced Gorilla, a
finetuned LLaMA-based model that outperforms
GPT-4o in writing API calls; Qin et al. (2023) col-
lected real-world APIs, prompting ChatGPT to gen-
erate diverse human commands involving these
APIs; Schick et al. (2023) introduced Toolformer,
deciding when and how to use external tools to en-
hance LLMs’ performance. Although some work
construct tool-related benchmark (Patil et al., 2023;
Li et al., 2023c; Xu et al., 2023), there is a lack of
tools related to videos, especially complex VQA.

6 Conclusions and Future Work
The study of complex VQA offers insights into
the application of artificial intelligence technolo-
gies in areas such as education, entertainment, and
security monitoring. In this research, we first de-
fine the complex VQA task and construct the cor-
responding dataset named CVQA, aiming to en-
hance the performance of MLLMs in handling
such task. Next, we introduce VQAGuider to ef-
fectively guide MLLMs in solving CVQA through
atomic task recognition, VideoAPI matching, and
path planning. Experiments show that our pro-
posed VQAGuider is effective in CVQA and other
VQA datasets. Future work will focus on optimiz-
ing the performance of VQAGuider and expanding
its application scope. We will also work on en-
riching CVQA to cover more types of complex
video-related scenarios.

Limitations
Although our VQAGuider shows significant effec-
tiveness in handling the complex VQA task, our
study still has several limitations. For example,
CVQA’s scale and diversity need further expansion.
The current dataset may not fully cover all types of
complex VQA scenarios. Moreover, how to further
optimize the MLLMs’ performance and broaden
its application scope in more extensive video con-
tent understanding and analysis tasks remains an
important direction for our future research.
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Atomic Task Recogni-
tion

You are going to decompose a complex question step by step about video into following atomic tasks,
including: Video Classification: Classifying videos into categories such as movie genres, sports events,
news, etc; Object Detection: Identifying specific objects in videos; Object Tracking: Identifying and
tracking specific objects in videos, typically involving the analysis of object positions and movements;
Action Recognition: Recognizing actions in videos, understanding the behavior of people or objects in
the video; Video Summarization: Extracting key frames or segments from videos to create a summary
and reduce the video’s duration; Video Segmentation: Dividing videos into different parts, usually based
on scenes or objects; Face Detection: Detecting and recognizing faces in videos, which may include
emotion analysis; Video Captioning: Automatically generating textual descriptions for videos, explaining
the content. You need to first choose more than one of the following atomic tasks to solve the problem.

VideoAPI Matching The API tools contains: VideoClassification, VideoObjectDetection, VideoObjectTracking, VideoAction-
Recognition, VideoSummarization, VideoSegmentation, VideoFaceDetection, VideoCaptioning. You need
to use the above-mentioned corresponding tools based on the chosen atomic tasks to solve the problem
and transform the outputs of each tool into a readable sentence.

Path Planning There are two possible ways for path planning with the information: sequential and parallel. You need to
design a possible path with all outputs of API tools to get the final answer for the question.

Table 9: The prompts for each step of the proposed VQAGuider.
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