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Abstract

Large language models (LLMs) combined
with instruction tuning have shown significant
progress in information extraction (IE) tasks,
exhibiting strong generalization capabilities to
unseen datasets by following annotation guide-
lines. However, their applicability to low-
resource languages remains limited due to lack
of both labeled data for fine-tuning, and unla-
beled text for pre-training. In this paper, we pro-
pose TransFusion, a framework in which mod-
els are fine-tuned to use English translations
of low-resource language data, enabling more
precise predictions through annotation fusion.
Based on TransFusion, we introduce GoLLIE-
TF, a cross-lingual instruction-tuned LLM for
IE tasks, designed to close the performance
gap between high and low-resource languages.
Our experiments across twelve multilingual IE
datasets spanning 50 languages demonstrate
that GoLLIE-TF achieves better cross-lingual
transfer over the base model. In addition, we
show that TransFusion significantly improves
low-resource language named entity recogni-
tion when applied to proprietary models such as
GPT-4 (+5 F1) with a prompting approach, or
fine-tuning different language models includ-
ing decoder-only (+14 F1) and encoder-only
(+13 F1) architectures.

1 Introduction

The task of information extraction (IE) is chal-
lenging due to fine-grained annotation guidelines
for span-level annotations. Fortunately, recent
advances in instruction-following large language
models (LLM) (Ouyang et al., 2022; Gemini et al.,
2023) such as GoLLIE (Sainz et al., 2024) have
demonstrated the ability to perform zero-shot IE
without labels using annotation guidelines. How-
ever, these models are often pre-trained on English-
centric data (Touvron et al., 2023; Roziere et al.,
2023). Even state-of-the-art proprietary models
such as GPT-4 exhibit significant performance

degradation from 80 English F1 to 55 F1 on low-
resource African languages, as shown in Figure 1.

To improve NLP on low-resource languages, the
research community has turned to machine transla-
tion to translate fine-tuning datasets (translate-train)
and translate test data into high-resource languages
for easier processing (translate-test) (Hu et al.,
2020). Recent studies (Shi et al., 2022; Huang
et al., 2023) on prompting LLMs with translated
data have shown improvements on diverse tasks
such as math reasoning and summarization. Prior
work has explored the use of machine translation to
improve multilingual instruction-following on tra-
ditional NLP benchmarks, such as natural language
inference, and sentiment analysis, however, the use
of MT to improve instruction-following IE models
is less explored, as there is not a trivial alignment
between labels in the native language and translated
texts (Ahuja et al., 2023). Unlike sentence-level
classification tasks (Ebing and Glavaš, 2024), IE
tasks such as NER require span-level annotations
that are highly sensitive to translation and align-
ment errors. These issues limit the effectiveness of
standard translate-train or translate-test approaches.
With recent efforts to develop machine translation
(MT) models such as M2M (Fan et al., 2021) and
NLLB-200 (Costa-jussà et al., 2022) that better
support low-resource languages, we study how to
teach LLMs to leverage an external MT system in a
resource-efficient manner to improve low-resource
IE.

In this paper, we propose a Translation and Fu-
sion (TransFusion) framework, which aims to teach
models to use translation data from an external MT
system to make better predictions. The framework
includes three steps: (1) translating low-resource
data into English at inference time, to be anno-
tated by a high-resource model. Next, (2) these
span-annotated English translations are combined
with low-resource language text in a fusion model
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Figure 1: Our TransFusion framework aims to bridge the performance gap between high and low-resource languages
on information extraction tasks. (left) TransFusion reasoning includes three steps: translate, annotate, and fuse.
(right) GoLLIE-TF shows superior cross-lingual evaluation on a range of IE datasets (including unseen labels) over
the base model.

that is trained to make predictions conditioned on
both types of data. Finally (3), the language model
generates a TransFusion reasoning chain (annotate
and fuse) in a single autoregressive decoding pass.
To train TransFusion models, we construct cross-
lingual instruction fine-tuning data by translating
and projecting labels from English IE datasets to
low-resource languages using EasyProject (Chen
et al., 2023b), a simple, yet effective method that
has been shown to scale across many NLP tasks
and languages.

Our cross-lingual IE evaluation reveals that the
TransFusion fine-tuned model, GoLLIE-TF, outper-
forms the base GoLLIE model across 50 languages,
spanning high, mid, and low-resource categories,
on both seen and unseen label schemas. Notably,
in our evaluation on African language named en-
tity recognition (NER) using the MasakhaNER2
dataset (Adelani et al., 2022), GoLLIE-TF achieves
significant improvements in F1 scores and shows
an average improvement of +6.6 F1 on unseen label
schema datasets, which is a more challenging zero-
shot evaluation setup (no fine-tuning). Furthermore,
we demonstrate that the TransFusion framework
enhances GPT-4’s performance on MasakhaNER2,
yielding an average +5.7 F1 score improvement,
and substantially boosts the encoder-only African
language model, AfroXLM-R (Alabi et al., 2022),
by +13.3 F1. Our analysis underscores the effec-
tiveness of the TransFusion framework for low-
resource language tasks.

2 Background: Annotation Guideline
Following LLMs for IE

In this paper, we employ the GoLLIE model (Sainz
et al., 2024), which has been instruction-tuned on
English Information Extraction (IE) tasks using
label schema guidelines, to achieve state-of-the-

art zero-shot IE on unseen datasets. GoLLIE uti-
lizes a Python code representation for both inputs
and outputs, providing a clear and human-readable
structure that unifies various IE annotation tasks.
Each label schema is encapsulated as a Python class
object, with the annotation guidelines embedded
as strings within these objects (an example of a
GoLLIE prompt is provided in the Appendix in
Figure 6.

Limitation of Cross-lingual Transferability: De-
spite GoLLIE’s impressive performance, it is de-
signed for use on English, as it is primarily fine-
tuned on English data. This limitation is shown in
Figure 1 (right), where we see a significant drop in
performance on low-resource African languages,
from 95 to 48, compared to English. In this study,
we experiment with cross-lingual transfer, where
human-labeled data in the target languages are as-
sumed to be unavailable. Collecting such data
is costly and time-inefficient, as it requires well-
trained native language speakers. While translation
models have shown promise in sentence-level tasks
like sentiment classification and natural language
inference (NLI) (Ebing and Glavaš, 2024; Artetxe
et al., 2023), their application to span-level infor-
mation extraction (IE) tasks remains challenging.
These tasks require precise word-level alignment
to project annotations across translations, making
them vulnerable to translation and alignment errors.
To address this, we introduce a Translation-and-
Fusion framework in Section 3.1.

3 Using Low-Resource Machine
Translation to Improve Multilingual IE

As multilingual machine translation (MT) systems,
such as M2M-100 (Fan et al., 2021) and NLLB-
200 (Costa-jussà et al., 2022), gain increasing sup-
port for low-resource languages, an opportunity
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emerges to re-evaluate the utilization of MT sys-
tems for enhancing cross-lingual IE. We propose a
Translation-and-fusion approach that benefits from
the advancements of MT systems to make robust
cross-lingual transfer predictions at inference time.
In this section, we outline the Translation-and-
fusion approach and introduce language models
trained to utilize translation data at inference time
for low-resource language IE tasks.

3.1 Translation-and-Fusion (TransFusion)
Cross-lingual Transfer. The conventional cross-
lingual transfer method involves fine-tuning a pre-
trained language model, on high-resource language
annotated data (src) and evaluating its performance
on test data in other languages ptgtq.
In accordance with the low-resource assumption,
we assume access to an annotated dataset in the
high-resource language (usually English), Dsrc “
pxisrc, yisrcqNi“1. The task-specific fine-tuning loss
is formulated as:

Lpθ,Dsrcq “
ÿ

pxsrc,ysrcqPDsrc

LpP py|xsrc; θq, ysrcq

However, previous studies have highlighted the
limited performance of fine-tuned models on lan-
guages that were unseen during pre-training or are
under-represented in the pre-training data (Adelani
et al., 2021; Ebrahimi et al., 2022). As an additional
approach to adapt to low-resource languages (Wang
et al., 2020), we describe the translation-and-fusion
framework, which leverages annotations on (trans-
lated) high-resource language text to steer predic-
tions on a low-resource language at inference time.
The framework encompasses three key steps:

• Translate: Use an MT system to translate
low-resource language test data into a high-
resource language, MTpxtgtq ÞÑ xtrans

src .

• Annotate: Make predictions on the (high-
resource) translated text using a strong
high-resource tuned model P p; θsrcq:
argmaxytP py|xtrans

src ; θsrcqu ÞÑ ỹtrans
src .

• Fuse: Given predicted annotations from the
previous step (ỹtrans

src ), a fusion model combines
the high-resource predictions together with
the target language text to make final predic-
tions.

Based on the framework outlined above, we present
TransFusion, a fusion model that is trained to make

predictions on the test data conditioned on annota-
tions from the corresponding translated data (ỹtrans

src ):

argmaxytP py|xtgt, xtrans
src , ỹ

trans
src ; θfusionqu ÞÑ y1

tgt

Below, we describe the training procedure of Trans-
Fusion, starting with the approach to create data
for fine-tuning the TransFusion model.

TransFusion Fine-Tuning. To learn a TransFu-
sion model, parallel sentences with IE task anno-
tations on both high-resource and low-resource
languages are essential. To fulfill this require-
ment, we translate high-resource annotated train-
ing data into a list of target languages, while
projecting span-level annotations, using a simple
mark-then-translate approach - EasyProject (Chen
et al., 2023b): MTpxsrc, ysrcq Ñ pxtrans

tgt , y
trans
tgt q. We

then pair the translation outputs with the original
high-resource language data to create a training
data set with a mixture of both parallel sentences:
Dmix “ txsrc, ysrc, xtrans

tgt , y
trans
tgt uNi“1.

Learning. We train the fusion model P p; θfusionq
on Dmix using cross-entropy loss:

Lfusionpθ,Dmixq “
ÿ

pxsrc,ysrc,x
trans
tgt ,

ytrans
tgt qPDmix

L
´
P

´
y

ˇ̌
ˇxtrans

tgt , xsrc, ysrc; θfusion

¯
, ytrans

tgt

¯

The model architecture can vary, encompass-
ing both decoder-only language models (e.g.,
LLaMA (Touvron et al., 2023)) and encoder-only
language models (e.g., mBERT (Devlin et al.,
2019)). In this work, we primarily utilize decoder-
only language models to integrate the annotate and
fuse steps in an autoregressive manner during infer-
ence. Additionally, we assess the performance of
encoder-only models in Section 5.3 to demonstrate
the robustness of our framework across different
architectures.

Training a Decoder-only LM (GoLLIE-TF).
To implement our TransFusion framework within
the instruction-following GoLLIE model, we repre-
sent the framework as natural language instructions,
providing the model with supplementary English
translation text of the original target language sen-
tence, which is illustrated in Figure 1 (left). The
TransFusion instruction specifies the output format,
guiding the model to first generate annotations for
the English translation and subsequently for the

7746



target language data, using the English annotations
as context (an example can be found in Appendix
Figure 6 ). This autoregressive approach enables
the model to perform the annotate and fuse steps
concurrently during inference. During training, we
fine-tune the GoLLIE model to adhere to these
instructions, ensuring it generates annotations for
both the English and target language data sequen-
tially. We apply the next token prediction loss to
the tokens following the TransFusion instruction.
At inference time, x is the low-resource language
and xtrans is the English translation:

rGoLLIE Guidelines, x, xtrans, TF Instructions
LLMÝÝÝÝÑ rytrans, ys

Training and Inference with Encoder-only LMs.
Given that encoder-only models are not inherently
designed for text generation, we employ a two-step
pipeline approach for inference in TransFusion: an-
notation and fusion. First, we utilize an English
fine-tuned model to annotate the English transla-
tion of the target language text. These annotations
are marked using XML tags around the relevant
spans (e.g., <PER> ... </PER>). Next, we construct
the input for the fusion model by embedding these
annotations into the English translation. We con-
catenate the annotated English translation (xtrans)
with the original target language text (x), using a
marker (||) to separate the two segments. The input
to the encoder is formatted as follows:

rxtrans1 , xtrans2 , <PER>, xtrans3 , xtrans4 ,

</PER>, xtrans5 , ||, x1, x2, x3, ...s

At training time, we add a linear classification layer
to classify each token and only apply the cross-
entropy loss to the target language tokens (right of
the separation token ||).
To summarize, Translation-and-Fusion can be
adapted into three different configurations for
different usages including decoder-only (§ 5.1),
prompting (§ 5.2), and encoder-only (§ 5.3), with
the same appraoch.

4 Experimental Setting

We use a collection of English Information Ex-
traction (IE) datasets for supervised fine-tuning
and multilingual IE datasets for evaluation (see
Table 6). Assessing cross-lingual transfer capa-
bilities requires IE datasets annotated in a diverse

set of languages. To this end, we gather multilin-
gual Named Entity Recognition (NER) datasets
from MasakhaNER2.0 (Adelani et al., 2022) (20
African languages) and UNER (Mayhew et al.,
2023) (13 languages) to conduct low-resource lan-
guage evaluation on label schemas that are seen
during fine-tuning. In addition, we evaluate on
unseen label schemas using the non-English sub-
set of ACE2005 (Tjong Kim Sang and De Meul-
der, 2003) (Chinese and Arabic), which includes
several tasks: NER, RE, Event Extraction (EE),
and Event Argument Extraction (EAE). For eval-
uation on labels that were unseen during fine-
tuning, we use MultiNERD (Tedeschi and Nav-
igli, 2022) (10 high-resource languages), Multi-
CoNER2 (12 high-resource languages) (Fetahu
et al., 2023), in addition to Slot Intent Detection
data from MultiTO (Schuster et al., 2018), xSID
(10 high-resource languages) (van der Goot et al.,
2021), a subset of Massive (15 low-resource lan-
guages were determined based on the NLLB cate-
gorization (Costa-jussà et al., 2022)) (FitzGerald
et al., 2022) and Relation Extraction (RE) data from
RED-FM (7 high-resource languages) (Cabot et al.,
2023). We adopt the data pre-processing and task
formulation methodologies used by GoLLIE and
use publicly available English training data from
GoLLIE to train the model.

Multilingual Translation Data. The TransFusion
framework relies on a machine translation system
as a core component. In this paper, we utilize the
state-of-the-art open-source multilingual transla-
tion model - NLLB-200 (Costa-jussà et al., 2022),
which has 3.3 billion parameters and supports trans-
lation between 200 languages. The NLLB-200-
3.3B model translates target language test data
into English at test time. For TransFusion training
data, a marker-based translation approach named
EasyProject (Chen et al., 2023b), powered by the
NLLB-200 model, translates English training data
into a collection of 36 target language candidates.
From this translated data, 8 examples per language
and each task are randomly sampled, resulting in
around 20-40 examples per language. To sum-
marize, we started from the GoLLIE-7B check-
point and fine-tune the model on 20,000 examples.
19,109 samples are formatted for the English IE
task, while 891 samples follow our cross-lingual
instruction tuning (TransFusion) format. These
samples were filtered to be high quality and di-
versely distributed for each target language and
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task as shown in Figure 8 (Appendix). This small
portion of translation data (Shaham et al., 2024)
ensures that the GoLLIE model generalizes to un-
seen labels while maintaining English performance
to avoid the catastrophic forgetting issue during
continue fine-tuning (Luo et al., 2023).

4.1 Language Models and Baselines
Models: We adopt GoLLIE-7B as our primary
starting checkpoint. GoLLIE is an instruction fine-
tuned version of CodeLLaMA (Roziere et al., 2023)
that is trained on approximately 500,000 English
demonstrations. Although the model was not ex-
plicitly pre-trained on multilingual data, its pre-
training corpus includes a substantial amount of
high-resource language content, such as Wikipedia,
covering a diverse linguistic range (Touvron et al.,
2023). This makes GoLLIE-7B an appropriate
testbed for examining the adaptation of English-
centric LLMs to low-resource languages that may
be underrepresented in pre-training. In addition
to this decoder-only LLM, we explore encoder-
only models specifically pre-trained on African
languages, such as AfroXLM-R (Alabi et al., 2022)
in Section 5.3.

Training Setup: Initilized from GoLLIE-7B,
we continue fine-tuning the model on a dataset
of 20,000 TransFusion training examples using
QLoRA (Dettmers et al., 2024). QLoRA has been
shown to better maintain the base model’s perfor-
mance (Biderman et al., 2024) and offers faster
training times compared to full fine-tuning. To
implement this, we freeze the transformer model
weights and apply LoRA (Hu et al., 2021) to all
linear layers within all the transformer blocks. We
set the LoRA rank to 128 and the alpha parame-
ter to 16 based on preliminary experiments as we
found smaller alpha leads to more stable training
and higher rank for faster convergence. We use the
AdamW optimizer (Kingma and Ba, 2015) with a
batch size of 16 and a learning rate of 1e-4, man-
aged by a cosine scheduler. The training process
was conducted on a setup of 2 NVIDIA A40 GPUs,
each equipped with 48GB of memory. The entire
experiment session spanned approximately 6 hours.
We use greedy decoding at inference time.

Baselines: We compare to both the base GoLLIE
model, in addition to GPT-4, which represents a
state-of-the-art proprietary model pre-trained on
multilingual corpora (Achiam et al., 2023). We
report few-shot prompting results using GPT-4

(gpt4-02-14) with a GoLLIE style prompt. Addi-
tionally, we explore the application of the TransFu-
sion framework to GPT-4 in Section 5.2. Further-
more, we use Translate-train (Trans-train) (Hu
et al., 2020) as another baseline, which shows
strong improvements over English fine-tuned (En-
glish FT) models (Chen et al., 2023b). We use
the same translated training data used by Trans-
Fusion and fine-tune GoLLIE-7B on a total of
20,000 examples (19,109 English + 891 translated
data). So the only differences between Trans-Train
and GoLLIE-TF is the Trans-Train fine-tune on
the (xtrans, ytrans) translated pairs where GoLLIE-
TF is fine-tune on the four-way parallel data (x, y,
xtrans, ytrans) with TransFusion instruction.

5 Results

We present cross-lingual transfer results for IE
tasks in Table 1, evaluating both seen and unseen
label schemas across 36 languages. Our proposed
GoLLIE-TF model consistently outperforms the
original GoLLIE, achieving an average F1 score
improvement of +4.6 across 11 datasets. Notably,
GoLLIE-TF demonstrates significant performance
gains in low-resource language NER while main-
taining English performance on average. For in-
stance, on the MasakhaNER2 dataset, TransFusion
boosts F1 from 47.9 to 62.4, surpassing both GPT-
4 and the translate-train baseline. Furthermore,
GoLLIE-TF supports generalization to unseen la-
bel schemas. In particular, TransFusion signifi-
cantly improves performance on MultiCoNER2
(+12.2), xSID (+20.4), and on low-resource lan-
guage dataset Massive (+13.1) over GoLLIE, show-
casing its adaptability to unseen tasks. We re-
port results across three random seeds in Appendix
Table 8 and show GoLLIE-TF brings significant
improvements on MasakhaNER2 (61.9 ˘ 0.7 vs
47.9) and Massive (18.8 ˘ 1.2 vs 5.8). GPT-4
demonstrates strong performance on unseen label
schemas, however for most datasets, TransFusion
provides improvements over GoLLIE and translate-
train, which are based on the same 7B LLaMA base
model.

TransFusion performance on High vs. Low-
resource languages. Figure 2 reveals a notewor-
thy trend: GoLLIE-TF exhibits substantial perfor-
mance enhancements particularly in low-resource
language settings. This underscores the signifi-
cance of leveraging external Machine Translation
systems to enrich input data for such languages.
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Task Benchmark GPT-4 GoLLIE7B Trans-Train GoLLIE-TF

Seen Label Schema

NER MasakhaNER2 (20 languages)

Bambara 42.2 38.9 40.1 54.8 (+15.9)
Ghomala 58.2 43.7 49.2 50.2 (+6.5)
Ewe 72.2 74.0 73.1 73.2 (-0.8)
Fon 39.4 49.7 55.7 57.9 (+8.2)
Hausa 65.9 57.1 55.6 67.1 (+10.0)
Igbo 42.2 51.1 42.4 56.6 (+5.5)
Kinyarwanda 47.5 45.0 47.7 58.5 (+13.6)
Luganda 62.5 61.8 66.8 75.5 (+13.7)
Luo 47.2 36.5 42.8 51.7 (+15.3)
Mossi 43.2 45.1 46.1 48.8 (+3.7)
Chichewa 71.1 39.1 59.8 78.2 (+39.1)
Naija 78.9 75.9 74.9 81.1 (+5.2)
Shona 39.5 39.7 50.4 57.4 (+17.6)
Swahili 79.2 66.9 68.3 73.5 (+6.5)
Tswana 56.3 52.1 58.9 71.0 (+18.9)
Twi 44.2 41.7 50.6 74.2 (+32.5)
Wolof 52.6 49.1 55.5 61.9 (+12.8)
Xhosa 49.8 29.2 47.6 49.9 (+20.7)
Yoruba 54.7 35.7 39.3 54.4 (+18.7)
Zulu 36.9 25.6 31.7 52.8 (+27.2)

Average 54.2 47.9 52.8 62.4 (+14.5)

NER UNER (13 languages) 69.0 73.6 73.6 77.8 (+4.2)
NER ACE05 (English, Arabic, Chinese) 41.6 58.7 61.2 61.5 (+2.8)
Arg. Extraction ACE05 (English, Arabic, Chinese) 11.7 92.7 92.9 86.0 (-6.7)
Event Detection ACE05 (English, Arabic, Chinese) 21.3 42.6 40.0 44.0 (+1.4)
Rel. Extraction ACE05 (English, Arabic, Chinese) 4.6 37.3 39.4 39.1 (+1.8)

Unseen Label Schema

NER MultiNERD (10 languages) 71.9 62.2 63.9 63.0 (+0.8)
NER MultiCoNER2 (12 languages) 46.1 22.2 28.4 34.5 (+12.2)
Slot Detection xSID (10 languages) 47.0 6.0 27.1 26.4 (+20.4)
Slot Detection MultiTO (English, Spanish, Thai) 19.9 17.7 20.3 18.1 (+0.4)
Slot Detection Massive (15 low-resource languages) 33.3 5.8 12.1 19.0 (+13.1)
Rel. Extraction REDFM (7 languages) 19.1 15.5 16.8 16.2 (+0.7)

Average

Seen 33.7 58.8 60.0 61.8 (+3.0)
Unseen 39.5 21.6 28.1 29.5 (+8.0)
English-only 55.2 58.6 60.3 59.3 (+0.7)
All 36.6 40.2 44.1 45.7 (+5.5)

Table 1: Cross-lingual transfer performance (F1 score). The table compiles all the seen label schema and unseen
label schema evaluation results. Blue numbers highlight the performance improvements over GoLLIE-7B (∆). Full
results for each language can be found in Appendix.

We followed the categorization of high and low-
resource languages from Costa-jussà et al. (2022),
which categorizes a language as low-resource if
there are fewer than 1M publicly available dedu-
plicated bitext samples. While the performance
disparity between GoLLIE-TF and other models
remains modest in high-resource language scenar-
ios, a notable performance gap emerges in the low-
resource language domain. Furthermore, results
on the unseen-label low-resource language dataset,
Massive, also show that GoLLIE-TF significantly
outperforms Trans-Train, as shown in Table 1.

Model MasakhaNER2 MASSIVE

GoLLIE-TF 62.4 19.0
- w/o annotate 55.7 13.3
- no translation 41.2 10.7

Table 2: Ablation study.

5.1 Ablation Study

Analyzing Performance Improvements Table 2
shows a critical insight into the performance gains
observed in the TransFusion framework, particu-
larly in the annotate step on the English translation,
which plays a crucial role in enhancing the perfor-
mance of MasakhaNER2. We conduct an ablation
study wherein we trained a variant of GoLLIE-TF,
termed GoLLIE-TF (w/o annotate), directly gen-
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Figure 2: TransFusion leads to larger NER F1 improvements for low resource languages in MasakhaNER2 (right)
compared to high resource languages in UNER (left).

erating predictions on target language text from
the unlabelled English text. We observe a notable
performance drop from 62.4 to 55.7 F1 score. This
observation underscores the significance of Trans-
Fusion’s ability to leverage English annotations
during test time, resulting in more precise predic-
tions. Furthermore, we take the GoLLIE-TF model
to directly make inference on target language with-
out translation (no translation), the performance
further drops to 41.2 and 10.7 on MasakhaNER2
and MASSIVE, showing the importance of using
translation data at the test time.

Effectiveness at different training data sizes.
In Table 3, we explored the impact of varying the
amount of translated data (ranging from 1000 to
40000) combined with 19000 English data for train-
ing. The results demonstrate that across all scales,
GoLLIE-TF consistently outperforms the trans-
train baseline on the MasakhaNER task, with per-
formance improving from 62.4 to 66.3 as the trans-
lation data size increases from 1000 to 40000, com-
pared to trans-train’s performance increase from
52.8 to 56.4. These results highlight the effective-
ness of GoLLIE-TF in leveraging both English and
translated data for improved NER performance.

Translation Data Size Trans-train GoLLIE-TF

1,000 52.8 62.4
5,000 52.6 61.2
10,000 54.9 62.7
40,000 56.4 66.3

Table 3: NER performance on MasakhaNER with vary-
ing translation data sizes.

Robustness to translation quality. TransFusion
offers a distinct advantage by leveraging an external

25.2 28.2 29.1
Translation Quality (spBLEU)

59

60

61

62

63

64
F1

NLLB-600m

60.1 NLLB-1.3B

61.4
NLLB-3.3B

62.4

Impact of translation quality at inference
GoLLIE-TF

Figure 3: TransFusion robustness to different translation
systems.
multilingual MT system to augment its dataset with
English translations. However, the efficacy of this
approach hinges on the translation quality provided
by the external MT system.

In Figure 3, we explore this aspect by evaluat-
ing GoLLIE-TF’s performance with three differ-
ent MT systems (NLLB-200-600m, 1.3b, 3.3b)
and use Flores-200 translation benchmark (X to
English) (Costa-jussà et al., 2022) to measure
translation quality (spBLUE) of languages cov-
ered by MasakhaNER2. Our experiments reveal
that GoLLIE-TF exhibits robustness across various
MT systems, as we observe that the F1 score on
MasakhaNER2 does not exhibit a significant drop,
however performance does improve with a stronger
translation system.

5.2 Enhancing GPT-4 with TransFusion

Despite GPT-4’s pre-training on multilingual cor-
pora, a notable performance gap persists between
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43.6

NER F1 Score (Ordered by GPT-4 performance)
GPT-4
GPT-4+TransFusion

Figure 4: GPT-4 + TransFusion framework improves
NER on low-resource language from MasakhaNER2
and UNER subsets. On average, GPT-4 + TransFusion
improves average F1 from 53.4 to 62.

Model Avg (CLaP) Avg (all)

Translate-train
EasyProject (Chen et al., 2023b) 67.2 64.9
CLaP (Parekh et al., 2023) 58.8 -

Translate-test
Awesome-align 67.0 65.8
CoDec (Le et al., 2024) 73.9 70.4

TransFusion (ours) 74.2 72.0

Table 4: F1 of encoder-only multilingual LM on
MasakhaNER2, average of 3 seeds. Avg (CLaP) shows
the average of F1 over nine languages reported in CLaP.

its English NER capabilities on CoNLL03 (80 F1)
and its performance on low-resource languages
(54.2 F1). In Figure 4 (Appendix), we employ
the TransFusion instruction, asking GPT-4 for pre-
dictions on the English translation and to then use
these labels to predict on the target language sen-
tence. We show TransFusion prompting yields a
substantial enhancement in GPT-4’s NER perfor-
mance across MasakhaNER2 and three additional
low-resource languages from the UNER dataset
(Cebuano, Tagalog-Philippines, and Uganda), im-
proving the average F1 from 53.4 to 62. This shows
the GPT-4 can follow TransFusion prompting to
leverage its English predictions to make accurate
predictions on low-resource languages.

5.3 TransFusion with Encoder-only Models

We have demonstrated that TransFusion can be ap-
plied to GPT-4 to improve low-resource language
NER performance and also with the decoder-only
LLM GoLLIE, which has the benefit of generaliz-
ing to unseen label schemas. In this section, we ex-
periment with encoder-only multilingual LMs (De-
vlin, 2018) as the encoder architecture is one of the
standard approaches for NER used in practice.

As encoder-only models generally assume the
same label schema between fine-tuning and eval-
uation, we focus on the seen label schema exper-

iment setting, where we use CoNLL03 English
as training data and test on the full test set of
MasakhaNER2. We use AfroXLM-R (Alabi et al.,
2022), an African language pre-trained language
model as MasakhaNER is an African language
dataset. For each language, we fine-tuned the
model on a combination (50/50%) of English and
translation (Trans-train) or TransFusion data for 5
epochs with a learning rate of 2e-5. The specific
implementation is detailed in Section 3.1.

In Table 4, we show the effectiveness of the Trans-
Fusion framework which boosts the F1 from 58.8
to 72.1 F1 on MasakhaNER2 with AfroXLM-R. In
addition, it outperforms the Trans-train baseline sig-
nificantly with a +6.3 F1 improvement and achieves
state-of-the-art performance on MasakhaNER2,
surpassing the previous state-of-the-art Codec (Le
et al., 2024). Codec uses constrained decoding
within a translation model to generate precise label
projections from English to the target language for
Translate-test. In contrast, TransFusion introduces
a model that learns to fuse annotations, showing
robustness to errors in English annotation predic-
tions. Overall, this shows the generalization of the
TransFusion to the encoder-only multilingual LM.

5.4 Error Analysis

To understand the reasons why GoLLIE-TF makes
mistakes, we conducted a manual error analysis on
the MasakhaNER2 (Akan) subset and annotated 31
errors from the model. In Figure 5, we show exam-
ples of two common error types made by GoLLIE-
TF: (1) English prediction errors, where the predic-
tions on English translation are incorrect, and (2)
Fusion errors, where the error arises from the fu-
sion stage. We identified 22 out of 31 cases where
the model made errors in predicting NER for the
English translation text, and thus these errors prop-
agated to the final predictions. On the other hand,
we found 12 out of 31 cases where the model made
incorrect fusion processes, leading to hallucina-
tions in the final predictions or predictions in the
English text.

6 Related Work

Multilingual language models. Multilingual lan-
guage models (Devlin, 2018; Conneau and Lample,
2019; Conneau et al., 2020; Xue et al., 2021; Scao
et al., 2022; Asai et al., 2023), have facilitated cross-
lingual transfer by leveraging pre-training on large-
scale multilingual corpora. Recent models such
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Error Type Target Text English Translation Gold English 
Prediction

Final 
Prediction

English 
Prediction 
Error

Mehyɛ mo nyinaa bɔ sɛ yei yɛ 
nneɛma akɛsea mfitiaseɛ ma 
Ghana Mmaranim Sukuu no . 
Aban bɔhyɛ sɛ ɔbɛgya biribi 
ama nkyirmma wɔ'

I promise you all that this 
is a great beginning for 
the Ghana School of Law

LOC: Ghana ORG: Ghana 
School of Law

ORG: Ghana 
Mmaranim Sukuu no

English 
Prediction 

Error


ka kyerɛɛ asɛnnibea sɛ 
Yeboah de nkuu bi ɛhyehye 
faa abɔfra no ayaase de ne 
nsa wowɔɔ nase ansa ɔreto 
no mmonaa

Ntee said to the court 
that Yeboah took a 
burning torch to the 
child's throat and rubbed 
his nose with his hand 
before kissing him

PER: Yeboah PER: Ntee

PER: Yeboah

PER: Ntee

PER: Yeboah

English 
Prediction

+ Fusion Error

Mɛka akyerɛ Ghana manfoɔ 
nyinaa ara sɛ yɛretu anamɔn a 
ɛho hia biara sɛ yɛbɛhwɛ ama 
nnipakan dwumadie yi bɛdi 
COVID - 19 banbɔ nhyehyɛeɛ 
so . Nneɛma bɛn na yɛreyɛ ? 
Yadikan ne Ghana Apɔmuden 
Asoeɛ anya nkitahodie na wɔn 
ne Dr . Annthony Nsiah Asare 
a ɔyɛ'

 I would like to inform all 
Ghanaians that we are 
taking all necessary 
steps to ensure that this 
census is conducted in 
accordance with the 
COVID - 19 safety 
protocols. What steps 
are we taking? Yadikan 
has been in contact with 
…

LOC: Ghana

PER: Anthony 
Nsiah Asare

ORG: 
Apɔmuden 
Asoeɛ

ORG: Yadikan

PER: Annthony 
Nsiah Asare

ORG: Ministry of 
Health

ORG: Yadikan

PER: Annthony Nsiah 
Asare

ORG: Ministry of 
Health

Fusion Error
Sɛ́ Asamoah da so ara wɔ 
ɔsram biako bio a ɛsɛ sɛ ɔkɔ 
ansa na wawie sukuu

Asamoah still has one 
more month to go before 
he graduates

PER: 
Asamoah PER: Asamoah PER: Sɛ́ Asamoah da 

so ara wɔ ɔsram…

Prediction 
in English

Error Propagation

Error Propagation

Hallucination

Figure 5: Error analysis of GoLLIE-TF’s 31 incorrect predictions on MasakhaNER2 (Akan). Two common errors
are categorized as English prediction error (22/31) and fusion error (12/31).

as Gemini (Gemini et al., 2023) show emergent
capabilities such as ultra low-resource language
translation with a book and wordlist in context.
However, their performance tends to be subpar on
languages that were not seen during pre-training
or are underrepresented in the training data (Ade-
lani et al., 2021; Ebrahimi et al., 2022). To ad-
dress this limitation, several approaches have been
explored, including bilingual models (Lan et al.,
2020; Wang et al., 2020), language-specific exten-
sions (Ogueji et al., 2021; Alabi et al., 2022; Yoon
et al., 2024), continued training (Wang et al., 2020;
Pfeiffer et al., 2020; Wang et al., 2022; Imani et al.,
2023), and few-shot learning (Lin et al., 2022). Re-
cently, multilingual instruction-tuning (Chen et al.,
2023a) datasets such as Aya (Singh et al., 2024;
Üstün et al., 2024) focusing on text generation and
IEPile (Gui et al., 2024) (English and Chinese)
have been proposed to facilitate this direction of
research.

Translation for cross-lingual transfer. To en-
hance LLM on multilingual NLP tasks such as
QA (Agrawal et al., 2023), translating train or test
data (Artetxe et al., 2023) into English has proven
as an effective approach (Paolini et al., 2021; Hu
et al., 2020; Xue et al., 2021; Ebing and Glavaš,
2024; Ansell et al., 2023; Ponti et al., 2021). Re-
cent studies on prompting LLMs with translation
demonstrate improvements on multilingual math
reasoning (Shi et al., 2022), text generation (Huang

et al., 2023; Intrator et al., 2024; Liu et al., 2024)
and sentence classification (Etxaniz et al., 2023). In
contrast, our work focuses on challenging IE tasks
that require extracting span annotations on the tar-
get language directly, instead of generating text.
It is even more challenging to construct translated
data for translate-train as span annotations are miss-
ing after translation. To solve this, word alignment
models (Och and Ney, 2003; Dyer et al., 2013;
Lan et al., 2021; Dou and Neubig, 2021; Parekh
et al., 2023; Le et al., 2024) and a simple mark-
then-translate approach (Lee et al., 2018; Lewis
et al., 2020; Hu et al., 2020; Bornea et al., 2021;
Chen et al., 2023b) have been utilized to project
labels across different languages. In contrast, we
train a model to fuse annotations from English and
directly make predictions on target language.

7 Conclusion

We introduce TransFusion, a framework that
bridges the performance gap between high and
low-resource languages in information extraction
by leveraging machine translation. We demon-
strate that TransFusion improves the cross-lingual
transfer capabilities of instruction-tuned LLMs,
surpassing both proprietary models and encoder-
only architectures on low-resource languages NER.
This work demonstrates the potential of translation-
based techniques to unlock the power of LLMs for
a wider range of low-resource languages.
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8 Limitations

The NER experiments conducted on GPT-4 have
yielded promising results for low-resource lan-
guages. However, concerns remain regarding po-
tential data contamination resulting from the possi-
bility that GPT-4 was pre-trained or fine-tuned on
the test data.1 The Translation-and-fusion frame-
work, while effective in enhancing cross-lingual
transfer, does introduce additional inference costs
during test time inference. These additional steps
include translation using an external MT system
and annotation processes, which can contribute to
an increased number of token generations. This is
similar to chain-of-thought prompting or retrieval
augmented generation, which uses additional com-
putational cost at inference for better quality gen-
eration. Thus, practitioners should consider the
trade-off between performance and efficiency when
deciding to adopt the Translation-and-fusion ap-
proach. We show an estimate of inference time
costs in Table 7.

Potential broader impacts of TransFusion include
facilitating research for global communities with
diverse languages.
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Dataset Language Code

MasakhaNER2.0 (Adelani et al., 2022) Bambara (bam), Ghomala (bbj), Ewe (ewe), Fon (fon), Hausa (hau),
afl-3.0 License Igbo (ibo), Kinyarwanda (kin), Luganda (lug), Luo (luo), Mossi (mos),
masakhane/masakhaner2 Nyanja (nya), Naija (pcm), Shona (sna), Swahili (swh), Tswana (tsn)

Twi (twi), Wolof (wol), Xhosa (xho), Yoruba (yor), Zulu (zul)

UNER (Mayhew et al., 2023) Cebuano (ceb_gja), Danish (da_ddt), German (de_pud),
universalner.org/ English (en_ewt), English (en_pud), Croatian (hr_set),
(Unknown License) Portuguese (pt_bosque), Portuguese (pt_pud), Russian (ru_pud),

Slovak (sk_snk), Serbian (sr_set),
Swedish (sv_pud), Swedish (sv_talbanken),
Tagalog (tl_trg), Tagalog (tl_ugnayan), Chinese (zh_gsd),
Chinese (zh_gsdsimp), Chinese (zh_pud)

ACE05 (Walker et al., 2006) English (en), Arabic (ar), Chinese (zh)
LDC license: LDC2006T06

MultiNERD (Tedeschi and Navigli, 2022) German (de), Spanish (es), French (fr), Italian (it), Dutch (nl),
CC BY-NC-SA 4.0 Polish (pl), Portuguese (pt), Russian (ru), Chinese (zh)
Babelscape/multinerd

MultiCoNER2 (Fetahu et al., 2023) Bengali (bn), German (de), Spanish (es), Persian (fa), French (fr),
CC BY 4.0 Hindi (hi), Italian (it), Portuguese (pt), Swedish (sv),
MultiCoNER/multiconer_v2 Ukrainian (uk), Chinese (zh), English (en)

xSID (van der Goot et al., 2021) Arabic (ar), Danish (da), German (de), English (en), Indonesian (id),
CC BY-SA 4.0 Italian (it), Japanese (ja), Kazakh (kk), Dutch (nl), Serbian (sr),

Turkish (tr), Chinese (zh)

MultiTO (Schuster et al., 2018) English (en), Spanish (es), Thai (th)
CC-BY-SA

RED-FM (Cabot et al., 2023) Arabic (ar), German (de), English (en), Spanish (es), French (fr),
CC BY-SA 4.0 Italian (it), Chinese (zh)
Babelscape/REDFM

MASSIVE (FitzGerald et al., 2022) Afrikaans (af-za), Amharic (am-et), Azeri (az-za), Bengali (bn-bd),
CC BY 4.0 Armenian (hy-am), Georgian (ka-ge),Khmer (km-kh), Mongolian (mn-mn),
AmazonScience/massive Burmese (my-mm), Kannada (kn-in), Malayalam (ml-in),

Tamil (ta-in), Telugu (te-in), Tagalog (tl-ph), Welsh (cy-gb)

Table 5: Evaluation datasets used and the language code for each dataset.

Training Dataset Domain Tasks Language

CoNLL 03(Tjong Kim Sang and De Meulder, 2003) News NER English
BC5CDR (Li et al., 2016) Biomedical NER English
NCBIDisease (Dogan et al., 2014) Biomedical NER English
OntoNotes 5 (Pradhan et al., 2013) News NER English
WNUT 2017 (Derczynski et al., 2017) News NER English
RAMS (Ebner et al., 2020) News Arg. Extraction English
TACRED (Zhang et al., 2017) News Slot Filling English
CoNLL 04 (Roth and Yih, 2004) News Relation Extraction English
ACE (Walker et al., 2006) News EE, EAE, NER, RE English

Evaluation Dataset Domain Tasks Seen # Language
Label?

MasakhaNER2.0 (Adelani et al., 2022) News NER ✓ 20 African langs
UNER (Mayhew et al., 2023) News NER ✓ 13 langs
ACE (Walker et al., 2006) News EE, EAE, NER, RE ✓ 3 (en, ar, zh)

MultiNERD (Tedeschi and Navigli, 2022) Wikipedia NER 10 langs
MultiCoNER2 (Fetahu et al., 2023) Wikipedia NER 12 langs
xSID (van der Goot et al., 2021) Dialog Slot Detection 10 langs
MultiTO (Schuster et al., 2018) Dialog Slot Detection 3 (en, es, th)
Massive (FitzGerald et al., 2022) Dialog Slot Detection 15 low-res langs
RED-FM (Cabot et al., 2023) Wikipedia Relation Extraction 7 langs

Table 6: Datasets used in the experiment. The table shows the task, domain, whether it was used in the training and
evaluation including the number of languages in the evaluation set.
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# This is the text to analyze 
text = “Yan, tiɲɛni bɛ suman ni fili hakɛ ye, o 
min ɲɛfɔlen don ko...”

# The annotation instances that take place in the 
text above are listed here 

result = [ 
Metric(span=“tiɲɛni”), 
Metric(span=“fili hakɛ”), 

]

# This is the text to analyze 
text = “Yan, tiɲɛni bɛ suman ni fili hakɛ ye, o 
min ɲɛfɔlen don ko…” 

# This is the English translation of the text 
eng_text = “Here, accuracy is measured by 
error rate, which is defined as…” 

# Using translation and fusion 
# (1) generate annotation for eng_text 
# (2) generate annotation for text

# The annotation instances that take place in 
the eng_text above are listed here 
result = [ 

Metric(span=“accuracy”), 
Metric(span=“error rate”), 

] 

# The annotation instances that take place in 
the text above are listed here 
final_result = [ 

Metric(span=“tiɲɛni”), 
Metric(span=“fili hakɛ”), 

]

Input text

Output annotations

Annotations are

Represented as instances

Input text

Output annotations

(b) TransFusion Prompt(a) GoLLIE Prompt

# The following lines describe the task definition 

@dataclass 
Class Metric(Entity): 

“””Refers to evaluation metrics used to assess the 
performance of AI models and algorithms. Annotate 
specific metrics like F1-score.””” 

span: str # Such as: “mean squared error”, “DCG”, 
…

Schema definition

Guidelines are introduced 
as docstrings

Representative 
candidates are 
introduced as comments

Labels are defined as 
python classes

Figure 6: Example of input and output representation. (left) An example of a named entity recognition prompt
and output annotations. (right) The same example but with translation text appended in the input prompt with
instructions to guide the model to generate annotations on English translation text first, followed by annotations on
the target language.

# This is the text to analyze 
text = "削 除 さ れる まで 毎 ⽇ アラーム を 午 後 7 時 3 0 
分 に スケジュール" 

# This is the English translation of the text 
eng_text = "Schedule an alarm every day at 7:30 p.m. 
until it is cut off" 

# Using translation and fusion 
# (1) generate annotation for eng_text 
# (2) generate annotation for text 

# The annotation instances that take place in the 
eng_text above are listed here 
result = [ 
    RecurringDatetime(span="every day"), 
    RecurringDatetime(span="7:30 p.m."), 
] 

# The annotation instances that take place in the text 
above are listed here 
final_result = [ 
    RecurringDatetime(span="毎 ⽇"), 
    RecurringDatetime(span="午 後 7 時 3 0 分"), 
] 

xSID Japanese
# This is the text to analyze 
text = "Для переработки в пищевые продукты , такие как сахар , 
крахмал , растительное масло , используются сахарная свёкла и 
сахарный тростник , кукуруза , соя , рапс ." 

# This is the English translation of the text 
eng_text = "For processing into food products such as sugar, starch, 
vegetable oil, sugar beet and sugar cane, corn, soybean, rapeseed are 
used." 

# Using translation and fusion 
# (1) generate annotation for eng_text 
# (2) generate annotation for text 

# The annotation instances that take place in the eng_text above are listed 
here 
result = [ 
    Plant(span="sugar"), 
    Plant(span="sugar beet"), 
    Plant(span="sugar cane"), 
    Plant(span="corn"), 
    Plant(span="soybean"), 
    Plant(span="rapeseed"), 
] 

# The annotation instances that take place in the text above are listed here 
final_result = [ 
    Plant(span="сахар"), 
    Plant(span="сахарная свёкла"), 
    Plant(span="сахарный тростник"), 
    Plant(span="кукуруза"), 
    Plant(span="соя"), 
    Plant(span="рапс"), 
]

MultiNERD Russian

Figure 7: Examples of GoLLIE-TF model generation out (colored in gray).
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Figure 8: TransFusion training dataset mixture for a total of 20,000.

7760



Dataset Language Model F1 Score Inference Time MT Time Total Time

MasakhaNER Bambara GoLLIE 38.9 0.58 0 0.58
MasakhaNER Bambara GoLLIE-TF 54.8 1.11 0.285 1.395
Massive Bengali GoLLIE 5.7 0.555 0 0.555
Massive Bengali GoLLIE-TF 18.1 0.705 0.08 0.785

Table 7: Inference time (seconds/sentence) cost comparison of GoLLIE and GoLLIE-TF models on a single NVIDIA
A40 GPU.

Dataset Seed 0 Seed 1 Seed 2 Mean Std dev

masakhaner.bam.ner 54.8 53.7 56.1 54.9 1.2
masakhaner.bbj.ner 50.2 46.2 50.9 49.1 2.6
masakhaner.ewe.ner 73.2 72.7 73.1 73.0 0.3
masakhaner.fon.ner 57.9 54.3 55.7 56.0 1.8
masakhaner.hau.ner 67.1 65.6 66.2 66.3 0.8
masakhaner.ibo.ner 56.6 54.2 55.7 55.5 1.3
masakhaner.kin.ner 58.5 59.5 59.6 59.2 0.6
masakhaner.lug.ner 75.5 74.5 75.1 75.0 0.5
masakhaner.luo.ner 51.7 51.6 51.5 51.6 0.1
masakhaner.mos.ner 48.8 43.8 44.4 45.7 2.7
masakhaner.nya.ner 78.2 78.7 78.9 78.6 0.3
masakhaner.pcm.ner 81.1 80.8 80.6 80.8 0.2
masakhaner.sna.ner 57.4 59.2 56.7 57.7 1.3
masakhaner.swh.ner 73.5 72.6 72.9 73.0 0.5
masakhaner.tsn.ner 71.0 70.3 71.1 70.8 0.5
masakhaner.twi.ner 74.2 68.6 76.6 73.1 4.1
masakhaner.wol.ner 61.9 55.6 60.2 59.2 3.2
masakhaner.xho.ner 49.9 54.4 51.3 51.9 2.3
masakhaner.yor.ner 54.4 52.4 53.4 53.4 1.0
masakhaner.zul.ner 52.8 53.3 51.4 52.5 1.0
Average 62.4 61.1 62.1 61.9 0.7

massive.en-us.ner 53.6 51.6 51.6 52.3 1.1
massive.af-za.ner 24.2 21.2 24.2 23.2 1.7
massive.am-et.ner 6.5 5.4 7.2 6.4 0.9
massive.az-az.ner 1.2 1.3 1.3 1.2 0.1
massive.bn-bd.ner 18.1 18.8 19.4 18.8 0.6
massive.hy-am.ner 19.4 16.2 21.1 18.9 2.5
massive.ka-ge.ner 18.4 16.0 19.6 18.0 1.9
massive.km-kh.ner 20.4 21.1 23.2 21.5 1.5
massive.mn-mn.ner 5.8 5.4 5.2 5.5 0.3
massive.my-mm.ner 31.7 32.4 33.2 32.4 0.8
massive.kn-in.ner 17.2 14.2 20.7 17.3 3.2
massive.ml-in.ner 11.0 10.6 10.3 10.7 0.4
massive.ta-in.ner 17.0 11.6 17.3 15.3 3.2
massive.te-in.ner 18.8 17.6 23.5 20.0 3.1
massive.tl-ph.ner 32.0 32.0 34.7 32.9 1.5
massive.cy-gb.ner 8.3 5.8 7.0 7.0 1.2
Average 19.0 17.6 20.0 18.8 1.2

Table 8: We report GoLLIE-TF on MasakhaNER2 and Massive for 3 different seeds.
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GPT-4 GoLLIE Trans-train GoLLIE-TF (ours)

uner.ceb_gja.ner 44.4 49.6 52.9 87.5
uner.da_ddt.ner 77.2 76.7 79.4 84.8
uner.de_pud.ner 80.3 80.1 82.3 83.8
uner.en_ewt.ner 59.9 84.7 67.6 66.4
uner.en_pud.ner 75.4 82.4 85.5 84.9
uner.hr_set.ner 82.1 83.0 87.7 89.6
uner.pt_bosque.ner 82.7 84.5 84.2 81.3
uner.pt_pud.ner 80.5 87.2 89.6 90.3
uner.ru_pud.ner 69.8 68.3 71.6 73.3
uner.sk_snk.ner 70.9 71.2 81.4 85.5
uner.sr_set.ner 85.9 86.2 88.5 88.9
uner.sv_pud.ner 73.7 81.5 79.6 85.7
uner.sv_talbanken.ner 68.7 69.4 64.6 75.7
uner.tl_trg.ner 55.7 58.8 60.3 54.2
uner.tl_ugnayan.ner 44.8 61.0 57.1 74.2
uner.zh_gsd.ner 60.6 62.5 58.8 67.6
uner.zh_gsdsimp.ner 57.9 62.4 61.4 68.8
uner.zh_pud.ner 72.0 74.8 72.6 77.7
average 69.0 73.6 73.6 78.9

ace.en.eae 24.5 97.3 97.9 98.3
multiace.ar.eae 1.6 84.3 83.8 81.8
multiace.zh.eae 9.6 96.6 97.1 77.9
average 11.7 92.7 92.9 86.0

ace.en.ee 27.8 67.5 64.0 60.4
multiace.ar.ee 24.4 16.1 12.8 25.0
multiace.zh.ee 11.6 44.2 43.3 46.7
average 21.3 42.6 40.0 44.0

ace.en.ner 58.0 78.3 87.3 86.5
multiace.ar.ner 32.3 29.5 30.3 37.5
multiace.zh.ner 34.6 68.2 66.0 60.6
average 41.6 58.7 61.2 61.5

ace.en.re 5.40 58.2 59.8 58.1
multiace.ar.re 3.2 14.1 13.5 15.8
multiace.zh.re 5.1 39.5 44.8 43.3
average 4.6 37.3 39.4 39.1

multinerd.de.ner 75.8 69.3 73.2 74.4
multinerd.es.ner 69.4 72.0 68.1 69.5
multinerd.fr.ner 71.8 71.9 74.4 72.5
multinerd.it.ner 76.2 69.8 74.2 70.5
multinerd.nl.ner 76.9 67.8 73.0 72.5
multinerd.pl.ner 72.1 62.0 64.0 61.5
multinerd.pt.ner 67.7 67.7 66.3 64.9
multinerd.ru.ner 65.3 57.9 55.7 58.7
multinerd.zh.ner 7.8 7.1 13.9 8.8
multinerd.ner 71.5 76.2 75.6 76.2
average 71.9 62.2 63.9 63.0

Table 9: Full experimental results (1) for each dataset and language. Format: [task name].[language code].[task].
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GPT-4 GoLLIE Trans-train GoLLIE-TF (ours)

multiconer2.bn.ner 43.9 2.7 7.9 27.6
multiconer2.de.ner 54.4 27.3 30.8 33.1
multiconer2.es.ner 44.8 18.1 23.9 26.1
multiconer2.fa.ner 40.1 15.6 34.9 41.4
multiconer2.fr.ner 54.2 29.2 32.1 34.2
multiconer2.hi.ner 46.9 5.0 14.8 33.5
multiconer2.it.ner 51.1 41.4 46.0 46.5
multiconer2.pt.ner 49.7 23.6 31.5 34.7
multiconer2.sv.ner 52.5 14.8 16.1 19.6
multiconer2.uk.ner 55.9 41.1 47.7 51.7
multiconer2.zh.ner 5.1 14.0 20.9 28.3
multiconer2.en.ner 54.6 34.1 34.7 36.7
average 46.1 22.2 28.4 34.5

xsid.ar.ner 53.2 0.0 29.7 28.7
xsid.da.ner 48.1 2.7 15.5 16.0
xsid.de.ner 48.9 9.8 36.0 35.5
xsid.en.ner 63.1 28.8 38.4 37.5
xsid.id.ner 49.4 0.7 25.6 23.2
xsid.it.ner 52.1 3.4 30.2 32.8
xsid.ja.ner 28.1 10.1 32.8 26.5
xsid.kk.ner 34.9 0.0 0.0 2.5
xsid.nl.ner 48.9 4.9 33.8 31.4
xsid.sr.ner 48.7 0.0 19.4 16.8
xsid.tr.ner 40.8 0.8 20.9 22.2
xsid.zh.ner 47.3 10.7 43.5 43.7
average 47.0 6.0 27.1 26.4

multito.en.ner 51.1 35.3 39.0 40.3
multito.es.ner 1.4 2.5 3.0 2.3
multito.th.ner 7.3 15.4 18.9 11.8
average 19.9 17.7 20.3 18.1

redfm.ar.re 18.3 11.6 9.0 13.9
redfm.de.re 31.0 22.3 24.8 13.1
redfm.en.re 19.9 14.8 18.6 15.7
redfm.es.re 17.4 13.8 18.6 14.4
redfm.fr.re 17.1 15.2 19.2 17.6
redfm.it.re 17.2 20.0 17.1 29.1
redfm.zh.re 12.9 10.4 10.5 9.7
average 19.1 15.5 16.8 16.2

Table 10: Full experimental results (2) for each dataset and language. Format: [task name].[language code].[task].

GPT-4 GoLLIE Trans-train GoLLIE-TF (ours)

massive.en-us.ner 55.2 45.9 54.7 53.6
massive.af-za.ner 52.6 8.2 23.4 24.2
massive.am-et.ner 17.0 0.0 0.8 6.5
massive.az-az.ner 25.7 4.0 11.0 1.2
massive.bn-bd.ner 33.1 5.7 13.0 18.1
massive.hy-am.ner 33.6 1.2 11.9 19.4
massive.ka-ge.ner 32.1 10.4 12.2 18.4
massive.km-kh.ner 33.9 0.0 11.3 20.4
massive.mn-mn.ner 19.5 0.0 5.3 5.8
massive.my-mm.ner 27.9 4.8 15.2 31.7
massive.kn-in.ner 33.1 0.0 2.6 17.2
massive.ml-in.ner 25.1 0.0 4.5 11.0
massive.ta-in.ner 30.7 1.2 5.0 17.0
massive.te-in.ner 28.7 0.0 0.0 18.8
massive.tl-ph.ner 50.3 12.3 20.2 32.0
massive.cy-gb.ner 33.6 0.0 3.1 8.3
average 33.3 5.9 12.1 19.0
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Table 11: Comparison of GPT-4 and GPT-4+Transfusion.

Language GPT-4 GPT-4+Transfusion

MasakhaNER2

bam 42.2 60.2
bbj 58.2 52.9
ewe 72.2 72.4
fon 39.4 53.6
hau 65.9 71.6
ibo 42.2 37.9
kin 47.5 56.4
lug 62.5 68.2
luo 47.2 58.7
mos 43.2 44.8
nya 71.1 76.4
pcm 78.9 75.7
sna 39.5 51.0
swh 79.2 73.2
tsn 56.3 71.2
twi 44.2 65.3
wol 52.6 59.1
xho 49.8 62.7
yor 54.7 52.1
zul 36.9 43.6

MasakhaNER2 average 54.2 59.9

UNER

ceb_gja 44.4 83.5
tl_trg 55.7 67.7
tl_ugnayan 44.8 61.2

All average 53.4 62.0

Table 12: Full experimental results (3) for each dataset and language. Format: [task name].[language code].[task].
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