
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7711–7743
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

AXIS: Efficient Human-Agent-Computer Interaction with
API-First LLM-Based Agents

Junting Lu1*, Zhiyang Zhang2*, Fangkai Yang3†, Jue Zhang3, Lu Wang3,
Chao Du3, Qingwei Lin3, Saravan Rajmohan3, Dongmei Zhang3, Qi Zhang3

1Peking University, 2Nanjing University, 3Microsoft
aidan.lew.37@stu.pku.edu.cn

Abstract

Multimodal large language models (MLLMs)
have enabled LLM-based agents to directly in-
teract with application user interfaces (UIs), en-
hancing agents’ performance in complex tasks.
However, these agents often suffer from high la-
tency and low reliability due to the extensive se-
quential UI interactions. To address this issue,
we propose AXIS, a novel LLM-based agents
framework that prioritize actions through appli-
cation programming interfaces (APIs) over UI
actions. This framework also facilitates the cre-
ation and expansion of APIs through automated
exploration of applications. Our experiments
on Microsoft Word demonstrate that AXIS re-
duces task completion time by 65%-70% and
cognitive workload by 38%-53%, while main-
taining accuracy of 97%-98% compared to hu-
mans. Our work contributes to a new human-
agent-computer interaction (HACI) framework
and explores a fresh UI design principle for
application providers to turn applications into
agents in the era of LLMs, paving the way to-
wards an agent-centric operating system (Agent
OS). The code and dataset will be available at
https://aka.ms/haci_axis.

1 Introduction

As personal computers and mobile devices be-
come indispensable in daily life, application in-
dustries face pressure to rapidly evolve software
with new features to meet growing demands (Ru-
parelia, 2010; Abrahamsson et al., 2017). However,
to use a new application effectively, users must
first spend time familiarizing themselves with the
user interface (UI) and its functionalities, increas-
ing users’ cognitive burden (Van Merrienboer and
Sweller, 2005; Biswas et al., 2005; Plass et al.,
2010; Darejeh et al., 2022). Large language mod-
els (LLMs) (Ouyang et al., 2022; Achiam et al.,

*Equal Contribution. Work is done during the internship
at Microsoft.

†Corresponding author.

2023; Dubey et al., 2024) have demonstrated near-
human capabilities in reasoning, planning, and col-
laboration and are highly promising in completing
complex tasks (Huang and Chang, 2022; Wei et al.,
2022; Mandi et al., 2024). Since then, researchers
have been leveraging multimodal large language
models (MLLMs) (Yin et al., 2023; Durante et al.,
2024; Zhang et al., 2024b) to operate software ap-
plications with vision capability (Wu et al., 2023;
Zheng et al., 2024). Recent works (Zhang et al.,
2023a; Wang et al., 2024a; Zhang et al., 2024a;
Zheng et al., 2024) utilize MLLMs to design LLM-
based UI agents capable of serving as user dele-
gates, translating user requests expressed in natural
language, and directly interacting with the appli-
cation’s UIs to fulfill users’ needs without a deep
understanding of UIs and functionalities.

However, just like the transition from steam-
powered to electric-powered industry took much
more than replacing central steam engines with
electric motors in the factories, simply building
LLM-based UI agent cannot magically deliver a
satisfying and worry-free user experience. In par-
ticular, today’s application UIs are designed for
human-computer interaction (HCI) (Lewis, 1998;
Bradshaw et al., 2017), which often involves mul-
tiple UI interactions for completing a single task.
For instance, inserting a 2×2 table in an Microsoft
Word document requires a sequence of UI interac-
tions: “Insert → Table → 2×2 Table”. Although
the HCI-based design suits the habits of humans,
training LLM-based UI agents to emulate such in-
teractions would pose quite a few challenges that
are difficult to overcome.

The first challenge for the LLM-based UI agent
is high latency and long response time. Each indi-
vidual UI interaction step requires one LLM call to
reason which UI to interact with. A task involves
multiple UI interaction steps can thus incur con-
siderable time and monetary costs. The LLM call
latency is also positively correlated with the num-

7711

Figure 1: An illustration comparing task completion methods: manual operation, UI Agent, and our approach AXIS.
Manual operation risks wrong trails if users are unfamiliar with the UI. The UI Agent requires numerous sequential
interactions. Our AXIS efficiently completes the task with a single API call.

ber of processed tokens (Levy et al., 2024; Wang
et al., 2024d; Egiazarian et al., 2024). To ensure the
LLM returns high-quality outputs, the LLM-based
UI agent must pass a large volume of UI informa-
tion to precisely describe the current state, which
also increases latency in each call.

The second challenge lies in the domain of relia-
bility. Studies have shown that LLMs are prone to
hallucinations in generating responses and select-
ing correct UIs when a long chain of UI interactions
is required (Bang et al., 2023; Dhuliawala et al.,
2023; Zhang et al., 2023b; Guan et al., 2024). Dur-
ing long sequential calls, the chance of selecting
a wrong UI control or hallucinating a non-existent
UI for interaction increases with each reasoning
step (Zhang et al., 2024a), resulting in compound-
ing errors and task failure (Chen et al., 2024; Zhao
et al., 2024). Lastly, the LLM-based UI agent also
faces the challenge of UI generalization. While re-
cent works had made advancements in UI ground-
ing (Cheng et al., 2024; Rawles et al., 2024b; Bai
et al., 2023), how the LLM-based UI agents handle
interactions with applications whose UIs are not
included in the pretraining stage of LLMs remains
a critical obstacle without good solutions.

To address these challenges faced by LLM-based
UI agents, we highlight the necessity of appli-
cation programming interfaces (APIs) within the
new human-agent-computer interaction (HACI)
paradigm. As an intermediate layer between human

and computer, the LLM-based agent should under-
stand user requests in natural language and operate
computers/applications by prioritizing APIs over
human-like UI interactions. Inspired by this, we
propose AXIS: Agent eXploring API for Skill inte-
gration, a self-exploration LLM-based framework
capable of automatically exploring existing applica-
tions, learning insights from the support documents
and action trajectories, and constructing new APIs1

based on the existing ones. AXIS helps build API-
first LLM-based agents that replace UI agents to
prioritize API calls over unnecessary multistep UI
interactions in task completion. Regular UI inter-
actions are only called when the related APIs are
unavailable. Figure 1 shows a task completion with
the UI agent and API-first agent. Compared to
the UI agents, API-first agents require fewer to-
kens and can obtain more accurate, code-formatted
responses from LLMs with low latency and high
reliability.

Our work makes the following contributions:
• We propose a novel HACI paradigm along with

an implementation framework, AXIS, which en-
ables API-first LLM-based agents to explore an
application’s available APIs and construct new
ones as needed. This approach facilitates the
straightforward transformation of any application

1The new APIs are also referred as “Skills” in Section 4,
and we use the term “API” loosely here to differentiate from
the UI.

7712

into an autonomous agent by wrapping it with an
API set and adopting a simplified UI design. This
paradigm not only addresses practical challenges
faced by application providers but also paves the
way toward a full-fledged Agent Operating Sys-
tem (Agent OS) (Zhang et al., 2024c; Mei et al.,
2024; Wu et al., 2024).

• We mitigate cognitive load and reduce the learn-
ing effort required for complex interactions by
replacing multi-step UI operations with efficient
API calls. Our experiments on Microsoft Word
tasks (Microsoft365, 2024a) show that AXIS sig-
nificantly improves task completion rates while
alleviating the cognitive burden on users.

• We conduct comprehensive performance evalua-
tions and an extensive user study to validate the
efficiency, reliability, and practical applicability
of AXIS in real-world scenarios.

2 Related Work

2.1 LLM-based UI Agent

LLM-based agents are designed to utilize the ad-
vanced context understanding and reasoning skills
of LLMs to interact with and manipulate environ-
ments with human-like cognitive abilities (, FAIR;
Xi et al., 2023; Liu et al., 2023; Wang et al., 2024b).
The advent of MLLMs (Yin et al., 2023; Durante
et al., 2024; Zhang et al., 2024b), including GPT-
4o (OpenAI, 2024) and Gemini (Team et al., 2023),
expands the research landscape for LLM-based UI
agents. LLM-based UI agents have been applied to
multiple areas such as mobile platforms (Yan et al.,
2023; Zhang et al., 2023a; Wang et al., 2024a),
Web (Song et al., 2024) and OS (Wang et al.,
2024c; Zhang et al., 2024a; Zheng et al., 2024; Tan
et al., 2024; Hong et al., 2024; Cheng et al., 2024).
LLM-based UI agents mimic human interactions,
but existing UIs are designed for human-computer,
not agent-computer, interactions, leading to inef-
ficiencies in repetitive tasks. APIs offer a more
efficient alternative by reducing unnecessary UI
steps. We explore leveraging APIs for LLM-based
agents and propose new UI design principles for
the LLM era.

2.2 Agent Operating System

To support the completion of complex tasks with
minimal human interventions, emerging works
have explored the possibility of developing an
agent operating system (Agent OS) fully supported
by LLMs (Mei et al., 2024; Wu et al., 2024; Zhang

et al., 2024c; Xie et al., 2024; Rawles et al., 2024a).
In the industry, commercial Agent OSes (Ap-
ple, 2024; Microsoft, 2024; Huawei, 2024; Honor,
2024) are evolving to become more accessible and
productive for customers with the potential of lead-
ing a new era of HCI. Existing Agent OSes typi-
cally divide complex tasks into sub-tasks and as-
sign them to applications. However, LLM-based
agents still rely on human-like UI interactions, such
as clicking and swiping, which are less efficient
than API calls. Additionally, when processing a
task, the LLM-based UI takes control away from
the user.

2.3 UI design in LLM era

UI design is an essential part of HCI and requires
highly specialized expertise along with iterative
rounds of feedback and revision (Stone et al., 2005).
With LLMs, UI design can be further empowered
with automated procedures of design, feedback and
evaluation. Duan et al. (2024) use LLM-generated
feedback to automatically evaluate UI mockups.
Similiarly, SimUser (Xiang et al., 2024) leverages
LLMs to simulate users with different characteris-
tics to generate feedback on usability and provide
insights into UI design. MUD (Feng et al., 2024)
utilize LLMs to mimic human-like exploration to
mine UI data from applications and employs noise
filtering to improve quality of UI data. Existing
UI designs follow the traditional HCI paradigm
rather than the HACI paradigm central to Agent
OS. Using the AXIS framework, we explore ap-
plications, identify essential UIs, and determine
which UI components can be replaced by API calls
for LLM-based agents.

3 Preliminary

Environment. In the context of AXIS, the environ-
ment refers to the collection of interactive entities
within the exploration scope of the agents. In our
case, these entities primarily consist of applica-
tions running on the Windows operating system,
with Microsoft Word being our focus. Applications
in the environment often share common elements,
such as controls (Zhang et al., 2024a) and XML
elements obtained after unpacking. To facilitate
the observation and interaction between agents and
the environment, we have designed two general
interfaces: state() to return the environment state
and step() to execute agent actions, respectively.
Details of interfaces are in Appendix A.

7713

Skills. A skill in AXIS is a structured unit designed
to accomplish a specific task within the environ-
ment. It is a high-level representation of UI- and
API-based actions, with priority given to API ac-
tions2. Following the design of tool usage and
function call (Cai et al., 2023; Wang et al., 2023),
each skill consists of three components: descrip-
tion, skill code, and usage example. Appendix B.1
shows details of each component.
Skill Types and Hierarchy. Following a versatile
design principle, the skills in AXIS can be catego-
rized into five types based on the composition of
their code fragments: Atomic UI Skill, Atomic API
Skill, Composite UI Skill, Composite API Skill,
and API-UI Hybrid Skill, the details are shown
in Appendix B.2 Table 6. Additionally, we define
“skill hierarchy” as the number of skills contained.
A single atomic skill thus has a skill hierarchy of 1.
Based on their code composition and hierarchy,
skills in AXIS can be nested. For example, skill A
can call skill B, which in turn calls skill C, forming
a hierarchy of depth 3.

4 Design of AXIS

We develop AXIS as a framework that can auto-
matically explore within existing application envi-
ronments, learn insights from exploration trajecto-
ries, and consolidate available insights and learned
knowledge into actionable “skills”. Illustrated by
Figure 2, the AXIS system is composed of three
crucial stages: trajectory collection, skill genera-
tion, and skill validation. The trajectory collection
stage collects interaction trajectories in task com-
pletion, and then the skill generation stage gener-
ates skills from these trajectories and translates into
skill code. The skill validation stage validates the
skill code before it is added in the skill library to
reduce hallucination and maintain generalizability.

4.1 Stage I: Trajectory Collection

“Experience is the mother of wisdom”. Following
the approach in (Wang et al., 2023), we let the
agent practice acquiring skills in the application en-
vironment. In this stage, we designed two practice
modes: Follower Mode and Explorer Mode, which
are task-oriented collections with and without task
descriptions, respectively. The specific prompts
refer to Appendix F.1.
Follower Mode. The Follower Agent extracts tasks

2If the skill can be represented with UI or API actions, the
skill is represented in API-only actions.

and instructions from the application help docu-
ments. The agent processes structured inputs: task
requirements, step-by-step instructions, environ-
mental context, and the current skill library. It
strictly adheres to instructions while interacting
with seed application files, collecting execution
trajectories. Action selection employs the ReAct
mechanism (Yang et al., 2023), integrating action
history, step descriptions, and environmental states.
Initially limited to basic actions (see Table 7), the
follower agent is able to perform more complex
tasks with the expansion of the skill library through
the other parallel processing stages.
Explorer Mode. Explorer mode differs from the
follower mode by leveraging the brainstorming ca-
pability of LLMs to generate various step-by-step
instructions. The Explorer agent observes environ-
ment states and action history, selecting actions
from the skill library without following predefined
task guides. To enhance state diversity, we imple-
mented:
• Initial State Diversity: Random replay of Mi-

crosoft Word files up to intermediate steps, pro-
viding varied starting points.

• Vertical/Horizontal Exploration: A random “dive
into” strategy balancing continuity (vertical) and
breadth (horizontal) in functionality exploration.
“Vertical” means the agent will select UI controls
at lower levels of the current control tree for its
next action, while “Horizontal” means the agent
will tend to select UI controls at the same level
or switch to other menus.

• Skill Proficiency Levels: Three explorer levels
(low/medium/high) guided by Microsoft Office
Specialist (MOS) certification curriculum3, with
system prompts tailored to their app familiarity.

4.2 Stage II: Skill Generation
This stage runs in parallel with Stage I and is re-
sponsible for converting the trajectories into struc-
tured skills. This process involves three LLM-
based agents. The specific prompts for these agents
are detailed in Appendix F.2.
Monitor. The collected trajectories often contain
complex and multiple interaction steps, making it
challenging to convert them into a single skill with-
out enough basic skills available in the skill library.
The monitor examines the skill library, extracts
meaningful trajectory segments, and consolidates
them into natural language-based skill insights.

3https://learn.microsoft.com/en-
us/credentials/certifications/mos-word-2019/

7714

Figure 2: Overview of AXIS framework. AXIS first collects interaction trajectories in Follower or Explorer mode.
Then, the explored trajectories are used to generate skills and translate them into skill code. The skill validation
stage then validates skills in the real environment. Note that the dashed boxes refer to the interaction between agents
and application environment.

Generator. The Generator agent faithfully com-
bines the skill insights with their corresponding
trajectory segments and generates executable skill
code. As shown in Figure 2, the skill code mainly
consists of stacked actions from the trajectories,
where the original action parameters are converted
into placeholders. Along with the skill code gen-
eration, it also produces corresponding skill usage
examples and descriptions, with examples shown in
Table 8. Note that since the skill code is a faithful
reproduction of the trajectory, which may contain
numerous UI operations, the skill code essentially
becomes a combination of UI actions, leaving room
for speed optimization.

Translator. As the skill code from the generator
contains numerous UI operations, a “UI” to “API”
translation is needed. The Translator agent ac-
complishes this task by connecting to the retrieval-
augmented generation (RAG) module (Gao et al.,
2023), consulting the application’s documentation
and the current skill library to convert UI operation
code segments to APIs. As shown in Figure 2, it
converts UI operations into direct modifications of
target content within the application. Table 8 shows
a translation example.

4.3 Stage III: Skill Validation

Due to potential LLM hallucinations and cumula-
tive errors in multi-agent transmission, generated
skills may have syntax or functionality issues. To
address this, we implement static and dynamic val-
idation, with dynamic validation following static
validation.

Static Validation. Static validation utilizes struc-
tural checks to verify the compatibility of the skill
code with the skill executor. It examines whether
the skill’s parameters contain the mandatory param-
eters (such as the executor instance and args list),
whether the methods and properties of the executor
are correctly invoked in the code, and whether any
non-existent skills are imported when reusing the
skill. Skills that do not meet these formal require-
ments are returned for revision.

Dynamic Validation. Dynamic validation evalu-
ates the performance of a skill in a real environ-
ment. It consists of a validator and an evaluator.
The validator generates various input parameters
to test the skill’s generalizability, and the evaluator
checks whether the test is successfully completed
by examining the final state. The specific prompts
are detailed in Appendix F.3, with detailed descrip-
tion of the validator and evaluator in Appendix B.6.

7715

5 Feasibility Study

To validate the usability and effectiveness of the
AXIS framework, we conduct a feasibility study.
We first use AXIS to explore Microsoft Word and
discover 73 skills. Then we extract 50 tasks from
the wikihow 4 page “Use Microsoft Word” and
the official Microsoft Word website 5. These tasks
were executed using both AXIS and UI Agent, and
the results were analyzed and compared. AXIS
also enable turn an application into an agent by
simply wrapping the application with an API set
and adopting a simpler UI design suitable for HACI,
which is presented in Appendix E.

5.1 SKill Exploration

Before the exploration, AXIS is provided with the
initial skill library which composed of 6 basic ac-
tions as shown in Table 7. Then, 347 seed files are
used for AXIS to explore. After the exploration,
AXIS discovers 73 skills with different hierarchies.
Majority of the skills (44) discovered have a skill
hierarchy 1. The rest is composed of 24 skills
with hierarchy 2, 3 skills with hierarchy 3, and 2
skills with hierarchy 4. Table 10 displays several
successfully validated skills discovered during the
exploration process.

5.2 Task Completion

We evaluate UI Agent (represented by UFO (Zhang
et al., 2024a) for its superior Word task perfor-
mance) and AXIS on 50 Word-related tasks using
explored skills. Table 1 presents comparative re-
sults, including completion time, success rates, step
counts, and LLM backend costs (GPT-4o, version
20240513) for both agents.

In terms of execution time, AXIS demonstrates
superior performance, completing tasks in 29.9 sec-
onds on average - twice as fast as UI Agent’s 59.5
seconds. It also achieves higher success rates and,
through its skill-based abstraction, requires fewer
steps per task, resulting in lower costs compared to
the UI Agent UFO.

To investigate AXIS’s efficiency, we analyze ac-
tion types and API usage patterns. As shown in Ta-
ble 2, AXIS employs significantly fewer UI actions
compared to the UI Agent, while utilizing more
API and Advanced API calls (skills with hierarchy
level ≥ 2). Analysis reveals AXIS predominantly
employs integrated API skills for task completion,

4https://www.wikihow.com/Use-Microsoft-Word
5https://support.microsoft.com/en-us/word

Metric UI Agent AXIS P - Significance
Time(s) 59.5 29.9 u>a (p < 0.001)
Success Rate(%) 52.0 84.0 u<a (p < 0.001)
Steps 3.2 2.0 u>a (p < 0.01)
Cost($) 0.4 0.2 u>a (p < 0.001)

Table 1: Comparison of the performance of UI Agent
and AXIS on 50 tasks. Here, “P - Significance” repre-
sents “Pairwise Significance”.

Metric UI Agent AXIS
Total UI actions 103 48
Total API actions 9 39
API usage rate(%) 8.1 55.7
Advanced API usage rate(%) - 23.1

Table 2: Comparison of hit UI actions and API actions
of UI Agent and AXIS on 50 tasks.

yielding more API actions (55.7% usage rate, in-
cluding 23.1% advanced APIs) compared to UI
Agent’s 8.1%. This demonstrates AXIS’s API-first
approach, leveraging available skills for efficient
task execution through skill-action integration.

6 User Study

We conduct an extensive user experiment to eval-
uate the performance of AXIS. The experiment
and evaluation metrics are designed to explore the
following research questions (RQs) on the role of
LLM-based agents in work and daily life scenarios:
• RQ1: Does the LLM-based agent lower the cog-

nitive load of the users and make them have less
effort to learn?

• RQ2: Does the LLM-based agent enhance the
efficiency of users?

• RQ3: What are the differences between a UI
Agent and an API-based Agent in user experi-
ence?
In our user experiment, participants are asked

to complete specified tasks within an application
through three methods: manually, with the assis-
tance of a UI Agent, and with the assistance of
AXIS. The entire process is recorded. Microsoft
Word is chosen as the experimental application
considering its popularity in our daily work and
life as well as the rich API documentations (Mi-
crosoft365, 2024b)). Thus five tasks of Word are
sampled from both official Word documentation
and GPT-generated results, divided into two diffi-
culty levels: low difficulty (L1) and high difficulty
(L2). Motivated by the RQs, we set three objectives
for the user experiment: (1) To evaluate the cog-
nitive load on participants when completing tasks
using different methods. (2) To compare the ef-

7716

ficiency and reliability of task completion across
the three methods. (3) To assess user preferences
regarding the use of different Agents. This study is
approved by the Institutional Review Board (IRB)
of University.

The details of experiment procedure and partici-
pants recruitment are shown in Appendix C.

6.1 Experimental Metrics
We collect both subjective and objective metrics in
our experiments to evaluate the performance and
user experience of different methods.
Subjective Metrics. As detailed in Appendix C,
we conduct four post-task questionnaires (man-
ual and Agent-assisted L1/L2 tasks) using NASA-
TLX (Hart, 1988) metrics: Mental, Physical, and
Temporal Demand; Performance; Frustration; and
Effort, supplemented by a learning effort metric.
Lower scores indicate reduced cognitive load, im-
proved success perception, and decreased frustra-
tion/effort. For Agent-assisted tasks (Question-
naires 3-4), additional metrics include Agent fluen-
cy/reliability, UI dependency, decision consistency
(Agent-user alignment), and perceived completion
speed.
Objective Metrics. For objective metrics, we
maintain comprehensive experimental logs, includ-
ing screen recordings of manual and Agent-assisted
tasks, decision-making processes, UI interaction
paths, task completion time and success rates,
LLM backend costs (GPT-4, version 20240513)
for Agent operations, and UI dependency measure-
ments for both the UI Agent and AXIS.

6.2 Results
Our analysis explores three key aspects: (1) cog-
nitive load reduction, (2) task efficiency of agents,
and (3) user preferences between UI agents and
AXIS.
Cognitive Load. To assess cognitive load reduc-
tion by LLM-based Agents, we analyze NASA-
TLX and learning effort scores (Table 5, Figure 3).
Results show higher scores for L2 tasks across
dimensions, validating our task difficulty classi-
fication. Agent-based methods significantly out-
perform manual approaches in reducing mental/-
physical demand and frustration, particularly for
complex L2 tasks (p<0.05). While L1 task perfor-
mance differences were minimal, agents notably en-
hanced users’ success perception in L2 tasks. Anal-
ysis reveals consistent user experiences across task
complexities (Figure 3 (b)) and significant learn-

ing effort reduction, especially for difficult tasks
(Figure 3 (c)). These findings answer RQ1: LLM-
based agents effectively reduce cognitive load and
learning effort, particularly for complex tasks.
Efficiency and Reliability. Our evaluation com-
pares manual, UI Agent, and AXIS approaches us-
ing completion time, success rate, steps, and costs
(summarized in Tables 3 and 4). AXIS demon-
strates superior time efficiency, significantly outper-
forming both methods (p < 0.001), particularly in
complex L2 tasks. While manual methods achieve
highest accuracy, AXIS maintain near-human per-
formance, contrasting with UI Agent’s lower accu-
racy due to UI element positioning and visibility
issues. Notably, UI Agents require substantially
more steps for deeply nested L2 tasks, whereas
AXIS’s API-driven approach enable streamlined
execution with fewer steps and lower costs. This
answers RQ2: while UI Agents offer modest ef-
ficiency gains for complex tasks with reliability
challenges, AXIS consistently improves human ef-
ficiency with superior reliability.
Affinity Preference. To compare user experiences
between UI agents and AXIS, we conduct a subjec-
tive evaluation across five aspects (Figure 4). Par-
ticipants consistently preferr AXIS for its perceived
speed, fluency, and reliability across both L1 and
L2 tasks. While AXIS’s highly encapsulated API
led to less human-like decision-making in simple
tasks (L1), its decisions aligned better with human
reasoning in complex tasks (L2). AXIS notably
improves user’s experienct by reducing UI depen-
dency compared to UI agents’ frequent interface
interactions. These findings answer RQ3: AXIS
provides superior efficiency, smoothness, and re-
liability compared to UI agents, with increasing
user preference as task complexity grows. User
feedback highlights AXIS’s API-first approach as
advantageous over UI agents’ intrusive behaviors,
offering better control and experience.

7 Conclusion

We present AXIS, a framework that enhances
human-agent-computer interaction (HACI) by pri-
oritizing API calls over UI interactions to reduce in-
efficiencies and cognitive burdens in complex tasks
with multimodal large language models (MLLMs).
Experiments with Microsoft Word show that AXIS
cuts task completion time by 65%-70% and cog-
nitive workload by 38%-53%, while maintaining
human-level accuracy. These results demonstrate

7717

Metric Task Level Manual UI Agent AXIS Pairwise Significance

Time(s) L1
L2

61.8
167.6

104.6
155.5

18.2
57.1

L1: m<u (p < 0.001)
L1, L2: a<m (p < 0.001)
L1, L2: a<u (p < 0.001)

Success Rate(%) L1
L2

100.0
97.5

75.0
45.0

98.3
95.0

L1, L2: m>u (p < 0.001)
L1, L2: a>u (p < 0.001)

Table 3: Comparison of Methods on Time and Success Rate in L1 and L2 tasks.

Metric Task Level UI Agent AXIS Pairwise Significance

steps L1
L2

6.4
11.1

1.0
4.2

L1: a<u (p < 0.001)
L2: a<u (p < 0.001)

cost($) L1
L2

0.6
0.9

0.07
0.3

L1: a<u (p < 0.001)
L2: a<u (p < 0.001)

Table 4: Comparison of Methods on Steps and Cost in L1 and L2 tasks.

Metric Task Level Manual Agents Pairwise Significance

Mental Demand (0-100) L1
L2

21.3
70.0

2.5
7.5

L1: m>a (p < 0.001)
L2: m>a (p < 0.001)

Physical Demand (0-100) L1
L2

31.3
57.5

5.0
6.3

L1: m>a (p < 0.001)
L2: m>a (p < 0.001)

Temporal Demand (0-100) L1
L2

52.5
37.5

28.8
35.0

L1: m>a (p < 0.05)
L2: -

Performance (0-100) L1
L2

21.2
47.5

21.2
26.2

L1: -
L2: m>a (p < 0.05)

Frustration Level (0-100) L1
L2

31.3
62.5

7.5
10.0

L1: m>a (p < 0.001)
L2: m>a (p < 0.001)

Completion Effort (0-100) L1
L2

12.5
35.0

17.5
13.8

L1: -
L2: m>a (p < 0.01)

Table 5: Comparison of NASA-TLX results of Level 1 and Level 2 tasks. (m: Manual, a: Agents)

Figure 3: The results of NASA Workload and learn efforts on L1 and L2 tasks of user study. Bars indicate standard
errors (**: p < 0.01, ***: p < 0.001)

the potential of API-first LLM-based agents to
streamline interactions, reduce latency, and im-
prove reliability, offering a novel approach to faster,
more efficient task execution.

8 Ethical Statement

All used datasets collected internally or obtained
from external sources, ensuring no infringement
on individual or organizational rights. User study
participants volunteered and were compensated.

9 Limitations

While AXIS effectively mines APIs and enables ef-
ficient human-agent-computer interaction (HACI),
further optimization is needed to achieve an Agent
OS. Currently, AXIS primarily relies on Python-
based APIs, limiting support for applications with-
out native Python interfaces. Additionally, its ex-
ploration process requires improvements in stabil-
ity and efficiency. Future work should focus on de-
veloping unified action interfaces to extend HACI

7718

Figure 4: The results of subjective preference on L1 and L2 tasks of user study.

to more applications and operating systems while
enhancing the framework’s performance and effi-
ciency.

References
Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and

Juhani Warsta. 2017. Agile software development
methods: Review and analysis. arXiv preprint
arXiv:1709.08439.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Apple. 2024. Apple intelligence. https://developer.
apple.com/apple-intelligence/. Accessed:
2024-08-28.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile
vision-language model for understanding, localiza-
tion, text reading, and beyond. arXiv preprint
arXiv:2308.12966.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multi-
task, multilingual, multimodal evaluation of chatgpt
on reasoning, hallucination, and interactivity. arXiv
preprint arXiv:2302.04023.

Gautam Biswas, Krittaya Leelawong, Daniel Schwartz,
Nancy Vye, and The Teachable Agents Group at Van-
derbilt. 2005. Learning by teaching: A new agent
paradigm for educational software. Applied Artificial
Intelligence, 19(3-4):363–392.

Jeffrey M Bradshaw, Paul J Feltovich, and Matthew
Johnson. 2017. Human–agent interaction. In The
handbook of human-machine interaction, pages 283–
300. CRC Press.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023. Large language models as
tool makers. arXiv preprint arXiv:2305.17126.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter
Bailis, Ion Stoica, Matei Zaharia, and James Zou.
2024. Are more llm calls all you need? towards
scaling laws of compound inference systems. arXiv
preprint arXiv:2403.02419.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,
Yantao Li, Jianbing Zhang, and Zhiyong Wu. 2024.
Seeclick: Harnessing gui grounding for advanced
visual gui agents. arXiv preprint arXiv:2401.10935.

Ali Darejeh, Sara Mashayekh, and Nadine Marcus.
2022. Cognitive-based methods to facilitate learn-
ing of software applications via e-learning systems.
Cogent Education, 9(1):2082085.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and Ja-
son Weston. 2023. Chain-of-verification reduces hal-
lucination in large language models. arXiv preprint
arXiv:2309.11495.

Peitong Duan, Jeremy Warner, Yang Li, and Bjoern
Hartmann. 2024. Generating automatic feedback on
ui mockups with large language models. In Proceed-
ings of the CHI Conference on Human Factors in
Computing Systems, pages 1–20.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Zane Durante, Qiuyuan Huang, Naoki Wake, Ran Gong,
Jae Sung Park, Bidipta Sarkar, Rohan Taori, Yusuke
Noda, Demetri Terzopoulos, Yejin Choi, et al. 2024.
Agent ai: Surveying the horizons of multimodal in-
teraction. arXiv preprint arXiv:2401.03568.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev,
Elias Frantar, Artem Babenko, and Dan Alistarh.
2024. Extreme compression of large language
models via additive quantization. arXiv preprint
arXiv:2401.06118.

Meta Fundamental AI Research Diplomacy Team
(FAIR)†, Anton Bakhtin, Noam Brown, Emily Di-
nan, Gabriele Farina, Colin Flaherty, Daniel Fried,
Andrew Goff, Jonathan Gray, Hengyuan Hu, et al.

7719

https://developer.apple.com/apple-intelligence/
https://developer.apple.com/apple-intelligence/

2022. Human-level play in the game of diplomacy
by combining language models with strategic reason-
ing. Science, 378(6624):1067–1074.

Sidong Feng, Suyu Ma, Han Wang, David Kong, and
Chunyang Chen. 2024. Mud: Towards a large-scale
and noise-filtered ui dataset for modern style ui mod-
eling. In Proceedings of the CHI Conference on
Human Factors in Computing Systems, pages 1–14.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Yanchu Guan, Dong Wang, Zhixuan Chu, Shiyu Wang,
Feiyue Ni, Ruihua Song, and Chenyi Zhuang. 2024.
Intelligent agents with llm-based process automa-
tion. In Proceedings of the 30th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
pages 5018–5027.

SG Hart. 1988. Development of nasa-tlx (task load
index): Results of empirical and theoretical research.
Human mental workload/Elsevier.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, et al. 2024. Cogagent: A
visual language model for gui agents. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14281–14290.

Honor. 2024. Magicos. https://www.honor.com/
global/magic-os/. Accessed: 2024-08-28.

Jie Huang and Kevin Chen-Chuan Chang. 2022. To-
wards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403.

Huawei. 2024. Harmonyos. https://www.harmonyos.
com/en/. Accessed: 2024-08-28.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. 2024.
Same task, more tokens: the impact of input length on
the reasoning performance of large language models.
arXiv preprint arXiv:2402.14848.

Michael Lewis. 1998. Designing for human-agent inter-
action. Ai magazine, 19(2):67–67.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, et al. 2023. Agentbench: Evaluat-
ing llms as agents. arXiv preprint arXiv:2308.03688.

Zhao Mandi, Shreeya Jain, and Shuran Song. 2024.
Roco: Dialectic multi-robot collaboration with large
language models. In 2024 IEEE International Con-
ference on Robotics and Automation (ICRA), pages
286–299. IEEE.

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye,
Yingqiang Ge, and Yongfeng Zhang. 2024. Aios:
Llm agent operating system. arXiv e-prints, pp.
arXiv–2403.

Microsoft. 2024. Copilot+pc. https:
//www.microsoft.com/en-us/
surface/do-more-with-surface/
advantages-of-copilot-plus-pcs. Accessed:
2024-08-28.

Microsoft365. 2024a. Microsoft365 word. https:
//www.microsoft.com/en-us/microsoft-365/
word. Accessed: 2024-08-28.

Microsoft365. 2024b. Microsoft365 word api.
https://learn.microsoft.com/en-us/dotnet/
api/microsoft.office.interop.word?view=
word-pia. Accessed: 2024-08-28.

OpenAI. 2024. Gpt-4o. https://platform.openai.
com/docs/models/gpt-4o. Accessed: 2024-08-28.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Jan L Plass, Roxana Moreno, and Roland Brünken.
2010. Cognitive load theory.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang,
Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice
Li, William Bishop, Wei Li, Folawiyo Campbell-
Ajala, et al. 2024a. Androidworld: A dynamic bench-
marking environment for autonomous agents. arXiv
preprint arXiv:2405.14573.

Christopher Rawles, Alice Li, Daniel Rodriguez, Ori-
ana Riva, and Timothy Lillicrap. 2024b. An-
droidinthewild: A large-scale dataset for android
device control. Advances in Neural Information Pro-
cessing Systems, 36.

Nayan B Ruparelia. 2010. Software development life-
cycle models. ACM SIGSOFT Software Engineering
Notes, 35(3):8–13.

Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neu-
big. 2024. Beyond browsing: Api-based web agents.
arXiv preprint arXiv:2410.16464.

Debbie Stone, Caroline Jarrett, Mark Woodroffe, and
Shailey Minocha. 2005. User interface design and
evaluation. Elsevier.

Weihao Tan, Ziluo Ding, Wentao Zhang, Boyu Li, Bo-
han Zhou, Junpeng Yue, Haochong Xia, Jiechuan
Jiang, Longtao Zheng, Xinrun Xu, et al. 2024. To-
wards general computer control: A multimodal agent
for red dead redemption ii as a case study. arXiv
preprint arXiv:2403.03186.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

7720

https://www.honor.com/global/magic-os/
https://www.honor.com/global/magic-os/
https://www.harmonyos.com/en/
https://www.harmonyos.com/en/
https://www.microsoft.com/en-us/surface/do-more-with-surface/advantages-of-copilot-plus-pcs
https://www.microsoft.com/en-us/surface/do-more-with-surface/advantages-of-copilot-plus-pcs
https://www.microsoft.com/en-us/surface/do-more-with-surface/advantages-of-copilot-plus-pcs
https://www.microsoft.com/en-us/surface/do-more-with-surface/advantages-of-copilot-plus-pcs
https://www.microsoft.com/en-us/microsoft-365/word
https://www.microsoft.com/en-us/microsoft-365/word
https://www.microsoft.com/en-us/microsoft-365/word
https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.word?view=word-pia
https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.word?view=word-pia
https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.word?view=word-pia
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o

Jeroen JG Van Merrienboer and John Sweller. 2005.
Cognitive load theory and complex learning: Recent
developments and future directions. Educational
psychology review, 17:147–177.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-
ended embodied agent with large language models.
Preprint, arXiv:2305.16291.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan,
Weizhou Shen, Ji Zhang, Fei Huang, and Jitao Sang.
2024a. Mobile-agent: Autonomous multi-modal
mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024b. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345.

Lu Wang, Fangkai Yang, Chaoyun Zhang, Junting
Lu, Jiaxu Qian, Shilin He, Pu Zhao, Bo Qiao, Ray
Huang, Si Qin, et al. 2024c. Large action models:
From inception to implementation. arXiv preprint
arXiv:2412.10047.

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long,
Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai,
and Xiaofei He. 2024d. Model compression and effi-
cient inference for large language models: A survey.
arXiv preprint arXiv:2402.09748.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Chaoyi Wu, Jiayu Lei, Qiaoyu Zheng, Weike Zhao,
Weixiong Lin, Xiaoman Zhang, Xiao Zhou, Ziheng
Zhao, Ya Zhang, Yanfeng Wang, et al. 2023. Can gpt-
4v (ision) serve medical applications? case studies
on gpt-4v for multimodal medical diagnosis. arXiv
preprint arXiv:2310.09909.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin
Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and
Lingpeng Kong. 2024. Os-copilot: Towards gener-
alist computer agents with self-improvement. arXiv
preprint arXiv:2402.07456.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. 2023. The rise and
potential of large language model based agents: A
survey. arXiv preprint arXiv:2309.07864.

Wei Xiang, Hanfei Zhu, Suqi Lou, Xinli Chen,
Zhenghua Pan, Yuping Jin, Shi Chen, and Lingyun
Sun. 2024. Simuser: Generating usability feedback
by simulating various users interacting with mobile
applications. In Proceedings of the CHI Conference
on Human Factors in Computing Systems, pages 1–
17.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou-
jun Cheng, Dongchan Shin, Fangyu Lei, et al. 2024.
Osworld: Benchmarking multimodal agents for open-
ended tasks in real computer environments. arXiv
preprint arXiv:2404.07972.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin,
Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,
Julian McAuley, Jianfeng Gao, et al. 2023. Gpt-
4v in wonderland: Large multimodal models for
zero-shot smartphone gui navigation. arXiv preprint
arXiv:2311.07562.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng
Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan
Wang. 2023. The dawn of lmms: Preliminary
explorations with gpt-4v (ision). arXiv preprint
arXiv:2309.17421, 9(1):1.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing
Sun, Tong Xu, and Enhong Chen. 2023. A survey on
multimodal large language models. arXiv preprint
arXiv:2306.13549.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang,
Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, et al. 2024a. Ufo: A ui-
focused agent for windows os interaction. arXiv
preprint arXiv:2402.07939.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin
Chen, Zebiao Huang, Bin Fu, and Gang Yu. 2023a.
Appagent: Multimodal agents as smartphone users.
CoRR, abs/2312.13771.

Duzhen Zhang, Yahan Yu, Chenxing Li, Jiahua Dong,
Dan Su, Chenhui Chu, and Dong Yu. 2024b. Mm-
llms: Recent advances in multimodal large language
models. arXiv preprint arXiv:2401.13601.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, et al. 2023b. Siren’s song in the ai
ocean: a survey on hallucination in large language
models. arXiv preprint arXiv:2309.01219.

Zhiyang Zhang, Fangkai Yang, Xiaoting Qin, Jue Zhang,
Qingwei Lin, Gong Cheng, Dongmei Zhang, Sara-
van Rajmohan, and Qi Zhang. 2024c. The vision of
autonomic computing: Can llms make it a reality?
arXiv preprint arXiv:2407.14402.

Zirui Zhao, Wee Sun Lee, and David Hsu. 2024. Large
language models as commonsense knowledge for
large-scale task planning. Advances in Neural Infor-
mation Processing Systems, 36.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. 2024. Gpt-4v (ision) is a generalist web agent,
if grounded. arXiv preprint arXiv:2401.01614.

7721

https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://doi.org/10.48550/ARXIV.2312.13771

A Interfaces in Environment

Below are the details of two interfaces: state()
and step() to return the environment state and
execute agent actions, respectively.

• state(): Returns the state of the environ-
ment, including detailed information on the
current elements within the environment. The
environment state encompasses key UI in-
formation such as control positions, control
types, and selection status, which is consistent
with the definition in (Zhang et al., 2024a).
For applications that can be unpacked, the un-
packed XML content is also included as part
of the state.

• step(): Incorporates a skill executor that al-
lows agents to perform operations within the
environment by executing skills. Upon com-
pletion, this interface returns the results of
these operations.

B Skills

B.1 Skill Component
Each skill consists of three main components:

• Skill Code: A piece of code structured to be
compatible with the skill executor. Skill code
includes a uniform set of parameters and ad-
heres to the standard PEP 257 documentation.
The initial set of skills is generated by restruc-
turing the fundamental APIs from the applica-
tion provider, and based on these initial skills,
AXIS can explore and develop additional new
skills.

• Description: A description of the skill’s func-
tionality, which assists the LLM in selecting
and invoking appropriate skills during task
execution.

• Usage Example: One or more code examples
including typical parameters associated with
the code and description. These examples
help the LLM in correctly formatting parame-
ters when invoking the skill.

Skill Executor. As discussed above, our applica-
tion environment incorporates a step() interface
to facilitate the interaction between agents and the
environment. This interface also hosts the skill ex-
ecutor responsible for executing the skill generated
or selected by the agents. The skill executor keeps

caching of application documents and simultane-
ously supports multiple functionalities including
locating application controls, invoking methods on
those controls, and calling application APIs (in-
dependent of controls), to enable the UI actions
and API actions in the same time and serve as an
efficient foundation for skill-driven operations.

B.2 Skill Type
The skills in AXIS can be categorized into five
types based on the types of the code fragments:
Atomic UI Skill, Atomic API Skill, Composite UI
Skill, Composite API Skill, and API-UI Hybrid
Skill. There are some examples in Table 6.

B.3 Initial Skill Repository
As the foundation for the interaction between the
agent and the environment, before exploring and
mining skills, we pre-defined some basic actions
as the initial skill library shown in Table 7. These
actions are derived from UFO (Zhang et al., 2024a).

B.4 Skill Translation Example
The following is a specific example regarding the
generation and translation of skills in Table 8.

7722

Table 6: Comparison of 4 types of skill.

Type Description Example Feature coverage
Atomic UI skill Composed of one basic UI action. As

the most primitive skills, Atomic UI
skills are stacked and transformed dur-
ing the exploration process to form new
skills.

click_input click on different UI
controls

Atomic API skill Composed of one basic API actions. Un-
like UI actions that depend on UI con-
trols for execution, API actions can be
executed without the need of interacting
with any UI elements.

select_text select text content
in the canvas.

Composite UI skill Composed of multiple atomic UI actions
or composite UI actions. Composite UI
skill are formed by a simple stacking
and combination of UI actions.

search_for_help clicking the search
box and then editing
text.

Composite API skill Composed of multiple atomic API ac-
tions or composite API actions. This
type of skills often represents a higher-
level combination of functions.

insert_header_footer insert header and
footer with spec-
ified contents by
API, which is equal
to sequential UI
actions "Insert-
>Header->footer
edit->Footer-
>footer edit".

API-UI hybrid skill Composed of both API actions and UI
actions. API-UI hybrid skills sometimes
appear as intermediate states during skill
exploration and may evolve into pure
API actions during the later stage of ex-
ploration.

format_text_in_word combine select_text
and a series of UI
actions related to
text styling.

7723

Table 7: The basic actions constituted the initial skill repository.

Name Description Example
set_edit_text The function to Set

the edit text of
the control element,
can use to input con-
tent on Edit type
controls.

set_edit_text(executor,
args_dict="control_id":’119’,
"con-
trol_name":"Edit",

’text’:"hi there")

select_text A function to se-
lect the text with the
specified text con-
tent.

select_text(executor,
args_dict="text":"hello")

select_table A function to select
the table with the
specified number.

select_table(executor,
args_dict="number":1)

type_keys A function to Type
in keys on control
item.Used to enter
shortcuts and so on.

type_keys(executor,
args_dict="control_id":’119’,
"con-
trol_name":"Edit",
"text":
"VK_CONTROL
down", "newline":
False)

click_input A function to
Click the control
element.Usually
be used to switch
to different rib-
bon,click the
buttons in menu.

click_input(executor,
args_dict="control_id":"12",
"con-
trol_name":"Border",

’but-
ton’:"left",’double’:False)

wheel_mouse_input A function for
Wheel mouse input
on the control
element.

wheel_mouse_input(executor,
args_dict="control_id":"12",

’wheel_dist’:-20)

7724

Table 8: An example of skill generation and translation.

Generated Skill by Generator Agent Translated Skill by Translator Agent

code : | −
from s e l e c t _ t e x t i m p o r t s e l e c t _ t e x t
d e f h i g h t l i g h t _ t e x t (e x e c u t o r , a r g s _ d i c t :

d i c t) :
" " " H i g h l i g h t t h e t e x t .
: param e x e c u t o r : The e x e c u t o r o b j e c t

.
: param a r g s _ d i c t : The a rgumen t s o f

t h e h i g h l i g h t t e x t method i n a
d i c t
− t e x t : t h e t e x t t o h i g h l i g h t
− h o m e _ c o n t r o l _ i d : t h e i d o f t h e

Home r i b b o n .
: r e t u r n : The r e s u l t o f t h e a c t i o n .

True o r F a l s e . " " "
t r y :

s e l e c t _ t e x t (e x e c u t o r , a r g s _ d i c t)
h o m e _ c o n t r o l _ i d = a r g s _ d i c t . g e t (

" h o m e _ c o n t r o l _ i d " , −1)
h o m e _ r i b b o n _ c o n t r o l = e x e c u t o r .

g e t _ t a r g e t _ c o n t r o l _ b y _ a r g s (
c o n t r o l _ a r g s ={ " c o n t r o l _ i d " :

h o m e _ c o n t r o l _ i d })
e x e c u t o r . a t o m i c _ e x e c u t i o n (

c o n t r o l = h o m e _ r i b b o n _ c o n t r o l ,
method_name=" c l i c k _ i n p u t " ,
a r g s ={ " b u t t o n " : " l e f t " , "

d o ub l e " : F a l s e })
h i g h t l i g h t _ b u t t o n = e x e c u t o r .

g e t _ t a r g e t _ c o n t r o l _ b y _ u u i d (
" u u i d _ c o n t r o l . j s o n " , " 96

d5a516 −35 af −459b−b1c4 −34
aced6acb0b ")

e x e c u t o r . a t o m i c _ e x e c u t i o n (
c o n t r o l = h i g h t l i g h t _ b u t t o n ,
method_name=" c l i c k _ i n p u t " ,
a r g s ={ " b u t t o n " : " l e f t " , "

d o ub l e " : F a l s e })
e x c e p t E x c e p t i o n as e :

p r i n t (f " e r r o r : { s t r (e) } ")
r e t u r n F a l s e

r e t u r n True

d e s c r i p t i o n : | − A f u n c t i o n t o h i g h l i g h t
t h e t e x t .

example : | − h i g h l i g h t _ t e x t (e x e c u t o r ,
a r g s _ d i c t ={ " h o m e _ c o n t r o l _ i d " : 27 , "
t e x t " : " H e l l o " })

code : | −
from s e l e c t _ t e x t i m p o r t s e l e c t _ t e x t
d e f h i g h l i g h t _ t e x t (e x e c u t o r , a r g s _ d i c t :

d i c t) :
" " " H i g h l i g h t t h e t e x t .
: param e x e c u t o r : The e x e c u t o r o b j e c t

.
: param a r g s _ d i c t : The a rgumen t s o f

t h e h i g h l i g h t t e x t method i n a
d i c t
− t e x t : t h e t e x t t o h i g h l i g h t

: r e t u r n : The r e s u l t o f t h e a c t i o n .
True o r F a l s e . " " "

t r y :
s e l e c t _ t e x t (e x e c u t o r , a r g s _ d i c t)
e x e c u t o r . app . S e l e c t i o n . Range .

H i g h l i g h t C o l o r I n d e x = 7 #
ye l l ow i n Word

e x c e p t E x c e p t i o n as e :
p r i n t (f " e r r o r : { s t r (e) } ")
r e t u r n F a l s e

r e t u r n True

d e s c r i p t i o n : | − The f u n c t i o n i s t o
h i g h l i g h t t h e t e x t i n t h e word
document .

example : | − h i g h l i g h t _ t e x t (e x e c u t o r ,
a r g s _ d i c t ={ " t e x t " : " h e l l o " })

7725

B.5 Explored Skill Examples
Here are some explored skill examples of different
hierarchies shown in Table 10.

B.6 Skill Dynamic Validator
Dynamic validation evaluates the performance of a
skill in actual tasks and environments through two
specialized agents as detailed below:

• Validator Agent: When a skill is submitted for
validation, this agent analyzes the skill’s code,
usage examples, and description to generate
appropriate test tasks. Create test parameters
consistent with the skill’s usage examples and
execute the skill in randomly generated Word
documents to assess its functionality.

• Evaluator Agent: After the Validator Agent
executes the target skill, the Evaluator Agent
examines the execution logs, document modi-
fications, and final state of the Word document.
Evaluate whether the task was successfully
completed according to the intended function-
ality. Only skills that pass this evaluation are
eventually added to the skill library.

C User Study

C.1 Experiment Procedure
The entire user experiment lasted for 30 minutes.
During the preparation phase, we sampled five dif-
ferent tasks in Microsoft Word from both official
Word documentation and GPT-generated results.
Those tasks were categorized into two levels of dif-
ficulty: low difficulty (L1) and high difficulty (L2),
based on factors such as the number of UI interac-
tions required, the depth of the UI functions, and
the number of ribbon switches. Our experimental
results also confirmed that tasks in L2 are indeed
more difficult than tasks in L1. In the subsequent
discussion, we will simply refers tasks in different
categories as L1 tasks and L2 tasks. Additionally,
we designed a user information form to collect par-
ticipants’ background information, including their
familiarity with Microsoft Word.

We provided users with a simple web interface
during the formal experiment, which consisted of
two stages. In Stage 1, participants received a pre-
printed task list including both L1 and L2 tasks.
Based on the task ID displayed on the webpage, par-
ticipants were asked to read the task requirements,
click the "start" button, complete the task in the
automatically opened Word document, and click

"Finish." upon task completion. In Stage 2, par-
ticipants were instructed to use both the UI Agent
and AXIS to assist them in completing the Word
tasks. The corresponding webpage were featured
with both input fields and buttons for activating the
two Agents. The participants need to enter task
description to command the Agents to complete
the tasks. Throughout the formal experiment, all
task execution processes were recorded for subse-
quent analysis. After completing all assigned tasks
manually or with the assistant of agents, four differ-
ent post-task questionnaires were displayed on the
experimental webpage to survey users’ subjective
experiences.

C.2 Participants Recruitment

We recruited candidates by posting on social media.
20 individuals were randomly selected as partic-
ipants for the experiment from the list of candi-
dates who confirmed their willingness to partici-
pate. Our participants ranged in age from 18 to 40
years with educational backgrounds spanning from
undergraduate to postgraduate levels. Their occupa-
tions included engineers, students, researchers, and
full-time homemakers, among others. 100% of the
participants had some experience with Microsoft
Word with varying levels of proficiency and differ-
ent usage frequency ranging from daily to monthly.
The user experiment lasted 30 minutes on average
per participant and each participant received 50
CNY as compensation.

C.3 User Study Web Interface

During the user study, we provided participants
with a web interface to control the user study pro-
cedure. Below are some screenshots of the web
interface.

C.4 User Study Tasks

We sampled five tasks about Microsoft Word in
user study which were classified into low difficulty
(L1) and high difficulty (L2) following the same
criteria as tasks in feasibility study. Here are the
detailed tasks in Table 11.

C.5 User Study Survey Form

To obtain subjective metrics and analyze the re-
sults to address our research questions, we included
several questionnaires in the user study which are
listed below:

7726

Figure 5: The figure of the introduction page of manual mode in user study. Each participant was instructed to
follow the steps to finish the task manually.

Figure 6: The figure of the introduction page of agent mode in user study. Each participant was instructed to type in
task description to use agent to finish the task.

Figure 7: The figure of the task page of agent mode in user study. Participants should input and submit the task
description to two different agents, which would then automatically complete the task. The left image shows the
original page, while the right image displays the page after the two agents have completed the task. The text boxes
in the right image show the decision-making processes of each agent.

7727

Table 10: Samples of skills in different hierarchy explored by AXIS.

Hierarchy Name Description Example
1 activate_dictation The function is to

activate dictation in
Microsoft Word. It
is equal to the Dic-
tate button in the
Voice group to start
dictation.

activate_dictation(executor)

2 align_text The function aligns
the text in a Mi-
crosoft Word doc-
ument. It first se-
lects the text, then
applies the desired
alignment (left, cen-
ter, right, justify) us-
ing the Word API.

align_text(executor,
args_dict="text":
"hello", "align-
ment": "center")

3 apply_text_style A function to edit a
text with specified
text, font size, font
name. The title is
set in the center.

apply_text_style(executor,
args_dict="text":"Hello",
"font_name":"Arial",
"font_size":13)

C.5.1 Cognitive load related forms
The cognitive load-related forms include the
NASA-TLX survey and the learning effort survey,
which participants filled out after completing tasks
in both manual mode and agent mode.

C.5.2 Human Preference related forms
The forms related to human preferences include
surveys on perceived speed, fluency, reliability, de-
cision consistency, and UI dependency.

D Feasibility Study

In the feasibility study, we randomly sampled
50 tasks from the WikiHow page ’Use Microsoft
Word’ and the official Microsoft Word website. To
increase the task difficulty, some of the 50 tasks
were composed of smaller sub-tasks, thus increas-
ing the number of steps required for completion.
As the tasks sampled in user study, the 50 tasks
were also divided into 2 levels of difficulty: low
difficulty (L1) and high difficulty (L2), based on
three key factors for task difficulty classification:

• Number of UI Interactions Required: Mea-
sured by the procedural steps (validated
against manuals or user testing), shown quan-
titatively in Table 12.

• Depth of UI Functions: Evaluated via the Con-
trol Hierarchy Tree (rooted at the Ribbon level,
depth = 0). For example, the task Apply text
highlighting (Home → Text Highlight Color)
has a depth = 1.

• Ribbon Switches Counts: Refers to cross-tab
interactions.

A task is classified as L2 difficulty only if it
satisfies all three criteria simultaneously: ≥ 3 UI
interactions, Maximum control depth > 2 and ≥ 1
Ribbon switch.

Table 12 has shown the distribution of the re-
quired execution steps (i.e., the number of steps a
human would typically need to perform through
UI) of the 50 tasks, along with the number of tasks
in different difficulty levels.

E Extensive Applications of AXIS

E.1 AXIS help to digest unnecessary
Application UIs

To build new APIs on top of existing API and UI
functions, AXIS leverages a LLM-powered self-
exploration framework to identify all control ele-
ments within an application that can be converted

7728

Table 11: The sampled tasks in two levels of difficulty for user study.

Task id Task description Difficulty level
1 Here is an article, type in a title

"Impossible Friendship between
mouse and cats" and set the title
in the center with "Arial" type of
20 font size.

L1

2 Insert a header named "header"
and a footer named "footer".

L1

3 Change the titles style of each
sections into heading1 style.

L1

4 I want to make a special format
for company: insert a 2x2 ta-
ble, then change the paper size
in Word to A4, change the text
direction to vertical and add wa-
ter mark with confidential 1 type.

L2

5 Insert 2 shapes into document:(1)
Insert a rectangle with a width
and height of 1 inch, and set the
fill color to red. (2) Insert a circle
with a width and height of 1 inch,
and set the fill color to yellow.

L2

Figure 8: The survey form for NASA-TLX of manual mode in user study, which was collected after the completion
of tasks manually.

7729

Figure 9: The survey form for NASA-TLX of agent mode in user study, which was collected after the completion of
tasks using agents.

Figure 10: The survey form for learning efforts of using different methods to finish tasks, which was collected after
manual mode and agent mode.

Figure 11: The survey form for perceived speed of using different methods to finish tasks, which was collected after
manual mode and agent mode.

Figure 12: The survey form for ui dependency of using different agents to finish tasks, which was collected after
agent mode.

7730

Figure 13: The survey form for decision consistency, fluency and reliability of using different agents to finish tasks,
which was collected after agent mode.

Table 12: The distribution of the required execution steps and difficulty level of the 50 tasks in feasibility study.

Steps Tasks Number Difficulty Level

1 3
L1: 3
L2: 0

2 9
L1: 9
L2: 0

3 23
L1: 14
L2: 9

4 12
L1: 0
L2: 12

5 1
L1: 0
L2: 1

8 1
L1: 0
L2: 1

10 1
L1: 0
L2: 1

7731

into APIs. This exploration procedure helps un-
cover potentially unnecessary UI elements or redun-
dant UI designs for improvement under the HACI
paradigm.

To illustrate this process, in Figure 14, the UI
hierarchical relationships between UIs are repre-
sented as a tree, in which each node represents a
UI element with higher-level UI elements as par-
ent nodes and lower-level ones as child nodes. We
further use red nodes to represent UI locations that
can be API - ified after explored by AXIS, and use
blue nodes to represent general UI elements. Red
nodes imply that the UI controls at these locations
can be replaced by APIs. These red - marked UI el-
ements can be described using natural language. In
contrast, blue nodes indicate that the corresponding
controls are either difficult to describe in language
or lack corresponding triggering APIs. In this ex-
ample, the root node that represents the "Home"
tab is a blue node as not all its sub-UI nodes are
red (API-ified). However, the second-level node
"Highlight Color" (node 2-2) and all its third-level
child nodes can all be API-ified and are colored in
red. Generally, we define a node N as non-essential
if this node along with all their child nodes can all
be API-ified:

NonEssential(N) =





True, if N
and all its child
are red nodes

False, otherwise

Unlike the HCI paradigm that emphasizes the
interactions between human and interfaces, in the
future Agent OS powered by LLM-based agents,
non-essential UI elements can be simplified or even
eliminated from the application interface, with their
original functions replaced by the API calls. By cat-
egorizing UI elements as essential or non-essential,
AXIS can provide valuable insights on how the UI
might be improved and re-designed in an agent-
based system for the application providers.

E.2 Turn An Application into an Agent

In the experiment section, we use Microsoft Word
to illustrate how to explore and construct new API
agents using the AXIS framework. It is worthy
noting that the AXIS framework is highly adapt-
able and scalable, and can be extended to any new
application with a basic API and documentation

support. Specifically, to adapt AXIS, the appli-
cation provider needs to supplement operational
manuals on the applications as well as the follow-
ing interfaces:

• Environment State Interface for obtaining in-
formation about the state of the environment.

• Basic Action Interface for supporting basic
interactions with the environment.

Starting from those basic resources, AXIS can
automatically and continuously explore the applica-
tions, discover new skills, and extend its function-
alities. This adaptability also means that AXIS can
be integrated into various software environments
to enhance functionality and user experience with
API-driven interactions.

F PROMPTS

F.1 Trajectory Collection

F.1.1 Follower Agent

system: |-
Your name is Follower , a UI-focused

agent for Windows OS. You are a
virtual assistant that can help
users to complete requests by
interacting with the UI of the
system.

Your task is to navigate and take
action on control item of the
current application window step -by
-step to complete users current
request.

- You are provided the current state
of app which includes: a list of
control items of the current
application window for reference;
the current content in canvas and
so on.

- You are provided your previous plan
of action for reference to decide
the next step. But you are not
required to strictly follow your
previous plan of action. Revise
your previous plan of action base
on the control item list if
necessary.

- You are provided the user request
history for reference to decide
the next step. These requests are
the requests that you have
completed before. You may need to
use them as reference for the next
action.

- You are provided the function return
from your previous action for

reference to decide the next step.
You may use the return of your

previous action to complete the
user request.

7732

Figure 14: The figure illustrates rule of identifying the UI controls available to be cropped. On the left, the relevant
UI components from the original document structure are displayed. On the right, the corresponding UI tree is shown,
with nodes matching the UI components by number and position, numbers indicating hierarchy levels, and arrows
representing parent-child relationships. The red nodes represent UI controls that can be cropped.

- You are provided the steps history ,
including historical actions to
decide the next step. Use them to
help you think about the next step
.

- You are required to select the
control item and take one -step
action on it to complete the user
request for one step. The one -step
action means calling a function

with arguments for only once.
- You are required to decide whether

the task status , and detail a plan
of following actions to

accomplish the current user
request. Do not include any
additional actions beyond the
completion of the current user
request.

Information of the Application
Window

- Now you are in the {app_name}
applications.

- Here is the detailed state
information and available actions
in {app_name}

{app_info}

status of the task
- You are required to decide the

status of the task after taking
the current action , choose from
the following actions , and fill in
the "status" field in the

response.
- "CONTINUE ": means the task is not

finished and need further action
.

- "FINISH ": means the entire user
request is finished and no
further actions are required. If
the user request is finished

after the current action , you
should also output "FINISH ".

- "ERROR": means the task is
processed as planned , but the
result does not satisfy the user
request.You should set the

status to "ERROR" when you meet
the following situations:

1. previous action is not successful
and fail for 3 times or more ,

and you cannot proceed to the
next step

2. it lacks the available control
item or action to complete the
user request

3. the user request is not clear or
ambiguous to proceed

If the current user request is
finished after the current
action , you must strictly output
"<FINISH >" in the "status"

field in the response.

Other Guidelines
- You are required to select the

control item and take open -step
action by calling API on it to
complete the user request for one
step.

- You are required to response in a
JSON format , consisting of 9
distinct parts with the following
keys and corresponding content:

{{
"observation ": <summarize the

control item list and state
of the current application
window in details based on the
provided control items and

current states. Such as what
applications are available ,
what is the current status of

7733

the application related to the
current user request etc.>

"thought ": <Outline your thinking
and logic of current one -step
action required to fulfill the
given request. You are

restricted to provide you
thought for only one step
action.>

"controlLabel ": <Specify the
precise annotated label of the
control item to be selected ,

adhering strictly to the
provided options in the field
of "label" in the control
information. If you believe
none of the control item is
suitable for the task or the
task is complete , kindly
output a empty string .>

"controlText ": <Specify the
precise control_text of the
control item to be selected ,
adhering strictly to the
provided options in the field
of "control_text" in the
control information. If you
believe none of the control
item is suitable for the task
or the task is complete ,
kindly output a empty string .
The control text must match

exactly with the selected
control label.>

"function ": <Specify the precise
API function name without
arguments to be called on the
control item to complete the
user request , e.g.,
click_input. Leave it a empty
string "" if you believe none
of the API function is
suitable for the task or the
task is complete.>

"args": <Specify the precise
arguments in a dictionary
format of the selected API
function to be called on the
control item to complete the
user request , e.g., {{"
control_id ":"1" ," button ": "
left", "double ": false }}.
Leave it a empty dictionary
{{}} if you the API does not
require arguments , or you
believe none of the API
function is suitable for the
task , or the task is complete
.>

"status ": <Specify the status of
the task given the action.>

"plan": <Specify the following
plan of action to complete the
user request. You must

provided the detailed steps of
action to complete the user

request. You may take your <
Previous Plan > for reference ,
and you can reflect on it and
revise if necessary. If you

believe the task is finished
and no further actions are
required after the current
action , output "<FINISH >".>,

"review ": <Outline your thinking
and logic of the status of the
task ,which means the reason

of "CONTINUE", "FINISH" or "
ERROR".>

}}

- Review the previous action history
in <Step History:> to see if there
are the taken action have already
taken effect. You can refer the

current state in <Current state:>,
the changes in the current canvas
in <Changes in the Current Canvas
:> and the selection status in <
Available Control Item:> to decide
whether the previous action taken
effect ,if the previous action

hasnt taken effect , you may take
the action again or to rectify the
previous action and the status of
the task should be "CONTINUE".

- Review the available actions
carefully , and try to take first
priority to use the general
function to complete the task. If
the general function is not
available , you can use the control
function to complete the task.

- If you use the general function to
complete the task , you must not
select any control item. You must
leave the controlLabel and
controlText as empty string .

- If you use the control function to
complete task , the control item
you select must in the given dict
<Available Control Item >.The <
Available Control Item > contains a
dict of control items of the

current application window ,and the
hirearchy of the control item is

shown in the dict.You must not
generate not in the dict. In your
response , the controlText of the
selected control item must
strictly match exactly with its
controlLabel in the given <
Available Control Item >. Otherwise
, the system will be destroyed and
the users computer will be

crashed.
- If you have tried a general function

and it failed , you can also try a
control function to complete the

task.
- If serveral controlLabels match the

same controlText , you should
review the hierarchy of the
control item and select the most
relevant one.

- You must use double -quoted string
for the string arguments of your
control Action. {{" text": "Hello
World ."}}. Otherwise it will crash
the system and destroy the users

7734

computer.
- You must stop and output "FINISH" in

"status" field in your response
if you believe the task has
finished or finished after the
current action.

- You must not do additional actions
beyond the completion of the
current user request. For example ,
if the user request is to open a

new email window , you must stop
and output FINISH in "status"
after you open the new email
window. You must not input the
email address , title and content
of the email if the user does not
explicitly request you to do so.

- You must check carefully on there
are actions missing from the plan ,
given your previous plan and

action history. If there are
actions missing from the plan , you
must remedy and take the missing

action. For example , if the user
request is to send an email , you
must check carefully on whether
all required information of the
email is inputted. If not , you
must input the missing information
if you know what should input.

- You must carefully check the control
item list and action history to

see if some actions in the
previous plan are redundant to
completing current user request.
If there are redundant actions ,
you must remove them from the plan
and do not take the redundant

actions. For instance , if the next
action in the previous plan is to
click the "New Email" button to

open a new email window , but the
new email editing window is
already opened base on the control
item list , you must remove the

action of clicking the "New Email"
button from the plan and do not

take it for the current action.
- Check your step history of the last

step to see if you have taken the
same action before. You must not
take repetitive actions from
history if the previous action has
already taken effect. For example

, if have already opened the new
email editing window , you must not
open it again.

- Do not take action if the current
action need further input. For
example , if the user request is to
send an email , you must not enter
the email address if the email

address is not provided in the
user request.

- If you need to click a "Group" type
control item to show more options ,
you need to take action on the "
MenuItem" type children control
item under the "Group" type
control item.

- You must detail the target to taken
actions in you plan ,when the
request is ambiguous or not clear
to the target to be operated. Your
filled target should base on your
observation and the current state
of the application window.

- Your plan must strictly follow the
user request ,you must review the
request carefully ,you are
forbidden to add any additional
actions beyond the user request.
For example , the user request is
to "Select the text 'text to edit'
in the Word document you want to

save as AutoText",the intent is
only to select the text ,not to
save the text as AutoText. You
must not add the action to save
the text as AutoText in your plan.

- You should review the Information of
the Application Window carefully ,
and the "args" should be strictly
based on the information provided
in the "Information of the

Application Window" section. The "
args" is consistent with "
args_dict" in the api. For example
, API call: click_input(executor ,
args_dict ={{"control_id":"1",
button:"left",double:True }}),so
the "args" should be {{"control_id
":"1",button:"left",double:True }}.

Here are some examples for you to
complete the user request:

{examples}

Here are some tips for you to
complete the user request:

- When You want to use keyboard
shortcuts to complete the user
request ,you must select the Edit
type control item from the
available control item and choose
related function to complete the
user request.

- When you are asked to insert text ,
it usually apply to Edit type
control item.

- When you meet a dialog box , you need
to select the control item in the
dialog box to complete the user

request or to close the dialog box
to continue the next step.

- When you are requested to select
something like text ,shape ,chart
which is ambiguous , you need to
randomly select one of them on the
canvas to complete the user

request.
- When you need to choose a specific

option from a menu or a list which
is ambiguous , you need to

randomly select one of them based
on your observation to complete
the user request.

7735

- All the functions you can use are
listed above in the "Information
of the Application Window" section
, you must strictly follow the
available actions to complete the
user request ,you cannot use other
functions which are not listed
above.

- When the user request is {follow_eos
}, you need to provide the
observation fields only ,

leave the other fields empty.

Read the above instruction carefully.
Make sure the response and action
strictly following these
instruction and meet the user
request.

Make sure you answer must be strictly
in JSON format only , without other
redundant text such as json

header. Your output must be able
to be able to be parsed by json.
loads(). Otherwise , it will crash
the system and destroy the users
computer.

user: |-
<Available Control Item:> {

control_item}
<Current state:> {current_state}
<Request History:> {request_history}
<Step History:> {action_history}
<Previous Plan:> {prev_plan}
<Changes in the Current Canvas:> {

diff_state}
<Current User Request:> {user_request}
<Your response:>

F.1.2 Explorer Agent

system: |-
Your name is Explorer , a UI-focused

agent framework for Windows OS.
- As an Explorer , you are responsible

for exploring possible action
paths to learn more skills about
the current application window.
You are required to select the
control item and take **one -step**
action on it to explore the

application window.
- You are a beginner in Microsoft Word

, and you are provided with the
list of control items that you can
interact with in the current

application window. Notice that
you can only interact with the
control items provided in the list
.

- You are provided the [Step
Trajectories Completed Previously
], including historical actions ,
thoughts , and results of your
previous steps for reference to
decide the next step.

- You are provided temporary
screenshot and control state of
the current application window for

exploration. The control items
are annotated with numbers for
your reference.

- You are provided available actions
for you to interact with the
control items. You can use these
actions to explore the application
window.

- You are required to follow the dive
into strategy to explore the
application window. With the
certain strategy , you should
decide which control to operate
and what action to take.

On screenshots
- You are provided two versions of

screenshots of the current
application in a single image , one
with annotation (right) and one

without annotation (left).
- You are also provided the screenshot

from the last step for your
reference and comparison. The
control items selected at the last
step is labeled with red

rectangle box on the screenshot.
Use it to help you think whether
the previous action has taken
effect.

- The annotation is to help you
identify the control elements on
the application. The number is the
label of the control item.

- You can refer to the clean
screenshot without annotation to
see what control item are without
blocking the view by the
annotation.

- Different types of control items
have different colors of
annotation.

- Use the screenshot to analyze the
state of current application
window.

Control item
- The control item is the element on

the window that you can interact
with.

- You are given the information of all
available control item in the

current application window in a
list format: {{ label: "the
annotated label of the control
item", control_text: "the text of
the control item", control_type: "
the type of the control item"}}.

- As a beginner , you master the
following techniques for exploring
Microsoft Word. You can only

choose the control item whose
function is within the following
techniques.

{techniques}

Actions
- You are able to use the following

APIs to interact with the control
item.

7736

{apis}

Dive into Strategy
- You are required to follow the dive

into strategy to explore the
application window.

- The dive into startegy have two
value: True and False.

- If the dive into strategy is True ,
you should explore the control
item tree as deep as possible. You
are tend to select the control

item that is belongs to the
current selected control item.

- If the dive into strategy is False ,
you should explore the control
item tree as wide as possible. You
are tend to select the control

item that is at the same level or
above the current selected control
item.

Other Guidelines
- You are required to response in a

JSON format , consisting of 9
distinct parts with the following
keys and corresponding content:

{{
"Observation": <Describe the

screenshot of the current
application window in details.
Such as what are your
observation of the application ,
what is the current status of
the application related to the
current user request etc. You
can also compare the current
screenshot with the one taken at
previous step.>

"Thought": <Outline your thinking
and logic of current one -step
action for your exploration. You
are restricted to provide you

thought for only one step action
.>

"ControlLabel": <Specify the precise
annotated label of the control

item to be selected , adhering
strictly to the provided options
in the field of "label" in the

control information. If you
believe none of the control item
is suitable for your

exploration , kindly output a
empty string .>

"ControlText": <Specify the precise
control_text of the control item
to be selected , adhering

strictly to the provided options
in the field of "control_text"

in the control information. If
you believe none of the control
item is suitable for your
exploration , kindly output a
empty string . The control text
must match exactly with the
selected control label.>

"Function": <Specify the precise API
function name without arguments
to be called on the control

item , e.g., click_input. Leave
it a empty string "" if you
believe none of the API function
is suitable for your

exploration.>
"Args": <Specify the precise

arguments in a dictionary format
of the selected API function to
be called on the control item ,

e.g., {{"button": "left", "
double": false }}. Leave it a
empty dictionary {{}} if you the
API does not require arguments ,
or you believe none of the API

function is suitable for your
exploration.>

"Step": <Specify the description of
the step you will take , e.g., "
Select the phrase 'text to edit'
">

"Action": <Describe how you complete
the step with formal language ,

e.g., "Take action: select_text(
text='text to edit ')">

}}

- If the required control item is not
visible in the screenshot , and not
available in the control item

list , you may need to take action
on other control items to navigate
to the required control item.

- You must select the control item in
the given list <Available Control
Item >. In your response , the
ControlText of the selected
control item must strictly match
exactly with its ControlLabel in
the given <Available Control Item
>.

- You must look at the both
screenshots and the control item
list carefully , analyse the
current status before you select
the control item and take action
on it.

- The Plan you provided are only for
the future steps after the current
action. You must not include the

current action in the Plan.
- Check your step history and the

screenshot of the last step to see
if you have taken the same action
before. You must not take

repetitive actions from history if
the previous action has already

taken effect.
- Compare the current screenshot with

the screenshot of the last step to
see if the previous action has

taken effect. If the previous
action has taken effect , you must
not take the same action again.

- Your output of SaveScreenshot must
be strictly in the format of {{"
save": True/False , "reason": "The
reason for saving the screenshot"
}}. Only set "save" to True if you
strongly believe the screenshot

is useful for the future steps ,

7737

for example , the screenshot
contains important information to
fill in the form in the future
steps. You must provide a reason
for saving the screenshot in the "
reason" field.

- When inputting the searched text on
Google , you must use the Search
Box , which is a ComboBox type of
control item. Do not use the
address bar to input the searched
text.

- You are given the help documents of
the application or/and the online
search results. You may use them
to help you think about the next
step and construct your planning.
These information are for
reference only , and may not be
relevant , accurate or up-to-date.

- Please review the [Step Trajectories
Completed Previously] carefully

to ensure that you are not
repeating the same actions that
have been taken before.

{examples}

This is a very important task. Please
read all the information carefully
, think step by step and take a
deep breath before you start. I
will tip you 200$ if you do a good
job.

Make sure you answer must be strictly
in JSON format only , without other
redundant text such as json

header. Your output must be able
to be parsed by json.loads().
Otherwise , it will crash the
system and destroy the users
computer.

user: |-
<Available Control Items:> {

control_items}
<Current Application You are Working

on:> {current_application}
<Previous Steps:> {previous_steps}
<Previous Actions:> {previous_actions}
<Previous Explore Thought:> {

previous_thought}
<Temporary Control State:> {

control_state}
<Dive into Strategy:> {dive_into}
<Your response:>

F.2 Skill Generation

F.2.1 Generator Agent

system: |-
Youre a skill generator who can

generate the code of skill.A skill
is a function that can interact

with the desktop application and
take actions.

- You will be provided with the <Skill
Description >,which is the

function of the skill.
- You will be also provided with the <

Skill Logic >,which is the logical
flow of the skill to generate.

You are required to generate the code
of the skill based on the <Skill
Description > and <Skill Logic >.

- The function of the code should
follow the <Skill Description >.

- The logical flow of the code should
follow the <Skill Logic >.

Current Skills
- Below is the current skills that the

you can refer in your code.
- You can combine the exsiting skills

if needed
- You should review the description

and examples of the skills
carefully to ensure the
correctness of the code.

- Here are the current skills:
{apis}

Code Documentation
- You may refer to the win32com api

documentation ,although the apis
here are in c sharp programming
language ,

you can refer to the function name and
the parameters.

- Here are some related apis you may
refer to:

{doc_apis}

Code Structure
For the sake of maintaining a general

code structure , you should follow
the below rules for your code:

- The code should be written in python
programming language.

- The name of the skill function
should be the consistent with the
skill name.For example , if the
skill name is "insert text", the
function name should be "
insert_text ".

- The parameters of the function
should always be **(executor ,
args_dict:dict)**.For example , the
function should be like this: "

def insert_text(executor ,args_dict
:dict):"

Executor
The executor is the object that can

interact with the desktop
application and take actions.

Below is the methods of executor
object:

- executor.atomic_execution ()
def atomic_execution(control:object ,

method_name:str , args:dict):
"""
Atomic execution of the action on

the control elements.
:param control: The control

element to execute the action.

7738

:param method: The method to
execute.

:param args: The arguments of the
method.

"""
- executor.get_target_control_by_uuid(

cache_file:str ,uuid:str)
def get_target_control_by_uuid(

cache_file:str ,uuid:str) ->
object:

"""
Get the control object from the

cache file.
:param cache_file: The cache file

path.
:param uuid: The uuid of the

control object.
"""

- executor.get_target_control_by_args(
self ,control_args:dict)

def get_target_control_by_args(
control_args:dict) -> object:

"""
Get the control object from the

control arguments.
:param control_args: The control

arguments of the control
object.

control args format:
{{

"control_id ": "The id of the
control",

"control_name ": "The name of the
control",

}}
At least one of control_id or

control_name must be provided.
"""

Below is the properties of executor
object:

- executor.app: The application object
that the executor interacts with.

- Executor.doc: The document object
that the executor interacts with.

- Executor.app_window: The application
window object that the executor

interacts with.

Args_dict
The args_dict is the dictionary that

contains the parameters of the
function.

Response Format
You must strictly follow the below

JSON format for your reply , and
dont change the format nor output
additional information.

{{
"thought": "the logic of your code

implementation",
"code": "the pure python code of

the skill",
"description": "the description of

skill",
"example": "the calling example of

the skill code"

}}
- You must generate the pure python

code for your reply , and dont
change the format nor output
additional information.

- You should always write an
annotation in your code ,the
docstring for the following Python
function definition according to

the PEP 257 guidelines:
- The annotation should list the

params in ** args_dict **.
- the "description" fields should

include the function of skill , and
the notes of calling the function

.
The notes should include the required

params ,which should remain
consistent with the code and
annotations.

- The calling example of skill code
should with clear and correct
params regarding your code
implementation ,for example ,
function_name(executor ,args_dict
={{" columns ":3," rows ":3}})

examples
Here are some examples for you to

complete the request:

{examples}

Other tips
- You should review carefully the

description and examples of the
current skills to ensure the
correctness of the code.

And also you should avoid generating
the similar skills.

- You should import the current skill
before you use it in your code.

For example: "from select_text import
select_text ".The module name
should be the same as the skill
name.

- You should follow the code structure
strictly to ensure the

correctness of the code.

- In your skill code implementation ,
you may need to find a target
control item by uuid , and then
take actions on the control item.

You are provided with <Cache File name
:> to refer to the control item.

- When you need to use ** executor.
get_target_control_by_uuid ** to
find a control item , you should
fill in the correct cache file and
the uuid to find the target

control item.
The cache file should be the same as

the cache file name provided.The
uuid should be found in the <Skill
Logic >.

- When you need to take action on a
control items the uuid of which is
not provided in the action , you

can

7739

use ** executor.
get_target_control_by_args ** to
find the control item by the
control id or control name.

And the control id or control name
should come from args_dict which
will be filled in the dynamic
skill execution.

Your task is very important to improve
the agents performance. I will

tip you 200$ if you provide a
detailed , correct and high -quality
evaluation. Thank you for your

hard work!

user: |-
<Skill Description >: {

skill_description}
<Skill Logic >: {skill_logic}
<Cache File name:> {cache_file_name}
<Your response:>

F.2.2 Translator Agent

system: |-
You are a intelligent coder who can

translate original code into
equivalent one.

You are required to translate the
skill function code based on the
UI control actions to API calls
code in `win32com ` library.

- You will be provided information
about the skill function and the
original code snippet in `
Information ` section.

- Output should follow the instruction
in `Output ` section.

Information
Input
- <Skill Description >: It describes

the function of the skill.
- <Skill Logic >: It describes the

logical flow of the skill to
translate.

- <Original code >: The code snippet of
the skill function using UI

control actions to interact with
the desktop application , it
describes the actions that the
skill function will take.

- <Current Skills >: The original code
may contain current skills , you
can refer to the existing skills
in the code when needed.

- <APIs >: The list of APIs in `
win32com ` library that you can
refer to.

Executor
- The executor is the object that can

interact with the desktop
application and take actions.

- You can use the properties of
executor to interact with the
desktop application.

- Below is the properties of executor
object:

- executor.app: A win32com.client.
CDispatch object that represents
the application object that the
executor interacts with.

- Executor.doc: A win32com.client.
CDispatch.Document object that
represents the document object
that the executor interacts with.

- Executor.app_window: A pywinauto.
application.WindowSpecification
object that represents the
application window object that the
executor interacts with.

Output
- Your output should be a python dict

object that contains two keys:
- thought: A string that describes

how you translated the skill
function code.

- code: A string contains python
code snippet that translates the
skill function code based on

the UI control actions to API
calls code in `win32com ` library
.

- description: A string that
describes the translated code.

- example: A string that provides an
example of the translated code.

- Below is an exmaple for your
output , follow it strictly and
DO NOT output anything else:

{{
"thought": "<thought >",
"code": "<code >",
"description": "<description >",
"example": "<example >"

}}
- Follow below rules to write code:

- The code should be written in
python programming language.

- DO NOT change the function name
and the parameters of the
function.

- Provide docstring that describe
the function of the code , follow
the example format below.

- You can reuse the existing skills
in the code which is provided in
`Current Skills `.

- Follow the output format in the `
Examples ` section.

Examples
Here are some examples for you to

understand the task:

{examples}

Notes
- Import the current skills before

using them in the code.
- Manipulate the document object

directly without navigating
through the UI.

7740

- The annotations in the original code
snippet can be useful to

understand the actions that the
skill function will take.

user: |-
<Skill Description >: {

skill_description}
<Skill Logic >: {skill_logic}
<Original Code >: {original_code}
<Current Skills >: {current_skills}
<APIs >: {apis}

F.3 Skill Validation

F.3.1 Validator Agent

system: |-
You are a Function Validator ,you can

validate the accuracy of the
function by proposing a new task
and the actions to take.

- You are provided with the code of
the Function in <Function Code >,
which is the code of the target
function.

- You are provided with the decription
of the Function in <Function

Description >, which can help you
understand the function and the
logic of the function.

- You are provided with the example of
the Function in <Function Example

>, which can help you understand
the usage of the function.

- You are provided with a doc file
environment , which contains the
canvas content and control
information in <Doc Canvas State:>
and <Doc Control State:>.

- You are also provided with the doc
screenshot , which can help you
understand the environment better.

- You should review the doc canvas
content and control information
carefully , to help you understand
the environment and the available
controls and actions.

- You should propose a Task to
complete based on the given
Function and the observation of
the doc file environment ,

the purpose of the Task is to validate
the accuracy of the function , and
the Task should be specific and

clear.
- You should give the correct args to

call the function to complete the
Task.

The requirements for Task
1. The Task must rely on the given

Function ,which is can be completed
only by the function.

2. The Task must based on the doc
canvas content and control
information , which is clear and
specific.

3. You should try your best not to
make the Task become verbose.

The requirements for the args to
call the function

1. The args should be correct and
suitable for the function.You
should review the function code
and example carefully to make sure
the args is correct.

2. The args should be suitable for the
Task , which can help you complete
the Task.

Response Format
- You are required to response in a

JSON format , consisting of several
distinct parts with the following
keys and corresponding content:

{{
"observation": <Outline the

observation of the provided
doc file environment based on
the given Canvas State and
Control State >,

"task": <Outline the Task to
propose based on the given
Function and the observation
of doc environment ,which is
used to validate the function
>,

"thought": <Outline your thinking
of how to use function to
complete the Task >,

"function": <Specify the precise
API function name without
arguments to be called on the
control item to complete the
user request , e.g.,
click_input. Leave it a empty
string "" if you believe none
of the API function is
suitable for the task or the
task is complete.>

"args": <Specify the precise
arguments in a dictionary
format of the selected API
function to be called on the
control item to complete the
user request , e.g., {{"
control_id":"1","button": "
left", "double": false }}.
Leave it a empty dictionary
{{}} if you the API does not
require arguments , or you
believe none of the API
function is suitable for the
task , or the task is complete
.>

The function to validate share the
same format: function_name(

executor , args_dict ={"XXX":"
XXX"})

You ONLY need to give the **
args_dict ** part in the "args"
field.

which is args={"XXX":"XXX"}.
}}

Tips

7741

- Read the above instruction carefully
. Make sure the response and
action strictly following these
instruction and meet the user
request.

- Make sure you answer must be
strictly in JSON format only ,
without other redundant text such
as json header. Your output must
be able to be able to be parsed by
json.loads(). Otherwise , it will

crash the system and destroy the
users computer.

- Your task is very important to
improve the functions performance.
I will tip you 200$ if you do

well. Thank you for your hard work
!

user: |-
<Function Code:> {function_code}
<Function Description:> {

function_description}
<Function Example:> {function_example}
<Doc Canvas State:> {doc_canvas_state}
<Doc Control State:> {

doc_control_state}
<Your response:>

F.3.2 Evaluator Agent

system: |-
Youre an evaluator who can evaluate

whether an agent has successfully
completed a task in the <Original
Request >.

The agent is an AI model that can
interact with the desktop
application and take actions.

The thought of agents plan is provided
in the <Thought >.

You will be provided with a task and
the <Execution Trajectory > of the
agent , including the agents
actions that have been taken , and
the change of environment.

You will also be provided with a final
canvas state in <Final Env Status

>.
You will also be provided with a

canvas difference in <Canvas Diff
>.

You will also be provided with the
initial control state in <Init
Control State >.

You will also be provided with the
final control state after each
action in <Final Control State >.

Besides , you will also be provided
with two screenshots , one before
the agents execution and one after
the agents execution.

Please judge whether the agent has
successfully completed the task
based on the screenshots and the <
Execution Trajectory >.You are
required to judge whether the

agent has finished the task or not
by observing the screenshot

differences and the intermediate
steps of the agent.

Execution trajectory information
Here are the detailed information

about a piece of agents execution
trajectory item:

- number: The number of action in the
execution trajectory.

- action: The action that the agent
takes in the current step. It is
the API call that the agent uses
to interact with the application
window.

You will get a list of trajectory
items in the <Execution Trajectory
> of the agents actions.

Control State

- A control item is the element on the
page that you can interact with ,

we limit the actionable control
item to the following:

- "Button" is the control item that
you can click.

- "Edit" is the control item that you
can click and input text.

- "TabItem" is the control item that
you can click and switch to
another page.

- "ListItem" is the control item that
you can click and select.

- "MenuItem" is the control item that
you can click and select.

- "ScrollBar" is the control item that
you can scroll.

- "TreeItem" is the control item that
you can click and select.

- "Document" is the control item that
you can click and select text.

- "Hyperlink" is the control item that
you can click and open a link.

- "ComboBox" is the control item that
you can click and input text. The
Google search box is an example of
ComboBox.

- You are given the information of all
available control item in the

current application window in a
hybrated tree format:

{{
"control_label ": "label of the

control item",
"control_text ": name of the control

item ,
"control_type ": type of the control

item ,
"selected ": False or True or null ,

null means the control item is
not sure if it is selected ,

"children ": list of the children
control item with same format as
above

}}.

Canvas Format

7742

Canvas State Format
The canvas state is in the xml format

which is transformed from the
document object model (DOM) of the
canvas area.

The canvas diff is the difference of
the canvas area before and after
the action , which is in the format
of the difference of the xml of

the canvas area.
Here is an example of xml of a canvas ,

which show the text content in
document:

{{"w:document ":{{" @mc:Ignorable ":"
w14w15w16sew16cidw16w16cexw16sdtdhw16duwp14
","w:body ":{{"w:p":{{"w:pPr ":{{"w:
rPr ":{{"w:rFonts ":{{"@w:hint ":"
eastAsia "}},"w:color ":{{"@w:val
":"92 D050 "}},"w:kern ":{{"@w:val
":"2"}} ,"w:sz":{{"@w:val ":"24"}} ,"
w:szCs ":{{"@w:val ":"24"}} ,"w:lang
":{{"@w:val":"en-US","@w:eastAsia
":"zh-CN","@w:bidi ":"ar-SA"}},"w14
:ligatures ":{{" @w14:val":"
standardContextual "}}}} ,"w:spacing
":{{"@w:after ":"160" ,"@w:line
":"278" ,"@w:lineRule ":" auto "}},"w:
color ":"000000"}} ,"w:r":{{"w:rPr
":{{"w:rFonts ":{{"@w:hint ":"
eastAsia "}},"w:color ":{{"@w:val
":"92 D050 "}},"w:highlight ":{{"@w:
val ":" yellow "}},"w:kern ":{{"@w:val
":"2"}} ,"w:sz":{{"@w:val ":"24"}} ,"
w:szCs ":{{"@w:val ":"24"}} ,"w:lang
":{{"@w:val":"en-US","@w:eastAsia
":"zh-CN","@w:bidi ":"ar-SA"}},"w14
:ligatures ":{{" @w14:val":"
standardContextual "}}}} ,"w:t":"
Hello "}}}} ,"w:sectPr ":{{"w:pgSz
":{{"@w:w":"12240" ," @w:h
":"15840"}} ,"w:pgMar ":{{"@w:top
":"1440" ,"@w:right ":"1440" ,"@w:
bottom ":"1440" ,"@w:left ":"1440" ,"
@w:header ":"720" ,"@w:footer
":"720" ,"@w:gutter ":"0"}} ,"w:cols
":{{"@w:space ":"720"}} ,"w:docGrid
":{{"@w:linePitch ":"360"}}}}}}}}}}

Action Explanation
Below is the available API that the

agent can use to interact with the
application window. You can refer
to the API usage to understand

the agents actions.
{apis}

Evaluation Items

You should also give a overall
evaluation of whether the task has
been finished , marked as "yes","

no" or "unsure".

Criteria for evaluation of the task
completion:

1. The <Final Control State:> and <
Final Env Status:> should be
consistent with the task
requirements.If the

controls or canvas content expected to
be changed are not changed , the

task is not completed.
2. The <Execution Trajectory > should

be consistent with the task
requirements. If the agents
actions are not consistent with
the task requirements , the task is
not completed.

3. If any action in the <Execution
Trajectory > is empty , the task is
not completed.

Response Format

You must strictly follow the below
JSON format for your reply , and
dont change the format nor output
additional information.

{{
"task_complete": The evaluation of

the task completion , which is
"yes/no/unsure",

"complete_judgement": "your
judgment of whether the task
has been finished , and the
detailed reasons for your
judgment based on the provided
information",

}}

Please take a deep breath and think
step by step. Observe the
information carefully and analyze
the agents execution trajectory ,
do not miss any minor details.

Rethink your response before
submitting it.

Your judgment is very important to
improve the agents performance. I
will tip you 200$ if you provide a
detailed , correct and high -

quality evaluation. Thank you for
your hard work!

user: |-
<Original Request:> {request}
<Thought:> {thought}
<Execution Trajectory:> {trajectory}
<Canvas Diff:> {canvas_diff}
<Init Control State:> {

init_control_state}
<Final Control State:> {

final_control_state}
<Final Env Status:> {final_status}
<Your response:>

7743

